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Abstract

The chemotaxis system

{

ut = ∆u− χ∇ · (u
v
∇v),

vt = ∆v − v + u,

is considered in a bounded domain Ω ⊂ R
n with smooth boundary, where χ > 0.

An apparently novel type of generalized solution framework is introduced within which an extension

of previously known ranges for the key parameter χ with regard to global solvability is achieved.

In particular, it is shown that under the hypothesis that

χ <











∞ if n = 2,√
8 if n = 3,
n

n−2
if n ≥ 4,

for all initial data satisfying suitable assumptions on regularity and positivity, an associated no-flux

initial-boundary value problem admits a globally defined generalized solution. This solution inter

alia has the property that

u ∈ L1

loc
(Ω× [0,∞)).
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1 Introduction

We consider the Keller-Segel system with logarithmic sensitivity, as given by the initial-boundary value
problem











ut = ∆u− χ∇ ·
(

u
v
∇v
)

, x ∈ Ω, t > 0,
∂u
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

coupled to the parabolic problem










vt = ∆v − v + u, x ∈ Ω, t > 0,
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x), x ∈ Ω,

(1.2)

where Ω is a bounded domain in R
n, n ≥ 2, with smooth boundary, χ is a positive parameter and the

given initial data u0 and v0 satisfy suitable regularity and positivity assumptions.

This system can be viewed as a prototypical parabolic model for self-enhanced chemotactic migration
processes in which cross-diffusion occurs in accordance with the Weber-Fechner law of stimulus percep-
tion ([9], [15]), and accordingly a considerable literature is concerned with its mathematical analysis.
However, up to now it seems yet unclear to which extent the particular mechanism of taxis inhibition
at large signal densities in (1.1) is sufficient to prevent phenomena of blow-up, known as the probably
most striking qualitative feature of the classical Keller-Segel system: Indeed, in its fully parabolic
version, as determined by the choice τ := 1 in

{

ut = ∆u− χ∇ · (u∇v),
τvt = ∆v − v + u,

(1.3)

the latter admits solutions blowing up in finite time for any choice of χ > 0 whenever n ≥ 2 ([8],
[22]), and in the simplified parabolic-elliptic case obtained on choosing τ := 0 it is even known that
some radial solutions to an associated Cauchy problem in the whole plane collapse into a persistent
Dirac-type singularity in the sense that a globally defined measure-valued solution exists which has a
singular part beyond some finite time and asymptotically approaches a Dirac measure (cf. e.g. [19] or
also [12]).

As opposed to this, the literature has identified various circumstances under which phenomena of
this type are ruled out in (1.1)-(1.2): For instance, when χ < χ0(n) with some χ0(2) > 1.015 and

χ0(n) :=
√

2
n

for n ≥ 3, global bounded classical solutions exist for all reasonably regular positive

initial data ([11], [2], [4], [24], [13], [21]); in the corresponding parabolic-elliptic analogue, the same
conclusion holds with χ0(2) = ∞ ([5]) and with χ0(n) :=

2
n−2 when n ≥ 3 and the spatial setting is

radially symmetric ([14], cf. also [6] for a related result addressing a variant with its second equation
being τvt = ∆v − v + u for small τ > 0), whereas it is known that some exploding solutions exist if
n ≥ 3 and χ > 2n

n−2 ([14]). As for larger values of χ in the fully parabolic problem (1.1)-(1.2), in some
cases at least certain global generalized solutions can be found which satisfy

u ∈ L1
loc(Ω× [0,∞)) (1.4)
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and thereby indicate the absence of strong singularity formation of the flavor described above. Such
constructions are possible in the context of natural weak solution concepts if

χ <

√

n+ 2

3n− 4
(1.5)

([21]) and within a slightly more generalized framework if merely

χ <

√

n

n− 2
(1.6)

but in addition the solutions are supposed to be radially symmetric ([17]). To the best of our knowledge,
however, the question how far (1.5) is optimal with respect to the existence of not necessarily radial
solutions fulfilling (1.4) is yet unsolved; in particular, it appears to be unknown whether in nonradial
planar settings such solutions do exist also beyond the range χ <

√
2 determined by (1.5).

Main results. The purpose of this work is to design a novel concept of generalized solvability
which is yet suitably strong so as to require (1.4), but which on the other hand is mild enough so
that it enables us to construct corresponding global solutions without any symmetry hypotheses and
under conditions somewhat weaker than (1.5) and actually also than (1.6). More precisely, considering
(1.1)-(1.2) under the assumptions that

{

u0 ∈ C0(Ω) is such that u0 ≥ 0 in Ω and u0 6≡ 0, and that

v0 ∈W 1,∞(Ω) satisfies v0 > 0 in Ω,
(1.7)

we can state our main results as follows.

Theorem 1.1. Let n ≥ 2 and Ω ⊂ R
n be a bounded domain with smooth boundary, and let χ > 0 be

such that

χ <











∞ if n = 2,√
8 if n = 3,
n
n−2 if n ≥ 4.

(1.8)

Then for any u0 and v0 fulfilling (1.7), the problem (1.1)-(1.2) has at least one global generalized
solution (u, v) in the sense of Definition 2.4 below. In particular, this solution satisfies (1.4), and
moreover we have

∫

Ω
u(·, t) =

∫

Ω
u0 for a.e. t > 0. (1.9)

Plan of the paper. A first substantial task will be related to the design of a suitable family
of approximate versions of (1.1)-(1.2) in which, on the one hand, the crucial nonlinear interaction
is regularized in such an effective manner that even global classical solutions exist, but which on the
other hand retains, as far as possible, a fundamental dissipative property of (1.1)-(1.2). As is essentially
well-known, namely, the functional

∫

Ω u
pvq enjoys certain quasi-entropy features along trajectories of

(1.1)-(1.2), provided that the crucial positive parameter p therein satisfies p < 1
χ2 and q > 0 is chosen

adequately. After introducing the regularization (3.1) of (1.1)-(1.2) appropriate for our purposes,
in Section 4 we will derive a rigorous counterpart of this entropy-like property for the corresponding
approximate solutions. The main challenge now consists in taking appropriate advantage of accordingly
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implied a priori estimates obtained in Sections 5, 6 and 7, which inter alia seem far from sufficient to
warrant L1 bounds for the cross-diffusive flux χu

v
∇v especially in cases when χ is large and hence p

needs to be chosen small.
In the preparatory Section 3, we will therefore resort to a solution framework involving certain sublinear
powers of u rather than u itself, thus reminiscent of the celebrated concept of renormalized solutions
([3]). This idea has partially been adapted to the present context in [17] already, but in the present
work we shall further weaken the requirements on solutions to a considerable extent: Namely, for the
crucial first sub-problem (1.1) to be solved we shall only require that the coupled quantity upvq, with
certain positive p and q, satisfies a parabolic inequality associated with (1.1)-(1.2) in a weak form,
and that moreover

∫

Ω u(·, t) ≤
∫

Ω u0 for a.e. t > 0; a key observation, to be made in Lemma 2.5, will
reveal that if we furthermore assume the component v to fulfill (1.2) in a natural weak sense, then
we indeed obtain a concept consistent with that of classical solvability in (1.1)-(1.2) for all suitably
smooth functions.
As seen in Section 8 by means of appropriate compactness arguments, the previously gained estimates
in fact enable us to construct a global solution within this framework.

2 A concept of generalized solvability

In specifying the subsequently pursued concept of weak solvability, we first require certain products
upvq to satisfy an inequality which can be viewed as generalizing a classical supersolution property of
this quantity with regard to (1.1)-(1.2).

Definition 2.1. Let p ∈ (0, 1) and q ∈ (0, 1), and suppose that u and v are measurable functions on
Ω× (0,∞) such that u > 0 and v > 0 a.e. in Ω× (0,∞), that

upvq ∈ L1
loc(Ω× [0,∞)) and up+1vq−1 ∈ L1

loc(Ω× [0,∞)), (2.1)

and that ∇u p

2 and ∇v q

2 belong to L1
loc(Ω× (0,∞)) and are such that

v
q

2∇u p

2 ∈ L2
loc(Ω× [0,∞)) and u

p

2∇v q

2 ∈ L2
loc(Ω× [0,∞)). (2.2)

Then (u, v) will be called a global weak (p, q)-supersolution of (1.1) if

−
∫ ∞

0

∫

Ω
upvqϕt −

∫

Ω
u
p
0v
q
0ϕ(·, 0)

≥ 4(1− p)q − 4q2 − p(1− p)2χ2

pq(pχ+ 1− q)

∫ ∞

0

∫

Ω
vq|∇u p

2 |2ϕ

+
4(pχ+ 1− q)

q

∫ ∞

0

∫

Ω

∣

∣

∣
u

p

2∇v q

2 − (1− p)χ+ 2q

2(pχ+ 1− q)
v

q

2∇u p

2

∣

∣

∣

2
ϕ

−2pχ

q

∫ ∞

0

∫

Ω
u

p

2 vq∇u p

2 · ∇ϕ

+
(

1− pχ

q

)

∫ ∞

0

∫

Ω
upvq∆ϕ

−q
∫ ∞

0

∫

Ω
upvqϕ+ q

∫ ∞

0

∫

Ω
up+1vq−1ϕ (2.3)
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for all nonnegative ϕ ∈ C∞
0 (Ω× [0,∞)) such that ∂ϕ

∂ν
= 0 on ∂Ω× (0,∞) and if moreover

upvq > 0 a.e. on ∂Ω× (0,∞). (2.4)

Remark 2.2. (i) Observing that (2.1) in particular ensures that u
p

2 v
q

2 ∈ L2
loc(Ω× [0,∞)), and that

hence (2.1) and (2.2) warrant that

u
p

2 vq∇u p

2 = (u
p

2 v
q

2 ) · (v q

2∇u p

2 ) ∈ L1
loc(Ω× [0,∞))

and similarly upv
q

2∇v q

2 ∈ L1
loc(Ω× [0,∞)), it follows that under the above requirements all integrals in

(2.3) are indeed well-defined.
(ii) According to (2.1) and (2.2), for a.e. t > 0, u

p

2 (·, t)v q

2 (·, t) ∈ W 1,2(Ω) so that u
p

2 v
q

2 (·, t)
∣

∣

∂Ω
∈

L2(∂Ω) exists in the sense of traces, giving meaning to the positivity requirement in (2.4).

Apart from that, we will require the second problem (1.2) to be satisfied in the following rather natural
weak sense.

Definition 2.3. A pair (u, v) of functions

{

u ∈ L1
loc(Ω× [0,∞)),

v ∈ L1
loc([0,∞);W 1,1(Ω))

(2.5)

will be named a global weak solution of (1.2) if

−
∫ ∞

0

∫

Ω
vϕt −

∫

Ω
v0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇v · ∇ϕ−

∫ ∞

0

∫

Ω
vϕ+

∫ ∞

0

∫

Ω
uϕ (2.6)

for all ϕ ∈ C∞
0 (Ω× [0,∞)).

