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Abstract

The chemotaxis-Navier-Stokes system with signal production, as given by





nt + u · ∇n = ∆n−∇ ·
(
nS(x, n, c) · ∇c

)
,

ct + u · ∇c = ∆c− c+ n,

ut + (u · ∇)u = ∆u−∇P + n∇φ, ∇ · u = 0,

is considered in bounded planar convex domains Ω with smooth boundary, where φ ∈ W 2,∞(Ω)
and S ∈ C2(Ω̄× [0,∞)2;R2×2).

The main results assert that parallel to the case of the corresponding Keller-Segel system obtained
on neglecting u, any arbitrarily small algebraic saturation effect in the chemotactic sensitivity at
large densities is sufficient to rule out any blow-up phenomenon. Indeed, under the assumption
that there exist S0 ≥ 0 and α > 0 such that

|S(x, n, c)| ≤ S0 · (1 + n)−α for all x ∈ Ω̄, n ≥ 0 and c ≥ 0,

it is shown that for all suitably regular initial data an associated initial-boundary value problem
possesses a globally defined bounded classical solution.

The analysis is based on the consecutive identification of three energy-like functionals, the first
among which involves a certain sublinear Lp seminorm of n.
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1 Introduction

In this paper, we will investigate an initial-boundary value problem for the chemotaxis-Navier-Stokes
system 




nt + u · ∇n = ∆n−∇ ·
(
nS(x, n, c) · ∇c

)
, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u−∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

(1.1)

in a bounded domain in R
N , where our main focus will be on the planar case N = 2. Systems of this

type arise in the modeling of bacterial populations in which individuals, besides moving randomly,
partially adjust their movement according to concentration gradients of a chemical which they produce
themselves, where in generalization of the celebrated Keller-Segel chemotaxis system ([27]), the model
(1.1) furthermore accounts for the interaction of bacteria with the surrounding fluid, as indicated by
experimental findings to be of substantial relevance to the emergence of large-scale convection patterns
e.g. in populations of Bacillus subtilis suspended to sessile water drops ([20], [47], cf. also the related
setting addressed in [28], and [3] for a concise derivation of chemotaxis-fluid systems of the considered
type). Correspondingly, in (1.1) it is assumed that both cells and the chemical, at population density
and concentration denoted by n and c, respectively, are transported by the surrounding fluid with the
velocity field u, while the bacteria in turn exert a nontrivial influence on the fluid motion by means
of buoyant forces in an external gravitational field with potential φ, as reflected in a corresponding
source term appearing in the Navier-Stokes subsystem of (1.1). In accordance with refined modeling
approaches accounting for additional rotational flux components especially near boundaries ([63]), the
chemotactic sensitivity S = S(x, n, c) in (1.1) will be assumed to be a general matrix-valued function
possibly containing nondiagonal elements and thus allowing for chemotactic motion not necessarily
parallel to the chemoattractive gradient ([63]).

Motivated by the particular experimental background from [20] and [47], most previous studies on
chemotaxis-fluid systems related to (1.1) focus on situations when a chemoattractant is consumed
by the bacteria, rather than produced as in (1.1). Accordingly, quite an elaborate theory has been
established for the corresponding system





nt + u · ∇n = ∆n−∇ · (nS(c)∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nf(c), x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u−∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

(1.2)

under various assumptions of the scalar chemotactic sensitivity S and the signal consumption rate
coefficient f . For instance, for a class of systems of type (1.2) including the prototypical choices

S ≡ const. and f(c) = c, c ≥ 0, (1.3)

it is known that uniquely determined global-in-time smooth solutions exist for all suitably regular
initial data in smoothly bounded planar convex domains ([53]; cf. also [5] and [65] for recent results on
the whole space R

2), whereas in the corresponding three-dimensional analogue at least certain global
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weak solutions can be constructed ([59]). For the simplified system obtained from (1.2) on replacing
the Navier-Stokes equations therein by the respective Stokes system not containing the nonlinear
convection term (u · ∇)u, global existence results for the Cauchy problem in R

3 are available under
certain more restrictive assumptions on S and f and a smallness assumption e.g. on c ([11]), and also
for a corresponding boundary-value problem in bounded convex three-dimensional domains without
imposing any such additional requirements ([53]). Although with few exceptions ([30], [49]) in three-
dimensional versions and further variants of (1.2) the solutions constructed so far are all weak only ([5],
[48], [32]) and may possibly develop singularities within finite time (see [6] for a detailed discussion
on refined extensibility criteria), after all the dissipative effect of the signal absorption mechanism
addressed in (1.2) has been identified to be sufficient for solutions to become eventually smooth and
to approach spatially homogeneous equilibria in several cases ([60], [32]). This partially generalizes the
quite comprehensive knowledge on global boundedness and smooth stabilization, even at exponential
rates, in the two-dimensional version of (1.2) ([54], [64]), and also extends known facts on regularity
and large time behavior in the associated fluid-free analogue of (1.2) ([42], [41]). Quite a number
of results on global existence and boundedness properties have also been obtained for the variant of
(1.2) obtained on replacing ∆n by nonlinear diffusion operators generalizing the porous medium-type
choice ∆nm for several ranges of m > 1 ([10], [33], [12], [48], [26], [43], [44], [56]).

In contrast to such systems with consumption of chemoattractant, in problems of type (1.1) the
signal production mechanism may significantly enhance the destabilizing effects of chemotactic cross-
diffusion. Indeed, even in the classical Keller-Segel system without fluid interaction, as obtained on
letting S ≡ 1 in {

nt = ∆n−∇ · (nS(n)∇c), x ∈ Ω, t > 0,

ct = ∆c− c+ n, x ∈ Ω, t > 0,
(1.4)

it is known that for large classes of initial data, solutions blow up with respect to the spatial L∞ norm
of n when either N ≥ 3 ([55]), or N = 2 and the total mass of cells is large ([23], [37]), while global
bounded solutions can be constructed under appropriate smallness conditions on the initial data ([52],
[38]). Only when the chemotactic flux is appropriately limited e.g. according to suitable saturation
effects at large cell densities, such explosion phenomena can entirely be ruled out. In fact, for the
Neumann problem associated with (1.4) in smoothly bounded domains Ω ⊂ R

N it is known that if
N ≥ 2 and S ∈ C2([0,∞)) is nonnegative and such that

S(n) ≤ Cn−
N−2
N

−ε for all n > 0 (1.5)

with some C > 0 and ε > 0, then global bounded classical solutions can be found for all suitably
smooth initial data ([24], [29]), whereas if there exist C > 0 and ε > 0 fulfilling

S(n) ≥ Cn−
N−2
N

+ε for all n > 0, (1.6)

then some solutions may become unbounded ([51], [24]), where in some particular cases and related
systems involving nonlinear diffusion, such unboundedness phenomena are even known to occur within
finite time ([8], [9]; cf. also the surveys [22] and [3]).

Main results. To the best of our knowledge, the literature on chemotaxis-fluid systems of the
form (1.1) with signal production mechanisms so far concentrates on either Stokes-type simplifications
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([50]), or on the construction of small-data solutions ([30], [4]), or also on systems involving logisitic
growth restrictions as an additional dissipative mechanism ([13], [46]). The purpose of the present
work consists in examining the question how far relations of the form in (1.5) and (1.6) continue to
determine a critical asymptotic behavior of S with regard to the emergence of singularities also in the
full chemotaxis-Navier-Stokes system (1.1) with any such further regularizing prerequisites. Our main
results in this direction will reveal that in two-dimensional convex domains Ω with smooth boundary,
within the accuracy of algebraic rates, asymptotically constant S indeed will mark a borderline case in
this respect, even in the context of matrix-valued sensitivities, thereby extending a recent finding which
asserts a similar conclusion in the case when the fluid flow is governed by the linear Stokes system ([50]).
In view of the mentioned blow-up results for the fluid-free special case (1.4) of (1.1), this amounts
to deriving a corresponding statement on global existence and boundedness under an assumption
paralleling that in (1.5). To formulate this more precisely, let us suppose that S ∈ C2(Ω̄×[0,∞)2;R2×2)
has the property that there exist S0 ≥ 0 and α > 0 fulfilling

|S(x, n, c)| ≤ S0 · (1 + n)−α for all x ∈ Ω̄, n ≥ 0 and c ≥ 0, (1.7)

where we evidently may assume without loss of generality that herein α < 1
2 . Then moreover assuming

for simplicity that φ ∈W 2,∞(Ω), we will consider (1.1) along with the initial conditions

n(x, 0) = n0(x), c(x, 0) = c0(x) and u(x, 0) = u0(x), x ∈ Ω (1.8)

and the boundary conditions

(
nS(x, n, c) · ∇c

)
· ν = 0,

∂c

∂ν
= 0 and u = 0, x ∈ ∂Ω, t > 0, (1.9)

with initial data which are such that




n0 ∈ Cϑ(Ω̄) with some ϑ ∈ (0, 1), with n0 ≥ 0 and n0 6≡ 0,

c0 ∈W 1,∞(Ω) is nonnegative, and

u0 ∈ D(A).

(1.10)

Here and throughout the sequel, we let A := −P∆ denote the realization of the Stokes operator
in L2(Ω;R2), defined on its domain D(A) := W 2,2(Ω;R2) ∩ W

1,2
0 (Ω;R2) ∩ L2

σ(Ω) with L2
σ(Ω) :=

C∞
0,σ(Ω,R

2)
‖·‖

L2(Ω) = {ϕ ∈ C∞
0 (Ω,R2);∇ · ϕ = 0}‖·‖L2(Ω) , and with P representing the Helmholtz pro-

jection of L2(Ω;R2) onto L2
σ(Ω).

In this framework, our main results read as follows.

Theorem 1.1 Let Ω ⊂ R
2 be a bounded convex domain with smooth boundary, and let φ ∈W 2,∞(Ω)

and S ∈ C2(Ω̄× [0,∞)2;R2×2) be such that (1.7) holds with some S0 ≥ 0 and α ∈ (0, 12). Then for all
(n0, c0, u0) satisfying (1.10), there exist functions





n ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),
c ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) ∩⋂

p>1 L
∞((0,∞);W 1,p(Ω)),

u ∈ C0(Ω̄× [0,∞);R2) ∩ C2,1(Ω̄× (0,∞);R2) ∩⋂
β∈(0,1) L

∞((0,∞);D(Aβ)),

P ∈ C1,0(Ω̄× (0,∞)),

(1.11)
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such that n and c are nonnegative in Ω× (0,∞), and such that (n, c, u, P ) solves (1.1), (1.9), (1.8) in
the classical sense in Ω× (0,∞). Moreover, this solution is bounded in the sense that for each p > 1
and any β ∈ (0, 1) there exists C(p, β) > 0 with the property that

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,p(Ω) + ‖Aβu(·, t)‖L2(Ω) ≤ C(p, β) for all t > 0. (1.12)

In comparison to the corresponding fluid-free case in (1.4), a major technical challenge originating
from the additional fluid interaction in (1.1) seems to consist in the circumstance that the evident
mass conservation property

∫
Ω n ≡

∫
Ω n0, as the only apparent a priori information available, seems

insufficient to warrant any useful knowledge on regularity in the Navier-Stokes subsystem of (1.1).
This substantially differs also from the correspondingly simplified chemotaxis-Stokes analogue studied
in [50], where this temporally uniform spatial L1 bound on the respective forcing term could be used
as a starting point for an appropriate bootstrap procedure.

Our approach will accordingly be based on an entirely alternative strategy, the core of which can be
found in Section 5, where a functional of the form

−
∫

Ω
n2α + C

∫

Ω
c2, t ≥ 0,

will be seen to enjoy a certain energy-like property for solutions to a suitably regularized version of
(1.1), provided that C > 0 is chosen appropriately (Lemma 5.1). We note that the use of functionals
of such a structure, yet convex according to our choice of signs but growing in a sublinear manner
with respect to the crucial quantity n due to our assumption α < 1

2 , seems quite unusual in the
context of chemotaxis systems; in the present setting, however, from our analysis of an associated
energy-dissipation inequality we shall obtain a favorable further regularity property of n (Lemma 5.2)
which will turn out to be sufficient for deriving a space-time L2 estimate for ∇u through the standard
energy inequality associated with the Navier-Stokes subsystem of (1.1) (Lemma 5.3). This will enable
us to adequately control the terms stemming from the fluid interaction in the analysis of the evolution
of

∫

Ω
n lnn+ a

∫

Ω
|∇c|2, t ≥ 0,

with suitable a > 0 so as to derive, inter alia, bounds for
∫
Ω |∇c|2 and for

∫ t+1
t

∫
Ω n

2, and in consequence
also for

∫
Ω |∇u|2 (Lemma 6.2 and Lemma 6.3). Section 7 will thereafter be devoted to an analysis of

1

p

∫

Ω
np +

2

q

∫

Ω
|∇c|2q, t ≥ 0,

which by means of our previously gained estimates will be seen to also play the role of a quasi-energy
for suitably chosen but arbitrarily large p > 1 and q > 1. The bounds on

∫
Ω n

p and
∫
Ω |∇c|2q thereby

obtained will finally be used in a straightforward manner to assert higher order regularity properties
in Section 8 and Section 9, and to establish the claimed result on global existence and boundedness
through a limit procedure in the approximate problems in Section 10.
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2 A family of regularized problems

In order to adequately approximate solutions of the original problem (1.1), (1.8), (1.9) involving a
nonlinear boundary condition for the quantity n, we follow an idea from [34] (cf. also [50], [4], [58],
[61]) and introduce an appropriate regularization in which S vanishes near the lateral boundary. More
precisely, let us fix (ρε)ε∈(0,1) ⊂ C∞

