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Abstract

This work considers the Keller-Segel-type parabolic system

{

ut = ∆(uφ(v)), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
(⋆)

in a smoothly bounded convex domain Ω ⊂ R
n, n ≥ 2, under no-flux boundary conditions, which

has recently been proposed as a model for processes of stripe pattern formation via so-called “self-
trapping” mechanisms.

In the two-dimensional case, in stark contrast to the classical Keller-Segel model in which large-
data solutions may blow up in finite time, for all suitably regular initial data the associated initial
value problem is seen to possess a globally defined bounded classical solution, provided that the
motility function φ ∈ C3([0,∞))∩W 1,∞((0,∞)) is uniformly positive. In the corresponding higher-
dimensional setting, it is shown that certain weak solutions exist globally, where in the particular
three-dimensional case this solution actually is bounded and classical if the initial data are suitably
small in the norm of L2(Ω)×W 1,4(Ω). Finally, if still n = 3 but merely the physically interpretable
quantity ‖φ′‖L∞((0,∞))

∫

Ω
u0 is appropriately small, then the above weak solutions are proved to

become eventually smooth and bounded.
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1 Introduction

In the modeling of self-enhanced chemotactic migration processes at macroscopic levels, Keller-Segel-
type cross-diffusive systems of the form

{

ut = ∇ · (D(u, v)∇u− uχ(u, v)∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
(1.1)

play an outstanding role. With regard to the apparently most striking among the potential features of
(1.1), namely the spontaneous formation of singularities known to occur in the classical (aka minimal)
Keller-Segel system obtained on letting D ≡ χ ≡ 1 in two- and higher-dimensional frameworks (cf. [9],
[36] and also [20]), a large variety of results in the literature underlines the crucial role of the interplay
between the chemotactic sensitivity S and the diffusion rate D therein.

For instance, quite a comprehensive understanding could be achieved in the case when D = D(u) > 0
and χ = χ(u) ≥ 0 are suitably smooth, independent of the signal concentration v = v(x, t) and
exclusively depending on the population density u = u(x, t): Then, namely, known results indicate

that essentially the asymptotic behavior of the ratio χ(u)
D(u) at large values of u determines whether or not

unbounded solutions exist, with the algebraic growth rate of 1 ≤ u 7→ u
2−n
n apparently determining

a critical behavior of this quotient in the sense that such unboundedness phenomena may occur
when χ

D
grows substantially faster ([5], [6], [34]), whereas in cases of accordingly subcritical growth

of χ
D
, appropriate technical assumptions ensure global existence and boundedness of solutions to

corresponding no-flux initial-boundary value problems in smoothly bounded domains Ω ⊂ R
n, n ≥ 2

([28], [11], [24]).

The respective knowledge is much less complete in situations when the parameter functions explicitly
depend on v. Even in the comparatively simple case D ≡ 1 and χ = χ(v) the interaction of diffusion,
taxis and signal production in (1.1) seems complex enough so as to allow for partial results identifying
conditions sufficient for global boundedness up to now, with an exception formed by the particular
choice χ(v) = χ0

v
of a singular sensitivity consistent with the Weber-Fechner law for which besides

various results on global solvability ([2], [35], [14], [8], [26]) also some complementing statements
on the occurrence of exploding solutions at least in certain parabolic-elliptic simplifications of (1.1)
is available ([21]). To the best of our knowledge, chemotaxis systems additionally involving signal-
dependent diffusion rates have been studied only quite rudimentarily so far with regard to possible
singularity formation phenomena ([15]).

A special Keller-Segel-type model with signal-dependent motility. The present work is
devoted to an analytical study of a cross-diffusive parabolic system in which both the cell diffusion rate
and the chemotactic sensitivity depend nonlinearly on the signal concentration, assuming a particular
functional link between these parameter functions suggested by a recent modeling approach. More
precisely, we shall be concerned with the system

{

ut = ∆(uφ(v)), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
(1.2)

which formally corresponds to (1.1) upon choosing D(u, v) := φ(v) and χ(u, v) := −φ′(v), where φ
is a sufficiently smooth given positive function on [0,∞). This system (1.2) has recently been pro-
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posed to describe processes of stripe pattern formation via so-called “self-trapping” mechanisms ([7]),
which has been investigated experimentally using a synthetic biology approach ([17]). As observed in
the experiment, namely, bacteria of the species E. Coli can secrete a small signaling molecule acyl-
homoserine lactone (AHL) with the property that at low AHL levels, these bacteria are motile and
can thus perform essentially unperturbed random movement via usual swim-and-tumble processes,
whereas high AHL levels substantially enhance the tumbling mechanism and thus lead to essentially
immotile collective behavior at the macroscale ([7]).

In order to complete the framework of our study in accordance with this modeling background, let us
assume that the parameter function φ in (1.2) satisfies

φ ∈ C3([0,∞)) (1.3)

and
kφ ≤ φ(s) ≤ Kφ for all s ≥ 0 (1.4)

as well as
|φ′(s)| ≤ Kφ′ for all s ≥ 0 (1.5)

with certain positive constants kφ,Kφ and Kφ′ , and consider (1.2) under the boundary conditions

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0, (1.6)

and the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.7)

in a bounded convex domain Ω ⊂ R
n, n ≥ 2, with smooth boundary, where our standing assumptions

on the initial data will be that
{

u0 ∈ C0(Ω̄) is nonnegative, u0 6≡ 0, and

v0 ∈W 1,∞(Ω) is nonnegative.
(1.8)

Main results. The goal of this work is to explore basic qualitative dynamical properties of the
particular diffusion-taxis interplay implicity contained in (1.2), with a special focus on aspects related
to the question how far singular solution behavior may occur.

The first of our main results in this direction asserts global existence of bounded solutions in two-
dimensional settings, in sharp contrast to the minimal Keller-Segel model thus ruling out any such
type of singularity formation.

Theorem 1.1 Let Ω ⊂ R
2 be a bounded convex domain with smooth boundary, and suppose that φ

satisfies (1.3), (1.4) and (1.5) with some kφ > 0,Kφ > 0 and Kφ′ > 0. Then for all u0 and v0 fulfilling
(1.8), the problem (1.2), (1.6), (1.7) possesses a global classical solution (u, v) ∈ (C0(Ω̄ × [0,∞)) ∩
C2,1(Ω̄×(0,∞)))2 such that both u and v are nonnegative in Ω×(0,∞), and such that (u, v) is bounded
in the sense that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ C for all t > 0 (1.9)

with some C > 0.
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In higher-dimensional cases, it is at least possible to construct certain global weak solutions having
some additional regularity features which exclude any possibility of finite-time collapse into persistent
Dirac-type singularities, as known to occur in some Keller-Segel-type models ([18], [30]).

Theorem 1.2 Let n ≥ 3, and assume that Ω ⊂ R
n is a bounded domain with smooth boundary.

Moreover, suppose that φ satisfies (1.3) as well as (1.4) and (1.5) with positive constants kφ,Kφ

and Kφ′ . Then for all u0 and v0 fulfilling (1.8), the problem (1.2), (1.6), (1.7) possesses at least
one global weak solution in the sense of Definition 5.1, and this solution can be gained as the limit
a.e. in Ω× (0,∞) of solutions (uεk , vεk) to the regularized problems (5.5) below along a suitably chosen
sequence (εk)k∈N ⊂ (0, 1) such that εk ց 0 as k → ∞.
Beyond (5.1) and (5.2), this solution has the additional regularity properties

{

u ∈ L2
loc([0,∞);L2(Ω)) ∩ L

n+2
n+1

loc ([0,∞);W 1,n+2
n+1 (Ω)) and

v ∈ L∞([0,∞);W 1,2(Ω)) ∩ L2
loc([0,∞);W 2,2(Ω)),

(1.10)

and there exists C > 0 such that

∫ t+1

t

∫

Ω
u2 ≤ C and

∫ t+1

t

∫

Ω
|∆v|2 ≤ C for all t > 0. (1.11)

In the physically relevant three-dimensional case, a suitable smallness condition on the initial data
ensures that even global bounded classical solutions exist.

Theorem 1.3 Let Ω ⊂ R
3 be bounded and convex with smooth boundary. Then for all κ > 0 and

K > 0 one can find δ(κ,K) > 0 with the property that whenever φ satisfies (1.3), (1.4) and (1.5) with
some kφ > κ,Kφ ≥ kφ and Kφ′ ∈ (0,K], for each (u0, v0) fulfilling (1.8) and

∫

Ω
u20 +

∫

Ω
|∇v0|

4 ≤ δ(κ,K), (1.12)

the problem (1.2), (1.6), (1.7) possesses a global classical solution (u, v) ∈ (C0(Ω̄× [0,∞))∩C2,1(Ω̄×
(0,∞)))2 which is bounded in the sense that (1.9) holds.

Appropriate smallness assumptions on the initial data, involving the norms of u0 and v0 in L
n
2 (Ω) and

inW 1,n(Ω) and thus remaining essentially in line with (1.12), are known to enforce global boundedness
also in the minimal Keller-Segel system when n ≥ 3 ([4], [33]), whereas the total cell mass apparently
loses its relevance in this respect, yet present in the case n = 2 ([22], [19]), in such high-dimensional
settings in the sense that for arbitrary m > 0, in balls Ω ⊂ R

n one can find smooth u0 and v0 such
that

∫

Ω u0 = m but that the corresponding solution blows up in finite time ([36]). In sharp contrast
to the latter, the next theorem indicates that in the context of the present model, the mass functional
may play a significant role with regard to solution regularity at least beyond a certain relaxation time.
More precisely, a smallness condition relating the physically relevant total mass

∫

Ω u0 to the quantity
‖φ′‖L∞((0,∞)) ensures that the global weak solution constructed in Theorem 1.2 in fact becomes smooth
and classical eventually.
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Theorem 1.4 Let Ω ⊂ R
3 be bounded and convex with smooth boundary. Then for all κ > 0 and

K > 0 there exists δ(κ,K) > 0 such that if φ satisfies (1.3), (1.4) and (1.5) with some kφ ≥ κ,Kφ ∈
[kφ,K] and Kφ′ > 0, and if (u0, v0) is such that (1.8) holds as well as

Kφ′ · u0 ≤ δ(κ,K), (1.13)

then the global weak solution of (1.2), (1.6), (1.7) gained in Theorem 1.2 has the property that there
exists t0 > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ C for all t > t0 (1.14)

with some C > 0, and such that (u, v) belongs to (C2,1(Ω̄ × (t0,∞)))2 and solves the boundary value
problem in (1.2) classically in Ω× (t0,∞).

We remark that the above condition (1.13) is satisfied for arbitrary fixed initial data and given lower
and upper bounds for φ if |φ′| is appropriately small throughout [0,∞), thus partially confirming
the intuitive idea that when φ is suitably close to a constant φ⋆, solutions to (1.2) should exhibit a
behavior which is somewhat related to that of the respective limiting equation ut = φ⋆∆u, at least
with regard to regularity.

Main ideas. Our analytical approach is guided by the idea to appropriately respect the particular
structure of (1.2) which differs from the general system (1.1) in that both diffusive and cross-diffusive
movement are captured by one single action of the Laplacian. Indeed, unlike in the latter model
this allows for a lifting procedure consisting in an application of A−1 to both sides of the identity
ut = A(uφ(v) − uφ(v)) formally associated with (1.2), where A denotes the realization of −∆ under
homogeneous Neumann boundary conditions in the subspace of L2(Ω) orthogonal to constants. On
testing the resulting equation by u − u0 this will enable us to derive estimates for

∫ t+τ
t

∫

Ω(u − u0)
2

with appropriately small τ ∈ (0, 1] (Lemma 3.1), and thereafter, by smoothing properties of the second
equation in (1.2), also for

∫

Ω |∇v|2 and for
∫ t+τ
t

∫

Ω |∆v|2 (Lemma 3.2).

In the spatially two-dimensional case, this regularity information turns out to be sufficient as a starting
point for a bootstrap argument, through estimates for

∫

Ω u lnu and then for
∫

Ω u
p +

∫

Ω |∇v|2p with
arbitrary p > 1 finally yielding bounds for u in L∞(Ω) and thereby establishing Theorem 1.1. In the
higher-dimensional case, we will make use of a certain structural stability of the a priori estimates
from Lemma 3.1 and Lemma 3.2 with respect to the coefficient functions in (1.2) by firstly considering
a suitably regularized variant thereof for which global solutions can easily be seen to exist, and for
which the above basic regularity properties imply compactness properties allowing for the construction
of a weak solution by an appropriate limit procedure (Section 5).