Following an approach already pursued in [23] in a considerably less involved related context, in order
to complete our solution concept we will complement the above two requirements by merely postulating
an upper bound for the mass functional

∫

Ω u in terms of
∫

Ω u0:

Definition 2.4. A couple of nonnegative measurable functions u and v defined on Ω × (0,∞) will
be said to be a global generalized solution of (1.1)-(1.2) if (u, v) is a global weak solution of (1.2)
according to Definition 2.3, if there exist p ∈ (0, 1) and q ∈ (0, 1) such that (u, v) is a global weak
(p, q)-supersolution of (1.1) in the sense of Definition 2.1, and if moreover

∫

Ω
u(·, t) ≤

∫

Ω
u0 for a.e. t > 0. (2.7)

This is indeed consistent with the concept of classical solvability in the following sense.

Lemma 2.5. Let χ > 0, and suppose that (u, v) ∈ (C0(Ω × [0,∞)) ∩ C2,1(Ω × (0,∞)))2 is such that
(u, v) is a global generalized solution of (1.1)-(1.2) in the sense of Definition 2.4. Then (u, v) satisfies
(1.1)-(1.2) classically in Ω× (0,∞).
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Proof. By means of standard arguments relying on the assumed regularity properties of v, it can easily
be verified that v solves (1.2) classically. According to the maximum principle, v hence is strictly
positive in Ω× [0,∞) and vq−1 is uniformly bounded in every set Ω× [0, T ) for T ∈ (0,∞). Positivity
of v ensures that by (2.4) u > 0 on a dense subset of ∂Ω×(0,∞) which moreover is open in ∂Ω×(0,∞)
by continuity of u.
For arbitrary ψ ∈ C∞(Ω) with ψ ≥ 0 and ∂ψ

∂ν

∣

∣

∂Ω
= 0, testing (2.3) by ϕ(x, t) := ψ(x)(1 − 1

ε
t)+, ε ∈

(0, 1), which is permissible by Weierstrass’ theorem, and invoking Lebesgue’s dominated convergence
theorem and continuity of t 7→

∫

Ω u
p(·, t)vq(·, t) at t = 0 in taking εց 0 we readily achieve

∫

Ω
up(·, 0)vq(·, 0)ψ ≥

∫

Ω
u
p
0v
q
0ψ for all ψ ∈ C∞(Ω), ψ ≥ 0,

∂ψ

∂ν

∣

∣

∂Ω
= 0,

showing that up(·, 0)vq(·, 0) ≥ u
p
0v
q
0 throughout Ω. Because of v(·, 0) = v0 > 0 and the monotonicity of

(·)
1
p we obtain u(·, 0) ≥ u0 in Ω and from continuity of u and (2.7) we can conclude that u(·, 0) = u0

in Ω.
In the first two integrals on the right of (2.3) straightforward computations yield

4(1− p)

p
vq|∇u p

2 |2 −
(4(1− p)χ

q
+ 8
)

u
p

2 v
q

2∇u p

2∇v q

2 +
4(pχ+ 1− q)

q
up|∇v q

2 |2

=
4(pχ+ 1− q)

q

{

up|∇v q

2 |2 − (1− p)χ+ 2q

pχ+ 1− q
u

p

2 v
q

2∇u p

2∇v q

2 +
(χ− pχ+ 2q)2

4(pχ+ 1− q)2
vq|∇u p

2 |2
}

+

{

4(1− p)

p
− ((1− p)χ+ 2q)2

q(pχ+ 1− q)

}

vq|∇u p

2 |2 (2.8)

=
4(pχ+ 1− q)

q

∣

∣

∣

∣

u
p

2∇v q

2 − (1− p)χ+ 2q

2(pχ+ 1− q)
v

q

2∇u p

2

∣

∣

∣

∣

2

+
4(1− p)q − 4q2 − p(1− p)2χ2

pq(pχ+ 1− q)
vq|∇u p

2 |2,

since

4(1− p)

p
− ((1− p)χ+ 2q)2

q(pχ+ 1− q)
=

4(1− p)q(pχ+ 1− q)− ((1− p)χ+ 2q)2p

pq(pχ+ 1− q)

=
4(1− p)q − 4q2 − p(1− p)2χ2

pq(pχ+ 1− q)
.

In preparation of the following calculations we also note that for each positive function w ∈ C2(Ω) and
any r > 0, we have the pointwise identities

w
r
2∆w

r
2 = w

r
2∇ ·

(r

2
w

r−2
2 ∇w

)

= w
r
2

(r(r − 2)

4
w

r−4
2 |∇w|2 + r

2
w

r−2
2 ∆w

)

=
r(r − 2)

4
wr−2|∇w|2 + r

2
wr−1∆w =

r − 2

r
|∇w r

2 |2 + r

2
wr−1∆w (2.9)

and

∆wr = ∇ · (rwr−1∇w) = r(r − 1)wr−2|∇w|2 + rwr−1∆w =
4(r − 1)

r
|∇w r

2 |2 + rwr−1∆w (2.10)
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The positivity requirement on w in (2.9) and (2.10) prompts us to perform the following calculations
only for test functions ϕ compactly supported in {u > 0} := {(x, t) ∈ Ω × [0,∞) : u(x, t) > 0},
ensuring strict positivity of u and boundedness of up−1 on suppϕ.
Accordingly, for all nonnegative ϕ ∈ C∞

0 (Ω× (0,∞)) with suppϕ ⊂ {u > 0} and ∂ϕ
∂ν

∣

∣

∂Ω×(0,∞)
= 0, by

(2.9) applied to u and p, an integration by parts in the integral in (2.3) containing ∇ϕ yields

−2pχ

q

∫ ∞

0

∫

Ω
u

p

2 vq∇u p

2 · ∇ϕ =
2pχ

q

∫ ∞

0

∫

Ω
vq|∇u p

2 |2ϕ+
4pχ

q

∫ ∞

0

∫

Ω
u

p

2 v
q

2∇v q

2 · ∇u p

2ϕ

+
2pχ

q

∫ ∞

0

∫

Ω
u

p

2 vq∆u
p

2ϕ− 2pχ

q

∫ ∞

0

∫

∂Ω
u

p

2 vq
∂u

p

2

∂ν
ϕ

=
2pχ

q

∫ ∞

0

∫

Ω
vq|∇u p

2 |2ϕ+
4pχ

q

∫ ∞

0

∫

Ω
u

p

2 v
q

2∇v q

2 · ∇u p

2ϕ

+
2(p− 2)χ

q

∫ ∞

0

∫

Ω
vq|∇u p

2 |2ϕ+
p2χ

q

∫ ∞

0

∫

Ω
up−1vq∆uϕ− 2pχ

q

∫ ∞

0

∫

∂Ω
u

p

2 vq
∂u

p

2

∂ν
ϕ, (2.11)

whereas integrating by parts twice in the integral containing ∆ϕ in (2.3), by (2.10) applied to u, p and
v, q, respectively, leads to

(

1− pχ

q

)

∫ ∞

0

∫

Ω
upvq∆ϕ =

(

1− pχ

q

)

∫ ∞

0

∫

Ω
vq∆(up)ϕ+

(

1− pχ

q

)

∫ ∞

0

∫

Ω
up∆(vq)ϕ

+ 2
(

1− pχ

q

)

∫ ∞

0

∫

Ω
2u

p

2∇u p

2 · 2v q

2∇v q

2ϕ

−
(

1− pχ

q

)

∫ ∞

0

∫

∂Ω
2u

p

2
∂u

p

2

∂ν
vqϕ− 2

(

1− pχ

q

)

∫ ∞

0

∫

∂Ω
upv

q

2
∂v

q

2

∂ν
ϕ

=
4(p− 1)

p

(

1− pχ

q

)

∫ ∞

0

∫

Ω
vq|∇u p

2 |2ϕ+
4(q − 1)

q

(

1− pχ

q

)

∫ ∞

0

∫

Ω
up|∇v q

2 |2ϕ

+
(

1− pχ

q

)

p

∫ ∞

0

∫

Ω
vqup−1∆uϕ+

(

1− pχ

q

)

q

∫ ∞

0

∫

Ω
upvq−1∆vϕ

+ 8
(

1− pχ

q

)

∫ ∞

0

∫

Ω
u

p

2 v
q

2∇u p

2 · ∇v q

2ϕ

−
(

1− pχ

q

)

∫ ∞

0

∫

∂Ω
2u

p

2
∂u

p

2

∂ν
vqϕ (2.12)

for any such ϕ, for we already know that ∂v
∂ν

= 0 on ∂Ω× (0,∞). If we combine (2.3) with (2.8), (2.11)
and (2.12), we obtain
∫ ∞

0

∫

Ω
(upvq)tϕ ≥

{

4(1− p)

p
+

2pχ

q
+

4(p− 1)

p

(

1− pχ

q

)

+
2(p− 2)χ

q

}∫ ∞

0

∫

Ω
vq|∇u p

2 |2ϕ

+

{

4(pχ+ 1− q)

q
+

4(q − 1)

q

(

1− pχ

q

)

}∫ ∞

0

∫

Ω
up|∇v q

2 |2ϕ

+

{

−4(1− p)χ

q
− 8 +

4pχ

q
+ 8− 8pχ

q

}∫ ∞

0

∫

Ω
u

p

2 v
q

2∇u p

2 · ∇v q

2ϕ

+

{

p2χ

q
+
(

1− pχ

q

)

p

}∫ ∞

0

∫

Ω
vqup−1∆uϕ
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+
(

1− pχ

q

)

q

∫ ∞

0

∫

Ω
upvq−1∆vϕ− q

∫ ∞

0

∫

Ω
upvqϕ+ q

∫ ∞

0

∫

Ω
up+1vq−1ϕ

− 2pχ

q

∫ ∞

0

∫

∂Ω
u

p

2 vq
∂u

p

2

∂ν
ϕ−

(

1− pχ

q

)∫ ∞

0

∫

∂Ω
2u

p

2
∂u

p

2

∂ν
vqϕ

=

∫ ∞

0

∫

Ω

{

4pχ

q2
up|∇v q

2 |2 − 4χ

q
u

p

2 v
q

2∇u p

2 · ∇v q

2 + pvqup−1∆u− pχupvq−1∆v

}

ϕ

+ q

∫ ∞

0

∫

Ω
upvq−1 {∆v − v + u}ϕ

− 2

∫ ∞

0

∫

∂Ω
u

p

2
∂u

p

2

∂ν
vqϕ (2.13)

for every ϕ ∈ C∞
0 (Ω× (0,∞)) satisfying ϕ ≥ 0 throughout Ω× (0,∞) and ∂ϕ

∂ν

∣

∣

∂Ω×(0,∞)
= 0 as well as

suppϕ ⊂ {u > 0}.
The observations that

pup−1vq
(

∆u− χ∇ · (u
v
∇v)

)

= pup−1vq∆u− pχup−1vq−1∇u · ∇v + pχupvq−2|∇v|2 − pχupvq−1∆v

= pup−1vq∆u− 4χ

q
u

p

2 v
q

2∇u p

2 · ∇v q

2 +
4pχ

q2
up|∇v q

2 |2 − pχupvq−1∆v,

and that v solves (1.2), now turn (2.13) into

p

∫ ∞

0

∫

Ω
up−1vqutϕ ≥ p

∫ ∞

0

∫

Ω
up−1vq

{

∆u− χ∇ ·
(u

v
∇v
)}

ϕ− p

∫ ∞

0

∫

∂Ω
up−1vq

∂u

∂ν
ϕ (2.14)

for all nonnegative ϕ ∈ C∞
0 (Ω× (0,∞)) with suppϕ ⊂ {u > 0} and ∂ϕ

∂ν

∣

∣

∂Ω×(0,∞)
= 0.