0 (Ω) and (χε)ε∈(0,1) ⊂ C∞([0,∞)) such that

0 ≤ ρε ≤ 1 in Ω with ρε ր 1 in Ω as εց 0,

and that

0 ≤ χε ≤ 1 in [0,∞) with χε ≡ 0 in [1
ε
,∞) and χε ր 1 in [0,∞) as εց 0. (2.1)

For ε ∈ (0, 1), we then define

Sε(x, n, c) := ρε(x) · χε(n) · S(x, n, c), (x, n, c) ∈ Ω̄× [0,∞)2, (2.2)

and observe that Sε ∈ C2(Ω̄×[0,∞)2;R2×2), and that evidently (1.7) continues to hold for Sε, with the
values of S0 and α unchanged. Moreover, upon replacing S by Sε we formally obtain that the nonlinear
boundary condition for n in (1.9) reduces to a homogeneous Neumann-type condition. Accordingly,
in order to construct a global solution to (1.1), (1.8), (1.9) through an appropriate limit procedure,
for ε ∈ (0, 1) we consider the regularized problems





nεt + uε · ∇nε = ∆nε −∇ ·
(
nεSε(x, nε, cε) · ∇cε

)
, x ∈ Ω, t > 0,

cεt + uε · ∇cε = ∆cε − cε + nε, x ∈ Ω, t > 0,

uεt + (Yεuε · ∇)uε = ∆uε −∇Pε + nε∇φ, x ∈ Ω, t > 0,

∇ · uε = 0, x ∈ Ω, t > 0,
∂nε

∂ν
= ∂cε

∂ν
= 0, uε = 0, x ∈ ∂Ω, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,

(2.3)

where Yε denotes the standard Yosida approximation of the Stokes operator defined by

Yεϕ := (1 + εA)−1ϕ for ε ∈ (0, 1) and ϕ ∈ L2
σ(Ω). (2.4)

A well-known construction on the basis of the contraction mapping principle (see e.g. [53, Lemma
2.1] and also [1]) asserts local existence of classical solutions to these problems as well as a convenient
extensibility criterion.

Lemma 2.1 Assume that Ω ⊂ R
2 is a bounded domain with smooth boundary, that φ ∈ W 1,∞(Ω),

that S ∈ C2(Ω̄ × [0,∞)2;R2×2) satisfies (1.7) for some S0 ≥ 0 and α ≥ 0, and that n0, c0 and u0
comply with (1.10). Then for each ε ∈ (0, 1) there exist Tmax,ε ∈ (0,∞] and functions





nε ∈ C0(Ω̄× [0, Tmax,ε)) ∩ C2,1(Ω̄× (0, Tmax,ε)),
cε ∈ C0(Ω̄× [0, Tmax,ε)) ∩ C2,1(Ω̄× (0, Tmax,ε)) ∩

⋂
p>1C

0([0, Tmax,ε);W
1,p(Ω)),

uε ∈ C0(Ω̄× [0, Tmax,ε);R
2) ∩ C2,1(Ω̄× (0, Tmax,ε);R

2) ∩⋂
β∈(0,1)C

0(([0, Tmax,ε);D(Aβ)),

Pε ∈ C1,0(Ω̄× (0, Tmax,ε)),

(2.5)
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which are such that nε and cε are nonnegative in Ω × (0, Tmax,ε), that (nε, cε, uε, Pε) solve (2.3)
classically in Ω× (0, Tmax,ε), and that

if Tmax,ε <∞, then lim sup
tրTmax,ε

(
‖nε‖L∞(Ω) + ‖cε(·, t)‖W 1,p(Ω) + ‖Aβuε(·, t)‖L2(Ω)

)
= ∞

for all p > 2 and β ∈ (12 , 1). (2.6)

Two basic but important properties of these solutions are immediate.

Lemma 2.2 For each ε ∈ (0, 1), we have

∫

Ω
nε(·, t) =

∫

Ω
n0 for all t ∈ (0, Tmax,ε) (2.7)

and ∫

Ω
cε(·, t) ≤ max

{∫

Ω
c0 ,

∫

Ω
n0

}
for all t ∈ (0, Tmax,ε). (2.8)

Proof. The identity (2.7) directly results on integrating the first equation in (2.3). Thereupon,
from the second equation in (2.3) we obtain that

d

dt

∫

Ω
cε +

∫

Ω
cε =

∫

Ω
nε =

∫

Ω
n0 for all t ∈ (0, Tmax,ε),

which implies (2.8) through an ODE comparison argument. �

As a preparation for both Lemma 3.2 and Lemma 6.1 below, let us also include in this preliminary
section the following elementary ODE lemma, a proof of which can be found in [62, Lemma 3.4].

Lemma 2.3 Let T > 0 and y ∈ C0([0, T )) ∩ C1(0, T ) be such that

y′(t) + ay(t) ≤ g(t) for all t ∈ (0, T ),

where g ∈ L1
loc(R) has the property that

1

τ

∫ t+τ

t

g(s)ds ≤ b for all t ∈ (0, T )

with some τ > 0 and b > 0. Then

y(t) ≤ y(0) +
bτ

1− e−aτ
for all t ∈ [0, T ).

3 Estimates for solutions to a regularized Navier-Stokes system

In this section we plan to derive some estimates for the approximate Navier-Stokes subsystem of (2.3)
which will be used in several places below in order to firstly assert global existence of the solutions
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to (2.3), and to secondly allow for the derivation of ε-independent estimates for the latter afterwards.
Specifically, for ε ∈ (0, 1) we consider the problem





ũt + (Yεũ · ∇)ũ = ∆ũ−∇P̃ + f(x, t), x ∈ Ω, t > 0,

∇ · ũ = 0, x ∈ Ω, t > 0,

ũ = 0, x ∈ ∂Ω, t > 0,

ũ(x, 0) = ũ0(x), x ∈ Ω,

(3.1)

where f is a given suitably regular function on Ω×(0, T ) with some T ∈ (0,∞], and where ũ0 ∈ L2
σ(Ω).

For frequent later reference, let us first collect some basic properties of the Yosida approximation.

Lemma 3.1 Let ε ∈ (0, 1). Then

‖Yεϕ‖L2(Ω) ≤ ‖ϕ‖L2(Ω) for all ϕ ∈ L2
σ(Ω) (3.2)

and
‖∇Yεϕ‖L2(Ω) ≤ ‖∇ϕ‖L2(Ω) for all ϕ ∈W

1,2
0 (Ω;R2) ∩ L2

σ(Ω). (3.3)

Moreover, for all p > 1 there exists C(p) > 0 such that for all ε ∈ (0, 1) we have

‖Yεϕ‖Lp(Ω) ≤ C(p)‖∇ϕ‖L2(Ω) for all ϕ ∈W
1,2
0 (Ω;R2) ∩ L2

σ(Ω). (3.4)

Proof. Given ϕ ∈ L2
σ(Ω), writing ψ := Yεϕ we have (1 + εA)ψ = ϕ in Ω and hence, by self-

adjointness of A
1
2 and the Cauchy-Schwarz inequality,

∫

Ω
|ψ|2 ≤

∫

Ω
|ψ|2 + ε

∫

Ω
|A 1

2ψ|2 =
∫

Ω
|ψ|2 + ε

∫

Ω
ψ ·Aψ =

∫

Ω
ϕ · ψ ≤ ‖ϕ‖L2(Ω)‖ψ‖L2(Ω)

for all ε ∈ (0, 1). This clearly implies (3.2), whereupon observing that A
1
2 commutes with Yε on D(A

1
2 )

we obtain

‖∇Yεϕ‖L2(Ω) = ‖A 1
2Yεϕ‖L2(Ω) = ‖YεA

1
2ϕ‖L2(Ω) ≤ ‖A 1

2ϕ‖L2(Ω) = ‖∇ϕ‖L2(Ω)

for any such ϕ and ε, because ‖A 1
2 ϕ̃‖L2(Ω) = ‖∇ϕ̃‖L2(Ω) for all ϕ̃ ∈ D(A

1
2 ) =W

1,2
0 (Ω;R2) ∩ L2

σ(Ω).

To verify (3.4), we only need to note that since W 1,2(Ω) →֒ Lp(Ω) and Yε(L
2
σ(Ω)) ⊂ W

1,2
0 (Ω;R2),

there exists C1 > 0 such that

‖Yεϕ‖Lp(Ω) ≤ C1‖∇Yεϕ‖L2(Ω) for all ϕ ∈W
1,2
0 (Ω;R2) ∩ L2

σ(Ω).

Therefore, namely, (3.4) results from (3.3). �

Now addressing (3.1), we first identify a mild boundedness property of the source term therein which
is sufficient to allow for the natural conclusions obtained from the standard Navier-Stokes energy
inequality in the presently considered two-dimensional setting. Here and below, the parameter τ > 0
is included so as to ensure applicability also in cases when no a priori knowledge on the existence time
of solutions is available, such as in Lemma 3.4 and Lemma 4.2 below.
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Lemma 3.2 Let T ∈ (0,∞] and τ ∈ (0, T ), and let ũ0 ∈ C0(Ω̄;R2) ∩W 1,2
0 (Ω;R2) ∩ L2

σ(Ω). Then for
all p > 1 and each b > 0 there exists C(p, b, τ) > 0 with the property that if f ∈ C0(Ω̄ × [0, T );R2),
ũ ∈ C0(Ω̄ × [0, T );R2) ∩ C0([0, T );W 1,2

0 (Ω;R2)) ∩ C2,1(Ω̄ × (0, T );R2) and P̃ ∈ C1,0(Ω̄ × (0, T )) are
such that (3.1) holds for some ε ∈ (0, 1), and such that

1

τ

∫ t+τ

t

‖f(·, s)‖2Lp(Ω) ≤ b for all t ∈ (0, T − τ), (3.5)

then ∫

Ω
|ũ(·, t)|2 ≤ C(p, b, τ) for all t ∈ (0, T ) (3.6)

and ∫ t+τ

t

∫

Ω
|∇ũ(x, s)|2 ≤ C(p, b, τ) for all t ∈ (0, T − τ). (3.7)

Proof. Since W 1,2(Ω) →֒ L
p

p−1 (Ω), thanks to a corresponding Poincaré-Sobolev inequality we can
find C1 > 0 such that

‖ϕ‖
L

p
p−1 (Ω)

≤ C1‖∇ϕ‖L2(Ω) for all ϕ ∈W
1,2
0 (Ω;R2).

Testing (3.1) by ũ and using the Hölder inequality and Young’s inequality, we accordingly obtain that

1

2

d

dt

∫

Ω
|ũ|2 +

∫

Ω
|∇ũ|2 =

∫

Ω
f · ũ

≤ ‖f‖Lp(Ω)‖ũ‖
L

p
p−1 (Ω)

≤ C1‖f‖Lp(Ω)‖∇ũ‖L2(Ω)

≤ 1

2

∫

Ω
|∇ũ|2 + C2

1

2
‖f‖2Lp(Ω) for all t ∈ (0, T ).

As the standard Poincaré inequality in W 1,2
0 (Ω) moreover provides C2 > 0 such that

‖ϕ‖L2(Ω) ≤ C2‖∇ϕ‖L2(Ω) for all ϕ ∈W
1,2
0 (Ω;R2),

from this we infer that

d

dt

∫

Ω
|ũ|2 + 1

2C2
2

∫

Ω
|ũ|2 + 1

2

∫

Ω
|∇ũ|2 ≤ C2

1‖f‖2Lp(Ω) for all t ∈ (0, T ). (3.8)

In view of (3.5), employing Lemma 2.3 we firstly conclude that

∫

Ω
|ũ(·, t)|2 ≤ C3 :=

∫

Ω
|ũ0|2 +

bC2
1τ

1− e
− τ

2C2
2

for all t ∈ (0, T ), (3.9)

and thus, secondly, obtain on integrating (3.8) that

∫ t+τ

t

∫

Ω
|∇ũ|2 ≤ 2

∫

Ω
|ũ(·, t)|2 + 2C2

1

∫ t+τ

t

‖f(·, s)‖2Lp(Ω)

≤ 2C3 + 2C2
1bτ for all t ∈ (0, T − τ),

9



which together with (3.9) yields both claimed estimates. �

Next, using the latter result we can show that under a somewhat stronger assumption involving a
spatio-temporal L2 bound for the force in (3.1), solutions even remain bounded in H1.