The proofs both of Theorem 1.3 and of Theorem 1.4 are based on the observation that in the case
n = 3 and under the assumtion that Kφ′u0 is suitably small, the functional

E(u, v) :=

∫

Ω
(u− u0)

2 +K2
φ′

∫

Ω
|∇v|4

possesses a certain energy-like property under the additional condition that E(u, v) be sufficiently small
(Lemma 6.1). Again by means of a bootstrap procedure, for initial data fulfilling a smallness assump-
tion as in Theorem 1.3 the accordingly implied boundedness features of (u, v) in Lp(Ω) ×W 1,2p(Ω),
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with p := 2 satisfying p > n
2 due to the fact that n = 3, warrant global existence and boundedness

of classical solutions (Section 6.2). If merely Kφ′u0 is small, by making full use of the quantitative
dependence of the basic estimates from Lemma 3.1 and Lemma 3.2 it is possible to make sure that
such solutions at least eventually comply with the hypotheses from Lemma 3.2, whereupon a similar
series of regularity arguments, when applied to the respective approximate versions of (1.2), yields
bounds for the corresponding approximate solutions in spaces of smooth functions after an appropriate
waiting time (Lemma 6.3), and thereby establishes Theorem 1.4.

2 Preliminaries

2.1 Local existence and basic solution properties

In order to derive some common features of the original system (1.2) and the regularized variants (5.5)
thereof, instead of (1.2), (1.6), (1.7) let us consider the more general auxiliary problem



















ut = ∆(uφ(v)), x ∈ Ω, t > 0,

vt = ∆v − v + f(u), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(2.1)

with
f ∈ C1([0,∞)) (2.2)

satisfying
f(0) = 0 and 0 ≤ f ′(s) ≤ 1 for all s ≥ 0. (2.3)

For any such problem, standard theory yields the following result on local existence and extensibility
of smooth solutions.

Lemma 2.1 Suppose that φ and f satisfy (1.3), (1.4), (2.2) and (2.3) with some kφ > 0 and Kφ ≥ kφ.
Then for all u0 and v0 fulfilling (1.8) there exist Tmax ∈ (0,∞] and a pair of nonnegative functions u
and v, both belonging to C0(Ω̄ × [0, Tmax)) ∩ C

2,1(Ω̄ × (0, Tmax)), such that (u, v) solves (2.1) in the
classical sense in Ω× (0, Tmax), and such that

if Tmax <∞, then lim sup
tրTmax

{

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω)

}

= ∞ for all q > n. (2.4)

Proof. Following well-established fixed point arguments and invoking standard parabolic regularity
theory (cf. e.g. [27, Lemma2.1] or [39], for instance), one can readily verify the existence of a local-
in-time classical solution, nonnegative in both components by the maximum principle, and satisfying
the extensiblity criterion (2.4). �

The following properties of the spatial L1 norms are immediate.
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Lemma 2.2 Assume that (1.3), (1.4), (2.2) and (2.3) hold with some kφ > 0 and Kφ ≥ kφ, and that
(1.8) is valid. Then the solution of (2.1) satisfies

∫

Ω
u(x, t)dx =

∫

Ω
u0 for all t ∈ (0, Tmax) (2.5)

as well as
∫

Ω
v(x, t)dx ≤

(

∫

Ω
v0

)

e−t +
(

∫

Ω
u0

)

(1− e−t) for all t ∈ (0, Tmax). (2.6)

Proof. Integrating the first equation in (1.2) with respect to x ∈ Ω, we see that d
dt

∫

Ω u ≡ 0, and
that

d

dt

∫

Ω
v = −

∫

Ω
v +

∫

Ω
f(u) ≤ −

∫

Ω
v +

∫

Ω
u for all t ∈ (0, Tmax)

thanks to 0 ≤ f(u) ≤ u as a consequence of (2.3). This yields (2.5) and moreover shows (2.6). �

Now combining two standard testing procedures yields the following basic inequelity that will be
referred to several times throughout the sequel.

Lemma 2.3 Assume that (1.3), (1.4), (1.5) as well as (2.2) and (2.3) are valid, and that (1.8) holds.
Then for all p > 1 and any a > 0, the solution of (2.1) satisfies

d

dt

{
∫

Ω
up + a

∫

Ω
|∇v|2p

}

+ 2pa

∫

Ω
|∇v|2p +

2(p− 1)kφ
p

∫

Ω
|∇u

p

2 |2 +
4(p− 1)a

p

∫

Ω

∣

∣

∣
∇|∇v|p

∣

∣

∣

2

≤
p(p− 1)K2

φ′

2kφ

∫

Ω
up|∇v|2 +

(

4p(p− 1)2 + np
)

a

∫

Ω
u2|∇v|2p−2 for all t ∈ (0, Tmax). (2.7)

Proof. By straightforward computation using (1.2) and Young’s inequality, we obtain

d

dt

∫

Ω
up = −p(p− 1)

∫

Ω
up−2∇u · ∇(uφ(v))

= −p(p− 1)

∫

Ω
φ(v)up−2|∇u|2 − p(p− 1)

∫

Ω
φ′(v)up−1∇u · ∇v

≤ −
p(p− 1)

2

∫

Ω
φ(v)up−2|∇u|2 +

p(p− 1)

2

∫

Ω

φ′2(v)

φ(v)
up|∇v|2 for all t ∈ (0, Tmax),(2.8)

where from (1.4) and (1.5) we know that

p(p− 1)

2

∫

Ω
φ(v)up−2|∇u|2 ≥

p(p− 1)kφ
2

∫

Ω
up−2|∇u|2 =

2(p− 1)kφ
p

∫

Ω
|∇u

p

2 |2 for all t ∈ (0, Tmax)

(2.9)
and

p(p− 1)

2

∫

Ω

φ′2(v)

φ(v)
up|∇v|2 ≤

p(p− 1)K2
φ′

2kφ

∫

Ω
up|∇v|2 for all t ∈ (0, Tmax). (2.10)
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Next, relying on the convexity of Ω in estimating ∂|∇v|2

∂ν
≤ 0 on ∂Ω ([16]) and making use of the

identities 2∇v · ∇∆v = ∆|∇v|2 − 2|D2v|2 and ∇|∇v|2p−2 = (p − 1)|∇v|2p−4∇|∇v|2, by means of a
standard testing procedure applied to the second equation in (2.1) ([28]) we see that

d

dt

∫

Ω
|∇v|2p +

4(p− 1)

p

∫

Ω

∣

∣

∣
∇|∇v|p

∣

∣

∣

2
+ 2p

∫

Ω
|∇v|2p−2|D2v|2 + 2p

∫

Ω
|∇v|2p

≤ 2p

∫

Ω
|∇v|2p−2∇f(u) · ∇v for all t ∈ (0, Tmax), (2.11)

where integrating by parts and using Young’s inequality we obtain

2p

∫

Ω
|∇v|2p−2∇f(u) · ∇v = −4p(p− 1)

∫

Ω
f(u)|∇v|2p−4∇v · (D2v · ∇v)− 2p

∫

Ω
f(u)|∇v|2p−2∆v

≤ p

∫

Ω
|∇v|2p−2|D2v|2 + 4p(p− 1)2

∫

Ω
f2(u)|∇v|2p−2

+
p

n

∫

Ω
|∇v|2p−2|∆v|2 + np

∫

Ω
f2(u)|∇v|2p−2

≤ 2p

∫

Ω
|∇v|2p−2|D2v|2 +

(

4p(p− 1)2 + np
)

∫

Ω
u2|∇v|2p−2

for all t ∈ (0, Tmax), because |∆v|2 ≤ n|D2v|2 in Ω × (0, Tmax) and 0 ≤ f(u) ≤ u in Ω × (0, Tmax)
as a consequence of (2.3). Therefore, (2.7) immediately results from an evident linear combination of
(2.11) with (2.8) upon taking into account (2.9) and (2.10). �

2.2 Two ODE comparison results

The following statement on subsolutions of an apsorptive linear ODE, generalizing a corresponding
inequality obtained in [25], will be needed in Lemma 3.2 and also in Lemma 4.1.

Lemma 2.4 Let T ∈ (0,∞], and suppose that y ∈ C0([0, T ))∩C1((0, T )) is nonnegative and satisfies

y′(t) + λy(t) ≤ h(t) for all t ∈ (0, T ) (2.12)

with a nonnegative function h ∈ C0((0, T )) ∩ L1
loc([0, T )) fulfilling

∫ t+τ

t

h(s)ds ≤ a+ be−λ
′t for all t ∈ (0, T − τ), (2.13)

where a, b, λ, λ′ and τ are positive constants such that λ < λ′ and τ < T . Then

y(t) ≤
a

1− e−λτ
+
{

y(0) +
be(2λ

′−λ)τ

e(λ
′−λ)τ − 1

}

· e−λt for all t ∈ (0, T ). (2.14)

Proof. Given t ∈ (0, T ), we fix k ∈ N such that (k− 1)τ < t ≤ kτ , so that extending h to (−∞, T )
by letting h(t) := 0 for t ≤ 0, from (2.12) and a comparison argument we infer that

y(t) ≤ y(0)e−λt +

∫ t

0
e−λ(t−s)h(s)ds
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= y(0)e−λt +
k−1
∑

j=0

∫ t−jτ

t−(j+1)τ
e−λ(t−s)h(s)ds

≤ y(0)e−λt +
k−1
∑

j=0

e−jλτ
∫ t−jτ

t−(j+1)τ
h(s)ds. (2.15)

Here by (2.13) and our assumption that λ′ > λ,

k−1
∑

j=0

e−jλτ
∫ t−jτ

t−(j+1)τ
h(s)ds ≤ a

k−1
∑

j=0

e−jλτ + b

k−1
∑

j=0

e−jλτe−λ
′(t−(j+1)τ)

= a

k−1
∑

j=0

e−jλτ + be−λ
′(t−τ) ·

k−1
∑

j=0

ej(λ
′−λ)τ

= a ·
1− e−kλτ

1− e−λτ
+ be−λ

′(t−τ) ·
ek(λ

′−λ)τ − 1

e(λ
′−λ)τ − 1

≤
a

1− e−λτ
+ be−λ

′(t−τ) ·
e(λ

′−λ)(t+τ)

e(λ
′−λ)τ − 1

,

because kτ < t+ τ . Along with (2.15), this readily establishes (2.14). �

For superlinearly dampened differential inequalities with possibly large initial data, we prepare the
following statement to be used in Lemma 6.2.

Lemma 2.5 Let a > 0 and b > 0 and α > 1, and suppose that with some t0 ∈ R and T ∈ (t0,∞] we
are given a nonnegative function y ∈ C0([t0, T )) ∩ C

1((t0, T )) satisfying

y′(t) + ayα(t) ≤ b for all t ∈ (t0, T ). (2.16)

Then
y(t) ≤ C · (t− t0)

− 1
α−1 + C for all t ∈ (t0, T ) (2.17)

with

C := max

{

( 2

(α− 1)a

)
1

α−1
,
(2b

a

)
1
α

}

. (2.18)

Proof. Without loss of generality assuming that t0 = 0, with C as defined in (2.18) we let

y(t) := Ct
− 1

α−1 + C for t ∈ (0, T ) and compute

y′(t) + ayα(t)− b = −
C

α− 1
t
− α

α−1 + aCα ·
{

t
− 1

α−1 + 1
}α

− b for all t ∈ (0, T ).

As (2.18) guarantees that

1
2aC

α ·
{

t
− 1

α−1 + 1
}α

C
α−1 t

− α
α−1

≥
1
2aC

α · t−
α

α−1

C
α−1 t

− α
α−1

=
(α− 1)a

2
Cα−1 ≥ 1 for all t ∈ (0, T )

9



and

1
2aC

α ·
{

t
− 1

α−1 + 1
}α

b
≥

1
2aC

α

b
≥ 1 for all t ∈ (0, T ),

this implies that

y′(t) + ayα(t)− b ≥ 0 for all t ∈ (0, T ).