Specializing this to nonnegative ϕ ∈ C∞
0 (Ω × (0,∞) ∩ {u > 0}) by a Du Bois-Reymond lemma type

argument we conclude

ut ≥ ∆u− χ∇ ·
(u

v
∇v
)

in {u > 0}. (2.15)

Density of {u > 0} in Ω× (0,∞), obtained from the assumption that u > 0 a.e., and continuity show
that (2.15) actually holds on all of Ω× (0,∞).
We pick t0 > 0 and some nonnegative ψ ∈ C1(Ω) with ∂ψ

∂ν

∣

∣

∂Ω
= 0 such that suppψ ⊂ {u(·, t0) >

0} := {x ∈ Ω : u(x, t0) > 0}. Then by continuity of u we can find some τ > 0 such that suppψ ⊂
∩t∈(t0−τ,t0+τ){u(·, t) > 0}. Applying (2.14) to functions of the form ϕ(x, t) = ζ(t)ψ(x), ζ ∈ C∞

0 ((t0 −
τ, t0 + τ)) by once more invoking a Weierstrass type density argument and the Du Bois-Reymond
lemma, we see that

∫

Ω
up−1vqut(·, t)ψ ≥

∫

Ω
up−1vq

{

∆u− χ∇ ·
(u

v
∇v
)}

(·, t)ψ −
∫

∂Ω
up−1vq

∂u

∂ν
(·, t)ψ

for every nonnegative ψ ∈ C1(Ω) such that ∂ψ
∂ν

∣

∣

∂Ω
= 0, suppψ ⊂ {u(·, t0) > 0} and for almost every

t ∈ (t0 − τ, t0 + τ) – and due to continuity especially for t = t0. In particular inserting ψε(x) :=
(1 − 1

ε
dist (x, ∂Ω))+ · ψ and Lebesgue’s theorem show that for every t > 0, ψ ∈ C1(Ω), ψ ≥ 0 with

∂ψ
∂ν

∣

∣

∂Ω
= 0 and suppψ ∩ ∂Ω ⊂ {u(·, t) > 0},

∫

∂Ω
up−1vq

∂u

∂ν
ψ ≥ 0. (2.16)
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Since the integral only depends on ψ
∣

∣

∂Ω
and not on the values of ψ inside Ω, it can be seen that (2.16)

actually holds for any t > 0 and any nonnegative ψ ∈ C0(Ω) such that suppψ ∩ ∂Ω ⊂ {u(·, t) > 0}.
If ∂u

∂ν
(x0, t0) < 0 for some (x0, t0) ∈ ∂Ω × (0,∞) with u(x0, t0) > 0, we pick ψ1 ∈ C0(∂Ω) such that

ψ1(x0) > 0, ψ1 ≥ 0, and suppψ1 ⊂ {x ∈ ∂Ω : ∂u
∂ν

(x, t0) < 0, u(x, t0) > 0} =: M . Moreover, we let
d := dist (suppψ1, ∂Ω \M) (or d = 1 if ∂Ω \M = ∅) and let ψ2 be the solution to −∆ψ2 = 0 in Ω,
ψ2 = −u1−p(·, t0)v−q(·, t0)ψ1

∂u
∂ν

on ∂Ω. Then, thanks to the choice of suppψ1, ψ2 is nonnegative on
the boundary and hence by the maximum principle in Ω. Defining ψ3(x) := ψ2(x)(1− 2

d
dist (x,M))+

we obtain a nonnegative continuous function on Ω whose support intersects the boundary only in
{x ∈ ∂Ω : u(x, t) > 0} and which hence is a permissible test function in (2.16). We conclude that
0 ≤

∫

∂Ω u
p−1vq ∂u

∂ν
ψ3 = −

∫

∂Ω |∂u
∂ν

|2ψ1 and hence in particular ∂u
∂ν

(x0, t0) = 0, which is a contradiction.

We conclude that ∂u
∂ν

≥ 0 on ∂Ω× (0,∞)∩ {u > 0} and hence, by continuity of ∂u
∂ν

and density of this

set that ∂u
∂ν

≥ 0 on ∂Ω× (0,∞).
Finally integrating (2.15) over Ω× (0, t) and taking (2.7) into consideration, we see that

∫

Ω
u0 ≥

∫

Ω
u(·, t) ≥

∫

Ω
u0 +

∫ t

0

∫

Ω
∆u− χ

∫ t

0

∫

Ω
∇ ·
(u

v
∇v
)

=

∫

Ω
u0 +

∫ t

0

∫

∂Ω

∂u

∂ν

by Gauss’ theorem and ∂v
∂ν

= 0, which firstly shows that ∂u
∂ν

= 0 on ∂Ω × (0,∞) and secondly that
(2.15) actually is an equality. �

3 Global smooth solutions to approximate problems

Now in order to approximate solutions by means of a convenient regularization of (1.1)-(1.2), for
ε ∈ (0, 1) we consider























uεt = ∆uε − χ∇ ·
(

uε
(1+εuε)vε

∇vε
)

, x ∈ Ω, t > 0,

vεt = ∆vε − vε + uε, x ∈ Ω, t > 0,
∂uε
∂ν

= ∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(3.1)

and then first obtain the following.

Lemma 3.1. For all ε ∈ (0, 1), the problem (3.1) admits a global classical solution (uε, vε) ∈ (C0(Ω×
[0,∞)) ∩ C2,1(Ω× (0,∞)))2 for which uε > 0 in Ω× (0,∞) and vε > 0 in Ω× [0,∞).

Proof. The local existence of a solution can be obtained in a standard manner (cf. [1, Lemma 3.1] for
a related general setting). Boundedness of the sensitivity term χ uε

(1+εuε)vε
, due to a strict positivity

property of vε on Ω × (0, T ) – to be made more precise in Lemma 3.3 below – allows for an iterative
procedure converting boundedness information of ‖∇vε(·, t)‖Lq(Ω) for some q > 1 into bounds for

‖uε(·, t)‖Lp(Ω) for p ∈ (1, nq
(n−q)+

) that in turn yield better estimates for ∇vε through application of
semigroup estimates in the first and second equation, respectively. Finally, this serves to provide a
uniform bound on uε on Ω× (0, T ), in light of the extensibility criterion [1, (3.3)] thus ensuring global
existence of the solution. Positivity of uε follows from a classical strong maximum principle. �

These approximate solutions clearly preserve mass:
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Lemma 3.2. Let ε ∈ (0, 1). Then

∫

Ω
uε(·, t) =

∫

Ω
u0 for all t > 0. (3.2)

Proof. This directly results on integrating the first equation in (3.1). �

Moreover, the assumed positivity of v0 enables us to control vε from below at least locally in time:

Lemma 3.3. For each ε ∈ (0, 1), we have

vε(x, t) ≥
(

inf
x∈Ω

v0(x)

)

· e−t for all x ∈ Ω and t > 0.

Proof. As uε is nonnegative, this is a straightforward consequence of a comparison argument applied
to the second equation in (3.1). �

By means of well-known smoothing estimates of the heat semigroup, the mass conservation property
(3.2) readily implies some basic regularity features of the second component.

Lemma 3.4. Let r ≥ 1 and s ≥ 1 be such that r < n
n−2 and s < n

n−1 . Then there exists C > 0 such
that for each ε ∈ (0, 1),

∫

Ω
vrε(·, t) ≤ C for all t > 0 (3.3)

and
∫

Ω
|∇vε(·, t)|s ≤ C for all t > 0. (3.4)

Proof. The representation of vε as

vε(·, t) = et(∆−1)v0 +

∫ t

0
e(t−s)(∆−1)uε(·, s)ds

makes it possible to apply well-known estimates for the Neumann heat-semigroup (cf. [20, Lemma
1.3]), which provide positive constants c1, c2, c3 and c4 such that

‖vε(·, t)‖Lr(Ω) ≤ c1 ‖v0‖Lr(Ω) + c2

∫ t

0
(1 + (t− s)−

n
2
(1− 1

r
))e−(t−s)

∥

∥

∥
uε(·, s)

∥

∥

∥

L1(Ω)
ds

and

‖∇vε(·, t)‖Ls(Ω) ≤ c3 ‖v0‖W 1,∞(Ω) + c4

∫ t

0
(1 + (t− s)−

1
2
−n

2
(1− 1

s
))e−(t−s)

∥

∥

∥uε(·, s)
∥

∥

∥

L1(Ω)
ds

for all t > 0 and all ε ∈ (0, 1), so that Lemma 3.2 and finiteness of
∫∞
0 (1 + τ−

n
2
(1− 1

r
))e−τdτ and

∫∞
0 (1 + τ−

1
2
−n

2
(1− 1

s
))e−τdτ due to the conditions on r and s prove the lemma. �
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4 A fundamental identity and first consequences thereof

Let us next formulate an identity which apparently reflects a fundamental structural propety of (1.1)-
(1.2), as already used in a slightly modified form and for more restricted choices of χ in [21]. In Lemma
4.3 applied to ϕ ≡ 1, this will serve as a source for some essential a priori estimates for (3.1), whereas
in Lemma 8.8 we will make use of the freedom to choose widely arbitrary test functions here in order
to verify (2.3) for the limit couple (u, v) to be constructed in Lemma 8.1.