Lemma 3.3 Let T ∈ (0,∞] and τ ∈ (0, T ), and let ũ0 ∈ C0(Ω̄;R2) ∩W
1,2
0 (Ω;R2) ∩ L2

σ(Ω). Then
for all b > 0 there exists C(b, τ) > 0 such that if f ∈ C0(Ω̄ × [0, T );R2), ũ ∈ C0(Ω̄ × [0, T );R2) ∩
C0([0, T );W 1,2

0 (Ω;R2)) ∩C2,1(Ω̄× (0, T );R2) and P̃ ∈ C1,0(Ω̄× (0, T )) solve (3.1) for some ε ∈ (0, 1)
and satisfy

1

τ

∫ t+τ

t

∫

Ω
|f(x, s)|2 ≤ b for all t ∈ (0, T − τ), (3.10)

then ∫

Ω
|∇ũ(·, t)|2 ≤ C(b, τ) for all t ∈ (0, T ). (3.11)

Proof. We first invoke Lemma 3.2 with p := 2 to fix C1 > 0 and C2 > 0 such that

∫

Ω
|ũ(·, t)|2 ≤ C1 for all t ∈ (0, T ) (3.12)

and ∫ t

t−τ

∫

Ω
|∇ũ(x, s)|2 ≤ C2 for all t ∈ (τ, T ). (3.13)

Then applying the Helmholtz projection to both sides of the first equation in (3.1), multiplying the
resulting identity by Aũ, integrating by parts and using Young’s inequality we find that

1

2

d

dt

∫

Ω
|∇ũ|2 +

∫

Ω
|Aũ|2 = −

∫

Ω
Aũ · P[(Yεũ · ∇)ũ] +

∫

Ω
Aũ · Pf

≤ 1

4

∫

Ω
|Aũ|2 +

∫

Ω

∣∣∣P[(Yεũ · ∇)ũ]
∣∣∣
2
+

1

4

∫

Ω
|Aũ|2 +

∫

Ω
|Pf |2

≤ 1

2

∫

Ω
|Aũ|2 +

∫

Ω

∣∣∣(Yεũ · ∇)ũ
∣∣∣
2
+

∫

Ω
|f |2 for all t ∈ (0, T ),(3.14)

because of the orthogonal projection property of P. Here we employ the Cauchy-Schwarz inequality
and Young’s inequality together with (3.12) to see that with some C3 > 0 and C4 > 0 we have

∫

Ω

∣∣∣(Yεũ · ∇)ũ
∣∣∣
2

≤ C3‖Yεũ‖2L4(Ω)‖∇ũ‖2L4(Ω)

≤ C4 ·
{
‖∇Yεũ‖L2(Ω)‖Yεũ‖L2(Ω)

}
·
{
‖Aũ‖L2(Ω)‖∇ũ‖L2(Ω)

}

≤ C
1
2
1 C4‖Aũ‖L2(Ω)‖∇ũ‖2L2(Ω)

≤ 1

2

∫

Ω
|Aũ|2 + C1C

2
4

2
‖∇ũ‖4L2(Ω) for all t ∈ (0, T ),

making use of Lemma 3.1 and the well-known facts that ‖∇(·)‖L2(Ω) and ‖A(·)‖L2(Ω) constitute norms
equivalent to ‖ · ‖W 1,2(Ω) and ‖ · ‖W 2,2(Ω), respectively, on D(A). Therefore, (3.14) shows that y(t) :=

10



∫
Ω |∇ũ(·, t)|2, t ∈ [0, T ), as well as a(t) := C1C

2
4

∫
Ω |∇ũ(·, t)|2 and h(t) := 2

∫
Ω |f(·, t)|2, t ∈ (0, T ),

satisfy
y′(t) ≤ a(t)y(t) + h(t) for all t ∈ (0, T ), (3.15)

where (3.13) and (3.10) ensure that

∫ t

t−τ

a(s)ds ≤ C5 := C1C2C
2
4 for all t ∈ (τ, T ) (3.16)

and that ∫ t

t−τ

h(s)ds ≤ C6 := 2bτ for all t ∈ (τ, T ). (3.17)

Now given t ∈ (0, T ), again thanks to (3.13) we can pick t⋆(t) ≥ 0 such that t⋆(t) ∈ [t− τ, t) and

∫

Ω
|∇ũ(·, t⋆(t))|2 ≤ C7 := max

{∫

Ω
|∇ũ0|2 ,

C2

τ

}
,

so that by integration of (3.15) we infer that

y(t) ≤ y(t⋆(t))e
∫ t

t⋆(t)
a(s)ds

+

∫ t

t⋆(t)
e
∫ t

s
a(σ)dσh(s)ds

≤ C7e
C5 +

∫ t

t⋆(t)
eC5h(s)ds

≤ C7e
C5 + eC5C6,

and that hence (3.11) holds. �

Finally, if f even belongs to L∞((0, T );L2(Ω;R2)), then solutions to (3.1) enjoy certain boundedness
and temporal Hölder continuity properties even in the spaces D(Aβ) for arbitrary β < 1:

Lemma 3.4 Let T ∈ (0,∞], and let ũ0 ∈ D(A). Then for all β ∈ (12 , 1) and each b > 0 there exists
C(β, b) > 0 such that if f ∈ C0(Ω̄ × [0, T );R2), ũ ∈ C0([0, T );D(Aβ)) ∩ C2,1(Ω̄ × (0, T );R2) and
P̃ ∈ C1,0(Ω̄× (0, T )) solve (3.1) for some ε ∈ (0, 1) and satisfy

‖f(·, t)‖L2(Ω) ≤ b for all t ∈ (0, T ), (3.18)

then
‖Aβũ(·, t)‖L2(Ω) ≤ C(β, b) for all t ∈ (0, T ) (3.19)

and

‖Aβũ(·, t)−Aβũ(·, t0)‖L2(Ω) ≤ C(β, b) · (t− t0)
1−β for all t0 ∈ [0, T ) and any t ∈ (t0, T ). (3.20)

Proof. Since β < 1, it is possible to choose p ∈ (1, 2) such that

p >
2

3− 2β
. (3.21)
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Therefore, in the projected version of (3.1), that is, in the identity

ũt +Aũ = f̃ := −P
[
(Yεũ · ∇)ũ

]
+ P[f ], x ∈ Ω, t ∈ (0, T ), (3.22)

using the Hölder inequality and the continuity of P in Lp(Ω;R2) ([15]) as well as (3.18), we see that
there exist C1 > 0 and C2 > 0 that

‖f̃(·, t)‖Lp(Ω) ≤ C1

∥∥∥(Yεũ · ∇)ũ
∥∥∥
Lp(Ω)

+ C1‖f‖Lp(Ω)

≤ C2‖Yεũ‖
L

2p
2−p (Ω)

‖∇ũ‖L2(Ω) + C2 for all t ∈ (0, T ).

As W 1,2(Ω) →֒ L
2p
2−p (Ω), thanks to Lemma 3.3, in view of (3.18) applicable to e.g. τ := min{1, T2 }, we

therefore obtain C3 > 0 and C4 > 0 such that

‖f̃(·, t)‖Lp(Ω) ≤ C3‖∇Yεũ‖L2(Ω)‖∇ũ‖L2(Ω) + C2

≤ C3‖∇ũ‖2L2(Ω) + C2

≤ C4 for all t ∈ (0, T ), (3.23)

again because ‖∇Yεũ‖L2(Ω) ≤ ‖∇ũ‖L2(Ω) due to Lemma 3.1. Now well-known smoothing properties

of the Dirichlet-Stokes semigroup (e−tA)t≥0 in Ω ([17, p. 201], [21]) assert the existence of λ > 0 and
C5 > 0 such that for all t > 0 we have

‖Aβe−tAϕ‖L2(Ω) ≤ C5t
−κe−λt‖ϕ‖Lp(Ω) for all ϕ ∈ L2

σ(Ω) (3.24)

with κ := β+ 1
p
− 1

2 . Therefore, on the basis of a variation-of-constants representation of ũ associated

with (3.22), using that for each t > 0, Aβ commutes with e−tA on D(Aβ), and that e−tA acts as a
contraction on L2

σ(Ω), we can estimate

‖Aβũ(·, t)‖L2(Ω) ≤ ‖Aβe−tAũ0‖L2(Ω) +

∫ t

0
‖Aβe−(t−s)Af̃(·, s)‖L2(Ω)ds

≤ ‖e−tAAβũ0‖L2(Ω) + C5

∫ t

0
(t− s)−κe−λ(t−s)‖f̃(·, s)‖Lp(Ω)ds

≤ ‖Aβũ0‖L2(Ω) + C4C5

∫ t

0
(t− s)−κe−λ(t−s)ds

≤ ‖Aβũ0‖L2(Ω) + C4C5C6 for all t ∈ (0, T ),

with C6 :=
∫∞
0 σ−κe−λσdσ being finite due to the fact that as a consequence of (3.21) we have κ < 1.

Similarly, following a standard argument ([14, p. 109]), for arbitrary t0 ∈ [0, T ) and t ∈ (t0, T ) we may
use (3.24) to see that

‖Aβũ(·, t)−Aβũ(·, t0)‖L2(Ω)

≤ ‖Aβe−tAũ0 −Aβe−t0Aũ0‖L2(Ω)

+

∫ t0

0

∥∥∥Aβ [e−(t−s)A − e−(t0−s)A]f̃(·, s)
∥∥∥
L2(Ω)

ds+

∫ t

t0

‖Aβe−(t−s)Af̃(·, s)‖L2(Ω)ds
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=

∥∥∥∥−
∫ t

t0

Aβe−τAAũ0dτ

∥∥∥∥
L2(Ω)

+

∫ t0

0

∥∥∥∥−
∫ t

t0

A1+βe−(τ−s)Af̃(·, s)dτ
∥∥∥∥
L2(Ω)

ds+

∫ t

t0

‖Aβe−(t−s)Af̃(·, s)‖L2(Ω)ds

≤ C5 ·
{∫ t

t0

τ−βdτ

}
· ‖Aũ0‖L2(Ω)

+C4C5

∫ t0

0

∫ t

t0

(τ − s)−(1+β)dτds+ C4C5

∫ t

t0

(t− s)−βds

=
C5

1− β
‖Aũ0‖L2(Ω) · (t1−β − t

1−β
0 )

+
C4C5

β(1− β)
·
{
(t− t0)

1−β + t
1−β
0 − t1−β

}
+
C4C5

1− β
· (t− t0)

1−β

≤ C5

1− β
‖Aũ0‖L2(Ω) · (t− t0)

1−β

+
C4C5

β(1− β)
· (t− t0)

1−β +
C4C5

1− β
· (t− t0)

1−β

and conclude. �

4 Global existence in the approximate problems

With the above regularization properties of the fluid evolution in (2.3) at hand, we are now in the
position to make sure that all these approximate problems are in fact globally solvable. To see this, we
first combine two standard Lp testing procedures, when applied to the first two equations in (2.3), to
obtain that under the assumption that Tmax,ε is finite, both nε and cε belong to L∞((0, Tmax,ε);L

p(Ω))
for any finite p.

Lemma 4.1 Assume that for some ε ∈ (0, 1) we have Tmax,ε < ∞. Then for all p ≥ 2 there exists
C(p, ε) > 0 such that ∫

Ω
npε(·, t) ≤ C(p, ε) for all t ∈ (0, Tmax,ε) (4.1)

and ∫

Ω
cpε(·, t) ≤ C(p, ε) for all t ∈ (0, Tmax,ε). (4.2)

Proof. Since Sε(x, n̂, ĉ) = 0 for all (x, n̂, ĉ) ∈ Ω̄× [0,∞)2 with n̂ ≥ 1
ε
by (2.1), on testing the first

equation in (2.3) by np−1
ε and using Young’s inequality and ∇ · uε ≡ 0, we see that

1

p

d

dt

∫

Ω
npε + (p− 1)

∫

Ω
np−2
ε |∇nε|2 = (p− 1)

∫

Ω
np−1
ε ∇nε ·

(
Sε(x, nε, cε) · ∇cε

)

≤ (p− 1)

∫

Ω
np−2
ε |∇nε|2 +

p− 1

4

∫

Ω
npε

∣∣∣Sε(x, nε, cε)
∣∣∣
2
· |∇cε|2

≤ (p− 1)

∫

Ω
np−2
ε |∇nε|2 +

(p− 1)S2
0

4εp

∫

Ω
|∇cε|2,
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that is,
d

dt

∫

Ω
npε ≤

p(p− 1)S2
0

4εp

∫

Ω
|∇cε|2 for all t ∈ (0, Tmax,ε). (4.3)

Moreover, multiplying the second equation in (2.3) by (cε+1)p−1 and integrating by parts, again using
Young’s inequality and noting that uε is solenoidal we obtain

1

p

d

dt

∫

Ω
(cε + 1)p + (p− 1)

∫

Ω
(cε + 1)p−2|∇cε|2 +

∫

Ω
cε(cε + 1)p−1 =

∫

Ω
nε(cε + 1)p−1

≤ 1

p

∫

Ω
npε +

p− 1

p

∫

Ω
(cε + 1)p

and hence

S2
0

4εp
d

dt

∫

Ω
(cε + 1)p +

p(p− 1)S2
0

4εp

∫

Ω
|∇cε|2 ≤

S2
0

4εp

∫

Ω
npε +

(p− 1)S2
0

4εp

∫

Ω
(cε + 1)p for all t ∈ (0, Tmax,ε).

Adding this to (4.3) shows that writing κε := max{ S2
0

4εp , p− 1} we have

d

dt

{∫

Ω
npε +

S2
0

4εp

∫

Ω
(cε + 1)p

}
≤ κε ·

{∫

Ω
npε +

S2
0

4εp

∫

Ω
(cε + 1)p

}
for all t ∈ (0, Tmax,ε)

and thus, on integration,

∫

Ω
npε +

S2
0

4εp

∫

Ω
(cε + 1)p ≤

{∫

Ω
n
p
0 +

S2
0

4εp

∫

Ω
(c0 + 1)p

}
· eκεTmax,ε for all t ∈ (0, Tmax,ε),

which yields both (4.1) and (4.2). �

In light of Lemma 3.4, this particularly implies two convenient boundedness properties of uε.