Since y(t) → +∞ as t ց 0 and hence y(t1) > y(t1) for all t1 ∈ (0, t⋆) with some sufficiently small
t⋆ ∈ (0, T ), an ODE comparison on (t1, T ) shows that y ≥ y on (t1, T ) for any such t1, which on taking
t1 ց 0 shows that indeed (2.17) holds. �

3 Fundamental a priori estimates for (2.1)

Now a cornerstone for all our subsequence analysis is obtained by properly exploiting the special
structure of the diffusive processes in both (1.2) and (2.1), thus constituting an essential difference
between these and the more general system (1.1).

Lemma 3.1 Let κ > 0. Then there exist L = L(κ) > 0 and λ = λ(κ) > 0 with the property that if φ
satisfies (1.3) and (1.4) with some kφ ≥ κ and Kφ ≥ kφ, and if f complies with (2.2) and (2.3), then
for any (u0, v0) fulfilling (1.8) one can find C > 0 such that for the solution of (2.1) we have

∫ t+τ

t

∫

Ω
(u− u0)

2 ≤ LB2
φ,u0

+ Ce−λt for all t ∈ (0, Tmax − τ), (3.1)

where

τ := min
{

1 ,
1

2
Tmax

}

(3.2)

and
Bφ,u0 := Vφu0 (3.3)

with
Vφ := Kφ − kφ. (3.4)

Proof. We let A denote the self-adjoint realization of −∆ under homogeneous Neumann boundary
conditions in the Hilbert space L2

⊥(Ω) := {ψ ∈ L2(Ω) |
∫

Ω ψ = 0} with domain given by D(A) :=

{ψ ∈W 2,2(Ω) ∩ L2
⊥(Ω) |

∂ψ
∂ν

= 0 on ∂Ω}. Then according to known results from elliptic theory ([38]),
since the spectrum of A is a discrete subset of the positive real half-line (0,∞), A possesses bounded
self-adjoint fractional powers A−α for any α > 0. In particular, rewriting the first equation in (2.1) in

the form ut = −A
(

uφ(v)− uφ(v)
)

, in view of (2.5) we may compute

1

2

d

dt

∫

Ω

∣

∣

∣
A− 1

2 (u− u0)
∣

∣

∣

2
=

∫

Ω
A− 1

2 (u− u0) ·A
− 1

2 (u− u0)t

=

∫

Ω
A−1(u− u0) · (u− u0)t

= −

∫

Ω
A−1(u− u0) ·A

(

uφ(v)− uφ(v)
)

= −

∫

Ω
(u− u0) ·

(

uφ(v)− uφ(v)
)

for all t ∈ (0, Tmax). (3.5)
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Here we decompose

∫

Ω
(u− u0) ·

(

uφ(v)− uφ(v)
)

=

∫

Ω
(u− u0) ·

(

uφ(v)− u0φ(v)
)

+

∫

Ω
(u− u0) ·

(

u0φ(v)− uφ(v)
)

=

∫

Ω
φ(v)(u− u0)

2 +

∫

Ω
(u− u0) ·

(

u0φ(v)− uφ(v)
)

for t ∈ (0, Tmax), where due to (2.5) and the definitions (3.4) and (3.3) of Vφ and B we can estimate

∣

∣

∣

∣

u0φ(v(x, t))− u(·, t)φ(v(·, t))

∣

∣

∣

∣

=

∣

∣

∣

∣

u(·, t)φ(v(x, t))− u(·, t)φ(v(·, t))

∣

∣

∣

∣

=

∣

∣

∣

∣

1

|Ω|

∫

Ω
u(y, t) ·

{

φ(v(x, t))− φ(v(y, t))
}

dy

∣

∣

∣

∣

≤ Vφ ·
1

|Ω|

∫

Ω
u(y, t)dy

= Bφ,u0 for all x ∈ Ω and t ∈ (0, Tmax).

Thus, by Young’s inequality and (1.4) we see that

∣

∣

∣

∣

∫

Ω
(u− u0) ·

(

u0φ(v)− uφ(v)
)

∣

∣

∣

∣

≤
1

2

∫

Ω
φ(v)(u− u0)

2 +
1

2

∫

Ω

1

φ(v)
·B2

φ,u0

≤
1

2

∫

Ω
φ(v)(u− u0)

2 +
|Ω|

2kφ
B2
φ,u0

for all t ∈ (0, Tmax),

and that hence
∫

Ω
(u− u0) ·

(

uφ(v)− uφ(v)
)

≥
1

2

∫

Ω
φ(v)(u− u0)

2 −
|Ω|

2kφ
B2
φ,u0

≥
kφ

2

∫

Ω
(u− u0)

2 −
|Ω|

2kφ
B2
φ,u0

for all t ∈ (0, Tmax),

so that from (3.5) and our assumption that kφ ≥ κ we obtain the inequality

d

dt

∫

Ω

∣

∣

∣
A− 1

2 (u− u0)
∣

∣

∣

2
+ κ

∫

Ω
(u− u0)

2 ≤ c1B
2
φ,u0

for all t ∈ (0, Tmax) (3.6)

with c1 := |Ω|
κ
. Now using that

∫

ΩA
− 1

2 (u − u0) = 0, we may invoke the Poincaré inequality to gain
λ > 0 such that

κ

2

∫

Ω
(u− u0)

2 =
κ

2

∫

Ω

∣

∣

∣
∇A− 1

2 (u− u0)
∣

∣

∣

2
≥ λ

∫

Ω

∣

∣

∣
A− 1

2 (u− u0)
∣

∣

∣

2
for all t ∈ (0, Tmax),

so that (3.6) implies that for y(t) :=
∫

Ω

∣

∣

∣
A− 1

2 (u(·, t)−u0)
∣

∣

∣

2
and g(t) := κ

2

∫

Ω(u(·, t)−u0)
2, t ∈ [0, Tmax),

we have
y′(t) + λy(t) + g(t) ≤ c1B

2
φ,u0

for all t ∈ (0, Tmax). (3.7)
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As g is nonnegative, this firstly entails that

y(t) ≤ y(0)e−λt + c1B
2
φ,u0

∫ t

0
e−λ(t−s)ds

= y(0)e−λt +
c1B

2
φ,u0

λ
(1− e−λt)

≤ y(0)e−λt +
c1B

2
φ,u0

λ
for all t ∈ (0, Tmax),

whereupon an integration of (3.7) shows that

∫ t+τ

t

g(s)ds ≤ y(t) + c1B
2
φ,u0

≤ y(0)e−λt +
c1B

2
φ,u0

λ
+ c1B

2
φ,u0

for all t ∈ (0, Tmax − τ)

and thereby proves the lemma. �

For the evolution of the standard first-order energy functional associated with the inhomogeneous
linear heat equation for v in (2.1), Lemma 3.1 has an immediate consequence which implies the
following.

Lemma 3.2 For all κ > 0 there exist M = M(κ) > 0 and µ = µ(κ) > 0 with the following property:
If φ and f satisfy (1.3), (1.4), (2.2) and (2.3) with some kφ ≥ κ and Kφ ≥ kφ, then for any choice of
(u0, v0) fulfilling (1.8) it is possible to choose C > 0 such that the solution of (2.1) satisfies

∫

Ω
|∇v(·, t)|2 ≤MB2

φ,u0
+ Ce−µt for all t ∈ (0, Tmax) (3.8)

and
∫ t+τ

t

∫

Ω
|∆v|2 ≤MB2

φ,u0
+ Ce−µt for all t ∈ (0, Tmax − τ), (3.9)

where τ and Bφ,u0 are as in (3.2) and (3.3).

Proof. Given κ > 0, according to Lemma 3.1 we can pick L > 0 and λ > 0 such that for each
(u0, v0) satisfying (1.8) one can find c1 > 0 such that if (u, v) denotes the maximally extended solution
of (2.1) with some φ and f fulfilling (1.3), (1.4), (2.2) and (2.3), then

∫ t+τ

t

∫

Ω

(

u(·, s)− u0

)2
ds ≤ LB2

φ,u0
+ c1e

−λt for all t ∈ (0, Tmax − τ). (3.10)

Now for any such solution, we test the second equation in (2.1) by −∆v to obtain

1

2

d

dt

∫

Ω
|∇v|2 +

∫

Ω
|∆v|2 +

∫

Ω
|∇v|2 = −

∫

Ω
f(u)∆v

= −

∫

Ω

(

f(u)− f(u)
)

∆v

≤
1

2

∫

Ω
|∆v|2 +

1

2

∫

Ω

(

f(u)− f(u)
)2

(3.11)
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for all t ∈ (0, Tmax), because
∫

Ω∆v =
∫

∂Ω
∂v
∂ν

= 0 for any such t. Here since |f ′| ≤ 1 on [0,∞) by (2.3),
by the mean value theorem the integrand in the rightmost term can be estimated according to

∣

∣

∣
f(u(x, t))− f(u(·, t))

∣

∣

∣
=

∣

∣

∣

∣

1

|Ω|

∫

Ω

{

f(u(x, t))− f(u(y, t))
}

dy

∣

∣

∣

∣

≤
1

|Ω|

∫

Ω

∣

∣

∣
u(x, t)− u(y, t)

∣

∣

∣
dy for all x ∈ Ω and t ∈ (0, Tmax),

so that thanks to the Cauchy-Schwarz inequality and the Minkowski inequality,

1

2

∫

Ω

(

f(u(x, t))− f(u(·, t))
)2
dx ≤

1

2|Ω|2

∫

Ω

{
∫

Ω

∣

∣

∣
u(x, t)− u(y, t)

∣

∣

∣
dy

}2

dx

≤
1

2|Ω|

∫

Ω

∫

Ω

(

u(x, t)− u(y, t)
)2
dydx

≤
1

|Ω|

∫

Ω

∫

Ω

{

(

u(x, t)− u0

)2
+
(

u0 − u(y, t)
)2

}

dydx

=

∫

Ω

(

u(x, t)− u0

)2
dx+

∫

Ω

(

u0 − u(y, t)
)2
dy

= 2

∫

Ω
(u− u0)

2 for all t ∈ (0, Tmax).

Now writing y(t) :=
∫

Ω |∇v(·, t)|2 for t ∈ [0, Tmax) and g(t) :=
∫

Ω |∆v(·, t)|2 as well as h(t) :=
4
∫

Ω(u(·, t) − u0)
2 for t ∈ (0, Tmax), we thus see that for any fixed µ ∈ (0, 2] such that µ < λ,

(3.11) implies that
y′(t) + µy(t) + g(t) ≤ h(t) for all t ∈ (0, Tmax). (3.12)

As g is nonnegative, Lemma 2.4 therefore applies to show that in view of (3.10) we have

y(t) ≤MB2
φ,u0

+ c2e
−µt for all t ∈ (0, Tmax)

with M := 4L
1−e−µτ and c2 :=

∫

Ω |∇v0|
2 + 4c1e(2λ−µ)τ

e(λ−µ)τ−1
, and thereupon an integration of (3.12), again

thanks to (3.10), yields
∫ t+τ

t

g(s)ds ≤ y(t) +

∫ t+τ

t

h(s)ds

≤ (4L+M)B2
φ,u0

+ c2e
−µt + 4c1e

−λt

≤ (4L+M)B2
φ,u0

+ (4c1 + c2)e
−µt for all t ∈ (0, Tmax − τ),

because µ < λ. �

Upon a straightforward interpolation, the two inequalities in Lemma 3.2 entail the following.