Lemma 4.1. Let p ∈ (0, 1) and q ∈ (0, 1), and assume that T > 0 and that ϕ ∈ C∞(Ω × [0, T ]) is
such that ∂ϕ

∂ν
= 0 on ∂Ω× (0, T ). Then

−
∫ T

0

∫

Ω
upεv

q
εϕt +

∫

Ω
upε(·, T )vqε(·, T )ϕ(·, T )−

∫

Ω
u
p
0v
q
0ϕ(·, 0)

=

∫ T

0

∫

Ω

4(1− p)q − 4q2 − p
(1−p)2χ2

(1+εuε)2

pq( pχ
1+εuε

+ 1− q)
vqε |∇u

p

2
ε |2ϕ

+

∫ T

0

∫

Ω

4

q

(

pχ

1 + εuε
+ 1− q

) ∣

∣

∣

∣

u
p

2
ε ∇v

q

2
ε −

(1−p)χ
1+εuε

+ 2q

2( pχ
1+εuε

+ 1− q)
v

q

2
ε ∇u

p

2
ε

∣

∣

∣

∣

2

ϕ

+

∫ T

0

∫

Ω

2[(1− p)εuε − p]χ

q(1 + εuε)2
u

p

2
ε v

q
ε∇u

p

2
ε · ∇ϕ

+

∫ T

0

∫

Ω

(

1− pχ

q(1 + εuε)

)

upεv
q
ε∆ϕ

−q
∫ T

0

∫

Ω
upεv

q
εϕ+ q

∫ T

0

∫

Ω
up+1
ε vq−1

ε ϕ for all ε ∈ (0, 1). (4.1)

Proof. Using (3.1), we compute

∫

Ω

∂

∂t
(upεv

q
ε) · ϕ = −p

∫

Ω
∇
(

up−1
ε vqεϕ

)

·
(

∇uε − χ
uε

(1 + εuε)vε
∇vε

)

−q
∫

Ω
∇
(

upεv
q−1
ε ϕ

)

· ∇vε − q

∫

Ω
upεv

q
εϕ+ q

∫

Ω
up+1
ε vq−1

ε ϕ

= p(1− p)

∫

Ω
up−2
ε |∇uε|2vqεϕ

−p(1− p)χ

∫

Ω

u
p−1
ε

1 + εuε
vq−1
ε (∇uε · ∇vε)ϕ− 2pq

∫

Ω
up−1
ε vq−1

ε (∇uε · ∇vε)ϕ

+pqχ

∫

Ω

u
p
ε

1 + εuε
vq−2
ε |∇vε|2ϕ+ q(1− q)

∫

Ω
upεv

q−2
ε |∇vε|2ϕ

−p
∫

Ω
up−1
ε vqε∇uε · ∇ϕ+ pχ

∫

Ω

u
p
ε

1 + εuε
vq−1
ε ∇vε · ∇ϕ

−q
∫

Ω
upεv

q−1
ε ∇vε · ∇ϕ

−q
∫

Ω
upεv

q
εϕ+ q

∫

Ω
up+1
ε vq−1

ε ϕ
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=
4(1− p)

p

∫

Ω
vqε |∇u

p

2
ε |2ϕ

−4(1− p)χ

q

∫

Ω

u
p

2
ε

1 + εuε
v

q

2
ε (∇u

p

2
ε · ∇v

q

2
ε )ϕ− 8

∫

Ω
u

p

2
ε v

q

2
ε (∇u

p

2
ε · ∇v

q

2
ε )ϕ

+
4pχ

q

∫

Ω

u
p
ε

1 + εuε
|∇v

q

2
ε |2ϕ+

4(1− q)

q

∫

Ω
upε|∇v

q

2
ε |2ϕ

−2

∫

Ω
u

p

2
ε v

q
ε∇u

p

2
ε · ∇ϕ

+
pχ

q

∫

Ω

u
p
ε

1 + εuε
∇vqε · ∇ϕ−

∫

Ω
upε∇vqε · ∇ϕ

−q
∫

Ω
upεv

q
εϕ+ q

∫

Ω
up+1
ε vq−1

ε ϕ for all t > 0. (4.2)

Here a straightforward rearrangement in the first five integrands on the right along the lines of (2.8)
shows that

4(1− p)

p
vqε |∇u

p

2
ε |2 −

4(1− p)χ

q

u
p

2
ε

1 + εuε
v

q

2
ε (∇u

p

2
ε · ∇v

q

2
ε )− 8u

p

2
ε v

q

2
ε (∇u

p

2
ε · ∇v

q

2
ε )

+
4pχ

q

u
p
ε

1 + εuε
|∇v

q

2
ε |2 +

4(1− q)

q
upε|∇v

q

2
ε |2

=
4

q

(

pχ

1 + εuε
+ 1− q

)



upε|∇v
q

2
ε |2 −

(1−p)χ
1+εuε

+ 2q
pχ

1+εuε
+ 1− q

u
p

2
ε v

q

2
ε ∇u

p

2
ε · ∇v

q

2
ε +

1

4

(

(1−p)χ
1+εuε

+ 2q
pχ

1+εuε
+ 1− q

)2

vqε |∇u
p

2
ε |2




+
4(1− p)q − 4q2 − p

(1−p)2χ2

(1+εuε)2

pq( pχ
1+εuε

+ 1− q)
vqε |∇u

p

2
ε |2 in Ω× (0,∞). (4.3)

Moreover, in two of the three summands in (4.2) which contain ∇ϕ we once more integrate by parts
to see that

−2

∫

Ω
u

p

2
ε v

q
ε∇u

p

2
ε · ∇ϕ+

pχ

q

∫

Ω

u
p
ε

1 + εuε
∇vqε · ∇ϕ−

∫

Ω
upε∇vqε · ∇ϕ

= −2

∫

Ω
u

p

2
ε v

q
ε∇u

p

2
ε · ∇ϕ

−p
2χ

q

∫

Ω

u
p−1
ε

1 + εuε
vqε∇uε · ∇ϕ+

pχε

q

∫

Ω

u
p
ε

(1 + εuε)2
vqε∇uε · ∇ϕ− pχ

q

∫

Ω

u
p
ε

1 + εuε
vqε∆ϕ

+p

∫

Ω
up−1
ε vqε∇uε · ∇ϕ+

∫

Ω
upεv

q
ε∆ϕ

= −2

∫

Ω
u

p

2
ε v

q
ε∇u

p

2
ε · ∇ϕ

−2pχ

q

∫

Ω

u
p

2
ε

1 + εuε
vqε∇u

p

2
ε · ∇ϕ+

2χε

q

∫

Ω

u
p

2
+1

ε

(1 + εuε)2
vqε∇u

p

2
ε · ∇ϕ− pχ

q

∫

Ω

u
p
ε

1 + εuε
vqε∆ϕ
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+2

∫

Ω
u

p

2
ε v

q
ε∇u

p

2
ε · ∇ϕ+

∫

Ω
upεv

q
ε∆ϕ

=

∫

Ω

2[(1− p)εuε − p]χ

q(1 + εuε)2
u

p

2
ε v

q
ε∇u

p

2
ε · ∇ϕ+

∫

Ω

(

1− pχ

q(1 + εuε)

)

upεv
q
ε∆ϕ in (0, T )

thanks to the assumption that ∂ϕ
∂ν

= 0 on ∂Ω× (0, T ). Combining this with (4.2) and (4.3) establishes
(4.1). �

An elementary but crucial observation now identifies a condition on the relationship between the
exponents p and q which ensure positivity of the coefficient appearing in the first summand on the
right-hand side in (4.1).

Lemma 4.2. Given χ > 0 and p ∈ (0, 1) such that p < 1
χ2 , let q+(p) ∈ (0, 1) and q−(p) ∈ (0, q+(p)) be

defined by

q±(p) :=
1− p

2
·
(

1±
√

1− pχ2
)

. (4.4)

Then for any choice of q ∈ (q−(p), q+(p)) and all ε ∈ (0, 1),

4(1− p)q − 4q2 − p
(1−p)2χ2

(1+εuε)2

pq( pχ
1+εuε

+ 1− q)
≥ 4(1− p)q − 4q2 − p(1− p)2χ2

pq(pχ+ 1− q)
> 0 in Ω× (0,∞). (4.5)

Proof. We use that 1 + εuε ≥ 1 to firstly obtain

4(1− p)q − 4q2 − p(1− p)2χ2

(1 + εuε)2
≥ 4(1− p)q − 4q2 − p(1− p)2χ2 in Ω× (0,∞).

Since here our hypothesis q ∈ (q−(p), q+(p)) guarantees that

4(1− p)q − 4q2 − p(1− p)2χ2 = −4 ·
(

q − q+(p)
)

·
(

q − q−(p)
)

> 0,

we may once again estimate 1 + εuε ≥ 1 to infer that indeed both inequalities in (4.5) hold. �

As a consequence, for p and q as in Lemma 4.2 we can readily derive the following from Lemma 4.1
when combined with the pointwise lower estimate for vε in Lemma 3.3.

Lemma 4.3. Let p ∈ (0, 1) be such that p < 1
χ2 , and let q ∈ (q−(p), q+(p)) with q±(p) taken from

(4.4). Then for each T > 0 there exists C(p, q, T ) > 0 fulfilling

∫ T

0

∫

Ω
vqε |∇u

p

2
ε |2 ≤ C(p, q, T ) (4.6)

and
∫ T

0

∫

Ω
|∇u

p

2
ε |2 ≤ C(p, q, T ) (4.7)

as well as

∫ T

0

∫

Ω

4

q

(

pχ

1 + εuε
+ 1− q

) ∣

∣

∣

∣

u
p

2
ε ∇v

q

2
ε −

(1−p)χ
1+εuε

+ 2q

2( pχ
1+εuε

+ 1− q)
v

q

2
ε ∇u

p

2
ε

∣

∣

∣

∣

2

≤ C(p, q, T ) (4.8)
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and
∫ T

0

∫

Ω
up+1
ε vq−1

ε ≤ C(p, q, T ) (4.9)

for all ε ∈ (0, 1).

Proof. According to Lemma 4.2, our assumption q ∈ (q−(p), q+(p)) ensures that with some c1 > 0 we
have

4(1− p)q − 4q2 − p
(1−p)2χ2

(1+εuε)2

pq( pχ
1+εuε

+ 1− q)
≥ c1

for all ε ∈ (0, 1), whence applying Lemma 4.1 to ϕ ≡ 1 shows that

c1

∫ T

0

∫

Ω
vqε |∇u

p

2
ε |2

+

∫ T

0

∫

Ω

4

q

(

pχ

1 + εuε
+ 1− q

) ∣

∣

∣

∣

u
p

2
ε ∇v

q

2
ε −

(1−p)χ
1+εuε

+ 2q

2( pχ
1+εuε

+ 1− q)
v

q

2
ε ∇u

p

2
ε

∣

∣

∣

∣

2

ϕ

+q

∫ T

0

∫

Ω
up+1
ε vq−1

ε

≤
∫

Ω
upε(·, T )vqε(·, T )−

∫

Ω
u
p
0v
q
0 + q

∫ T

0

∫

Ω
upεv

q
ε for all ε ∈ (0, 1). (4.10)

Now by the Hölder inequality,

∫

Ω
upεv

q
ε ≤

{∫

Ω
uε

}p

·
{∫

Ω
v

q

1−p
ε

}1−p

for all t > 0,

so that since

q

1− p
<
q+(p)

1− p
=

1 +
√

1− pχ2

2
< 1 <

n

n− 2
,

we may combine (3.2) with Lemma 3.4 to find c3 > 0 fulfilling

∫

Ω
upεv

q
ε ≤ c3 for all t > 0

whenever ε ∈ (0, 1). The estimates in (4.6), (4.8) and (4.9) therefore result from (4.10), whereupon
(4.7) is a consequence of (4.6) and the fact that Lemma 3.3 along with (1.7) says that given T > 0 we
can find c2 > 0 such that

vε(x, t) ≥ c2 for all x ∈ Ω, t ∈ (0, T ) and ε ∈ (0, 1).