Lemma 4.2 Suppose that Tmax,ε < ∞ for some ε ∈ (0, 1), and let β ∈ (12 , 1). Then there exists
C(β, ε) > 0 such that

‖Aβuε(·, t)‖L2(Ω) ≤ C(β, ε) for all t ∈ (0, Tmax,ε). (4.4)

In particular, there exists C(ε) > 0 with the property that

‖uε(·, t)‖L∞(Ω) ≤ C(ε) for all t ∈ (0, Tmax,ε). (4.5)

Proof. Since Lemma 4.1 in particular warrants that nε belongs to L∞((0, Tmax,ε);L
2(Ω)), (4.4)

directly results from Lemma 3.4. Noting that for any such β we have D(Aβ) →֒ L∞(Ω) ([16], [21]),
from this we immediately obtain (4.5). �

Now in conjunction with the Lp bound for nε asserted by Lemma 4.1, the latter L∞ estimate for uε
rules out finite-time blow-up of ∇cε in any Lebesgue space with finite summability power.

Lemma 4.3 Assume that Tmax,ε <∞ for some ε ∈ (0, 1). Then for any p ≥ 2 one can find C(p, ε) >
0 such that

‖∇cε(·, t)‖Lp(Ω) ≤ C(p, ε) for all t ∈ (0, Tmax,ε). (4.6)
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Proof. We fix any β ∈ (12 , 1) and β0 ∈ (12 , β) and then obtain from known results for the associated
fractional powers (−∆+1)β and (−∆+1)β0 of the sectorial realization of −∆+1 under homogeneous
Neumann boundary conditions in Lp(Ω) ([21], [14]) that there exist positive constants C1, C2 and C3

such that with a := β0

β
∈ (0, 1) we have

‖∇ϕ‖Lp(Ω) ≤ C1‖(−∆+ 1)β0ϕ‖Lp(Ω) for all ϕ ∈ C2(Ω̄) such that ∂ϕ
∂ν

= 0 on ∂Ω (4.7)

and

‖(−∆+ 1)β0ϕ‖Lp(Ω) ≤ C2‖(−∆+ 1)βϕ‖aLp(Ω)‖ϕ‖1−a
Lp(Ω) for all ϕ ∈ C2(Ω̄) such that ∂ϕ

∂ν
= 0 on ∂Ω

(4.8)
as well as

‖(−∆+ 1)βet(∆−1)ϕ‖Lp(Ω) ≤ C3t
−β‖ϕ‖Lp(Ω) for all ϕ ∈ Lp(Ω), (4.9)

where (et∆)t≥0 denotes the correspondingly generated analytic semigroup.

Therefore, if for arbitrary T ∈ (τ, Tmax,ε) with τ :=
Tmax,ε

2 we introduce the finite number

Mε(T ) := sup
t∈(τ,T )

‖(−∆+ 1)βcε(·, t)‖Lp(Ω),

then by means of a variation-of-constants representation of cε(·, t) for t ∈ (τ, Tmax,ε) and using that
et(∆−1) commutes with (−∆+1)β on D((−∆+1)β) and acts as a contraction on Lp(Ω) we can estimate

Mε(T ) = sup
t∈(τ,T )

∥∥∥∥(−∆+ 1)βe(t−τ)(∆−1)cε(·, τ) +
∫ t

τ

(−∆+ 1)βe(t−s)(∆−1)nε(·, s)ds

−
∫ t

τ

(−∆+ 1)βe(t−s)(∆−1)
(
uε(·, s) · ∇cε(·, s)

)
ds

∥∥∥∥
Lp(Ω)

≤ ‖(−∆+ 1)βcε(·, τ)‖Lp(Ω)

+C3 sup
t∈(τ,T )

∫ t

τ

(t− s)−β‖nε(·, s)‖Lp(Ω)ds

+C3 sup
t∈(τ,T )

∫ t

τ

(t− s)−β
∥∥∥uε(·, s) · ∇cε(·, s)

∥∥∥
Lp(Ω)

ds

≤ C4 + C5 sup
t∈(τ,T )

∫ t

τ

(t− s)−β‖∇cε(·, s)‖Lp(Ω)ds for all T ∈ (τ, Tmax,ε) (4.10)

with

C4 := ‖(−∆+ 1)βcε(·, τ)‖Lp(Ω) + C3‖nε‖L∞((τ,Tmax,ε);Lp(Ω)) ·
(Tmax,ε − τ)1−β

1− β

and

C5 := ‖uε‖L∞(Ω×(τ,Tmax,ε))
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both being finite due to Lemma 4.1, Lemma 4.2 and the fact that cε(·, τ) belongs to C2(Ω̄) according
to Lemma 2.1. Now since also C6 := supt∈(τ,Tmax,ε) ‖cε(·, t)‖Lp(Ω) <∞ thanks to Lemma 4.1, by (4.7)
and (4.8) we have

‖∇cε(·, s)‖Lp(Ω) ≤ C1‖(−∆+ 1)β0cε(·, s)‖Lp(Ω)

≤ C1C2‖(−∆+ 1)βcε(·, s)‖aLp(Ω)‖cε(·, s)‖1−a
Lp(Ω)

≤ C1C2C
1−a
6 Ma

ε (T ) for all s ∈ (τ, T ),

so that (4.10) yields the inequality

Mε(T ) ≤ C4 + C7M
a
ε (T ) for all T ∈ (τ, Tmax,ε)

with C7 :=
1

1−β
(Tmax,ε − τ)1−β

C1C2C5C
1−a
6 . As a < 1, this entails that

Mε(T ) ≤ C8 := max

{(C4

C7

) 1
a
, (2C7)

1
1−a

}
for all T ∈ (τ, Tmax,ε),

and that hence, again by (4.7) and (4.8),

‖∇cε(·, t)‖Lp(Ω) ≤ C1C2C
a
8C

1−a
6 for all t ∈ (τ, Tmax,ε),

which in view of the inclusion ∇cε ∈ L∞((0, τ);Lp(Ω;R2)), as asserted by Lemma 2.1, completes the
proof. �

This inter alia allows us to pass to the limit p→ ∞ in the former statement from Lemma 4.1 by means
of a standard recursive argument of Moser type.

Lemma 4.4 If Tmax,ε <∞ for some ε ∈ (0, 1), then there exists C(ε) > 0 such that

‖nε(·, t)‖L∞(Ω) ≤ C(ε) for all t ∈ (0, Tmax,ε). (4.11)

Proof. Writing the first equation in (2.3) in the form

nεt = ∆nε +∇ · fε(x, t), x ∈ Ω, t ∈ (0, Tmax,ε),

with

fε(x, t) := −nε(x, t)Sε(x, nε(x, t), cε(x, t)) · ∇cε(x, t)− nε(x, t)uε(x, t), x ∈ Ω, t ∈ (0, Tmax,ε),

we observe that according to the local smoothness properties provided by Lemma 2.1 and the esti-
mates provided by Lemma 4.1, Lemma 4.2 and Lemma 4.3, under the hypothesis that Tmax,ε is finite
we know that nε ∈ L∞((0, Tmax,ε);L

p(Ω)) and fε ∈ L∞((0, Tmax,ε);L
p(Ω;R2)) for all p ∈ (1,∞).

Therefore, (4.11) readily results upon a straightforward application of a Moser-type iteration proce-
dure (cf. e.g. [45, Lemma A.1] for a general result in this direction which precisely covers the present
situation). �

We have now gathered all ingredients necessary for our proof of global existence in (2.3).

Lemma 4.5 For each ε ∈ (0, 1), the solution of (2.3) is global in time; that is, in Lemma 2.1 we have
Tmax,ε = ∞.

Proof. Due to the extensibility criterion (2.6), this is an evident consequence of Lemma 4.4,
Lemma 4.3 and Lemma 4.2. �
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5 A space-time L
2 bound for ∇uε

In order to prepare an appropriate passage to the limit ε → 0 to be performed in Lemma 10.1, a
natural next goal consists in establishing suitable ε-independent bounds for the solutions of (2.3).
Here unlike in the fluid-free situation obtained on letting uε ≡ 0, where previous studies have shown
that estimates for both nε and ∇cε in high-power spatial Lp spaces can be obtained in a rather
straightforward manner ([45], [24]), in the present context involving fluid interaction such a direct
approach seems inadequate due to the lack of sufficient a priori knowledge on regularity properties of
uε. We will thus firstly be concerned with the derivation of some basic ε-independent information on
uε, for which in accordance with the results from Section 3, and in particular from Lemma 3.2, it is
sufficient to provide integral estimate for the factor nε in the forcing term of the fluid equation which
involve the integrability power 2 with respect to time, but which fortunately may refer to spatial Lp

spaces with an arbitrarily small exponent p > 1.

To see that a property of this type indeed is enforced by our subcriticality assumption that α > 0 in
(1.7), in the following lemma we will track the time evolution of a certain sublinear functional of nε,
for which (1.7) entails a favorable quasi-energy property when appropriately combined with

∫
Ω c

2
ε. The

use of such functionals with sublinear growth with respect to the unknown seems rather unusual in
the context of cross-diffusive systems of the considered class, especially when intended to be a starting
point of a series of arguments finally resulting in boundedness and smoothness of solutions; after all,
in constructing certain weak solutions to chemotaxis and also to some chemotaxis-fluid systems some
precedent studies rely on the analysis of functionals with even only logarithmic growth, but in most
cases the correspondingly obtained estimates could not be used for the derivation of substantial further
properties beyond ([58], [57], [61]).

Lemma 5.1 There exists C > 0 such that for all ε ∈ (0, 1) we have
∫ t+1

t

∫

Ω
|∇nαε |2 ≤ C for all t ≥ 0 (5.1)

and ∫ t+1

t

∫

Ω
|∇cε|2 ≤ C for all t ≥ 0. (5.2)

Proof. Noting that nε is positive in Ω̄× (0,∞) by the strong maximum principle, we may multiply
the first equation in (2.3) by n2α−1

ε and integrate by parts to see by means of Young’s inequality and
(1.7) that

− 1

2α

d

dt

∫

Ω
n2αε + (1− 2α)

∫

Ω
n2α−2
ε |∇nε|2

= (1− 2α)

∫

Ω
n2α−1
ε ∇nε ·

(
Sε(x, nε, cε) · ∇cε

)

≤ 1− 2α

2

∫

Ω
n2α−2
ε |∇nε|2 +

1− 2α

2

∫

Ω
n2αε

∣∣∣Sε(x, nε, cε)
∣∣∣
2
· |∇cε|2

≤ 1− 2α

2

∫

Ω
n2α−2
ε |∇nε|2 +

1− 2α

2
S2
0

∫

Ω
n2αε (nε + 1)−2α|∇cε|2

≤ 1− 2α

2

∫

Ω
n2α−2
ε |∇nε|2 + C1

∫

Ω
|∇cε|2 for all t > 0 (5.3)
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with C1 := 1−2α
2 S2

0 , where we also have used that ∇ · uε ≡ 0. In order to compensate the rightmost
summand herein appropriately, we test the second equation in (2.3) by cε to obtain, again, due to the
solenoidality of uε, that

1

2

d

dt

∫

Ω
c2ε +

∫

Ω
|∇cε|2 +

∫

Ω
c2ε =

∫

Ω
nεcε for all t > 0. (5.4)

Here we fix any θ > 1 satisfying

θ <
1

1− α
(5.5)

and apply the Hölder inequality to find that

∫

Ω
nεcε ≤

{∫

Ω
nθε

} 1
θ

·
{∫

Ω
c

θ
θ−1
ε

} θ−1
θ

= ‖nαε ‖
1
α

L
θ
α (Ω)

‖cε‖
L

θ
θ−1 (Ω)

for all t > 0. (5.6)

Now since in the present two-dimensional setting we have W 1,2(Ω) →֒ L
θ

θ−1 (Ω), there exists C2 > 0
fulfilling

‖cε‖2
L

θ
θ−1 (Ω)

≤ C2‖∇cε‖2L2(Ω) + C2‖cε‖2L1(Ω) for all t > 0,

so that in view of (2.8) we infer that

‖cε‖2
L

θ
θ−1 (Ω)

≤ C2

∫

Ω
|∇cε|2 + C3 for all t > 0

with some C3 > 0. By means of Young’s inequality, in (5.6) we can therefore proceed to estimate

∫

Ω
nεcε ≤ 1

2C2
‖cε‖2

L
θ

θ−1 (Ω)
+
C2

2
‖nαε ‖

2
α

L
θ
α (Ω)

≤ 1

2

∫

Ω
|∇cε|2 +

C3

2C2
+
C2

2
‖nαε ‖

2
α

L
θ
α (Ω)

for all t > 0. (5.7)

We finally make sure that here the last summand can essentially be absorbed by the dissipated quantity
in (5.3). Indeed, invoking the Gagliardo-Nirenberg inequality and recalling (2.7) we find C4 > 0 and
C5 > 0 such that

C2

2
‖nαε ‖

2
α

L
θ
α (Ω)

≤ C4‖∇nαε ‖
2(θ−1)

αθ

L2(Ω)
‖nαε ‖

2
αθ

L
1
α (Ω)

+ C4‖nαε ‖
2
α

L
1
α (Ω)

≤ C5‖∇nαε ‖
2(θ−1)

αθ

L2(Ω)
+ C5 for all t > 0,

so that due to (5.7), from (5.4) we obtain the inequality

d

dt

∫

Ω
c2ε +

∫

Ω
|∇cε|2 + 2

∫

Ω
c2ε ≤ 2C5‖∇nαε ‖

2(θ−1)
αθ

L2(Ω)
+ C6 for all t > 0
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with C6 := C3
C2

+ 2C5. By taking an appropriate linear combination of this with (5.3), we thus infer
that

d

dt

{
− 1

2α

∫

Ω
n2αε + 2C1

∫

Ω
c2ε

}
+ (1− 2α)

