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Abstract

We consider the no-flux initial-boundary value problem for Keller-Segel-type chemotaxis growth
systems of the form

{
ut = ∆u− χ∇ · (u∇v) + ρu− µu2, x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

in a ball Ω ⊂ R
n, n ≥ 3, with parameters χ > 0, ρ ≥ 0 and µ > 0.

By means of an argument based on a conditional quasi-energy inequality, it is firstly shown that if
χ = 1 is fixed, then for any given K > 0 and T > 0 one can find radially symmetric initial data,
possibly depending on K and T , such that for arbitrary µ ∈ (0, 1) the corresponding local-in-time
classical solution (u, v) satisfies

u(x, t) >
K

µ

with some x ∈ Ω and t ∈ (0, T ); in fact, this growth phenomenon is actually identified as being
generic in the sense that the set of all initial data having this property is dense in the set of all
suitably regular radial initial data in a certain topology.

Secondly, turning a focus on possible effects of large chemotactic sensitivities, on the basis of the
above it is shown that when ρ ≥ 0 and µ > 0 are fixed, then for all L > 0, T > 0 and χ > µ one
can fix radial initial data (u0,χ, v0,χ) which decay in L∞(Ω)×W 1,∞(Ω) as χ → ∞, and which are
such that for the respective solution (uχ, vχ) there exist x ∈ Ω and t ∈ (0, T ) fulfilling

uχ(x, t) > L.
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1 Introduction

Including logistic proliferation terms may substantially influence the dynamics in chemotaxis systems.
This firstly concerns the ability of the respective system to spontaneously generate singularities, as
known to constitute one of the most striking features of the classical Keller-Segel system

{
ut = d∆u− χ∇ · (u∇v),

vt = ∆v − v + u,
(1.1)

which has widely been accepted as the simplest reasonable macroscopic model for the collective be-
havior in cell populations, quantified through their density u = u(x, t), in chemotactic response to
a signal produced by themselves and represented by its concentration v = v(x, t) ([10], [7]). Indeed,
whereas the nonlinear cross-diffusion process in (1.1) is known to enforce finite-time blow-up of some
solutions with respect to the norm in L∞ of its first component in two- or higher-dimensional cases
([6], [26]; cf. also the surveys [8], [3]), in the correspondingly modified variant thereof given by

{
ut = d∆u− χ∇ · (u∇v) + ρu− µu2,

vt = ∆v − v + u,
(1.2)

the additional dissipative effect of the quadratic zero-order death term is known to rule out any such
collapse when either n = 2 and µ > 0 is arbitrary ([17]), or n ≥ 3 and µ is sufficiently large ([25]); if
in the latter case n ≥ 3 the number µ > 0 is arbitrary, then at least certain global weak solutions can
be constructed, and if moreover n = 3 and ρ is suitably small, then these solutions eventually become
smooth and classical ([13]). In line with this, systems of type (1.2) appear as subsystems at the core
of numerous more complex models for chemotactic cell migration at large time scales, especially in
situations when infinite densities turn out to be unrealistic, and thus seem of particular relevance in
the modeling of tumor invasion processes ([4], [22], [20]), also in the context of multiscale approaches
([14], [21]).

However, effects of logistic source terms in fact may go significantly beyond such aspects of global
existence and boundedness theory, and thus the interplay of Fisher-type cell kinetics with diffusion
and chemotactic cross-diffusion is considerably more colorful than with merely diffusion. This is, inter
alia, indicated by numerical evidence revealing quite a multifaceted and possibly even chaotic solution
behavior already in spatially one-dimensional versions of (1.2) ([19]), as well as rich structures of
associated steady-state sets in two-dimensional cases, including the occurrence of hexagonal patterns
([11]).