Lemma 3.3 Let κ > 0. Then there exist N = N(κ) > 0 and γ = γ(κ) > 0 such that whenever φ and
f satisfy (1.3), (1.4), (2.2) and (2.3) with some kφ ≥ κ and Kφ ≥ kφ, for all (u0, v0) fulfilling (1.8)
one can fix C > 0 such that for the solution of (2.1) we have

∫ t+τ

t

∫

Ω
|∇v|

2(n+2)
n ≤ NB

2(n+2)
n

φ,u0
+ Ce−γt for all t ∈ (0, Tmax) (3.13)

with τ and B as given by (3.2) and (3.3).
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Proof. From Lemma 3.2 we know that for each κ > 0 we can choose positive constants M and µ
such that under the above conditions on φ and f , whenever (u0, v0) is such that (1.8) holds one can
find c1 > 0 fulfilling

∫

Ω
|∇v(·, t)|2 ≤MB2

φ,u0
+ c1e

−µt for all t ∈ (0, Tmax) (3.14)

and
∫ t+τ

t

∫

Ω
|∆v|2 ≤MB2

φ,u0
+ c1e

−µt for all t ∈ (0, Tmax − τ). (3.15)

As the Gagliardo-Nirenberg inequality along with standard elliptic regularity theory provides c2 > 0
such that

‖∇ψ‖
2(n+2)

n

L
2(n+2)

n (Ω)
≤ c2‖∆ψ‖

2
L2(Ω)‖∇ψ‖

4
n

L2(Ω)
for all ψ ∈W 2,2(Ω) with ∂ψ

∂ν
= 0 on ∂Ω,

combining (3.14) with (3.15) shows that
∫ t+τ

t

‖∇v(·, s)‖
2(n+2)

n

L
2(n+2)

n (Ω)
ds ≤ c2

(

MB2
φ,u0

+ c1e
−µt

)
n+2
n

for all t ∈ (0, Tmax − τ).

Since (a + b)
n+2
n ≤ 2

2
n (a

n+2
n + b

n+2
n ) for all a ≥ 0 and b ≥ 0, this readily implies (3.13) with N :=

2
2
n c2M

n+2
n , γ := n+2

n
µ and C := 2

2
n c

n+2
n

1 c2, for instance. �

4 The two-dimensional case

In this section we directly address the problem (1.2) in the two-dimensional case, thus specifying
f(s) := s for s ≥ 0 in (2.1). In this framework, namely, the integrability exponent in Lemma 3.3 is
large enough so as to allow for appropriately estimating the cross-diffusive contributions arising in an
ODE describing the time evolution of the logarithmic entropy

∫

Ω u lnu.

Lemma 4.1 Let n = 2, suppose that φ satisfies (1.3), (1.4) and (1.5) with some kφ > 0,Kφ > 0 and
Kφ′ > 0, and that (1.8) holds. Then there exists C > 0 such that the solution of (1.2), (1.6), (1.7)
satisfies

∫

Ω
u(·, t) lnu(·, t) ≤ C for all t ∈ (0, Tmax). (4.1)

Proof. Since u is positive in Ω̄ × (0, Tmax) according to the strong maximum principle, we may
test the first equation in (1.2) by lnu and use (2.5) and Young’s inequality to see that

d

dt

∫

Ω
u lnu = −

∫

Ω

1

u
∇u · ∇(uφ(v))

= −

∫

Ω
φ(v)

|∇u|2

u
−

∫

Ω
φ′(v)∇u · ∇v

≤ −
1

2

∫

Ω
φ(v)

|∇u|2

u
+

1

2

∫

Ω

φ′2(v)

φ(v)
u|∇v|2

≤ −
1

2

∫

Ω
φ(v)

|∇u|2

u
+

∫

Ω
u2 +

1

16

∫

Ω

φ′4(v)

φ2(v)
|∇v|4 for all t ∈ (0, Tmax), (4.2)
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where (1.4) and (1.5) imply that

1

2

∫

Ω
φ(v)

|∇u|2

u
≥ c1

∫

Ω

|∇u|2

u
for all t ∈ (0, Tmax)

and

1

16

∫

Ω

φ′4(v)

φ2(v)
|∇v|4 ≤ c2

∫

Ω
|∇v|4 for all t ∈ (0, Tmax)

with c1 :=
kφ
2 and c2 :=

K4
φ′

16k2
φ

. Now since by an interpolation argument it can easily be seen that there

exists c3 > 0 such that

∫

Ω
u lnu ≤ c1

∫

Ω

|∇u|2

u
+ c3 for all t ∈ (0, Tmax),

from (4.2) we infer that y(t) :=
∫

Ω u(·, t) lnu(·, t), t ∈ [0, Tmax), and h(t) :=
∫

Ω u
2(·, t)+c2

∫

Ω |∇v(·, t)|4+
c3, t ∈ (0, Tmax), satisfy

y′(t) + y(t) ≤ h(t) for all t ∈ (0, Tmax).

As Lemma 3.1 and Lemma 3.3 along with (2.5) entail the existence of c4 > 0 such that with τ =
min{1, 12Tmax} we have

∫ t+τ

t

h(s)ds ≤ c4 for all t ∈ (0, Tmax − τ)

with c4 := LB2
φ,u0

+ c2NB
4
φ,u0

+ u20|Ω|τ + c3τ + C(1 + c2), where Bφ,u0 , L,N and C are constants of
Lammata 3.1 and 3.2, Lemma 2.4 thus warrants that

y(t) ≤
c4

1− e−τ
+ y(0)e−t for all t ∈ (0, Tmax)

and thereby clearly entails (4.1). �

Similar to corresponding situations in the minimal two-dimensional Keller-Segel system ([22], [1]),
through a variant of the Gagliardo-Nirenberg inequality due to [3] the above slight improvement of
the L1 information from (2.5) is sufficient to ensure higher regularity estimates.

Lemma 4.2 Let n = 2, suppose that φ satisfies (1.3), (1.4) and (1.5) with some kφ > 0,Kφ > 0 and
Kφ′ > 0, and that (1.8) holds. Then for all p > 1 one can find C(p) > 0 such that the solution of
(1.2), (1.6), (1.7) has the properties that

∫

Ω
up(·, t) ≤ C(p) for all t ∈ (0, Tmax) (4.3)

and
∫

Ω
|∇v(·, t)|2p ≤ C(p) for all t ∈ (0, Tmax). (4.4)
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Proof. We first apply Lemma 2.3 to see that with c1 := min{
2(p−1)kφ

p
,
4(p−1)
p

} and c2 :=

max{
p(p−1)K2

φ′

2kφ
, 4p(p− 1)2 + 2p} we have

d

dt

{
∫

Ω
up +

∫

Ω
|∇v|2p

}

+

{
∫

Ω
up +

∫

Ω
|∇v|2p

}

+c1

∫

Ω
|∇u

p

2 |2 + c1

∫

Ω

∣

∣

∣
∇|∇v|p

∣

∣

∣

2

≤ c2

∫

Ω
up|∇v|2 + c2

∫

Ω
u2|∇v|2p−2 +

∫

Ω
up for all t ∈ (0, Tmax), (4.5)

because 2p ≥ 1. In order to prepare an adequate estimation of the three rightmost summands herein,
we invoke the Gagliardo-Nirenberg inequality (see [32] for a version suitable in the present case in-
volving small summability powers) to find c3 > 0 such that

‖ψ‖
2(p+1)

p

L
2(p+1)

p (Ω)

≤ c3‖∇ψ‖
2
L2(Ω)‖ψ‖

2
p

L
2
p (Ω)

+ c3‖ψ‖
2(p+1)

p

L
2
p (Ω)

for all ψ ∈W 1,2(Ω), (4.6)

and recall Lemma 3.2 to fix c4 > 0 fulfilling

∫

Ω
|∇v|2 ≤ c4 for all t ∈ (0, Tmax). (4.7)

Then employing Young’s inequality, we see that setting η1 :=
c1
c3c4

we can choose c5 > 0 such that for
all t ∈ (0, Tmax),

c2

∫

Ω
up|∇v|2 + c2

∫

Ω
u2|∇v|2p−2 +

∫

Ω
up ≤

{

η1

2

∫

Ω
|∇v|2p+2 + c5

∫

Ω
up+1

}

+

{

η1

2

∫

Ω
|∇v|2p+2 + c5

∫

Ω
up+1

}

+

{

c5

∫

Ω
up+1 + 1

}

= η1

∫

Ω
|∇v|2p+2 + 3c5

∫

Ω
up+1 + 1. (4.8)

Next, since ξ ln ξ ≥ −1
e
for all ξ > 0, from Lemma 4.1 we obtain c6 > 0 satisfying

∫

Ω
|u lnu| ≤ c6 for all t ∈ (0, Tmax), (4.9)

and from an extended Gagliardo-Nirenberg inequality generalizing an observation originally made in
[3] (see [29, Lemma A.5]) we infer that writing η2 :=

2c1
3pc5c6

we can find c7 > 0 with the property that

‖ψ‖
2(p+1)

p

L
2(p+1)

p (Ω)

≤ η2‖∇ψ‖
2
L2(Ω)

∥

∥

∥
ψ| lnψ|

p

2

∥

∥

∥

2
p

L
2
p (Ω)

+ c7‖ψ‖
2(p+1)

p

L
2
p (Ω)

+ c7 for all nonnegative ψ ∈W 1,2(Ω).

(4.10)
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Now thanks to (4.6), (4.7) and our definition of η1, on the right-hand side of (4.8) we can estimate

η1

∫

Ω
|∇v|2p+2 = η1

∥

∥

∥
|∇v|p

∥

∥

∥

2(p+1)
p

L
2(p+1)

p (Ω)

≤ c3η1

∥

∥

∥
∇|∇v|p

∥

∥

∥

2

L2(Ω)

∥

∥

∥
|∇v|p

∥

∥

∥

2
p

L
2
p (Ω)

+ c3η1

∥

∥

∥
|∇v|p

∥

∥

∥

2(p+1)
p

L
2
p (Ω)

≤ c3c4η1

∥

∥

∥
∇|∇v|p

∥

∥

∥

2

L2(Ω)
+ c3c

p+1
4 η1

= c1

∫

Ω

∣

∣

∣
∇|∇v|p

∣

∣

∣

2
+ c3c

p+1
4 η1 for all t ∈ (0, Tmax), (4.11)

whereas combining (4.10) with (4.9) and (2.5) we see that by definition of η2 we have

3c5

∫

Ω
up+1 = 3c5‖u

p

2 ‖
2(p+1)

p

L
2(p+1)

p (Ω)

≤ 3c5η2‖∇u
p

2 ‖2L2(Ω)

∥

∥

∥
u

p

2 | lnu
p

2 |
p

2

∥

∥

∥

2
p

L
2
p (Ω)

+ 3c5c7‖u
p

2 ‖
2(p+1)

p

L
2
p (Ω)

+ 3c5c7

=
3pc5η2

2
‖∇u

p

2 ‖2L2(Ω) ·

∫

Ω
u| lnu|+ 3c5c7 ·

(

∫

Ω
u0

)p+1
+ 3c5c7

≤
3pc5c6η2

2
‖∇u

p

2 ‖2L2(Ω) + 3c5c7 ·
(

∫

Ω
u0

)p+1
+ 3c5c7

= c1

∫

Ω
|∇u

p

2 |2 + 3c5c7 ·
(

∫

Ω
u0

)p+1
+ 3c5c7 for all t ∈ (0, Tmax).

Along with (4.11) and (4.8) this shows that (4.5) implies the existence of c8 > 0 such that

d

dt

{
∫

Ω
up +

∫

Ω
|∇v|2p

}

+

{
∫

Ω
up +

∫

Ω
|∇v|2p

}

≤ c8 for all t ∈ (0, Tmax),

from which both (4.3) and (4.4) result upon an ODE comparison. �

A Moser-type iteration results in the following.

Lemma 4.3 Assume that n = 2, that φ satisfies (1.3), (1.4) and (1.5) with some kφ > 0,Kφ > 0 and
Kφ′ > 0, and that (1.8) holds. Then there exists C > 0 such that for the solution of (1.2), (1.6), (1.7)
we have

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax).

Proof. In view of Lemma 4.2, this can be seen by means of a Moser-type iteration (cf. [28, Lemma
A.1] for a corresponding result precisely covering the present situation). �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Since as a consequence of (2.6) we know that
∫

Ω
v ≤ max

{

∫

Ω
u0 ,

∫

Ω
v0

}

for all t ∈ (0, Tmax),
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fixing any q > 2 we conclude from Lemma 4.2 and Lemma 4.3 that

‖u(·, t)‖L∞(Ω) + ‖∇v(·, t)‖Lq(Ω) ≤ c1 for all t ∈ (0, Tmax) (4.12)

with some c1 > 0. Thanks to the extensibility criterion (2.4) in Lemma 2.1, this firstly ensures that
(u, v) is global in time, whereupon the observation that W 1,q(Ω) →֒ L∞(Ω) shows that (4.12) also
entails (1.9). �

5 Global weak solutions in the case n ≥ 3

In higher-dimensional domains, throughout this section assuming that φ satisfies (1.3), (1.4) and (1.5)
and that (u0, v0) comply with (1.8), we shall seek for solutions in the following generalized framework.