∫

Ω
n2α−2
ε |∇nε|2 + 2C1

∫

Ω
|∇cε|2 + 4C1

∫

Ω
c2ε

≤ 1− 2α

2

∫

Ω
n2α−2
ε |∇nε|2 + C1

∫

Ω
|∇cε|2 + 4C1C5‖∇nαε ‖

2(θ−1)
αθ

L2(Ω)
+ 2C1C6 for all t > 0,

that is,

d

dt

{
− 1

2α

∫

Ω
n2αε + 2C1

∫

Ω
c2ε

}
+

1− 2α

2α2

∫

Ω
|∇nαε |2 + C1

∫

Ω
|∇cε|2 + 4C1

∫

Ω
c2ε

≤ 4C1C5‖∇nαε ‖
2(θ−1)

αθ

L2(Ω)
+ 2C1C6 for all t > 0. (5.8)

Here since our restriction (5.5) warrants that

2(θ − 1)

αθ
=

2

α
·
(
1− 1

θ

)
<

2

α
·
(
1− (1− α)

)
= 2,

we may once again employ Young’s inequality to find C7 > 0 such that

4C1C5‖∇nαε ‖
2(θ−1)

αθ

L2(Ω)
≤ 1− 2α

4α2

∫

Ω
|∇nαε |2 + C7 for all t > 0. (5.9)

Thus, if we write

y(t) := − 1

2α

∫

Ω
n2αε (·, t) + 2C1

∫

Ω
c2ε(·, t), t ≥ 0,

and

g(t) :=
1− 2α

4α2

∫

Ω
|∇nαε (·, t)|2 + C1

∫

Ω
|∇cε(·, t)|2, t > 0,

then since 4C1

∫
Ω c

2
ε ≥ 2y(t) for all t > 0, from (5.8) and (5.9) we obtain that

y′(t) + 2y(t) + g(t) ≤ 2C1C6 + C7 for all t > 0. (5.10)

As g is nonnegative, by an ODE comparison this firstly implies that

y(t) ≤ C8 := max

{
− 1

2α

∫

Ω
n2α0 + 2C1

∫

Ω
c20 ,

2C1C6 + C7

2

}
for all t > 0, (5.11)

and thereafter we secondly conclude from (5.10) on integration that

∫ t+1

t

g(s)ds ≤ y(t)− y(t+ 1)− 2

∫ t+1

t

y(s)ds+ 2C1C6 + C7 for all t ≥ 0.

Since our overall assumption α < 1
2 ensures that by the Hölder inequality and (2.7) we have

−y(t) ≤ 1

2α

∫

Ω
n2αε (·, t) ≤ |Ω|1−2α

2α
·
{∫

Ω
nε(·, t)

}2α

= C9 :=
|Ω|1−2α

2α
·
{∫

Ω
n0

}2α

for all t ≥ 0,
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together with (5.11) this implies that

1− 2α

4α2

∫ t+1

t

∫

Ω
|∇nαε |2 + C1

∫ t+1

t

∫

Ω
|∇cε|2 =

∫ t+1

t

g(s)ds ≤ C8 + 3C9 + 2C1C6 + C7 for all t ≥ 0

and thereby establishes both (5.1) and (5.2). �

Upon interpolation with the mass conservation property (2.7), the estimate (5.1) entails the following.

Lemma 5.2 For all p > 1, there exists C(p) > 0 with the property that for all ε ∈ (0, 1),
∫ t+1

t

‖nε(·, s)‖
2pα
p−1

Lp(Ω)ds ≤ C(p) for all t ≥ 0.

In particular, one can find C > 0 such that
∫ t+1

t

‖nε(·, s)‖2
L

1
1−α (Ω)

ds ≤ C for all t ≥ 0 (5.12)

whenever ε ∈ (0, 1).

Proof. Since the Gagliardo-Nirenberg inequality in conjunction with (2.7) shows that there exist
C1 > 0 and C2 > 0 such that
∫ t+1

t

‖nε(·, s)‖
2pα
p−1

Lp(Ω)ds =

∫ t+1

t

‖nαε (·, s)‖
2p
p−1

L
p
α (Ω)

ds

≤ C1

∫ t+1

t

‖∇nαε (·, s)‖2L2(Ω)‖nαε (·, s)‖
2

p−1

L
1
α (Ω)

ds+ C1

∫ t+1

t

‖nαε (·, s)‖
2p
p−1

L
1
α (Ω)

ds

≤ C2

∫ t+1

t

‖∇nαε (·, s)‖2L2(Ω)ds+ C2 for all t ≥ 0,

the claim directly results from Lemma 5.1. �

Now thanks to Lemma 5.2, we thereby obtain a basic regularity property of uε in the following form.

Lemma 5.3 There exists C > 0 such that
∫ t+1

t

∫

Ω
|∇uε|2 ≤ C for all t ≥ 0

whenever ε ∈ (0, 1).

Proof. In view of (5.12), we only need to apply Lemma 3.2 to τ := 1 and p := 1
1−α

. �

6 A time-independent spatial L2 bound for ∇uε

Based on the above information, we proceed to derive further regularity properties of the solution to
(2.3), and in particular of uε. In this direction, the main outcome of this section will improve Lemma
5.3 in Lemma 6.3 by providing a bound for ∇uε in L2(Ω;R2) which is independent of t > 0. In view of
Lemma 3.3, for this it will be sufficient to achieve a bound for

∫ t+1
t

∫
Ω n

2
ε, which will be accomplished

in Lemma 6.2 on the basis of the following a priori information on cε that is widely independent of
any regularity property of uε but strongly relies on Lemma 5.2.
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Lemma 6.1 For each p ≥ 2 one can find C(p) > 0 such that for any choice of ε ∈ (0, 1),

∫

Ω
cpε(·, t) ≤ C(p) for all t > 0. (6.1)

Proof. Once more using cp−1
ε as a test function in the second equation of (2.3), this time we estimate

the term on the right by using the Hölder inequality with the exponent p−2α
p−4α which is positive since

α < 1
2 and p ≥ 2. Accordingly, we obtain

1

p

d

dt

∫

Ω
cpε + (p− 1)

∫

Ω
cp−2
ε |∇cε|2 +

∫

Ω
cpε

=

∫

Ω
nεc

p−1
ε

≤ ‖nε‖
L

p−2α
p−4α (Ω)

·
{∫

Ω
c
(p−1)(p−2α)

2α
ε

} 2α
p−2α

for all t > 0. (6.2)

Here by means of the Gagliardo-Nirenberg inequality and (2.8) we can find C1 > 0 and C2 > 0 such
that

{∫

Ω
c
(p−1)(p−2α)

2α
ε

} 2α
p−2α

= ‖c
p

2
ε ‖

2(p−1)
p

L
(p−1)(p−2α)

pα (Ω)

≤ C1‖∇c
p

2
ε ‖

2(p−2α−1)
p−2α

L2(Ω)
‖c

p

2
ε ‖

4α
p(p−2α)

L
2
p (Ω)

+ C1‖c
p

2
ε ‖

2(p−1)
p

L
2
p (Ω)

≤ C2‖∇c
p

2
ε ‖

2(p−2α−1)
p−2α

L2(Ω)
+ C2

≤ 2C2

{
‖∇c

p

2
ε ‖2L2(Ω) + 1

} p−2α−1
p−2α

for all t > 0,

so that Young’s inequality provides C3 > 0 fulfilling

‖nε‖
L

p−2α
p−4α (Ω)

·
{∫

Ω
c
(p−1)(p−2α)

2α
ε

} 2α
p−2α

≤ 4(p− 1)

p2
·
{
‖∇c

p

2
ε ‖2L2(Ω) + 1

}
+ C3‖nε‖p−2α

L
p−2α
p−4α (Ω)

= (p− 1)

∫

Ω
cp−2
ε |∇cε|2 + C3‖nε‖p−2α

L
p−2α
p−4α (Ω)

+
4(p− 1)

p2

for all t > 0. Therefore, (6.2) shows that

1

p

d

dt

∫

Ω
cpε +

∫

Ω
cpε ≤ C3‖nε‖p−2α

L
p−2α
p−4α (Ω)

+
4(p− 1)

p2
for all t > 0,

where observing that

2 · p−2α
p−4α · α

p−2α
p−4α − 1

= p− 2α
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we may invoke Lemma 5.2 to find C4 > 0 such that
∫ t+1

t

{
C3‖nε(·, s)‖p−2α

L
p−2α
p−4α (Ω)

+
4(p− 1)

p2

}
ds ≤ C4 for all t ≥ 0.

This enables us to apply Lemma 2.3 to conclude that
∫

Ω
cpε ≤

∫

Ω
c
p
0 +

pC4

1− e−p
for all t > 0

whenever ε ∈ (0, 1). �

We are now prepared to trace the evolution of the superlinear functional
∫
Ω nε lnnε which has turned

out to be fruitful in numerous previous works on chemotaxis systems especially, but not exclusively,
in two-dimensional situations ([38], [7], [3]). In the present context, we shall see that when suitably
combined with

∫
Ω |∇cε|2, this functional indeed plays the role of a quasi-energy, where in estimating

the respective destabilizing contributions of the taxis and the fluid interaction terms arising during
the corresponding testing procedure, substantial use will be made of both Lemma 6.1 and Lemma 5.3.

Lemma 6.2 There exists C > 0 such that for any ε ∈ (0, 1) we have
∫ t+1

t

∫

Ω
n2ε ≤ C for all t ≥ 0 (6.3)

and ∫

Ω
|∇cε(·, t)|2 ≤ C for all t > 0. (6.4)

Proof. Again using that nε is positive in Ω̄ × (0,∞), we may multiply the first equation in (2.3)
by lnnε to see on integrating by parts and employing Young’s inequality as well as (1.7) that

d

dt

∫

Ω
nε lnnε +

∫

Ω

|∇nε|2
nε

=

∫

Ω
∇nε ·

(
Sε(x, nε, cε) · ∇cε

)

≤ 1

2

∫

Ω

|∇nε|2
nε

+
1

2

∫

Ω
nε

∣∣∣Sε(x, nε, cε)|2 · |∇cε|2

≤ 1

2

∫

Ω

|∇nε|2
nε

+
S2
0

2

∫

Ω
nε(1 + nε)

−2α|∇cε|2 for all t > 0

and hence
d

dt

∫

Ω
nε lnnε +

1

2

∫

Ω

|∇nε|2
nε

≤ S2
0

2

∫

Ω
n1−2α
ε |∇cε|2 for all t > 0. (6.5)

In order to control the term on the right-hand side herein from above and to estimate the second
summand on the left from below, we use the Gagliardo-Nirenberg inequality together with (2.7) to
find C1 > 0 and C2 > 0 such that

∫

Ω
n2ε = ‖√nε‖4L4(Ω)

≤ C1‖∇
√
nε‖2L2(Ω)‖

√
nε‖2L2(Ω) + C1‖

√
nε‖4L2(Ω)

≤ C2

∫

Ω

|∇nε|2
nε

+ C2 for all t > 0.
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Therefore, we firstly have

1

2

∫

Ω

|∇nε|2
nε

≥ 1

2C2

∫

Ω
n2ε −

1

2
for all t > 0,

and by means of Young’s inequality we secondly obtain C3 > 0 such that

S2
0

2

∫

Ω
n1−2α
ε |∇cε|2 ≤

1

4C2

∫

Ω
n2ε + C3

∫

Ω
|∇cε|

4
1+2α for all t > 0,

whence (6.5) implies that

d

dt

∫

Ω
nε lnnε +

1

4C2

∫

Ω
n2ε ≤

1

2
+ C3

∫

Ω
|∇cε|

4
1+2α for all t > 0. (6.6)

Now the summand on the right can essentially be absorbed by making use of Lemma 6.1 and the
dissipative properties of the second equation in (2.3): Indeed, testing the latter by −∆cε shows that

1

2

d

dt

∫

Ω
|∇cε|2 +

∫

Ω
|∆cε|2 +

∫

Ω
|∇cε|2 = −

∫

Ω
nε∆cε +

∫

Ω
(uε · ∇cε)∆cε

= −
∫

Ω
nε∆cε −

∫

Ω
∇cε · ∇(uε · ∇cε)

= −
∫

Ω
nε∆cε −

∫

Ω
∇cε · (∇uε · ∇cε) for all t > 0, (6.7)

because
∫

Ω
∇cε · (D2cε · uε) =

1

2

∫

Ω
uε · ∇|∇cε|2 = 0 for all t > 0

due to the fact that ∇ · uε ≡ 0. Here since combining the Gagliardo-Nirenberg inequality with well-
known elliptic regularity theory ([19]) we can pick C3 > 0 such that

‖∇cε‖2L4(Ω) ≤ C3‖∆cε‖L2(Ω)‖∇cε‖L2(Ω) for all t > 0,

using the Cauchy-Schwarz inequality and Young’s inequality we can estimate

−
∫

Ω
∇cε · (∇uε · ∇cε) ≤ ‖∇uε‖L2(Ω)‖∇cε‖2L4(Ω)

≤ C3‖∇uε‖L2(Ω)‖∆cε‖L2(Ω)‖∇cε‖L2(Ω)

≤ 1

4

∫

Ω
|∆cε|2 + C2

3

{∫

Ω
|∇uε|2

}
·
{∫

Ω
|∇cε|2

}
for all t > 0.