Apparently, however, up to now only few aspects of the solution behavior in (1.2) have been captured
by rigorous analysis. For instance, it is known that if µ > µ0 with some µ0 = µ0(d, χ, ρ,Ω), then the
corresponding nontrivial spatially homogeneous equilibrium of (1.2) is globally asymptotically stable
(see [27] for a proof in the prototypical case d = χ = ρ = 1), where even an explicit bound for µ0

can be obtained in an associated parabolic-elliptic simplification of (1.2) in which the signal evolution
is governed by the elliptic equation 0 = ∆v − v + u ([23]). In presence of small values of µ when
no such proliferation-dominated behavior can be expected, only little seems known beyond results on
existence and dimension of exponential attractors in two-dimensional frameworks ([17], [16], [2]); after
all, large-time extinction phemonena, as numerically observed to occur in large spatial regions ([19])
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and initially discussed in [1] from a rigorous perspective, have recently been shown to necessarily be of
local nature in the sense that for each global solution, the associated total mass of cells always persists
throughout evolution ([24]).

More subtle qualitative facets of chemotaxis-growth interaction could up to now be rigorously detected
only in simplified parabolic-elliptic settings and under the essential additional assumption that cell
diffusion is suitably weak: In the hyperbolic-elliptic limit case d = 0 of such sytsems, namely, it can
be observed that some solutions blow up in finite time with respect to the spatial L∞ norm of the
component u, even in spatially one-dimensional intervals ([28]), but also in radial higher-dimensional
situations ([12]). Based on a suitable perturbation analysis, it can be shown that in either of these
cases, under an appropriate assumption on the initial data it is possible to find T > 0 with the
property that for each M > 0 there exists d0 > 0 such that whenever d ∈ (0, d0), one can find a point
xd in the spatial domain Ω and td ∈ (0, T ) for which the solution (ud, vd) of an associated Neumann
initial-boundary value problem in Ω× (0, T ) satisfies

ud(xd, td) ≥ M.

In particular, this means that even in situations when solutions are known to be global and bounded,
the influence of chemotactic cross-diffusion may force some solutions to exceed any given threshold
dynamically, at least on intermediate time scales, which is in sharp contrast to the solution behavior
e.g. in the diffusive Fisher-KPP problem corresponding to the choice χ = 0 in (1.2), where such
phenomena are ruled out by the availability of a maximum principle.

Main results. To the best of our knowledge, however, no rigorous results on solution behavior
far from equilibrium are available for the fully parabolic system (1.2), nor for any chemotaxis-growth
system involving possibly large diffusion rates. The purpose of the present work consists in developing
an approach which enables us to accomplish some first steps in this direction, and especially to show
that the dynamical emergence of structures, extreme in the sense that arbitrarily large population
densities are involved, need not necessarily be a small-diffusion phenomenon.

For this purpose, firstly focusing only on the parameters relevant to cell proliferation we will consider
the initial-boundary value problem





ut = ∆u−∇ · (u∇v) + ρu− εu2, x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.3)

in a ball Ω ⊂ R
n, n ≥ 3, where the numbers ρ ≥ 0 and ε > 0 as well as the initial data u0 and v0 are

given.

As for this problem, the first of our main results reveals an unboundeness phenomenon, possibly
transient in time, which can even be viewed generic with respect to the choice of initial data within
an appropriate topology, and which can moreover be quantified in terms of the parameter ε in (1.3).

Theorem 1.1 Let n ≥ 3 and Ω = BR(0) ⊂ R
n with some R > 0, let ρ ≥ 0, and suppose that

u0 ∈ C0(Ω) and v0 ∈ W 1,∞(Ω) are radially symmetric and positive in Ω. Then for all K > 0 and each
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T ∈ (0, 1) there exist sequences (u0k)k∈N ⊂ C0(Ω) and (v0k)k∈N ⊂ W 1,∞(Ω) of radially symmetric
positive functions u0k and v0k on Ω such that

∫

Ω
u0k =

∫

Ω
u0 for all k ∈ N, (1.4)

that

u0k → u0 in Lp(Ω) for all p ∈
[
1,

2n

n+ 2

)
and v0k → v0 in W 1,2(Ω) (1.5)

as k → ∞, and that for all k ∈ N and ε ∈ (0, 1) one can find tε,k ∈ (0, T ) with the property that (1.3)
possesses a classical solution (uε,k, vε,k) ∈ (C0(Ω× [0, tεk ]) ∩ C2,1(Ω× (0, tε,k)))

2 which is such that

uε,k(xε,k, tε,k) >
K

ε
for some xε,k ∈ Ω. (1.6)

In particular, this implies the following quantitative result on dynamical growth in (1.3) for a fixed
pair of initial data.