�
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5 A further consequence: A bound for uε in L
r for some r > 1

Now in view of the desired integrability feature in (1.4), a crucial step in our analysis will consist in
deriving a spatio-temporal equi-integrability property of uε. This will result from bounds therefor in
some reflexive Lr spaces, to be obtained by an interpolation between (4.9) and (3.3). The following
statement identifies the minimal possible choice of an integrability exponent arising in the course of
this argument (cf. (5.6) below), and will thereby form the core of our requirement (1.8) on χ.

Lemma 5.1. Let χ > 0, and for p ∈ (0,min{1, 1
χ2 }) let q±(p) be as in (4.4). Then

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1− q

p
=











1 if χ ≤ 1,

χ if χ ∈ (1, 2),

1 + χ2

4 if χ ≥ 2.

(5.1)

Proof. By an evident monotonicity property,

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1− q

p
= inf

p∈(0,1), p< 1
χ2

1− q+(p)

p

= inf
p∈(0,1), p< 1

χ2

1− 1−p
2 (1 +

√

1− pχ2)

p

= inf
p∈(0,1), p< 1

χ2

1 + p− (1− p)
√

1− pχ2)

2p
=: I(χ) (5.2)

for any χ > 0. Since (1−p)
√

1− pχ2 < 1−p and thus
1+p−(1−p)

√
1−pχ2

2p > 1 for all p ∈ (0,min{1, 1
χ2 }),

and since on the other hand for χ ≤ 1 we have

I(χ) ≤ lim inf
pր1

1 + p− (1− p)
√

1− pχ2

2p
= 1,

this firstly implies that I(χ) = 1 for any such χ.
In the case χ > 1, having in mind the substitution ξ =

√

1− pχ2 in (5.2), we note that

ρ(ξ) :=
1 + 1−ξ2

χ2 − (1− 1−ξ2

χ2 ) · ξ
2 · 1−ξ2

χ2

=
1

2
·
{ χ2

1− ξ2
· (1− ξ) + 1 + ξ

}

=
1

2
·
{ χ2

1 + ξ
+ 1 + ξ

}

, ξ ∈ [0, 1),

satisfies

ρ′(ξ) = − χ2

2(1 + ξ)2
+

1

2
for all ξ ∈ (0, 1),
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so that ρ′ attains a zero at ξ = χ − 1 ∈ (0, 1) if and only if χ ∈ (1, 2), while ρ′ ≤ 0 throughout (0, 1)
if χ ≥ 2. Therefore, infξ∈[0,1) ρ(ξ) = ρ(χ− 1) = χ if χ ∈ (1, 2), whereas infξ∈[0,1) ρ(ξ) = limξր1 ρ(ξ) =

1 + χ2

4 if χ ≥ 2. In conjunction with (5.2), these observations verify (5.1). �

Now under the assumptions on χ from Theorem 1.1, the announced interpolation argument indeed
bears fruit of the desired flavour.

Lemma 5.2. Suppose that χ > 0 is such that (1.8) holds. Then there exists r > 1 such that for any
T > 0 one can find C(T ) > 0 with the property that

∫ T

0

∫

Ω
urε ≤ C(T ) for all ε ∈ (0, 1). (5.3)

Proof. As a consequence of Lemma 5.1, our assumption on χ warrants that we can pick p ∈ (0,min{1, 1
χ2 })

and q ∈ (q−(p), q+(p)) such that
1− q

p
<

n

n− 2
. (5.4)

Indeed, if n = 2 this is obvious, while if n ≥ 4 this is immediate from (5.1), because then due to the
fact that n

n−2 ≤ 2, the hypothesis (1.8) in particular requires that χ < 2, so that in both cases χ ≤ 1
and χ > 1, (5.1) shows that the assumption χ < n

n−2 implies that

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1− q

p
= max{1, χ} < n

n− 2
.

If n = 3, in the case χ < 2 we similarly obtain that

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1− q

p
= max{1, χ} < 2 < 3 =

n

n− 2
,

whereas when χ ≥ 2 we use our restriction χ <
√
8 to infer from (5.1) that

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1− q

p
= 1 +

χ2

4
< 3

and that thus (5.4) can be achieved also in this case.

Henceforth keeping p and q fixed such that (5.4) holds, e.g. by means of a continuity argument we can
pick r > 1 sufficiently close to 1 such that still p+ 1− r > 0 and

(1− q)r

p+ 1− r
<

n

n− 2
. (5.5)

Then using Young’s inequality, for T > 0 we can estimate

∫ T

0

∫

Ω
urε =

∫ T

0

∫

Ω

(

up+1
ε vq−1

ε

) r
p+1 · v

(1−q)r
p+1

ε

16



≤
∫ T

0

∫

Ω
up+1
ε vq−1

ε +

∫ T

0

∫

Ω
v

(1−q)r
p+1−r
ε for all ε ∈ (0, 1), (5.6)

so that (5.3) results on using (4.9) and applying (3.3) together with (5.5). �

6 A weighted L
2 bound for ∇vε

In order to complement (4.7) by an analogous L2 estimate for ∇vε merely involving vε but not uε as
a weight function, independently from the above we apply a standard testing technique to the second
equation in (3.1) with the following outcome.

Lemma 6.1. For all q ∈ (0, 1) and any T > 0 one can find C(T ) > 0 such that

∫ T

0

∫

Ω
|∇v

q

2
ε |2 ≤ C(T ) for all ε ∈ (0, 1). (6.1)

Proof. Thanks to the positivity of vε, we may use vq−1
ε as a test function in the second equation in

(3.1) to see that

1

q

d

dt

∫

Ω
vqε = (1− q)

∫

Ω
vq−2
ε |∇vε|2 −

∫

Ω
vqε +

∫

Ω
uεv

q−1
ε

≥ (1− q)

∫

Ω
vq−2
ε |∇vε|2 −

∫

Ω
vqε for all t > 0, (6.2)

where according to Lemma 3.4 and the fact that q < 1 < n
n−2 , we can find c1 > 0 such that

∫

Ω
vqε ≤ c1 for all t > 0.

On integration, we thus obtain from (6.2) that

4(1− q)

q2

∫ T

0

∫

Ω
|∇v

q

2
ε |2 = (1− q)

∫ T

0

∫

Ω
vq−2
ε |∇vε|2

≤ 1

q

∫

Ω
vqε(·, T ) +

∫ T

0

∫

Ω
vqε

≤ c1

q
+ Tc1

for all ε ∈ (0, 1). �

7 Time regularity

As a final preparation for our limit procedure, we establish some regularity features of the time deriva-
tives in (3.1), beginning with a conveniently transformed version of the first solution component.
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Lemma 7.1. Assume (1.8), and let p ∈ (0, 1) be such that p < 1
χ2 . Then for all T > 0 there exists

C(T ) > 0 such that

∫ T

0

∥

∥

∥
∂t

(

uε(·, t) + 1
)

p

2
∥

∥

∥

(W 1,∞
0 (Ω))⋆

dt ≤ C(T ) for all ε ∈ (0, 1). (7.1)

Proof. We fix ψ ∈ C∞
0 (Ω) such that ‖ψ‖W 1,∞(Ω) ≤ 1 and use (3.1) and Young’s inequality as well as

the trivial estimate uε + 1 ≥ 1 to see that
∣

∣

∣

∣

∫

Ω
∂t(uε + 1)

p

2ψ

∣

∣

∣

∣

=

∣

∣

∣

∣

p(2− p)

4

∫

Ω
(uε + 1)

p−4
2 |∇uε|2ψ − p

2

∫

Ω
(uε + 1)

p−2
2 ∇uε · ∇ψ

−p(2− p)χ

4

∫

Ω

uε(uε + 1)
p−4
2

(1 + εuε)vε
(∇uε · ∇vε)ψ +

pχ

2

∫

Ω

uε(uε + 1)
p−2
2

(1 + εuε)vε
∇vε · ∇ψ

∣

∣

∣

∣

≤ p(2− p)

4

∫

Ω
(uε + 1)

p−4
2 |∇uε|2 +

p

2

∫

Ω
(uε + 1)

p−2
2 |∇uε|

+
p(2− p)χ

4

∫

Ω
(uε + 1)

p−2
2 |∇uε| ·

|∇vε|
vε

+
pχ

2

∫

Ω
(uε + 1)

p

2
|∇vε|
vε

≤ p(2− p)

4

∫

Ω
(uε + 1)p−2|∇uε|2 +

p

4

∫

Ω
(uε + 1)p−2|∇uε|2 +

p|Ω|
4

+
p(2− p)χ

8

∫

Ω
(uε + 1)p−2|∇uε|2 +

p(2− p)χ

8

∫

Ω

|∇vε|2
v2ε

+
pχ

4

∫

Ω
(uε + 1)p +

pχ

4

∫

Ω

|∇vε|2
v2ε

for all t > 0 and ε ∈ (0, 1).

Since Lemma 3.3 provides c1 > 0 such that vε ≥ c1 in Ω× (0, T ) and hence

∫

Ω

|∇vε|2
v2ε

(·, t) ≤ 9c
− 2

3
1

∫

Ω
|∇v

1
3
ε (·, t)|2 for all t ∈ (0, T ) and ε ∈ (0, 1),

and since
∫

Ω
(uε(·, t) + 1)p ≤

∫

Ω
u0 + |Ω| for all t > 0 and ε ∈ (0, 1)

by (3.2), we thus infer that there exists c2 > 0 such that for all ε ∈ (0, 1),

∥

∥

∥
∂t

(

uε(·, t) + 1
)

p

2
∥

∥

∥

(W 1,∞
0 (Ω))⋆

= sup
ψ∈C∞

0 (Ω)

‖ψ‖
W1,∞(Ω)≤1

∣

∣

∣

∣

∫

Ω
∂t

(

uε(·, t) + 1
)

p

2
ψ

∣

∣

∣

∣

≤ c2 ·
{∫

Ω
|∇u

p

2
ε (·, t)|2 +

∫

Ω
|∇v

1
3
ε (·, t)|2 + 1

}

for all t ∈ (0, T ).

Thanks to the outcomes of Lemma 4.3 and Lemma 6.1, an integration over t ∈ (0, T ) therefore yields
(7.1). �

As for the second component, we can directly address the quantity vεt.
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Lemma 7.2. Let χ > 0. Then there exists C > 0 such that whenever ε ∈ (0, 1),

‖vεt(·, t)‖(W 1,∞
0 (Ω))⋆

dt ≤ C for all t > 0. (7.2)

Proof. We again fix ψ ∈ C∞
0 (Ω) fulfilling ‖ψ‖W 1,∞(Ω) ≤ 1, and using (3.1) we find that

∣

∣

∣

∣

∫

Ω
vεtψ

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

Ω
∇vε · ∇ψ −

∫

Ω
vεψ +

∫

Ω
uεψ

∣

∣

∣

∣

≤
∫

Ω
|∇vε|+

∫

Ω
vε +

∫

Ω
uε for all t > 0 and ε ∈ (0, 1).