As the Cauchy-Schwarz inequality furthermore warrants that

−
∫

Ω
nε∆cε ≤

1

4

∫

Ω
|∆cε|2 +

∫

Ω
n2ε for all t > 0,
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from (6.7) we thus infer that

d

dt

∫

Ω
|∇cε|2 +

∫

Ω
|∆cε|2 + 2

∫

Ω
|∇cε|2 ≤ 2

∫

Ω
n2ε + 2C2

3

{∫

Ω
|∇uε|2

}
·
{∫

Ω
|∇cε|2

}
for all t > 0

and that hence, by (6.6), writing a := 1
16C2

we have

d

dt

{∫

Ω
nε lnnε + a

∫

Ω
|∇cε|2

}
+ 2a

∫

Ω
n2ε + a

∫

Ω
|∆cε|2 + 2a

∫

Ω
|∇cε|2

≤ 1

2
+ C3

∫

Ω
|∇cε|

4
1+2α + 2aC2

3

{∫

Ω
|∇uε|2

}
·
{∫

Ω
|∇cε|2

}
for all t > 0. (6.8)

We now once more apply the Gagliardo-Nirenberg inequality together with elliptic regularity estimates
and Young’s inequality to see that in view of Lemma 6.1 applied to p := 1

α
we can find positive constants

C4, C5 and C6 fulfilling

1

2
+ C3

∫

Ω
|∇cε|

4
1+2α =

1

2
+ C3‖∇cε‖

4
1+2α

L
4

1+2α (Ω)

≤ 1

2
+ C4‖∆cε‖

2
1+2α

L2(Ω)
‖cε‖

2
1+2α

L
1
α (Ω)

+ C4‖cε‖
4

1+2α

L
1
α (Ω)

≤ C5‖∆cε‖
2

1+2α

L2(Ω)
+ C5

≤ a

∫

Ω
|∆cε|2 + C6 for all t > 0.

In light of this, from (6.8) we thus infer that

y(t) :=

∫

Ω
nε(·, t) lnnε(·, t) + a

∫

Ω
|∇cε(·, t)|2, t ≥ 0,

as well as

g(t) := 2a

∫

Ω
n2ε(·, t) and h(t) := 2C2

3

∫

Ω
|∇uε(·, t)|2, t > 0,

satisfy

y′(t) + g(t) ≤ h(t)
{
y(t) +

|Ω|
e

}
+ C6 for all t > 0 (6.9)

because for all t > 0 we have

−
∫

Ω
nε lnnε ≤

|Ω|
e

(6.10)

due to the fact that ξ ln ξ ≥ −1
e
for all ξ > 0. In order to integrate this appropriately, we recall that

according to Lemma 5.3, Lemma 5.2 and Lemma 5.1 we can find C7 > 0 and C8 > 0 such that

∫ t

t−1
h(s)ds = 2C2

3

∫ t

t−1

{∫

Ω
|∇uε|2

}
≤ C7 for all t ≥ 1 (6.11)
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and

∫ t

t−1

{
‖nε(·, s)‖2

L
1

1−α (Ω)
+ ‖∇cε(·, s)‖2L2(Ω)

}
ds ≤ C8 for all t ≥ 1,

so that for each fixed t > 0 we can find t⋆(t) ≡ t⋆(t; ε) ≥ 0 such that t⋆(t) ∈ (t− 1, t) and

‖nε(·, t⋆(t))‖2
L

1
1−α (Ω)

+ ‖∇cε(·, t⋆(t))‖2L2(Ω) ≤ C9 := max
{
C8 , ‖n0‖2

L
1

1−α (Ω)
+ ‖∇c0‖2L2(Ω)

}
.

By validity of the elementary inequality ξ ln ξ ≤ 1−α
αe
ξ

1
1−α for all ξ > 0, this in particular implies that

∫

Ω
nε(·, t⋆(t)) lnnε(·, t⋆(t)) ≤

1− α

αe

∫

Ω
n

1
1−α
ε (·, t⋆(t)) ≤ C10 :=

1− α

αe
· C

1
2(1−α)

9

and that hence

y(t⋆(t)) ≤ C11 := C10 + aC9.

As g is nonnegative, integrating (6.9) and using (6.11) we therefore see that

y(t) ≤
{
y(t⋆(t)) +

|Ω|
e

}
· e

∫ t

t⋆(t)
h(s)ds

+

∫ t

t⋆(t)
e
∫ t

s
h(σ)dσ · C6ds

≤
{
C11 +

|Ω|
e

}
· eC7 +

∫ t

t⋆(t)
eC7 · C6ds

≤ C12 :=
{
C6 + C11 +

|Ω|
e

}
· eC7 for all t > 0, (6.12)

and that thus, again by (6.9) and (6.11),

∫ t+1

t

g(s)ds ≤ y(t)− y(t+ 1) +

∫ t+1

t

h(s)
{
y(s) +

|Ω|
e

}
ds+ C6

≤ C12 +
|Ω|
e

+ C7

{
C12 +

|Ω|
e

}
+ C6 for all t ≥ 0, (6.13)

because for all t > 0 we have −y(t) ≤ −
∫
Ω nε(·, t) lnnε(·, t) ≤ |Ω|e−1 due to (6.10). Whereas (6.12) in

conjunction with (6.10) entails (6.4), from (6.13) we directly obtain (6.3). �

In consequence of the space-time L2 estimate for nε contained in the latter, recalling Lemma 3.3 we
directly obtain the following.

Lemma 6.3 There exists C > 0 such that
∫

Ω
|∇uε(·, t)|2 ≤ C for all t > 0 (6.14)

whenever ε ∈ (0, 1).
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Proof. According to the boundedness of ∇φ in Ω, the spatio-temporal estimate (6.3) for nε from
Lemma 6.2 ensures that

sup
ε∈(0,1)

sup
t≥0

∫ t+1

t

∫

Ω
|nε∇φ|2 <∞.

Therefore, an application of Lemma 3.3 to τ := 1 directly yields (6.14). �

We also note an evident by-product thereof, becoming useful in the derivation of an L∞ bound for nε
in Lemma 8.1.

Lemma 6.4 For all p > 1 one can find C(p) > 0 fulfilling

‖uε(·, t)‖Lp(Ω) ≤ C(p) for all t > 0 (6.15)

and each ε ∈ (0, 1).

Proof. Since W 1,2(Ω) →֒ Lp(Ω), this is an immediate consequence of Poincaré’s inequality and
Lemma 6.3. �

7 Bounds for nε and ∇cε in L
p(Ω)

Now our knowledge on regularity of uε is sufficient to allow for the derivation of Lp bounds for both
nε and ∇cε by means of an analysis of a functional combining

∫
Ω n

p
ε with

∫
Ω |∇cε|2q with arbitrarily

large p and suitably chosen q = q(p), thus following an approach well-established in the context of
semilinear and also quasilinear chemotaxis systems ([45], [25]).

Lemma 7.1 For all p > 1 there exists C(p) > 0 such that for all ε ∈ (0, 1) we have
∫

Ω
npε(·, t) ≤ C(p) for all t > 0 (7.1)

and ∫

Ω
|∇cε(·, t)|p ≤ C(p) for all t > 0. (7.2)

Moreover, there exists C > 0 such that

∫ t+1

t

∫

Ω
|∇nε|2 ≤ C for all t ≥ 0 (7.3)

whenever ε ∈ (0, 1).

Proof. Without loss of generality assuming that p > 2, since α > 0 it is possible to choose q > 3
2

such that q ≥ p
2 and

p

1 + 4α
< q < p. (7.4)

Now using the first two equations in (2.3) we compute

1

p

d

dt

∫

Ω
npε + (p− 1)

∫

Ω
np−2
ε |∇nε|2 = (p− 1)

∫

Ω
np−1
ε ∇nε ·

(
Sε(x, nε, cε) · ∇cε

)
for all t > 0 (7.5)
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and

1

2q

d

dt

∫

Ω
|∇cε|2q =

∫

Ω
|∇cε|2q−2∇cε · ∇∆cε −

∫

Ω
|∇cε|2q +

∫

Ω
|∇cε|2q−2∇cε · ∇nε

−
∫

Ω
|∇cε|2q−2∇cε · ∇(uε · ∇cε)

=
1

2

∫

Ω
|∇cε|2q−2∆|∇cε|2 −

∫

Ω
|∇cε|2q−2|D2cε|2 −

∫

Ω
|∇cε|2q

−
∫

Ω
nε|∇cε|2q−2∆cε −

∫

Ω
nε∇cε · ∇|∇cε|2q−2

−
∫

Ω
|∇cε|2q−2∇cε · (∇uε · ∇cε)

≤ −2(q − 1)

q2

∫

Ω

∣∣∣∇|∇cε|q
∣∣∣
2
−
∫

Ω
|∇cε|2q−2|D2cε|2 −

∫

Ω
|∇cε|2q

−
∫

Ω
nε|∇cε|2q−2∆cε − 2(q − 1)

∫

Ω
nε|∇cε|2q−4∇cε · (D2cε · ∇cε)

−
∫

Ω
|∇cε|2q−2∇cε · (∇uε · ∇cε) for all t > 0, (7.6)

where we have used that ∇cε · ∇∆cε =
1
2∆|∇cε|2 − |D2cε|2 and ∇|∇cε|2 = 2D2cε · ∇cε in Ω× (0,∞),

that ∂|∇cε|2

∂ν
≤ 0 on ∂Ω× (0,∞) by convexity of Ω and the identity ∂cε

∂ν
= 0 on ∂Ω× (0,∞) ([36]), and

that ∇ · uε ≡ 0, which namely implies that

−
∫

Ω
|∇cε|2q−2∇cε · ∇(uε · ∇cε) +

∫

Ω
|∇cε|2q−2∇cε · (∇uε · ∇cε)

= −
∫

Ω
|∇cε|2q−2∇cε · (D2cε · uε)

= − 1

2q

∫

Ω
uε · ∇|∇cε|2q

= 0 for all t > 0.

Now on the right-hand side of (7.5), we recall (1.7) and employ Young’s inequality to see that for all
t > 0,

(p− 1)

∫

Ω
np−1
ε ∇nε ·

(
Sε(x, nε, cε) · ∇cε

)
≤ p− 1

2

∫

Ω
np−2
ε |∇nε|2 +

(p− 1)S2
0

2

∫

Ω
np−2α
ε |∇cε|2 (7.7)

where invoking the Cauchy-Schwarz inequality and the Gagliardo-Nirenberg inequality, thanks to (2.7)
and the outcome of Lemma 6.2 we obtain that with some positive constants C1 and C2 we have

(p− 1)S2
0

2

∫

Ω
np−2α
ε |∇cε|2 ≤ (p− 1)S2

0

2

{∫

Ω
n2(p−2α)
ε

} 1
2

·
{∫

Ω
|∇cε|4

} 1
2

=
(p− 1)S2

0

2
‖n

p

2
ε ‖

2(p−2α)
p

L
4(p−2α)

p (Ω)

∥∥∥|∇cε|q
∥∥∥

2
q

L
4
q (Ω)
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≤ C1 ·
{
‖∇n

p

2
ε ‖

2(p−2α)
p

·(1− 1
2(p−2α)

)

L2(Ω)
‖n

p

2
ε ‖

1
p

L
2
p (Ω)

+ ‖n
p

2
ε ‖

2(p−2α)
p

L
2
p (Ω)

}

×
{∥∥∥∇|∇cε|q

∥∥∥
1
q

L2(Ω)

∥∥∥|∇cε|q
∥∥∥

1
q

L
2
q (Ω)

+
∥∥∥|∇cε|q

∥∥∥
2
q

L
2
q (Ω)

}

≤ C2 ·
{
‖∇n

p

2
ε ‖

2(p−2α)
p

·(1− 1
2(p−2α)

)

L2(Ω)
+ 1

}
·
{∥∥∥∇|∇cε|q

∥∥∥
1
q

L2(Ω)
+ 1

}
(7.8)

for all t > 0. Here since

2(p− 2α)

p
·
(
1− 1

2(p− 2α)

)
=

2p− 4α− 1

p
,

again by Young’s inequality we see that with some C3 > 0 and C4 := 2
2q

2q−1
−1
C3 we have

C2 ·
{
‖∇n

p

2
ε ‖

2(p−2α)
p

·(1− 1
2(p−2α)

)

L2(Ω)
+ 1

}
·
{∥∥∥∇|∇cε|q

∥∥∥
1
q

L2(Ω)
+ 1

}

≤ q − 1

q2
· 21−2q ·

{∥∥∥∇|∇cε|q
∥∥∥

1
q

L2(Ω)
+ 1

}2q

+C3 ·
{
‖∇n

p

2
ε ‖

2p−4α−1
p

L2(Ω)
+ 1

} 2q
2q−1

≤ q − 1

q2
·
{∥∥∥∇|∇cε|q

∥∥∥
2

L2(Ω)
+ 1

}

+C4 ·
{
‖∇n

p

2
ε ‖

2p−4α−1
p

· 2q
2q−1

L2(Ω)
+ 1

}
for all t > 0, (7.9)

and since the left inequality in (7.4) warrants that

2q

2q − 1
=

1

1− 1
2q

<
1

1− 1+4α
2p

=
2p

2p− 4α− 1

and that thus

2p− 4α− 1

p
· 2q

2q − 1
< 2,

Young’s inequality again becomes applicable so as to provide C5 > 0 fulfilling

C4 ·
{
‖∇n

p

2
ε ‖

2p−4α−1
p

· 2q
2q−1

L2(Ω)
+ 1

}
≤ p− 1

p2
‖∇n

p

2
ε ‖2L2(Ω) + C5

=
p− 1

4

∫

Ω
np−2
ε |∇nε|2 + C5 for all t > 0,

which combined with (7.5), (7.7), (7.8) and (7.9) shows that

1

p

d

dt

∫

Ω
npε +

p− 1

4

∫

Ω
np−2
ε |∇nε|2 ≤

q − 1

q2

∫

Ω

∣∣∣∇∇cε|q
∣∣∣
2
+ C6 for all t > 0 (7.10)
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with C6 :=
q−1
q2

+ C5.