Definition 5.1 Let φ ∈W 1,∞((0,∞)) be nonnegative. Then by a global weak solution of (1.2), (1.6),
(1.7) we mean a pair of nonnegative functions

{

u ∈ L1
loc([0,∞);W 1,1(Ω)) and

v ∈ L1
loc([0,∞);W 1,1(Ω))

(5.1)

which are such that
u∇v belongs to L1

loc(Ω̄× [0,∞)), (5.2)

and which satisfy

∫ ∞

0

∫

Ω
uϕt +

∫

Ω
u0ϕ(·, 0) =

∫ ∞

0

∫

Ω
φ(v)∇u · ∇ϕ+

∫ ∞

0

∫

Ω
φ′(v)u∇v · ∇ϕ (5.3)

as well as
∫ ∞

0

∫

Ω
vϕt +

∫

Ω
v0ϕ(·, 0) =

∫ ∞

0

∫

Ω
∇v · ∇ϕ+

∫ ∞

0

∫

Ω
vϕ−

∫ ∞

0

∫

Ω
uϕ (5.4)

for all ϕ ∈ C∞
0 (Ω̄× [0,∞)).

In order to construct such a weak solution through an approximation procedure, let us consider the
regularized problems



















uεt = ∆(uεφ(vε)), x ∈ Ω, t > 0,

vεt = ∆vε − vε + fε(uε), x ∈ Ω, t > 0,
∂uε
∂ν

= ∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(5.5)

for ε ∈ (0, 1), where

fε(s) :=
s

1 + εs
, s ≥ 0, (5.6)

clearly satisfies (2.2) and (2.3) for any such ε.

Indeed, all these regularized problems are globally solvable in classical sense:
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Lemma 5.1 For each ε ∈ (0, 1), the problem (5.5) possesses a global classical solution (uε, vε).

Proof. We only need to prove that for each fixed ε ∈ (0, 1) the corresponding maximal existence
time from Lemma 2.1 satisfies Tmax = ∞. To this end, combining the observation that

|fε(uε)| ≤
1

ε
in Ω× (0, Tmax)

with well-known smoothing properties of the Neumann heat semigroup (see e.g. [10, Lemma 4.1])
yields the existence of a constant c1 = c1(ε) > 0 such that

‖vε‖W 1,∞(Ω) ≤ c1 for all t ∈ (0, Tmax). (5.7)

Therefore, in the identity uεt = ∇ · (φ(vε)∇uε) +∇ · (uεφ
′(vε)∇vε), besides

kφ ≤ φ(vε(x, t)) ≤ Kφ for all x ∈ Ω and t ∈ (0, Tmax)

we have

‖φ′(vε(·, t))∇vε(·, t)‖L∞(Ω) ≤ c1Kφ′ for all t ∈ (0, Tmax).

Thus, by means a Moser-type iteration (cf. [29, Lemma 3.12]) applied to the first equation in (5.5) we
obtain c2 = c2(ε) > 0 such that

‖uε(·, t)‖L∞(Ω) ≤ c2(ε) for all t ∈ (0, Tmax),

which in conjunction with (5.7) and Lemma 2.1 warrants that indeed Tmax = ∞. �

Now in view of the fact that Definition 5.1 involves the spatial gradient of u not addressed so far,
our net goal consists in deriving appropriate a priori information for the corresponding approximates.
This will be achieved through a further testing procedure involving non-convex functionals of the first
solution component.

Lemma 5.2 For all T > 0 one can find C(T ) > 0 with the property that for each ε ∈ (0, 1), the
solution of (5.5) satisfies

∫ T

0

∫

Ω
u
− 2n

n+2
ε |∇uε|

2 ≤ C(T ). (5.8)

Proof. As uε is positive throughout Ω̄ × (0,∞), we may use u
−n−2

n+2
ε as a test function in (5.5) to

see, again thanks to (1.4), (1.5) and Young’s inequality, that

n+ 2

4

d

dt

∫

Ω
u

4
n+2
ε =

∫

Ω
∇u

−n−2
n+2

ε · ∇(uεφ(vε))

=
n− 2

n+ 2

∫

Ω
φ(vε)u

− 2n
n+2

ε |∇uε|
2 +

n− 2

n+ 2

∫

Ω
φ′(vε)u

−n−2
n+2

ε ∇uε · ∇vε

≥ c1

∫

Ω
u
− 2n

n+2
ε |∇uε|

2 − c2

∫

Ω
u

4
n+2
ε |∇vε|

2 for all t > 0 (5.9)
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with c1 :=
(n−2)kφ
2(n+2) > 0 and c2 :=

(n−2)K2
φ′

2(n+2)kφ
> 0. Here once more by Young’s inequality,

∫

Ω
u

4
n+2
ε |∇vε|

2 ≤

∫

Ω
u2ε +

∫

Ω
|∇vε|

2(n+2)
n for all t > 0,

so that an integration of (5.9) in time yields

c1

∫ T

0

∫

Ω
u
− 2n

n+2
ε |∇uε|

2 +
n+ 2

4

∫

Ω
u

4
n+2

0

≤
n+ 2

4

∫

Ω
u

4
n+2
ε (·, T ) + c2

∫ T

0

∫

Ω
u2ε + c2

∫ T

0

∫

Ω
|∇vε|

2(n+2)
n for all T > 0. (5.10)

Since
∫

Ω
u

4
n+2
ε (·, T ) ≤ |Ω|

n−2
n+2

(

∫

Ω
uε(·, T )

)
4

n+2
= |Ω|

n−2
n+2

(

∫

Ω
u0

)
4

n+2
for all T > 0

due to (2.5), invoking Lemma 3.1 and Lemma 3.3 we readily see that (5.10) implies (5.8). �

By interpolation between the latter and the estimate from Lemma 3.1, we immediately obtain the
following inequality which no longer involves weight functions.

Corollary 5.3 For each T > 0 one can find C(T ) > 0 such that

∫ T

0

∫

Ω
|∇uε|

n+2
n+1 ≤ C(T ) (5.11)

for all ε ∈ (0, 1).

Proof. By Young’s inequality,

∫ T

0

∫

Ω
|∇uε|

n+2
n+1 =

∫ T

0

∫

Ω

{

u
− 2n

n+2
ε |∇uε|

2
}

n+2)
2(n+1)

· u
n

n+1
ε

≤

∫ T

0

∫

Ω
u
− 2n

n+2
ε |∇uε|

2 +

∫ T

0

∫

Ω
u2ε for all T > 0,

and hence (5.11) results from a combination of Lemma 5.2 with Lemma 3.1. �

To prepare the derivation of some strong compactness properties of (uε)ε∈(0,1) by means of the Aubin-
Lions lemma, we once more use Lemma 3.1 to obtain the following regularity property with respect
to the time variable.

Lemma 5.4 Given any T > 0, one can find C(T ) > 0 fulfilling

∫ T

0
‖uεt(·, t)‖

2
(W 2,2

0 (Ω))⋆
dt ≤ C(T ) (5.12)

for all ε ∈ (0, 1).
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Proof. Multiplying the first equation in (5.5) by an arbitrary ψ ∈ C∞
0 (Ω), on two integrations by

parts we see that thanks to (1.4) we have

∣

∣

∣

∣

∫

Ω
uεt(·, t)ψ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
uε(·, t)φ(vε(·, t))∆ψ

∣

∣

∣

∣

≤ Kφ‖uε(·, t)‖L2(Ω)‖∆ψ‖L2(Ω) for all t > 0

and hence

‖uεt(·, t)‖(W 2,2
0 (Ω))⋆

≤ Kφ‖uε(·, t)‖L2(Ω) for all t > 0.

Therefore,

∫ T

0
‖uεt(·, t)‖

2
(W 2,2

0 (Ω))⋆
dt ≤ K2

φ

∫ T

0

∫

Ω
u2ε for all T > 0,

and thus an application of Lemma 3.1 proves (5.12). �

Now a straightforward extraction procedure on the basis of the estimates gained above leads to our
main result on global weak solvability in the higher-dimensional case.

Proof of Theorem 1.2. From Lemma 3.1 and Lemma 3.2 we know that there exists c1 > 0 such
that for all ε ∈ (0, 1), the solution of (5.5) satisfies

∫ t+1

t

∫

Ω
u2ε ≤ c1 and

∫

Ω
|∇vε(·, t)|

2 ≤ c1 as well as

∫ t+1

t

∫

Ω
|∆vε|

2 ≤ c1 for all t > 0. (5.13)

Recalling (2.6), we see that this in particular ensures that

(uε)ε∈(0,1) is bounded in L2
loc([0,∞);L2(Ω)) (5.14)

and that
(vε)ε∈(0,1) is bounded in L∞((0,∞);W 1,2(Ω)) ∩ L2

loc([0,∞);W 2,2(Ω)), (5.15)

where in view of the second equation in (5.5) and (5.6), the latter immediately implies that also

(vεt)ε∈(0,1) is bounded in L2
loc([0,∞);L2(Ω)). (5.16)

Since Corollary 5.3 and Lemma 5.4 furthermore assert that

(uε)ε∈(0,1) is bounded in L
n+2
n+1

loc ([0,∞);W 1,n+2
n+1 (Ω)) (5.17)

and that
(uεt)ε∈(0,1) is bounded in L2

loc([0,∞); (W 2,2
0 (Ω))⋆), (5.18)

by means of a straightforward extraction procedure involving the Aubin-Lions lemma ([31, Ch. III,
Theorem 2.3]) we infer the existence of a sequence (εk)k∈N ⊂ (0, 1) such that εk ց 0 as k → ∞, that

uε → u, vε → v and ∇vε → ∇v a.e. in Ω× (0,∞) (5.19)

21



as ε = εk ց 0, and such that for all T > 0 we have

uε ⇀ u in L2(Ω× (0, T )) (5.20)

and
∇uε ⇀ ∇u in L

n+2
n+1 (Ω× (0, T )) (5.21)

as well as
vε → v in L1(Ω× (0, T )) (5.22)

and
∇vε → ∇v in L2(Ω× (0, T )) (5.23)

as ε = εk ց 0 with some nonnegative limit functions u and v which satisfy both (5.1) and (5.2) as
well as (1.10) and (1.11) due to (5.13) and (5.17).
Now for each T > 0 we can use (1.5) to estimate

∥

∥

∥
φ′(vε)∇vε − φ′(v)∇v

∥

∥

∥

L2(Ω×(0,T ))
≤

∥

∥

∥
φ′(vε)(∇vε −∇v)

∥

∥

∥

L2(Ω×(0,T ))
+
∥

∥

∥
(φ′(vε)− φ′(v))∇v

∥

∥

∥

L2(Ω×(0,T ))

≤ Kφ′‖∇vε −∇v‖L2(Ω×(0,T )) +
∥

∥

∥
(φ′(vε)− φ′(v))∇v

∥

∥

∥

L2(Ω×(0,T ))
,(5.24)

where due to (5.19) and the continuity of φ′ we have φ′(vε) → φ′(v) a.e. in Ω× (0, T ) and hence, by
the dominated convergence theorem,

∥

∥

∥
(φ′(vε)− φ′(v))∇v

∥

∥

∥

2

L2(Ω×(0,T ))
=

∫ T

0

∫

Ω
|φ′(vε)− φ′(v)|2|∇v|2 → 0 as ε = εk ց 0,

because φ′ is bounded and |∇v|2 belongs to L2(Ω× (0, T )). Consequently, from (5.24) and (5.23) we
infer that

φ′(vε)∇vε → φ′(v)∇v in L2(Ω× (0, T )) (5.25)

as ε = εk ց 0.
Furthermore, upon another application of Lebesgue’s theorem we obtain from (5.19) that

φ(vε) → φ(v) in Ln+2(Ω× (0, T )) (5.26)

as ε = εk ց 0, for φ is bounded and continuous on [0,∞).
Now in order to verify that (u, v) indeed satisfies the identities (5.3) and (5.4), given ϕ ∈ C∞

0 (Ω̄×[0,∞))
we use (5.5) to see that

∫ ∞

0

∫

Ω
uεϕt +

∫

Ω
u0ϕ(·, 0) =

∫ ∞

0

∫

Ω
φ(vε)∇uε · ∇ϕ+

∫ ∞

0

∫

Ω
uεφ

′(vε)∇vε · ∇ϕ (5.27)

for all ε ∈ (0, 1). Here choosing T > 0 large such that ϕ ≡ 0 in Ω × (T,∞), we conclude from (5.20)
that

∫ ∞

0

∫

Ω
uεϕt →

∫ ∞

0

∫

Ω
uϕt as ε = εk ց 0,
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whereas combining (5.21) with (5.26) warrants that

∫ ∞

0

∫

Ω
φ(vε)∇uε · ∇ϕ→

∫ ∞

0

∫

Ω
φ(v)∇u · ∇ϕ as ε = εk ց 0

and (5.20) in conjunction with (5.25) implies that

∫ ∞

0

∫

Ω
uεφ

′(vε)∇vε · ∇ϕ→

∫ ∞

0

∫

Ω
uφ′(v)∇v · ∇ϕ as ε = εk ց 0.