Therefore,

‖vεt(·, t)‖(W 1,∞
0 (Ω))⋆

≤ sup
τ>0

{∫

Ω
|∇vε(·, τ)|+

∫

Ω
vε(·, τ) +

∫

Ω
uε(·, τ)

}

for all t > 0 and ε ∈ (0, 1),

so that (7.2) results from Lemma 3.4 and (3.2). �

8 Construction of limit functions. Proof of Theorem 1.1

Collecting the above estimates, by means of a straightforward extraction procedure we can pass to the
limit εց 0 in the following sense.

Lemma 8.1. Suppose that (1.8) holds, and let p ∈ (0, 1) and q ∈ (0, 1) be such that p < 1
χ2 and

q ∈ (q−(p), q+(p)). Then there exist (εj)j∈N ⊂ (0, 1) and functions u and v defined on Ω× (0,∞) such
that εj ց 0 as j → ∞, that u ≥ 0 and v ≥ 0 a.e. in Ω× (0,∞), and that

uε → u in L1
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (8.1)

∇u
p

2
ε ⇀ ∇u p

2 in L2
loc(Ω× [0,∞)), (8.2)

vε → v in L1
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (8.3)

∇vε ⇀ ∇v in L1
loc(Ω× [0,∞)) and (8.4)

∇v
q

2
ε ⇀ ∇v q

2 in L2
loc(Ω× [0,∞)) (8.5)

as ε = εj ց 0, and
∫

Ω
u(·, t) =

∫

Ω
u0 for a.e. t > 0. (8.6)

Proof. We fix p ∈ (0, 1) such that p < 1
χ2 and combine Lemma 4.3 with (3.2) and Lemma 7.1 to see

that
(

(uε + 1)
p

2

)

ε∈(0,1)
is bounded in L2

loc([0,∞);W 1,2(Ω))

and that
(

∂t(uε + 1)
p

2

)

ε∈(0,1)
is bounded in L1

loc([0,∞); (W 1,∞
0 (Ω))⋆).
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Apart from that, Lemma 3.4 and Lemma 7.2 show that there exists r > 1 such that

(vε)ε∈(0,1) is bounded in Lrloc([0,∞);W 1,r(Ω))

and

(vεt)ε∈(0,1) is bounded in L∞((0,∞); (W 1,∞
0 (Ω))⋆).

Therefore, by means of two applications of an Aubin-Lions lemma [16, Cor. 8.4] we can find (εj)j∈N ⊂
(0, 1) such that εj ց 0 as j → ∞, that u

p

2
ε → u

p

2 in L2
loc(Ω×[0,∞)) and a.e. in Ω×(0,∞) as ε = εj ց 0,

and that (8.2), (8.3) and (8.4) hold with some nonnegative functions u and v defined on Ω × (0,∞).
Since thus also uε → u a.e. in Ω× (0,∞) as ε = εj ց 0, making use of the equi-integrability property
implied by Lemma 5.2 we may invoke the Vitali convergence theorem to infer that in fact also (8.1)
holds, whereupon (8.6) becomes a consequence of (3.2). The additional convergence statement in (8.5)
finally results from Lemma 6.1 and (8.3) in a straightforward manner. �

Our next aim is to make sure that the functions u and v we have just constructed form a generalized
solution of (1.1)-(1.2). We begin with the second equation.

Lemma 8.2. If (1.8) holds, then the pair (u, v) obtained in Lemma 8.1 is a global weak solution of
(1.2) in the sense of Definition 2.3.

Proof. From (8.1), (8.3) and (8.4) we immediately see that the regularity properties in (2.5) hold, and
that moreover for arbitrary ϕ ∈ C∞

0 (Ω× [0,∞)), in the identity

−
∫ ∞

0

∫

Ω
vεϕt −

∫

Ω
v0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇vε · ∇ϕ−

∫ ∞

0

∫

Ω
vεϕ+

∫ ∞

0

∫

Ω
uεϕ,

valid for all ε ∈ (0, 1) due to (3.1), we may let ε = εj ց 0 in each integral separately to readily verify
(2.6). �

Another important part of Definition 2.4 are positivity requirements, which will be established in
Lemma 8.6. The following technical lemmas prepare the main argument therein, where we will derive
a differential inequality for

∫

Ω lnuε, and where further exploting the latter will in particular require
some ε-independent lower bound for this functional at some suitable initial value, despite the fact that
(1.7) does not guarantee finiteness of

∫

Ω lnu0. An appropriate replacement, to be provided by Lemma
8.5, is entailed by the comparison-type Lemma 8.3 in combination with a differential inequality, the
derivation of which rests on Lemma 8.4.

Lemma 8.3. Let a > 0, b > 0 and T > 0, and let y : (0, T ) → R be a continuously differentiable
function satisfying

y′(t) ≤ −ay2(t) + b for all t ∈ (0, T ) at which y(t) > 0.

Then

y(t) ≤
√

b

a
coth(

√
abt) for all t ∈ (0, T ).
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Proof. Let η > 0. ThenMη :=
{

t ∈ (0, T ) : y(t) >
√

b
a
+η
}

(is either empty or) can be written as union

of its connected components, i.e. Mη =
⋃

k∈N Ik with disjoint open intervals Ik. If we consider any

nonempty Ik with inf Ik 6= 0, by continuity y(inf Ik) =
√

b
a
+η and hence y′(inf Ik) ≤ −2

√
abη−aη2 < 0,

contradicting the definition of inf Ik as infimum of a set where y >
√

b
a
+ η. Hence there is tη ∈ [0, T )

such that y ≤
√

b
a
+ η in (tη, T ) and that y >

√

b
a
+ η in (0, tη) so that b − ay2 is negative in (0, tη)

and for t0 ∈ (0, tη) and t ∈ (t0, tη) we find that

t− t0 ≤
∫ t

t0

y′(s)

b− ay2(s)
ds =

1√
ab

∫

√
a
b
y(t)

√
a
b
y(t0)

1

1− z2
dz =

1√
ab

{

arcoth
(

√

a

b
y(t)

)

− arcoth
(

√

a

b
y(t0)

)

}

,

leading to
√
ab(t− t0) + arcoth

(

√

a

b
y(t0)

)

≤ arcoth
(

√

a

b
y(t)

)

and hence to

y(t) ≤
√

b

a
coth

(√
ab(t− t0) + arcoth

(

√

a

b
y(t0)

)

)

≤
√

b

a
coth

(√
ab(t− t0)

)

.

Using that t0 ∈ (0, t) and η > 0 were arbitrary, we conclude that y(t) ≤ max
{
√

b
a
coth(

√
abt),

√

b
a

}

=
√

b
a
coth(

√
abt). �

The following statement essentially goes back to an observation made in [18].

Lemma 8.4. Let η > 0. Then there exists C > 0 such that every positive function ϕ ∈ C1(Ω) fulfilling

∣

∣

∣
{x ∈ Ω; ϕ(x) > δ}

∣

∣

∣
> η

for some δ > 0 satisfies

∫

Ω

|∇ϕ|2
ϕ2

≥ C ·
{∫

Ω
ln
δ

ϕ

}2

or

∫

Ω
ln
δ

ϕ
< 0.

Proof. This directly follows from the inequality provided by [18, Lemma 4.3] upon squaring. A re-
quirement on convexity of the domain, as additionally made there in order to allow for an application
of the Poincaré inequality from [10, Cor 9.1.4] in the proof, can actually be removed by replacing the
latter with Lemma 9.1. �

We can now pass to our derivation of lower bounds for
∫

Ω lnuε in the following form.

Lemma 8.5. There exists T > 0 such that for every t ∈ (0, T ),

inf
ε∈(0,1)

∫

Ω
lnuε(·, t) > −∞.
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Proof. We let Mε(t) := supτ∈[0,t] ‖uε(·, τ)‖L∞(Ω) for t ∈ (0,∞) and ε ∈ (0, 1), and pick p > n. From
known Lp-Lq estimates for the Neumann heat semigroup [20, Lemma 1.3 iii) and ii)] we obtain c1 > 0
and c2 > 0 such that

‖∇vε(·, t)‖L∞(Ω) ≤ c1 ‖v0‖W 1,∞(Ω) + c2

∫ t

0
(1 + (t− s)−

1
2 )e−(t−s) ‖uε‖L∞(Ω) ds

≤ c3 · (1 +Mε(t)) for all t ∈ (0,∞),

where c3 = max
{

c1‖v0‖W 1,∞(Ω), c2
∫∞
0 (1+ τ−

1
2 )e−τdτ

}

. Invoking further semigroup estimates (in the

form of [20, Lemma 1.3 iv)]) we find c4 > 0 such that

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + χc4

∫ t

0
(1 + (t− s)

− 1
2
− n

2p )

∥

∥

∥

∥

uε

vε(·, s)(1 + εuε(·, s))
∇vε(·, s)

∥

∥

∥

∥

Lp(Ω)

ds

≤ ‖u0‖L∞(Ω) +
χc4

inf v0
et · c3(1 +Mε(t)) · ‖u0‖

1
p

L1(Ω)
(Mε(t))

p−1
p

∫ t

0
(1 + τ

− 1
2
− n

2p )dτ

for all t ∈ (0,∞) and all ε ∈ (0, 1), because
∥

∥

∥

uε(·,t)
1+εuε(·,t)

∥

∥

∥

Lp(Ω)
≤ ‖uε(·, t)‖Lp(Ω) ≤ ‖u0‖

1
p

L1(Ω)
‖uε(·, t)‖

p−1
p

L∞(Ω)

for all t ∈ (0,∞), so that in conclusion we can find c5 > 0 fulfilling

Mε(t) ≤ ‖u0‖L∞(Ω) + c5(t+ t
1
2
− n

2p )et(1 +Mε(t))(Mε(t))
p−1
p for all t ∈ (0,∞),

and hence by the fact that for all a, b ∈ [0,∞), γ ∈ (0, 1)

sup{x ∈ [0,∞); x ≤ a+ bxγ} ≤ a

1− γ
+ b

1
1−γ

we can achieve that

Mε(t) ≤ p ‖u0‖L∞(Ω) +

(

c5(t+ t
1
2
− n

2p )et(1 +Mε(t))

)p

If we let Tε := sup
{

t ∈ (0,∞) :Mε(t) ≤ p ‖u0‖L∞(Ω) + 1
}

, then certainly

Tε > min

{

1,
1

2

(

c5 · 2e(2 + p ‖u0‖L∞(Ω))
− 1

1
2−

n
2p

)}

=: T.