Next, in quite a similar manner we estimate the summands on the right of (7.6) which contain nε:
Indeed, using that |∆cε| ≤

√
2|D2cε| in Ω× (0,∞), we first employ Young’s inequality to separate the

highest-order contributions according to

−
∫

Ω
nε|∇cε|2q−2∆cε − 2(q − 1)

∫

Ω
nε|∇cε|2q−4∇cε · (D2cε · ∇cε)

≤ 1

4

∫

Ω
|∇cε|2q−2|∆cε|2 +

∫

Ω
n2ε|∇cε|2q−2

+
1

2

∫

Ω
|∇cε|2q−2|D2cε|2 + 2(q − 1)2

∫

Ω
n2ε|∇cε|2q−2

≤
∫

Ω
|∇cε|2q−2|D2cε|2 +

(
1 + 2(q − 1)2

)∫

Ω
n2ε|∇cε|2q−2 for all t > 0, (7.11)

and thereafter we use the Cauchy-Schwarz inequality and the Gagliardo-Nirenberg inequality along
with (2.7) and Lemma 6.2 to infer the existence of C7 > 0 and C8 > 0 such that

(
1 + 2(q − 1)2

)∫

Ω
n2ε|∇cε|2q−2 ≤

(
1 + 2(q − 1)2

){∫

Ω
n4ε

} 1
2

·
{∫

Ω
|∇cε|4q−4

} 1
2

=
(
1 + 2(q − 1)2

)
‖n

p

2
ε ‖

4
p

L
8
p (Ω)

∥∥∥|∇cε|q
∥∥∥

2q−2
q

L
4q−4

q (Ω)

≤ C7 ·
{
‖∇n

p

2
ε ‖

3
p

L2(Ω)
‖n

p

2
ε ‖

1
p

L
2
p (Ω)

+ ‖n
p

2
ε ‖

4
p

L
2
p (Ω)

}

×
{∥∥∥∇|∇cε|q

∥∥∥
2q−3

q

L2(Ω)

∥∥∥|∇cε|q
∥∥∥

1
q

L
2
q (Ω)

+
∥∥∥|∇cε|q

∥∥∥
2q−2

q

L
2
q (Ω)

}

≤ C8 ·
{
‖∇n

p

2
ε ‖

3
p

L2(Ω)
+ 1

}
·
{∥∥∥∇|∇cε|q

∥∥∥
2q−3

q

L2(Ω)
+ 1

}
(7.12)

for all t > 0, where we rely on our assumption that q > 3
2 which guarantees that indeed 4q−4

q
≥ 2

q
.

Now since also p > 2, we may invoke Young’s inequality to find C9 > 0 satisfying

C8 ·
{
‖∇n

p

2
ε ‖

3
p

L2(Ω)
+ 1

}
·
{∥∥∥∇|∇cε|q

∥∥∥
2q−3

q

L2(Ω)
+ 1

}

≤ p− 1

2p2
· 21−

2p
3 ·

{
‖∇n

p

2
ε ‖

3
p

L2(Ω)
+ 1

} 2p
3

+ C9 ·
{∥∥∥∇|∇cε|q

∥∥∥
2q−3

q

L2(Ω)
+ 1

} 2p
2p−3

≤ p− 1

2p2
·
{
‖∇n

p

2
ε ‖2L2(Ω) + 1

}
+ C10 ·

{∥∥∥∇|∇cε|q
∥∥∥

2q−3
q

· 2p
2p−3

L2(Ω)
+ 1

}
for all t > 0 (7.13)

with C10 := 2
2p

2p−3
−1
C9, and since moreover the right inequality in (7.4) asserts that

2q − 3

q
· 2p

2p− 3
< 2,
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another application of Young’s inequality shows that there exists C11 > 0 fulfilling

C10 ·
{∥∥∥∇|∇cε|q

∥∥∥
2q−3

q
· 2p
2p−3

L2(Ω)
+ 1

}
≤ q − 1

2q2

∥∥∥∇|∇cε|q
∥∥∥
2

L2(Ω)
+ C11 for all t > 0.

Therefore, (7.11), (7.12) and (7.13) imply that for all t > 0,

−
∫

Ω
nε|∇cε|2q−2∆cε − 2(q − 1)

∫

Ω
nε|∇cε|2q−4∇cε · (D2cε · ∇cε)

≤
∫

Ω
|∇cε|2q−2|D2cε|2 +

p− 1

2p2
·
{
‖∇n

p

2
ε ‖2L2(Ω) + 1

}
+
q − 1

2q2

∥∥∥∇|∇cε|q
∥∥∥
2

L2(Ω)
+ C11

=

∫

Ω
|∇cε|2q−2|D2cε|2 +

p− 1

8

∫

Ω
np−2
ε |∇nε|2 +

q − 1

2q2

∫

Ω

∣∣∣∇|∇cε|q
∣∣∣
2
+ C12 (7.14)

with C12 :=
p−1
2p2

+ C11.

Finally, in the rightmost summand in (7.6) we apply the Cauchy-Schwarz inequality and make use of
Lemma 6.3 to find C13 > 0 such that

−
∫

Ω
|∇cε|2q−2∇cε · (∇uε · ∇cε) ≤

{∫

Ω
|∇uε|2

} 1
2

·
{∫

Ω
|∇cε|4q

} 1
2

≤ C13

{∫

Ω
|∇cε|4q

} 1
2

for all t > 0,

where again by the Gagliardo-Nirenberg inequality, Lemma 6.2 and Young’s inequality, we see that
with some C14 > 0, C15 > 0 and C16 > 0 we have

C13

{∫

Ω
|∇cε|4q

} 1
2

= C13

∥∥∥|∇cε|q
∥∥∥
2

L4(Ω)

≤ C14

∥∥∥∇|∇cε|q
∥∥∥

2q−1
q

L2(Ω)

∥∥∥|∇cε|q
∥∥∥

1
q

L
2
q (Ω)

+ C14

∥∥∥|∇cε|q
∥∥∥
2

L
2
q (Ω)

≤ C15

∥∥∥∇|∇cε|q
∥∥∥

2q−1
q

L2(Ω)
+ C15

≤ q − 1

8q2

∫

Ω

∣∣∣∇|∇cε|q
∣∣∣
2
+ C16 for all t > 0. (7.15)

We now collect (7.14) and (7.15) to see that (7.6) combined with (7.10) entails that

d

dt

{
1

p

∫

Ω
npε +

1

2q

∫

Ω
|∇cε|2q

}
+
p− 1

8

∫

Ω
np−2
ε |∇nε|2 +

∫

Ω
|∇cε|2q ≤ C6 + C12 + C16

for all t > 0, so that since a Poincaré-type inequality together with (2.7) provides C17 > 0 and C18 > 0
such that

∫

Ω
npε ≤ C17

∫

Ω
|∇n

p

2
ε |2 + C17 ·

{∫

Ω
nε

}p

≤ p2C17

4

∫

Ω
np−2
ε |∇nε|2 + C18 for all t > 0,
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it follows that

y(t) :=
1

p

∫

Ω
npε(·, t) +

1

2q

∫

Ω
|∇cε(·, t)|2q, t ≥ 0,

and

g(t) :=
p− 1

16

∫

Ω
np−2
ε (·, t)|∇nε(·, t)|2, t > 0,

satisfy
y′(t) + C19y(t) + g(t) ≤ C20 for all t > 0 (7.16)

with C19 := min
{

p−1
4pC17

, 2q
}
and C20 := C6+C12+C16+

(p−1)C18

4p2C17
. Since Lemma 2.1 warrants that y

is continuous at t = 0, an ODE comparison argument becomes applicable so as to assert that (7.16)
entails the inequality

y(t) ≤ C21 := max

{
1

p

∫

Ω
n
p
0 +

1

2q

∫

Ω
|∇c0|2q ,

C20

C19

}
for all t > 0

and thereby proves both (7.1) and (7.2), because 2q ≥ p according to our choice of q. Furthermore,
restricting ourselves to the particular case p = 2 and integrating (7.16), we see that

∫ t+1

t

g(s)ds ≤ y(t) + C20 ≤ C21 + C20 for all t ≥ 0,

and that hence also (7.3) holds. �

8 Hölder estimates for nε and uε

We next aim at the derivation of bounds for the components nε and uε in spaces of Hölder continuous
functions. Firstly, (nε)ε∈(0,1) is bounded in L∞(Ω× (0,∞)) thanks to Lemma 7.1 and Lemma 6.4:

Lemma 8.1 There exists C > 0 such that for all ε ∈ (0, 1) we have

‖nε(·, t)‖L∞(Ω) ≤ C for all t > 0. (8.1)

Proof. Since Lemma 7.1 together with Lemma 6.4 warrants that the family (nε)ε∈(0,1) is bounded
in L∞((0,∞);Lp(Ω)) and that (−nεSε(·, nε, cε)·∇cε−nεuε)ε∈(0,1) is bounded in L∞((0,∞);Lp(Ω;R2))
for any finite p > 1, similar to the claim from Lemma 4.4 this can be seen by means of an Lp iteration
of Moser-type ([45, Lemma A.1]). �

Again due to the regularity properties asserted by Lemma 7.1 and Lemma 6.4, and due to the assumed
Hölder continuity of n0, it follows from standard parabolic theory that nε even satisfies estimates in
appropriate Hölder spaces:

Lemma 8.2 There exist θ ∈ (0, 1) and C > 0 such that for any ε ∈ (0, 1),

‖nε‖
Cθ, θ2 (Ω̄×[t,t+1])

≤ C for all t ≥ 0. (8.2)
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Proof. We interpret the first equation in (2.3) as saying that

nεt = ∇ · aε(x, t,∇nε), x ∈ Ω, t > 0,

with

aε(x, t, ξ) := ξ + fε(x, t), x ∈ Ω, t > 0, ξ ∈ R
2,

where as in Lemma 4.4, fε := −nεSε(x, nε, cε) · ∇cε − nεuε. Since by Young’s inequality,

aε(x, t, ξ) · ξ = |ξ|2 + fε · ξ ≥
1

2
|ξ|2 − 1

2
|fε|2 for all (x, t, ξ) ∈ Ω× (0,∞)× R

2

and

|aε(x, t, ξ)| ≤ |ξ|+ |fε| for all (x, t, ξ) ∈ Ω× (0,∞)× R
2,

again using that Lemma 7.1 and Lemma 6.4 guarantee boundedness of (fε)ε∈(0,1) in any space
L∞((0,∞);Lp(Ω;R2)) for arbitrary p > 1, we obtain from a standard result on Hölder regularity
in scalar parabolic equations ([39, Theorem 1.3, Remark 1.4]), relying on the boundedness property
asserted by Lemma 8.1, that (8.2) holds with some θ ∈ (0, ϑ] and C > 0, with ϑ ∈ (0, 1) taken from
(1.10). �

Independently of the latter two lemmata, the following estimates for the fluid velocity field directly
result on applying Lemma 3.4 on the basis of Lemma 7.1.

Lemma 8.3 Given any β ∈ (12 , 1), one can find θ(β) ∈ (0, 1) and C(β) > 0 such that whenever
ε ∈ (0, 1),

‖Aβuε(·, t)‖L2(Ω) ≤ C(β) for all t > 0 (8.3)

and
‖Aβuε(·, t)−Aβuε(·, t0)‖L2(Ω) ≤ C1(t− t0)

θ for all t0 ≥ 0 and t > t0. (8.4)

Proof. As a particular consequence of Lemma 7.1 and the boundedness of ∇φ in Ω, we know that
(nε∇φ)ε∈(0,1) is bounded in L∞((0,∞);L2(Ω;R2)). Therefore, Lemma 3.4 applies so as to yield both
(8.3) and (8.4). �

This inter alia implies an ε-independent space-time Hölder continuity property also of uε. For later
reference in Lemma 9.1, we also note a consequence of Lemma 8.3 on integrability of ∇uε in higher-
power Lp spaces.

Lemma 8.4 There exist θ ∈ (0, 1) and C > 0 with the property that for each ε ∈ (0, 1) we have

‖uε‖
Cθ, θ2 (Ω̄×[t,t+1])

≤ C for all t ≥ 0. (8.5)

Moreover, for all p > 1 there exists C(p) > 0 satisfying

‖∇uε(·, t)‖Lp(Ω) ≤ C(p) for all t > 0 (8.6)

and arbitrary ε ∈ (0, 1).

Proof. The estimate (8.5) directly results upon an application of (8.3) and (8.4) to an arbitrary
β ∈ (12 , 1), because a known embedding property of the domain of the corresponding fractional power
of the Stokes operator says that for any such β we have D(Aβ) →֒ Cθ1(Ω̄;R2) whenever θ1 ∈ (0, 2β−1)
([16], [21]). To verify (8.6), given p > 1 we fix β ∈ (12 , 1) suitably large fulfilling β > 1− 1

p
. Then since

D(Aβ) →֒W 1,p(Ω;R2) ([16], [21]), (8.6) becomes a consequence of (8.3). �
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9 Estimates in C
2+θ,1+ θ

2 for uε and cε. Hölder continuity of cε

In order to complete our preparations for passing to the limit ε→ 0 in Lemma 10.1, we finally derive
Hölder estimates for the quantities uε and cε and their derivatives up to the respective order relevant
to (1.1), possibly local in time due to a lack of corresponding regularity at the initial time. As for the
component uε, we firstly make use of Lemma 8.4 in applying a well-known result on maximal Sobolev
regularity in the Stokes system to obtain the following.