Therefore, (5.27) entails (5.3), and the derivation of (5.4) can be accomplished in quite a similar
manner, relying on (5.22) and (5.23) together with the observation that

uε

1 + εuε
⇀ u in L1(Ω× (0, T )) as ε = εk ց 0

by (5.20), because 1
1+εuε

→ 1 in L2(Ω×(0, T )) as ε = εk ց 0 by (5.19) and the dominated convergence
theorem. �

6 The three-dimensional case

6.1 Preservation of a smallness smallness property

The following observation on preservation of certain smallness properties, rooted in the existence of a
constant barrier for an associated time-dependent functional (cf. (6.15), will be essential to our proofs
of both Theorem 1.3 and Theorem 1.4.

Lemma 6.1 Let n = 3. Then for all κ > 0 there exist η(κ) > 0, σ(κ) > 0 and C(κ) > 0 with the
following property: If φ satisfies (1.3), (1.4) and (1.5) with some kφ ≥ κ,Kφ ≥ kφ and Kφ′ > 0, if f
and (u0, v0) fulfill (2.2), (2.3) and (1.8) as well as

Kφ′u0 ≤ η(κ), (6.1)

and if for some t0 ∈ [0, Tmax), for the solution of (2.1) we have

∫

Ω

(

u(·, t0)− u0

)2
+K2

φ′

∫

Ω
|∇v(·, t0)|

4 ≤
σ(κ)

K2
φ′
, (6.2)

then
∫

Ω

(

u(·, t)− u0

)2
≤
C(κ)

K2
φ′

and

∫

Ω
|∇v(·, t)|4 ≤

C(κ)

K4
φ′

for all t ∈ (t0, Tmax). (6.3)

Proof. We first let c1 = c1(κ) :=
1
κ
+ 14 and employ the Gagliardo-Nirenberg inequality and the

Poincaré inequality to find c2 > 0 and c3 > 0 such that

‖ψ‖3L3(Ω) ≤ c2‖ψ‖
3
2

W 1,2(Ω)
‖ψ‖

3
2

L2(Ω)
for all ψ ∈W 1,2(Ω) (6.4)
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and

‖ψ‖W 1,2(Ω) ≤ c3‖∇ψ‖L2(Ω) for all ψ ∈W 1,2(Ω) with

∫

Ω
ψ = 0. (6.5)

Then by Young’s inequality, there exist c4 = c4(κ) > 0 and c5 = c5(κ) > 0 fulfilling

2c1(κ)c2c
3
2
3 ab ≤

κ

2
a

4
3 + c4b

4 for all a ≥ 0 and b ≥ 0 (6.6)

and
4c1(κ)c2ab ≤ 2a

4
3 + c5b

4 for all a ≥ 0 and b ≥ 0. (6.7)

Abbreviating c6 = c6(κ) := min{2, κ
2c23

}, c7 = c7(κ) := c4(κ) + c5(κ) and c8 = c8(κ) := 2c1(κ)|Ω|, we

next take η = η(κ) > 0 small such that

η(κ) < 6

√

4c6(κ)3

27c7(κ)c28(κ)
(6.8)

and finally define

σ = σ(κ) :=

√

c6(κ)

3c7(κ)
. (6.9)

To see that then the claimed implication holds, we note that since by (2.5) we have

1

|Ω|

∫

Ω
u(·, t) = u0 =

1

|Ω|

∫

Ω
u0 for all t ∈ (0, Tmax) (6.10)

and hence

d

dt

∫

Ω
(u− u0)

2 =
d

dt

{
∫

Ω
u2 − 2u0

∫

Ω
u+ u20|Ω|

}

=
d

dt

∫

Ω
u2 for all t ∈ (0, Tmax),

Lemma 2.3 can be applied to a = K2
φ′ and p = 2 to show that in view of our choice of c1 and the

hypothesis kφ ≥ κ we have

d

dt

{
∫

Ω
(u− u0)

2 +K2
φ′

∫

Ω
|∇v|4

}

+ 4K2
φ′

∫

Ω
|∇v|4 + κ

∫

Ω
|∇u|2 + 2K2

φ′

∫

Ω

∣

∣

∣
∇|∇v|2

∣

∣

∣

2

≤
K2
φ′

κ

∫

Ω
u2|∇v|2 + 14K2

φ′

∫

Ω
u2|∇v|2

= c1K
2
φ′

∫

Ω
u2|∇v|2 for all t ∈ (0, Tmax). (6.11)

Here we use Young’s inequality to estimate

∫

Ω
u2|∇v|2 =

∫

Ω
(u− u0 + u0)

2|∇v|2 ≤ 2

∫

Ω
(u− u0)

2|∇v|2 + 2u20

∫

Ω
|∇v|2 for all t ∈ (0, Tmax)
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as well as

K2
φ′

∫

Ω
(u− u0)

2|∇v|2 =

∫

Ω

{

K
2
3
φ′(u− u0)

2
}

·
{

K
4
3
φ′ |∇v|

2
}

≤ Kφ′

∫

Ω
|u− u0|

3 +K4
φ′

∫

Ω
|∇v|6 for all t ∈ (0, Tmax)

and, similarly,

K2
φ′u

2
0

∫

Ω
|∇v|2 ≤ Kφ′u

3
0|Ω|+K4

φ′

∫

Ω
|∇v|6 for all t ∈ (0, Tmax),

from which by definition of c8 we infer that for all t ∈ (0, Tmax) we have

c1K
2
φ′

∫

Ω
u2|∇v|2 ≤ 2c1Kφ′

∫

Ω
|u− u0|

3 + 2c1K
4
φ′

∫

Ω
|∇v|6 + 2c1|Ω|Kφ′u

3
0 + 2c1K

4
φ′

∫

Ω
|∇v|6

= 2c1Kφ′

∫

Ω
|u− u0|

3 + 4c1K
4
φ′

∫

Ω
|∇v|6 + c8Kφ′u

3
0. (6.12)

Now by (6.4), (6.5), (6.10) and (6.6),

2c1Kφ′

∫

Ω
|u− u0|

3 ≤ 2c1c2Kφ′‖u− u0‖
3
2

W 1,2(Ω)
‖u− u0‖

3
2

L2(Ω)

≤ 2c1c2c
3
2
3Kφ′‖∇u‖

3
2

L2(Ω)
‖u− u0‖

3
2

L2(Ω)

≤
κ

2
‖∇u‖2L2(Ω) + c4K

4
φ′‖u− u0‖

6
L2(Ω)

=
κ

2

∫

Ω
|∇u|2 + c4K

4
φ′

{
∫

Ω
(u− u0)

2

}3

for all t ∈ (0, Tmax), (6.13)

whereas combining (6.4) with (6.7) shows that

4c1K
4
φ′

∫

Ω
|∇v|6 = 4c1K

4
φ′

∥

∥

∥
|∇v|2

∥

∥

∥

3

L3(Ω)

≤ 4c1c2K
4
φ′

∥

∥

∥
|∇v|2

∥

∥

∥

3
2

W 1,2(Ω)

∥

∥

∥
|∇v|2

∥

∥

∥

3
2

L2(Ω)

≤ 4c1c2

{

K
3
2
φ′

∥

∥

∥
|∇v|2

∥

∥

∥

3
2

W 1,2(Ω)

}

·

{

K
5
2
φ′

∥

∥

∥
|∇v|2

∥

∥

∥

3
2

L2(Ω)

}

≤ 2K2
φ′

∥

∥

∥
|∇v|2

∥

∥

∥

2

W 1,2(Ω)
+ c5K

10
φ′

∥

∥

∥
|∇v|2

∥

∥

∥

6

L2(Ω)

= 2K2
φ′

∫

Ω

∣

∣

∣
∇|∇v|2

∣

∣

∣

2
+ 2K2

φ′

∫

Ω
|∇v|4 + c5K

10
φ′

{
∫

Ω
|∇v|4

}3

for all t ∈ (0, Tmax).

Together with (6.12), (6.13) and (6.11), this entails that

d

dt

{
∫

Ω
(u− u0)

2 +K2
φ′

∫

Ω
|∇v|4

}

+ 2K2
φ′

∫

Ω
|∇v|4 +

κ

2

∫

Ω
|∇u|2

≤ c4K
4
φ′

{
∫

Ω
(u− u0)

2

}3

+ c5K
10
φ′

{
∫

Ω
|∇v|4

}3

+ c8Kφ′u
3
0 (6.14)
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for all t ∈ (0, Tmax). Since again (6.5) and (6.10) ensure that

κ

2

∫

Ω
|∇u|2 ≥

κ

2c23
‖u− u0‖

2
W 1,2(Ω) ≥

κ

2c23

∫

Ω
(u− u0)

2 for all t ∈ (0, Tmax),

and since writing

y(t) :=

∫

Ω

(

u(·, t)− u0

)2
+K2

φ′

∫

Ω
|∇v(·, t)|4, t ∈ [0, Tmax),

we clearly have

c4K
4
φ′

{
∫

Ω
(u− u0)

2

}3

+ c5K
10
φ′

{
∫

Ω
|∇v|4

}3

≤ c4K
4
φ′y

3(t) + c5K
4
φ′y

3(t) for all t ∈ (0, Tmax),

recalling the definitions of c6 and c7 we therefore conclude from (6.14) that

y′(t) + c6y(t) ≤ c7K
4
φ′y

3(t) + c8Kφ′u
3
0 for all t ∈ (0, Tmax), (6.15)

that is,
y′(t) ≤ g(y(t)) for all t ∈ (0, Tmax) (6.16)

with

g(s) := −c6s+ c7K
4
φ′s

3 + c8Kφ′u
3
0, s ≥ 0.

Here we note that g attains its minimum over [0,∞) at s0 :=
√

c6
3c7K4

φ′
= σ

K2
φ′
, with corresponding

minimal value

g(s0) = −c6

√

c6

3c7K4
φ′

+ c7K
4
φ′

√

c6

3c7K4
φ′

3

+ c8Kφ′u
3
0

= −

√

4c36
27c7K4

φ′
+ c8Kφ′u

3
0 (6.17)

being negative, for from (6.1) and (6.8) we know that

c8Kφ′u
3
0 ≤

c8

K2
φ′
η3 <

c8

K2
φ′

·

√

4c36
27c7c28

=

√

4c36
27c7K4

φ′
.

Therefore, since (6.2) asserts that

y(t0) ≤
σ

K2
φ′

= s0,

we may invoke an ODE comparison argument to conclude that (6.16) implies the inequality

y(t) ≤ s1 for all t ∈ [t0, Tmax),
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where s1 := min{s > s0 | g(s) = 0}. As with C :=
√

c6
c7

we obtain from the definition of g that

g
( C

K2
φ′

)

= −c6 ·
C

K2
φ′

+ c7K
4
φ′ ·

C3

K6
φ′

+ c8Kφ′u
3
0 = c8Kφ′u

3
0 ≥ 0,

and that hence s1 ≤
C
K2

φ′
, this directly yields (6.3). �

In the presently considered three-dimensional setting, controlling the norms appearing in Lemma 6.1
is sufficient for boundedness in any of the spaces Lp(Ω)×W 1,2p(Ω) with finite p > 1, which parallels a
corresponding property of the minimal Keller-Segel system in n-dimensional domains where the same
conclusion holds whenever for some ε > 0, solutions are known to fulfill bounds in L

n
2
+ε(Ω)×W 1,n+ε(Ω)

(or merely the norm of the first solution component in L
n
2
+ε(Ω), cf. [1]).