In conclusion, this means that for all ε ∈ (0, 1),

‖uε(·, t)‖L∞(Ω) ≤ p ‖u0‖L∞(Ω) + 1 =:M and ‖∇vε(·, t)‖W 1,∞(Ω) ≤ c3(1 +M) for all t ∈ (0, T ).

In particular with δ := 1
2|Ω|

∫

Ω u0 and η := 1
2M

∫

Ω u0 we have |{uε(·, t) ≥ δ}| ≥ η for every t ∈ (0, T )

and each ε ∈ (0, 1), because

∫

Ω
u0 =

∫

Ω
u(·, t) =

∫

{u(·,t)≥δ}
u(·, t) +

∫

{u(·,t)<δ}
u(·, t) ≤M |{u(·, t) ≥ δ}|+ |Ω|δ =M |{u(·, t) ≥ δ}|+ 1

2

∫

Ω
u0
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and therefore

η =
1

2M

∫

Ω
u0 ≤ |{u(·, t) ≥ δ}|.

From Lemma 8.4 we hence obtain c6 > 0 such that

d

dt

(∫

Ω
ln

δ

uε(·, t)

)

= −
∫

Ω

|∇uε(·, t)|2
u2ε(·, t)

+ χ

∫

Ω

1

(1 + εuε)uε(·, t)vε(·, t)
∇uε(·, t) · ∇vε(·, t)

≤ −1

2

∫

Ω

|∇uε(·, t)|2
u2ε(·, t)

+
χ2

2

∫

Ω

|∇vε(·, t)|2
v2ε(·, t)

≤ −c6
2

(∫

Ω
ln

δ

uε(·, t)

)2

+
χ2e2T c23(1 +M)2

2(inf v0)2

for every t ∈ (0, T ) at which
∫

Ω ln δ
uε(·,t)

> 0. Lemma 8.3 hence proves the claim. �

This enables us to verify the positivity requirements from Definition 2.4 without any assumptions on
the initial data beyond (1.7).

Lemma 8.6. The functions u, v obtained in Lemma 8.1 satisfy v > 0, u > 0 a.e. in Ω × (0,∞) and
upvq > 0 a.e. on ∂Ω× (0,∞).

Proof. According to Lemma 3.3 and (8.3), essinfx∈Ω v(x, t) > inf v0e
−t for any t > 0, and (8.2) and

(8.5) together with (8.1) or (8.3), respectively, show that u and v can be evaluated on ∂Ω× (0,∞) in
the sense of traces. For the proof of the remaining positivity properties u > 0 a.e. in Ω × (0,∞) and
u > 0 a.e. on ∂Ω× (0,∞), we intend to prove

lnu ∈ L2
loc((0,∞);W 1,2(Ω)), (8.7)

which entails lnu ∈ L2
loc(Ω × (0,∞)) and, due to the embedding W 1,2(Ω) →֒ L2(∂Ω), also lnu ∈

L2
loc(∂Ω× (0,∞)), proving positivity of u a.e. in the respective sets. By Lemmata 3.3 and 3.2,

d

dt

[

−
∫

Ω
lnuε − χ2

∫

Ω
ln vε

]

= −
∫

Ω

|∇uε|2
u2ε

+ χ

∫

Ω

1

uεvε(1 + εuε)
∇uε · ∇vε − χ2

∫

Ω

|∇vε|2
v2ε

+ χ2|Ω| − χ2

∫

Ω

uε

vε

≤ −1

2

∫

Ω

|∇uε|2
u2ε

− χ2

2

∫

Ω

|∇vε|2
v2ε

+ χ2|Ω|+ χ2

inf v0
et
∫

Ω
u0

for any t > 0. Now picking τ > 0, according to Lemma 8.5 we can find τ0 ∈ (0, τ) and c1 > 0 such that

inf
ε∈(0,1)

∫

Ω
lnuε(·, τ0) > −∞. (8.8)

For any fixed T > τ we then obtain

−
∫

Ω
lnuε(·, t)+

1

2

∫ t

τ0

∫

Ω
|∇ lnuε|2 ≤ −

∫

Ω
lnuε(·, τ0)+χ2

∫

Ω
ln

vε(·, t)
vε(·, τ0)

+χ2|Ω|T+ χ2

inf v0
eT
∫

Ω
u0 (8.9)
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for t ∈ (τ, T ), where according to (8.8) and by Lemma 3.3 and (3.3) the right-hand side is bounded
independently of ε. We invoke the Poincaré inequality to find c1 > 0 such that ‖ϕ‖W 1,2(Ω) ≤
c1(‖∇ϕ‖L2(Ω) + ‖ϕ‖L1(Ω)) for all ϕ ∈ W 1,2(Ω), and since the elementary estimate | ln s| ≤ 2s − ln s

valid for all s > 0, Lemma 3.2 and (8.9) provide c2 > 0 such that
∫

Ω | lnuε(·, t)| ≤ c2 for all t ∈ (τ, T ),
we conclude that for every τ > 0 and T > τ there exists c3 > 0 such that for all ε ∈ (0, 1) we have

‖lnuε‖L2((τ,T );W 1,2(Ω)) ≤ c3,

which by a weak compactness argument immediately results in (8.7). �

In order to demonstrate that (u, v) satisfies (2.3), we prepare the following.

Lemma 8.7. Let (φε)ε∈(0,1) ⊂ C0([0,∞)) ∩ L∞((0,∞)) be such that

sup
ε∈(0,1)

‖φε‖L∞((0,∞)) <∞ (8.10)

and that there exists φ ∈ C0([0,∞)) such that

φε → φ in L∞
loc([0,∞)) as εց 0. (8.11)

Then given χ > 0 such that (1.8) holds and taking u, v and (εj)j∈N ⊂ (0, 1) from Lemma 8.1, for all
p ∈ (0,min{1, 1

χ2 }), any q ∈ (q−(p), q+(p)) and each T > 0 we have

φε(uε)v
q

2
ε ∇u

p

2
ε ⇀ φ(u)v

q

2∇u p

2 in L2(Ω× (0, T )) as ε = εj ց 0. (8.12)

Proof. Let T > 0. Then since from (8.10) we know that there exists c1 > 0 such that

|φε(s)| ≤ c1 for all s > 0 and ε ∈ (0, 1) (8.13)

and hence
∫ T

0

∫

Ω

∣

∣

∣φε(uε)v
q

2
ε ∇u

p

2
ε

∣

∣

∣

2
≤ c1

∫ T

0

∫

Ω
vqε |∇u

p

2
ε |2 for all ε ∈ (0, 1),

writing wε := φε(uε)v
q

2
ε ∇u

p

2
ε , ε ∈ (0, 1), we infer from (4.6) that (wε)ε∈(0,1) is bounded in L2(Ω×(0, T ))

and hence relatively compact therein with respect to the weak topology. According to a standard
argument, in order to verify (8.12) it is thus sufficient to make sure that whenever (εjk)k∈N is a
subsequence of (εj)j∈N with the property that

wε ⇀ w in L2(Ω× (0, T )) as ε = εjk ց 0 (8.14)

with some w ∈ L2(Ω × (0, T )), we have w = φ(u)v
q

2∇u p

2 a.e. in Ω × (0, T ). To achieve this, we note

that due to q < 1 and (8.3), v
q

2
ε → v

q

2 in L2(Ω × (0, T )). By (8.13) and the pointwise convergence
asserted in (8.1) together with Lebesgue’s dominated convergence theorem, we therefore even have

φε(uε)v
q

2
ε → φ(u)v

q

2 in L2(Ω× (0, T )). Furthermore taking into account (8.2), we see that

φε(uε)v
q

2
ε ∇u

p

2
ε ⇀ φ(u)v

q

2∇u p

2 in L1(Ω× (0, T )),

which ensures w = φ(u)v
q

2∇u p

2 a.e. in Ω× (0, T ). �

We can now make sure that indeed the obtained pair (u, v) has all the properties required in Definition
2.1.
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Lemma 8.8. Suppose that (1.8) holds, and let p ∈ (0, 1) and q ∈ (0, 1) be such that p < 1
χ2 and

q ∈ (q−(p), q+(p)). Then the functions u and v constructed in Lemma 8.1 form a global weak (p, q)-
supersolution of (1.1) in the framework of Definition 2.1.

Proof. Writing

φ(1)ε (s) :=

(1−p)χ
1+εs + 2q

√

pqχ
1+εs + q(1− q)

and

φ(2)ε (s) :=
2√
q
·
√

pχ

1 + εs
+ 1− q (8.15)

as well as

φ(3)ε (s) :=

√

√

√

√

4(1− p)q − 4q2 − p
(1−p)2χ2

(1+εs)2

pq( pχ
1+εs + 1− q)

and

φ(4)ε (s) :=
2[(1− p)εs− p]χ

q(1 + εs)2

for ε ∈ (0, 1) and s ≥ 0, we first observe that φ
(k)
ε is well-defined for k ∈ {1, 2, 3, 4} with

φ(1)ε → c1 :=
(1− p)χ+ 2q
√

pqχ− q(1− q)
,

φ(2)ε → c2 :=
2
√
pχ+ 1− q√

q
,

φ(3)ε → c3 :=

√

4(1− p)q − 4q2 − p(1− p)2χ2

p[pqχ− q(1− q)]
and

φ(4)ε → c4 := −2pχ

q
(8.16)

in L∞
loc([0,∞)) as ε ց 0. Using these auxiliary functions, given T > 0 we now invoke Lemma 4.3 to

fix c5 > 0 and c6 > 0 such that

∫ T

0

∫

Ω

∣

∣

∣
φ(1)ε (uε)v

q

2
ε ∇u

p

2
ε − φ(2)ε (uε)u

p

2
ε ∇v

q

2
ε

∣

∣

∣

2
≤ c5 (8.17)

and
∫ T

0

∫

Ω
up+1
ε vq−1

ε ≤ c6 (8.18)
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for all ε ∈ (0, 1).