Lemma 9.1 For all p > 1 and τ > 0 there exist C(p, τ) > 0 fulfilling

‖uε‖Lp((t,t+1);W 2,p(Ω)) + ‖uεt‖Lp(Ω×(t,t+1)) ≤ C(p, τ) for all t ≥ τ (9.1)

whenever ε ∈ (0, 1).

Proof. Given p > 1, by using Lemma 7.1 along with the boundedness of ∇φ, we can find C1 > 0
such that for all ε ∈ (0, 1) we have

‖nε(·, t)∇φ‖Lp(Ω) ≤ C1 for all t > 0.

Moreover, according to the Cauchy-Schwarz inequality and Lemma 3.1, the outcome of Lemma 8.4
ensures that with some positive constants C2, C3 and C4 we have

∥∥∥(Yεuε · ∇)uε

∥∥∥
Lp(Ω)

≤ C2‖Yεuε(·, t)‖L2p(Ω)‖∇uε(·, t)‖L2p(Ω)

≤ C3‖∇uε(·, t)‖L2(Ω)‖∇uε(·, t)‖L2p(Ω)

≤ C4 for all t > 0

whenever ε ∈ (0, 1). Therefore, (9.1) is a straightforward consequence of maximal Sobolev regularity
estimates for the Stokes evolution equation ([18]). �

As the latter warrants a favorable Hölder continuity property of the convective term in the third
equation in (2.3), in view of Lemma 8.2 now classical Schauder theory for the Stokes system becomes

applicable to establish the desired C2+θ,1+ θ
2 estimate for uε.

Lemma 9.2 Let τ > 0. Then exist θ = θ(τ) ∈ (0, 1) and C(τ) such that for any choice of ε ∈ (0, 1).

‖uε‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
≤ C(τ) for all t ≥ τ. (9.2)

Proof. From Lemma 8.2 and our regularity assumptions on φ we know that there exist θ1 ∈ (0, 1)
and C1 > 0 such that

‖nε∇φ‖
Cθ1,

θ1
2 (Ω̄×[t,t+2])

≤ C1 for all t ≥ 0, (9.3)

whereas applying Lemma 9.1 to some suitably large p > 1, in view of a known embedding result ([2])
we can find θ2 ∈ (0, 1) with the property that for all τ > 0 there exists C2 > 0 fulfilling

‖uε‖C1+θ2,θ2 (Ω̄×[t,t+2]) ≤ C2 for all t ≥ τ

2
. (9.4)
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Moreover, fixing an arbitrary β ∈ (12 , 1), from Lemma 8.3 we obtain θ3 ∈ (0, 1) and C3 > 0 satisfying

‖Aβuε(·, t)−Aβuε(·, t0)‖L2(Ω) ≤ C3(t− t0)
θ3 for all t0 ≥ 0 and t > t0,

which in view of the embedding D(Aβ) →֒ Cθ4(Ω̄;R2) for arbitrary fixed θ4 ∈ (0, 2β − 1) implies that

‖Yεuε(·, t)− Yεuε(·, t0)‖Cθ4 (Ω̄) ≤ C4‖AβYεuε(·, t)−AβYεuε(·, t0)‖L2(Ω)

= C4

∥∥∥YεAβ
[
uε(·, t)− uε(·, t0)

]∥∥∥
L2(Ω)

≤ C4

∥∥∥Aβ
[
uε(·, t)− uε(·, t0)

]∥∥∥
L2(Ω)

≤ C3C4(t− t0)
θ3 for all t0 ≥ 0 and t > t0 (9.5)

with some C4 > 0, once more due to Lemma 3.1 and the fact that Yε commutes with Aβ on D(Aβ).
Now combining (9.4) with (9.5) shows that there exists θ5 ∈ (0, 1) such that for each τ > 0 one can
find C5 > 0 satisfying

∥∥∥(Yεuε · ∇)uε

∥∥∥
Cθ5,

θ5
2 (Ω̄×[t,t+2])

≤ C5 for all t ≥ τ

2
,

which together with (9.3) yields (9.2) according to classical Schauder estimates for the Stokes evolution
problem ([40]). �

Similarly, the regularity properties of nε, cε and uε collected so far imply the following.

Lemma 9.3 There exists θ ∈ (0, 1) with the property that one can find C > 0 such that for any
ε ∈ (0, 1),

‖cε‖
Cθ, θ2 (Ω̄×[t,t+1])

≤ C for all t ≥ 0, (9.6)

and that for arbitrary τ > 0 one can pick C(τ) > 0 fulfilling

‖cε‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
≤ C(τ) for all t ≥ τ (9.7)

whenever ε ∈ (0, 1).

Proof. Interpreting the second equation in (2.3) as the inhomogeneous linear heat equation

cεt = ∆cε + fε(x, t), x ∈ Ω, t > 0, (9.8)

with fε := −cε + nε − uε · ∇cε, collecting the estimates from Lemma 7.1, Lemma 6.1 and Lemma 8.3
we first obtain that for all p > 1 there exists C1 > 0 such that

‖fε(·, t)‖Lp(Ω) ≤ C for all t > 0. (9.9)

Accordingly, (9.6) follows from well-known results from parabolic Hölder regularity theory ([39, The-
orem 1.3, Remark 1.4]). Moreover, (9.9) together with maximal Sobolev regularity estimates for the
Neumann problem associated with the heat equation implies that for any p > 1 and τ > 0 there exists
C2 > 0 such that

‖cε‖Lp((t,t+2);W 2,p(Ω) + ‖cεt‖Lp(Ω×(t,t+2)) ≤ C2 for all t ≥ τ

2
.
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Again by means of a corresponding embedding property ([2]), an application thereof to appropriately
large p > 1 shows that there exists θ1 ∈ (0, 1) such that for each τ > 0 we can pick C3 > 0 fulfilling

‖cε‖C1+θ1,θ1 (Ω̄×[t,t+2]) ≤ C3 for all t ≥ τ

2
.

Together with the results of Lemma 8.2 and Lemma 8.4, this warrants the existence of θ2 ∈ (0, 1) with
the property that for any τ > 0 one can pick C4 > 0 such that

‖fε‖
Cθ2,

θ2
2 (Ω̄×[t,t+2])

≤ C4 for all t ≥ τ

2
,

whereby (9.7) becomes a consequence of well-known Schauder theory for scalar parabolic equations
([31]). �

10 Global existence in the original problem. Proof of Theorem 1.1

By means of a straightforward extraction procedure on the basis of the Arzelà-Ascoli theorem, the
above estimates now enable us to construct a limit which, according to a well-known additional
regularity argument for the limit component n, in fact can be seen to enjoy the desired smoothness
properties and to solve (1.1), (1.8), (1.9) in the classical sense in Ω× (0,∞).

Lemma 10.1 There exist θ ∈ (0, 1), (εk)k∈N ⊂ (0, 1) and functions





n ∈ C
θ, θ

2
loc (Ω̄× [0,∞)) ∩ C2+θ,1+ θ

2
loc (Ω̄× (0,∞)),

c ∈ C
θ, θ

2
loc (Ω̄× [0,∞)) ∩ C2+θ,1+ θ

2
loc (Ω̄× (0,∞)),

u ∈ C
θ, θ

2
loc (Ω̄× [0,∞);R2) ∩ C2+θ,1+ θ

2
loc (Ω̄× (0,∞);R2) and

P ∈ C1,0(Ω̄× (0,∞))

(10.1)

such that n ≥ 0 and c ≥ 0 in Ω× (0,∞), that εk ց 0 as k → ∞ and





nε → n in C0
loc(Ω̄× [0,∞)),

cε → c in C0
loc(Ω̄× [0,∞)) and

uε → u in C0
loc(Ω̄× [0,∞);R2)

(10.2)

as ε = εk ց 0, and that (n, c, u, P ) solve (1.1), (1.8), (1.9) in the classical sense in Ω× (0,∞).

Proof. Collecting Lemma 8.2, Lemma 7.1, Lemma 9.3, Lemma 8.4 and Lemma 9.2, in view of the
Arzelà-Ascoli theorem we obtain θ1 ∈ (0, 1), (εk)k∈N ⊂ (0, 1) and





n ∈ C
θ1,

θ1
2

loc (Ω̄× [0,∞)) ∩ L2
loc([0,∞);W 1,2(Ω)),

c ∈ C
θ1,

θ1
2

loc (Ω̄× [0,∞)) ∩ C2+θ1,1+
θ1
2

loc (Ω̄× (0,∞)) and

u ∈ C
θ1,

θ1
2

loc (Ω̄× [0,∞);R2) ∩ C2+θ1,1+
θ1
2

loc (Ω̄× (0,∞);R2)

(10.3)
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such that εk ց 0 as k → ∞, and such that (10.2) as well as





∇nε ⇀ ∇n in L2
loc(Ω× [0,∞);R2),

∇cε ⇀ ∇c in L2
loc(Ω× [0,∞);R2),

cε → c in C2,1
loc (Ω̄× (0,∞)) and

uε → u in C2,1
loc (Ω̄× (0,∞))

(10.4)

hold as ε = εk ց 0. Therefore, from the nonnegativity of nε and cε and from (2.3) it can readily be
deduced by means of well-known arguments that n ≥ 0 and c ≥ 0 in Ω × (0,∞) and that with some
P ∈ C1,0(Ω̄ × (0,∞)), the respective second and third equations in (1.1), (1.8), (1.9) are satisfied in
the claimed classical pointwise sense (cf. e.g. [59] for a detailed reasoning concerning a limit procedure
in approximate Navier-Stokes systems involving the presently used regularization of the nonlinear
convective term therein).
As for the first sub-problem in (1.1), (1.8), (1.9), in view of the comparatively poor approximation
properties of the component nε, as expressed in (10.3) and appearing rather natural in view of our
cut-off procedure applied to S near ∂Ω, following e.g. [34] and [4] we first verify a respective weak
solution property by showing that

−
∫ ∞

0

∫

Ω
nϕt −

∫

Ω
n0ϕ(·, 0)−

∫ ∞

0

∫

Ω
nu · ∇ϕ = −

∫ ∞

0

∫

Ω
∇n · ∇ϕ

+

∫ ∞

0

∫

Ω
n
(
S(x, n, c) · ∇c

)
· ∇ϕ (10.5)

for all ϕ ∈ C∞
0 (Ω̄ × [0,∞)). To this end, we fix any such ϕ and then obtain from (10.3) that in the

identity

−
∫ ∞

0

∫

Ω
nεϕt −

∫

Ω
n0ϕ(·, 0)−

∫ ∞

0

∫

Ω
nεuε · ∇ϕ = −

∫ ∞

0

∫

Ω
∇nε · ∇ϕ

+

∫ ∞

0

∫

Ω
nε

(
Sε(x, nε, cε) · ∇cε

)
· ∇ϕ, (10.6)

valid for all ε ∈ (0, 1) according to (2.3), we may let ε = εk ց 0 in each of the term on the left-hand
side to find that

−
∫ ∞

0

∫

Ω
nεϕt −

∫

Ω
n0ϕ(·, 0)−

∫ ∞

0

∫

Ω
nεuε · ∇ϕ→ −

∫ ∞

0

∫

Ω
nϕt −

∫

Ω
n0ϕ(·, 0)−

∫ ∞

0

∫

Ω
nu · ∇ϕ

as ε = εk ց 0. Moreover, the first property in (10.4) warrants that

−
∫ ∞

0

∫

Ω
∇nε · ∇ϕ→ −

∫ ∞

0

∫

Ω
∇n · ∇ϕ as ε = εk ց 0,

whereas the uniform convergence features of nε and cε asserted in (10.3), in conjunction with the
continuity of S, ensure that by the dominated convergence theorem

Sε(·, nε, cε) → S(·, n, c) in L2
loc(Ω̄× [0,∞)) as ε = εk ց 0,
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and that hence
∫ ∞

0

∫

Ω
nε

(
Sε(x, nε, cε) · ∇cε

)
· ∇ϕ→

∫ ∞

0

∫

Ω
n
(
S(x, n, c) · ∇c

)
· ∇ϕ as ε = εk ց 0

due to the second convergence property in (10.4). Therefore, (10.5) follows from (10.6), meaning
that n is a generalized solution, in the natural weak sense consistent with those e.g. in [31] and
[35], of the respective initial-boundary value sub-problem of (1.1),(1.8),(1.9). Since n, ∇c and u are
already known to be Hölder continuous in Ω̄ × (0,∞) by (10.3), a well-known result on gradient
Hölder regularity in scalar parabolic equations ([35]) thus warrants that for some θ2 ∈ (0, 1) we have

n ∈ C
1+θ2,θ2
loc (Ω̄ × (0,∞)). Thereupon, standard parabolic Schauder theory applies so as to yield

θ3 ∈ (0, 1) with the property that n ∈ C
2+θ3,1+

θ3
2

loc (Ω̄× (0,∞)), and that hence also the first equations
in (1.1) and (1.9) are satisfied in the classical sense. �

This in fact already contains the major part of our announced main result:

Proof of Theorem 1.1. The statement on global solvability actually is a by-product of Lemma
10.1. In view of the approximation properties in (10.2) and a standard argument based e.g. on lower
semicontinuity of norms in reflexive spaces with respect to weak convergence therein, the estimate in
(1.12) is an evident consequence of the corresponding bounds provided by Lemma 8.1, Lemma 7.1 and
Lemma 8.3. �
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