Lemma 6.2 Let n = 3, and suppose that (u0, v0), f and φ satisfy (1.8), (2.2) and (2.3) as well as
(1.3), (1.4) and (1.5) with some kφ > 0,Kφ ≥ kφ and Kφ′ > 0. Then for all p > 2 and each Σ > 0
there exists C(p,Σ) > 0 with the property that if for some t0 ∈ [0, Tmax) the solution of (2.1) has the
property that

∫

Ω
u2(·, t) +

∫

Ω
|∇v(·, t)|4 ≤ Σ for all t ∈ ((t0 − 1)+, Tmax), (6.18)

then
∫

Ω
up(·, t) +

∫

Ω
|∇v(·, t)|2p ≤ C(p,Σ) for all t ∈ [t0, Tmax). (6.19)

Proof. From Lemma 2.3 we obtain c1 > 0 and c2 > 0, as all constants c3, c4, ... below possibly
depending on p and Σ, such that

y(t) :=

∫

Ω
up(·, t) +

∫

Ω
|∇v(·, t)|2p, t ∈ [0, Tmax),

satisfies

y′(t) + c1

∫

Ω
|∇u

p

2 |2 + c1

∫

Ω

∣

∣

∣
∇|∇v|p

∣

∣

∣

2
≤ c2

∫

Ω
up|∇v|2 + c2

∫

Ω
u2|∇v|2p−2 for all t ∈ (0, Tmax), (6.20)

where by Young’s inequality,

c2

∫

Ω
up|∇v|2 + c2

∫

Ω
u2|∇v|2p−2 ≤ 2c2

∫

Ω
up+1 + 2c2

∫

Ω
|∇v|2p+2 for all t ∈ (0, Tmax). (6.21)

Here we invoke the Gagliardo-Nirenberg inequality to obtain c3 > 0 such that

2c2

∫

Ω
up+1 = 2c2‖u

p

2 ‖
2(p+1)

p

L
2(p+1)

p (Ω)

≤ c3‖∇u
p

2 ‖
6p−6
3p−2

L2(Ω)
‖u

p

2 ‖
8p−4

p(3p−2)

L
4
p (Ω)

+ c3‖u
p

2 ‖
2(p+1)

p

L
4
p (Ω)

for all t ∈ (0, Tmax),

so that since ‖u
p

2 ‖
4
p

L
4
p (Ω)

=
∫

Ω u
2 ≤ Σ for all t ≥ (t0− 1)+ by (6.18), and since 3p−3

3p−2 < 1, we may apply

Young’s inequality to see that with some c4 > 0 we have

2c2

∫

Ω
up+1 ≤

c1

2

∫

Ω
|∇u

p

2 |2 + c4 for all t ∈ [(t0 − 1)+, Tmax). (6.22)
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In quite a similar manner, using that
∥

∥

∥
|∇v|p

∥

∥

∥

4
p

L
4
p (Ω)

=
∫

Ω |∇v|4 ≤ Σ for all t ∈ [(t0 − 1)+, Tmax) by

(6.18), we can find c5 > 0 and c6 > 0 such that

2c2

∫

Ω
|∇v|2p+2 = 2c2

∥

∥

∥
|∇v|p

∥

∥

∥

2(p+1)
p

L
2(p+1)

p (Ω)

≤ c5

∥

∥

∥
∇|∇v|p

∥

∥

∥

6p−6
3p−2

L2(Ω)

∥

∥

∥
|∇v|p

∥

∥

∥

8p−4
p(3p−2)

L
4
p (Ω)

+ c5

∥

∥

∥
|∇v|p

∥

∥

∥

2(p+1)
p

L
4
p (Ω)

≤
c1

2

∫

Ω

∣

∣

∣
∇|∇v|p

∣

∣

∣

2
+ c6 for all t ∈ [(t0 − 1)+, Tmax). (6.23)

In order to introduce a superlinear absorptive term in (6.20), we let α := 3p−2
3p−6 > 1 and first observe

that

yα(t) ≤ 2α−1

{
∫

Ω
up

}α

+ 2α−1

{
∫

Ω
|∇v|2p

}α

for all t ∈ [0, Tmax), (6.24)

where two more applications of the Gagliardo-Nirenberg inequality along with (6.18) provide positive
constants c7, c8, c9 and c10 fulfilling

2α−1

{
∫

Ω
up

}α

= 2α−1‖u
p

2 ‖2αL2(Ω)

≤ c7‖∇u
p

2 ‖2L2(Ω)‖u
p

2 ‖
8

3p−6

L
4
p (Ω)

+ c7‖u
p

2 ‖
6p−4
3p−6

L
4
p (Ω)

≤ c8

∫

Ω
|∇u

p

2 |2 + c8 for all t ∈ [(t0 − 1)+, Tmax)

as well as

2α−1

{
∫

Ω
|∇v|2p

}

= 2α−1
∥

∥

∥
|∇v|p

∥

∥

∥

2α

L2(Ω)

≤ c9

∥

∥

∥
∇|∇v|p

∥

∥

∥

2

L2(Ω)

∥

∥

∥
|∇v|p

∥

∥

∥

8
3p−6

L
4
p (Ω)

+ c9

∥

∥

∥
|∇v|p

∥

∥

∥

6p−4
3p−6

L
4
p (Ω)

≤ c10

∫

Ω

∣

∣

∣
∇|∇v|p

∣

∣

∣

2
+ c10 for all t ∈ [(t0 − 1)+, Tmax).

Writing c11 := c8 + c10, from (6.24) we thus infer that

yα(t) ≤ c11

∫

Ω
|∇u

p

2 |2 + c11

∫

Ω

∣

∣

∣
∇|∇v|p

∣

∣

∣

2
+ c11 for all t ∈ [(t0 − 1)+, Tmax),

so that collecting (6.20), (6.21), (6.22) and (6.23) shows that

y′(t) + c12y
α(t) ≤ c13 for all t ∈ [(t0 − 1)+, Tmax) (6.25)

with c12 :=
c1
2c11

and c13 := c4 + c6 +
c1
2 .

Now in the case t0 ≤ 1 when the inequality in (6.25) holds for all t ∈ [0, Tmax), we may use a simple
comparison argument to see that

y(t) ≤ max

{

y(0) ,
(c13

c12

)
1
α

}

for all t ∈ [0, Tmax)
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and hence in particular

∫

Ω
up(·, t) +

∫

Ω
|∇v(·, t)|2p ≤ max

{
∫

Ω
u
p
0 +

∫

Ω
|∇v0|

2p ,
(c13

c12

)
1
α

}

for all t ∈ [t0, Tmax). (6.26)

If t0 > 1, however, we infer from Lemma 2.5 that with c14 := max
{(

2
(α−1)c12

)
1

α−1
,
(

2c13
c12

)
1
α
}

we have

y(t) ≤ c14 ·
(

t− (t0 − 1)
)− 1

α−1
+ c14 for all t ∈ (t0 − 1, Tmax),

implying that in this case,

∫

Ω
up(·, t) +

∫

Ω
|∇v(·, t)|2p ≤ 2c14 for all t ∈ [t0, Tmax).

Together with (6.26), this establishes (6.19). �

6.2 Small-data classical solutions. Proof of Theorem 1.3

Combining Lemma 6.1 with Lemma 6.2 and another Moser-type boundedness argument now readily
yields the following.

Lemma 6.3 Let n = 3. Then for all κ > 0 and K > 0 there exists δ = δ(κ,K) > 0 such that if φ
fulfills (1.3), (1.4) and (1.5) with some kφ > 0,Kφ ≥ kφ and Kφ′ ∈ (0,K], and if (u0, v0) is such that
(1.8) holds as well as

∫

Ω
u20 +

∫

Ω
|∇v0|

4 ≤ δ, (6.27)

then there exists C > 0 such that the solution of (1.2), (1.6), (1.7) satisfies

‖u(·, t)‖L∞(Ω) + ‖∇v(·, t)‖L4(Ω) ≤ C for all t ∈ (0, Tmax). (6.28)

Proof. Given κ > 0 and K > 0, we fix η = η(κ) > 0 and σ = σ(κ) > 0 as provided by Lemma 6.1
and let δ = δ(κ,K) > 0 be small enough such that both

δ ≤
|Ω|η2

K2
(6.29)

and
δ ≤

σ

(1 +K2)K2
(6.30)

hold. Then assuming (u0, v0) to comply with the above hypotheses, using that
(

∫

Ω u0

)2
≤ |Ω|

∫

Ω u
2
0

by the Cauchy-Schwarz inequality we infer from (6.27) that thanks to (6.29) we have

Kφ′u0 ≤ K|Ω|−
1
2

{
∫

Ω
u20

}
1
2

≤ K|Ω|−
1
2 δ

1
2 ≤ η.
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Since
∫

Ω
(u0 − u0)

2 =

∫

Ω
u20 − |Ω|u20 ≤

∫

Ω
u20,

it moreover follows from (6.27) when combined with (6.30) that
∫

Ω
(u0 − u0)

2 +K2
φ′

∫

Ω
|∇v0|

4 ≤

∫

Ω
u20 +K2

∫

Ω
|∇v0|

4 ≤ δ +K2δ ≤
σ

K2
≤

σ

K2
φ′
,

whence we may employ Lemma 6.1 with the choice f(s) := s, s ≥ 0 to see that there exists c1 > 0
such that

∫

Ω

(

u(·, t)− u0

)2
+

∫

Ω
|∇v(·, t)|4 ≤ c1 for all t ∈ (0, Tmax).

As
∫

Ω
u2(·, t) =

∫

Ω

(

u(·, t)− u0

)2
+ |Ω|u20 for all t ∈ (0, Tmax),

this implies that
∫

Ω
u2(·, t) +

∫

Ω
|∇v(·, t)|4 ≤ c1 + |Ω|u20 for all t ∈ (0, Tmax), (6.31)

whereupon Lemma 6.2, applied to t0 := 0 and arbitrary p > 15
2 , yields c2 > 0 fulfilling

∫

Ω
up(·, t) +

∫

Ω
|∇v(·, t)|2p ≤ c2 for all t ∈ (0, Tmax).

In consequence, F (x, t) := u(x, t)φ′(v(x, t))∇v(x, t), (x, t) ∈ Ω× (0, Tmax), has the property that
∫

Ω
|F (·, t)|

2p
3 ≤ K

2p
3
φ′

∫

Ω
u

2p
3 (·, t)|∇v(·, t)|

2p
3

≤ K
2p
3
φ′

{
∫

Ω
up(·, t)

}
2
3
{
∫

Ω
|∇v(·, t)|2p

}
1
3

≤ K
2p
3
φ′ · c2 for all t ∈ (0, Tmax).

As 2p
3 > 5, according to Lemma A.1 in [28] this guarantees that a Moser-type iteration can be

applied to the first equation in (1.2), rewritten in the form ut = ∇ · (D(x, t)∇u) + ∇ · F (x, t) with
D(x, t) := φ(v(x, t)) ∈ [kφ,Kφ] for all x ∈ Ω and t ∈ (0, Tmax), to show that there exists c3 > 0 such
that

‖u(·, t)‖L∞(Ω) ≤ c3 for all t ∈ (0, Tmax).

Combined with (6.31), this proves (6.28). �

We thereby immediately arrive at our main result on global classical solvability for small data in
three-dimensional domains.

Proof of Theorem 1.3. In view of (2.6), the claim directly results from Lemma 6.3 and the
extensibility criterion (2.4). �
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6.3 Eventual regularity for small values of Kφ′u0. Proof of Theorem 1.4

Let us finally make use of the precise quantitative information provided by Lemma 3.1 and Lemma 3.2
to reveal that under a smallness condition only involving ‖φ′‖L∞((0,∞)) and the total cell mass

∫

Ω u0,
the exponentially decay of the rightmost summands in (3.1) and (3.9) warrants that the requirements
of Lemma 6.1 are fulfilled at least at some suitably large time, hence implying the following.