Next, since evidently (φ
(1)
ε )ε∈(0,1), (φ

(3)
ε )ε∈(0,1) and (φ

(4)
ε )ε∈(0,1) are bounded in L∞((0,∞)), three ap-

plications of Lemma 8.7 on the basis of (8.16) show that

φ(1)ε (uε)v
q

2
ε ∇u

p

2
ε ⇀ c1v

q

2∇u p

2 in L2(Ω× (0, T )) (8.19)

and
φ(3)ε (uε)v

q

2
ε ∇u

p

2
ε ⇀ c3v

q

2∇u p

2 in L2(Ω× (0, T )) (8.20)

as well as
φ(4)ε (uε)v

q

2
ε ∇u

p

2
ε ⇀ c4v

q

2∇u p

2 in L2(Ω× (0, T )) (8.21)

as ε = εj ց 0. We moreover observe that (8.1) implies that c2 ≥ φ
(2)
ε (uε) → c2 a.e. in Ω × (0, T ) as

ε = εj ց 0, so that since

∫ T

0

∫

Ω

∣

∣

∣
φ(2)ε (uε)u

p

2
ε

∣

∣

∣

2
p ≤ c

2
p

2

∫ T

0

∫

Ω
uε = c

2
p

2 T

∫

Ω
u0 for all ε ∈ (0, 1)

by (3.2), the Vitali convergence theorem ensures that φ
(2)
ε (uε)u

p

2
ε → c2u

p

2 in L2(Ω×(0, T )) as ε = εj ց 0

due to the fact that 2
p
> 2. Since ∇v

q

2
ε ⇀ ∇v q

2 in L2(Ω × (0, T )) as ε = εj ց 0 according to Lemma
8.1, we thus infer that

φ(2)ε (uε)u
p

2
ε ∇v

q

2
ε ⇀ c2u

p

2∇v q

2 in L1(Ω× (0, T ))

as ε = εj ց 0. But since (φ
(1)
ε (uε)v

q

2
ε ∇u

p

2
ε − φ

(2)
ε (uε)u

p

2
ε ∇v

q

2
ε )ε∈(0,1) is relatively compact with respect

to the weak topology in L2(Ω × (0, T )) by (8.17), together with (8.19) the latter guarantees that in
fact

φ(2)ε (uε)u
p

2
ε ∇v

q

2
ε ⇀ c2u

p

2∇v q

2 in L2(Ω× (0, T ) (8.22)

as ε = εj ց 0. Along with e.g. (8.20), this particularly asserts the regularity requirements in (2.2),
whereas those in (2.1) result from (8.18) and the fact that by Young’s inequality, (3.2) and Lemma 3.4
there exists c7 > 0 such that

∫ T

0

∫

Ω

∣

∣

∣upεv
q
ε

∣

∣

∣

1
p+q ≤

∫ T

0

∫

Ω
uε +

∫ T

0

∫

Ω
vε ≤ c7 for all ε ∈ (0, 1)

and hence, as ε = εj ց 0,
upεv

q
ε → upvq in L1(Ω× (0, T )) (8.23)

thanks to Lemma 8.1 and again the Vitali convergence theorem, because p+ q < p+ q+(p) < 1.

Positivity properties of u, v and upvq, and the validity of (2.6) are ensured by Lemma 8.6 and Lemma
8.2, respectively.

Now for the verification of (2.3) we let 0 ≤ ϕ ∈ C∞
0 (Ω × [0,∞)) be such that ∂ϕ

∂ν
= 0 on ∂Ω× (0,∞)

and fix T > 0 such that ϕ ≡ 0 in Ω× (T,∞). Then an application of Lemma 4.1 shows that

∫ T

0

∫

Ω

∣

∣

∣φ(3)ε (uε)v
q

2
ε ∇u

p

2
ε

∣

∣

∣

2
ϕ+

∫ T

0

∫

Ω

∣

∣

∣φ(1)ε (uε)v
q

2
ε ∇u

p

2
ε − φ(2)ε (uε)u

p

2
ε ∇v

q

2
ε

∣

∣

∣

2
ϕ+ q

∫ T

0

∫

Ω
up+1
ε vq−1

ε ϕ
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= −
∫ T

0

∫

Ω
upεv

q
εϕt −

∫

Ω
u
p
0v
q
0ϕ(·, 0)

−
∫

Ω
φ(4)ε (uε)u

p

2
ε v

q
ε∇u

p

2
ε · ∇ϕ−

∫ T

0

∫

Ω

(

1− pχ

q(1 + εuε)

)

upεv
q
ε∆ϕ

+q

∫ T

0

∫

Ω
upεv

q
εϕ for all ε ∈ (0, 1), (8.24)

where again employing (8.23) we see that

−
∫ T

0

∫

Ω
upεv

q
εϕt → −

∫ T

0

∫

Ω
upvqϕt (8.25)

and

q

∫ T

0

∫

Ω
upεv

q
εϕ→ q

∫ T

0

∫

Ω
upvqϕ (8.26)

as well as

−
∫ T

0

∫

Ω

(

1− pχ

q(1 + εuε)

)

upεv
q
ε∆ϕ→ −

(

1− pχ

q

)

∫ T

0

∫

Ω
upvq∆ϕ (8.27)

as ε = εj ց 0, the derivation of the latter additionally relying on an application of the dominated

convergence theorem. Since (8.23) together with Lemma 8.1 clearly warrants that u
p

2
ε v

q

2
ε → u

p

2 v
q

2 in
L2(Ω× (0, T )) and hence

−
∫ T

0

∫

Ω
φ(4)ε (uε)u

p

2
ε v

q
ε∇u

p

2
ε · ∇ϕ = −

∫ T

0

∫

Ω

(

u
p

2
ε v

q

2
ε

)

·
(

φ(4)ε (uε)v
q

2
ε ∇u

p

2
ε

)

· ∇ϕ

→ −
∫ T

0

∫

Ω

(

u
p

2 v
q

2

)

·
(

c4v
q

2∇u p

2

)

· ∇ϕ

= −c4
∫ T

0

∫

Ω
u

p

2 vq∇u p

2 · ∇ϕ

as ε = εj ց 0, in view of Fatou’s lemma and a standard argument based on lower semicontinuity of the
norm in L2(Ω × (0, T )) with respect to weak convergence it follows from (8.24), (8.20), (8.19), (8.22)
and (8.25)-(8.27) that

∫ T

0

∫

Ω

∣

∣

∣
c3v

q

2∇u p

2

∣

∣

∣

2
ϕ+

∫ T

0

∫

Ω

∣

∣

∣
c1v

q

2∇u p

2 − c2u
p

2∇v q

2

∣

∣

∣

2
ϕ+ q

∫ T

0

∫

Ω
up+1vq−1ϕ

≤ −
∫ T

0

∫

Ω
upvqϕt −

∫

Ω
u
p
0v
q
0ϕ(·, 0)

−c4
∫ T

0

∫

Ω
u

p

2 vq∇u p

2 · ∇ϕ−
(

1− pχ

q

)

∫ T

0

∫

Ω
upvq∆ϕ

+q

∫ T

0

∫

Ω
upvqϕ,

which is equivalent to (2.3) and thus completes the proof.
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�

Our main result thereby becomes evident.

Proof of Theorem 1.1. We only need to combine Lemma 8.2 with Lemma 8.8. �

9 Appendix: A Poincaré inequality in non-convex domains

Our proof of Lemma 8.5 relies on Lemma 8.4, which in its original formulation in [18, Lemma 4.2]
requires convexity of the domain due to the version of Poincaré’s inequality ([10, Corollary 9.1.4]) used.
In this appendix we state this Poincaré inequality without any such convexity condition, and since we
could not find any reference to this in the literature, we briefly outline an argument. Here and in the
following, by uX we denote the average 1

|X|

∫

X
u(x)dx for u ∈ L1(Ω) and any measurable set X ⊂ Ω

with positive measure.

Lemma 9.1. Let Ω ⊂ R
n be a bounded with smooth boundary, and let δ > 0 and p ∈ [1,∞). Then

there exists C = C(Ω, δ, p) with the property that for all u ∈W 1,p(Ω),

(∫

Ω
|u− uB|p

) 1
p

≤ C(Ω, δ, p)

(∫

Ω
|Du|p

) 1
p

holds for any measurable set B ⊂ Ω with |B| = δ.

A derivation of this can be based on the following.

Lemma 9.2. Let Ω ⊂ R
n be a bounded domain with smooth boundary, and let δ > 0. Then there exists

C > 0 such that for every measurable set B ⊂ Ω with |B| = δ, and for each u ∈W 1,1(Ω) we have

|u(x)− uB| ≤ C

∫

Ω

|Du(z)|
|x− z|n−1

dz (9.1)

for almost every x ∈ Ω.

Proof. We follow the proof of [7, Theorem 10], where (9.1) is shown for B = Ω, and indicate necessary
changes. With B0 being a certain ball in Ω, defined as in the proof of [7, Theorem 10], in [7, (14)] it
is shown that there is c1 > 0 such that for every u ∈W 1,1(Ω) and almost every x ∈ Ω the estimate

|u(x)− uB0 | ≤ c1

∫

Ω

|∇u(z)|
|x− z|n−1

dz (9.2)

holds, whose proof relies on a Poincaré inequality on balls that takes into account the dependence of
the constant on the radius and on the existence of a chain of balls connecting B0 with x that allows for
certain estimates independently of x (cf. [7, p. 119]). Whereas the first summand in the right-hand
side of

|u(x)− uB| ≤ |u(x)− uB0 |+ |uB0 − uB| (9.3)

is immediately covered by (9.2), as to the second we observe that, again by (9.2),

|uB0 − uB| ≤
1

|B|

∫

B

|uB0 − u(y)|dy
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≤ c1

|B|

∫

B

∫

Ω

|∇u(z)|
|y − z|n−1

dzdy

≤ c1

|B|

∫

Ω
|∇u(z)|

∫

B

1

|y − z|n−1
dydz. (9.4)

In estimating
∫

B
1

|y−z|n−1dy we employ the fact that with some c2 = c(n), for all z ∈ R
n and any

measurable E ⊂ R
n,
∫

E
dy

|y−z|n−1 ≤ c2|E| 1n ([7, (13)]), because if Ẽ is a ball centered in z with |E| = |Ẽ|
and radius R = c̃2(n)|E| 1n ,

∫

E

dy

|y − z|n−1
≤
∫

Ẽ

dy

|y − z|n−1
=

∫ R

0
rn−1 1

rn−1
dr = c2|Ẽ| 1n .

We moreover use that 1 ≤ (diamΩ)n−1

|x−z|n−1 for any x, z ∈ Ω. With these observations, (9.4) turns into

|uB0 − uB| ≤
c1c2

|B| |B| 1n
∫

Ω
|∇u(z)|dz ≤ c1c2|B| 1n−1(diamΩ)n−1

∫

Ω

|∇u(z)|
|x− z|n−1

dz. (9.5)

Noting that |B| 1n−1 = δ
1
n
−1 and combining (9.2) and (9.5) with (9.3) proves (9.1). �

Proof of Lemma 9.1. For convex domains, this is exactly Corollary 9.1.4 of [10], which follows
from [10, Lemma 9.1.3] and [10, Lemma 9.1.2], the latter of which (a continuity property of the Riesz
potential operator) poses no convexity condition on Ω. As replacement of the former, in the case of
general Ω we now rather rely on Lemma 9.2. �

Remark 9.3. In Lemma 9.2 (and hence in Lemma 9.1), for the domain it is actually sufficient to be
(bounded and) a John domain, instead of having smooth boundary. In particular, any bounded domain
satisfying the interior cone condition is admissible in these lemmata. For details concerning this, we
once more refer the reader to [7].

Remark 9.4. With Lemma 9.1, it is also possible to remove the convexity condition on the domain in
[18].
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