Lemma 6.4 Let n = 3. Then for each κ > 0 and K > 0 there exists δ(κ,K) > 0 such that whenever
φ satisfies (1.3), (1.4) and (1.5) with some kφ ≥ κ,Kφ ∈ [kφ,K] and Kφ′ > 0, for all (u0, v0) fulfilling
(1.8) and

Kφ′ · u0 ≤ δ(κ,K), (6.32)

one can find t0 > 0, α ∈ (0, 1) and C > 0 with the property that for all ε ∈ (0, 1), the solution of (5.5)
satisfies

‖uε‖C2+α,1+α
2 (Ω̄×[t,t+1])

+ ‖vε‖C2+α,1+α
2 (Ω̄×[t,t+1])

≤ C for all t > t0. (6.33)

Proof. For fixed κ > 0 and K > 0, we let η = η(κ) > 0 and σ = σ(κ) > 0 denote the constants
from Lemma 6.1, and take L = L(κ) > 0 andM =M(κ) > 0 as well as λ = λ(κ) > 0 and µ = µ(κ) > 0
as given by Lemma 3.1 and Lemma 3.2. By using the Sobolev inequality and elliptic regularity theory,
we furthermore pick c1 > 0 such that

‖∇ψ‖2L4(Ω) ≤ c1‖∆ψ‖
2
L2(Ω) for all ψ ∈W 2,2(Ω) with ∂ψ

∂ν
= 0 on ∂Ω, (6.34)

and thereupon choose δ = δ(κ,K) > 0 small enough such that

δ ≤ η (6.35)

and

δ ≤

√

σ

16LK2
(6.36)

as well as

δ ≤

√

σ

128c21M
2K4

. (6.37)

Now assuming that (u0, v0) and φ satisfy (1.8) as well as (1.3), (1.4) and (1.5) with some kφ ≥ κ,Kφ ∈
[kφ,K] and Kφ′ > 0 fulfilling (6.32), from Lemma 3.1 and Lemma 3.2 we infer the existence of c2 > 0
and c3 > 0 such that for all ε ∈ (0, 1), the solution of (5.5) satisfies

∫ t+1

t

∫

Ω
(uε − u0)

2 ≤ LK2u20 + c2e
−λt for all t > 0 (6.38)

and
∫ t+1

t

∫

Ω
|∆vε|

2 ≤MK2u20 + c3e
−µt for all t > 0, (6.39)

because the number Bφ,u0 = (Kφ − kφ)u0 introduced in Lemma 3.1 satisfies Bφ,u0 ≤ Ku0 according
to our hypotheses.

31



We claim that these choices imply that if, in implicit dependence on (u0, v0), we fix t⋆ > 0 large enough
fulfilling

4c2K
2
φ′e

−λt⋆ ≤
σ

4
and 32c21c

2
3K

4
φ′e

−2µt⋆ ≤
σ

4
, (6.40)

then for all ε ∈ (0, 1) there exists tε ∈ (t⋆, t⋆ + 1) such that

∫

Ω

(

uε(·, tε)− u0

)2
+K2

φ′

∫

Ω
|∇vε(·, tε)|

4 ≤
σ

K2
φ′
. (6.41)

To verify this, we first use (6.38) along with the Chebyshev inequality to see that for any such ε the
set

S1(ε) :=

{

t ∈ (t⋆, t⋆ + 1)

∣

∣

∣

∣

∫

Ω

(

uε(·, t)− u0

)2
> 4(LK2u20 + c2e

−λt⋆)

}

must satisfy |S1(ε)| ≤
1
4 , whereas combining (6.39) with (6.34) shows that

∫ t⋆+1

t⋆

{
∫

Ω
|∇vε(·, t)|

4

}
1
2

dt ≤ c1MK2u20 + c1c3e
−µt⋆ ,

which implies that also for

S2(ε) :=

{

t ∈ (t⋆, t⋆ + 1)

∣

∣

∣

∣

∣

{
∫

Ω
|∇vε(·, t)|

4

}
1
2

dt > 4(c1MK2u20 + c1c3e
−µt⋆)

}

we have |S2(ε)| ≤
1
4 . Since therefore

∣

∣

∣
(t⋆, t⋆ + 1) \ (S1(ε) ∪ S2(ε))

∣

∣

∣
≥ 1

2 , we can pick tε ∈ (t⋆, t⋆ + 1)

such that simultaneously

∫

Ω

(

uε(·, tε)− u0

)2
≤ 4(LK2u20 + c2e

−λt⋆)

and

∫

Ω
|∇v(·, tε)|

4 ≤

{

4(c1MK2u20 + c1c3e
−µt⋆

}2

≤ 32c21M
2K4u40 + 32c21c

2
3e

−2µt⋆

hold, and that hence, by (6.32), (6.36), (6.37) and (6.40), indeed

K2
φ′

∫

Ω

(

uε(·, tε)− u0

)2
+K4

φ′

∫

Ω
|∇vε(·, tε)|

4 ≤ 4LK2K2
φ′u

2
0 + 4c2K

2
φ′e

−λt⋆

+32c21M
2K4K4

φ′u
4
0 + 32c21c

2
3K

4
φ′e

−2µt⋆

≤ 4LK2δ2 + 4c2K
2
φ′e

−λt⋆

+32c21M
2K4δ4 + 32c21c

2
3K

4
φ′e

−2µt⋆

≤
σ

4
+
σ

4
+
σ

4
+
σ

4
= σ,
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thus establishing (6.41). Now as a consequence thereof, in view of the fact that Kφ′u0 ≤ η thanks to
(6.32) and (6.35), Lemma 6.1 applies so as to yield c4 > 0 such that for all ε ∈ (0, 1) we have

∫

Ω

(

uε(·, t)− u0

)2
+

∫

Ω
|∇vε(·, t)|

4 ≤ c4 for all t > t⋆ + 1

and hence
∫

Ω
u2ε(·, t) +

∫

Ω
|∇vε(·, t)|

4 ≤ c4 + |Ω|u20 for all t > t⋆ + 1,

whereupon Lemma 6.2 applies to show that if we fix any p > 15
2 , then we can find c5(p) > 0 such that

for all ε ∈ (0, 1),
∫

Ω
upε(·, t) +

∫

Ω
|∇vε(·, t)|

2p ≤ c5 for all t > t⋆ + 2. (6.42)

In order to turn this into an estimate for uε with respect to the norm in L∞(Ω × (t⋆ + 3,∞)) by
means of another Moser iteration, let us pick a nondecreasing function ζ ∈ C∞(R) such that ζ ≡ 0 in
(−∞, t⋆ + 2) and ζ ≡ 1 in (t⋆ + 3,∞). Then

wε(x, t) := ζ(t)uε(x, t), x ∈ Ω̄, t ≥ 0,

satisfies

wεt = ζ(t)uεt + ζ ′(t)uε

= ∇ · (Dε(x, t)∇wε) +∇ · Fε(x, t) +Gε(x, t), x ∈ Ω, t > 0,

with

Dε(x, t) := φ(vε(x, t))

and

Fε(x, t) := ζ(t)uε(x, t)φ
′(vε(x, t))∇vε(x, t)

as well as

Gε(x, t) := ζ ′(t)uε(x, t)

for x ∈ Ω and t > 0. Here due to the cut-off properties of ζ, (6.42) along with the Hölder inequality
shows that

(Fε)ε∈(0,1) is bounded in L∞((0,∞;L
2p
3 (Ω))

and that

(Gε)ε∈(0,1) is bounded in L∞((0,∞;Lp(Ω)).
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Since 2p
3 > 5 and p > 5

2 , and since kφ ≤ Dε ≤ Kφ in Ω × (0,∞), making use of the evident fact that
wε(·, 0) ≡ 0 we may once more employ Lemma A.1 in [28] to infer the existence of c6 > 0 such that
for each ε ∈ (0, 1) we have

‖wε(·, t)‖L∞(Ω) ≤ c6 for all t > 0,

in particular implying that

‖uε(·, t)‖L∞(Ω) ≤ c6 for all t > t⋆ + 3.

Using this as a starting point, by means of a straightforward bootstrap procedure based on standard
results from parabolic regularity theory alternately applied to the second and the first equations in
(5.5) ([13], [23]), we readily conclude that (6.33) holds with t0 := t⋆ + 4, for instance. �

Thereby eventual smoothness and boundedness of our weak solutions under the assumptions from
Theorem 1.4 becomes evident.

Proof of Theorem 1.4. In view of the Arzelà-Ascoli theorem, the claim immediately results from
Lemma 6.4 on extracting an appropriate subsequence (εkj )j∈N of the sequence (εk)k∈N provided by
Theorem 1.2, and taking ε = εkj ց 0. �

7 Conclusion

Our analysis has revealed that in comparison to the classical Keller-Segel system, linking diffusion
and cross-diffusion through the particular functional form described in (1.2) substantially reduces the
ability of the system to spontaneously generate singularities, up to complete blow-up suppression in
two-dimensional settings, and may therefore indeed be appropriate to describe the dynamics of stripe
pattern formation at large time scales, as suggested by the modeling approach in [7].

The present study may thereby be viewed as the attempt to provide one further step toward a more
comprehensive understanding of how chemotactic cross-diffusion influences the dynamics in models
for collective behavior in cell populations, in accordance with current trends, as reflected e.g. in the
recent collection described in [37], focusing on the intention to more and more incorporate refined
aspects of modeling.

In the particular context of (1.2), a natural next step, potentially accompanied or also guided by
numerical simulations, might consist in exploring the corresponding global dynamical features in more
detail, possibly in the sense of stabilization toward equilibria or also in more general frameworks
including attractors.
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335-353 (1980)

[17] Liu, C., et al.: Sequential establishment of stripe patterns in an expanding cell population.
Science 334, 238 (2011)

[18] Luckhaus, S., Sugiyama, Y., Velázquez, J.J.L.: Measure valued solutions of the 2D Keller-
Segel system. Arch. Rat. Mech. Anal. 206, 31-80 (2012)

[19] Mizoguchi, N., Winkler, M.: Is aggregation a generic phenomenon in the two-dimensional
Keller-Segel system? Preprint

[20] Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in
two-dimensional domains. J. Inequal. Appl. 6, 37-55 (2001)

[21] Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic
system of chemotaxis. Adv. Math. Sci. Appl. 8, 145-156 (1998)

[22] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a
parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40, 411-433 (1997)

[23] Porzio, M.M., Vespri, V.: Holder estimates for local solutions of some doubly nonlinear
degenerate parabolic equations. J. Differential Equations 103 (1), 146-178 (1993)

[24] Senba, T., Suzuki, T.: A quasi-linear system of chemotaxis. Abstr. Appl. Anal. 2006, 1-21
(2006)

[25] Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system
modeling multiscale cancer cell invasion. SIAM Journal of Mathematical Analysis 46 (3), 1969-
2007 (2014)

[26] Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular
sensitivity. Nonlinear Analysis: Real World Applications 12, 3727-3740 (2011)

[27] Tao, Y., Winkler, M.: A chemotaxis-haptotaxis model: the roles of porous medium diffusion
and logistic source. SIAM J. Math. Anal. 43, 685-704 (2011)

[28] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system
with subcritical sensitivity. J. Differential Equations 252, 692-715 (2012)

[29] Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional
chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differential Equa-
tions 257, 784-815 (2014)

[30] Tello, J.I., Winkler, M.: Reduction of critical mass in a chemotaxis system by external
application of a chemoattractant. Ann. Sc. Norm. Super. Pisa Cl. Sci. 12, 833-862 (2013)

[31] Temam, R.: Navier-Stokes equations. Theory and numerical analysis. Studies in Mathematics
and its Applications. Vol. 2. North-Holland, Amsterdam, 1977

36



[32] Winkler, M.: A critical exponent in a degenerate parabolic equation. Math. Methods Appl. Sci.
25, 911-925 (2002)

[33] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel
model. J. Differential Equations 248, 2889-2905 (2010)

[34] Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Mathematical
Methods in the Applied Sciences 33, 12-24 (2010)

[35] Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity.
Math. Meth. Appl. Sci. 34, 176-190 (2011)

[36] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel
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