Corollary 1.2 Let n ≥ 3 and Ω = BR(0) ⊂ R
n with some R > 0, and let ρ ≥ 0. Then for all K > 0

and any T > 0 there exist radially symmetric positive functions u0 ∈ C0(Ω) and v0 ∈ W 1,∞(Ω) with
the property that for each ε ∈ (0, 1) one can find tε ∈ (0, T ) with the property that (1.3) possesses a
classical solution (uε, vε) ∈ (C0(Ω× [0, tε]) ∩ C2,1(Ω× (0, tε)))

2 which is such that

uε(xε, tε) >
K

ε
for some xε ∈ Ω. (1.7)

As a second by-product of Theorem 1.1, the particular quantitative information (1.6) contained therein
will enable us to study possible effects of large chemotactic sensitivities in presence of a fixed logistic
source. Specifically, for the version of (1.2) given by





wt = ∆w − χ∇ · (w∇z) + ρw − µw2, x ∈ Ω, t > 0,

zt = ∆z − z + w, x ∈ Ω, t > 0,
∂w
∂ν = ∂z

∂ν = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = w0(x), z(x, 0) = z0(x), x ∈ Ω,

(1.8)

we shall obtain the following.

Theorem 1.3 Let n ≥ 3, R > 0 and Ω := BR(0) ⊂ R
n, and let ρ ≥ 0 and µ > 0. Then for any choice

of L > 0, T ∈ (0, 1) and χ > µ one can find radially symmetric positive functions w0χ ∈ C0(Ω) and
z0χ ∈ W 1,∞(Ω) such that

‖w0χ‖L∞(Ω) → 0 and ‖z0χ‖W 1,∞(Ω) → 0 as χ → ∞, (1.9)

and that for any χ > µ there exists tχ ∈ (0, T ) such that (1.8) with (w0, z0) := (w0χ, z0χ) admits a
positive classical solution (wχ, zχ) ∈ (C0(Ω× [0, tχ]) ∩ C2,1(Ω× (0, tχ)))

2 satisfying

wχ(xχ, tχ) > L for some xχ ∈ Ω. (1.10)
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The main idea: Exploiting a conditional quasi-energy inequality. Our approach is rooted
in a contradictory argument based on an analysis of the quantity

F(u, v) :=
1

2

∫

Ω
|∇v|2 + 1

2

∫

Ω
v2 −

∫

Ω
uv +

∫

Ω
u lnu, (1.11)

which is well-known to play the role of a genuine Lyapunov functional for the unforced normalized
Keller-Segel system obtained on letting d = χ = 1 in (1.1), in the sense that

d

dt
F(u(·, t), v(·, t)) = −D(u(·, t), v(·, t)) (1.12)

holds along the respective trajectories, with the nonnegative dissipation rate given by

D(u, v) :=

∫

Ω

∣∣∣∆v − v + u
∣∣∣
2
+

∫

Ω

∣∣∣∇u√
u
−
√
u∇v

∣∣∣
2

(1.13)

([15]). Whereas this subtle structure is apparently destroyed in presence of the kinetic terms in (1.2),
it will turn out that at least a certain quasi-energy inequality can be derived under an appropriately
mild boundedness hypothesis on the solution component u. Relying on a functional inequality relating
F(u, v) to the associated dissipation rate, as obtained in [26] by making essential use of the fact that
n ≥ 3 (Lemma 3.2), under the assumption that within a suitably small time interval the solution of
(1.2) satisfies u ≤ K

ε with some K > 0, this will enable us to establish an autonomous ordinary differ-
ential inequality for F (u, v) (Lemma 3.1, Lemma 3.6 and Lemma 3.11) which cannot hold throughout
this time interval (Lemma 3.12). Exploiting this will yield the statements from Theorem 1.1 and
Corollary 1.2 in Section 3, whereupon a stratightforward variable transformation will lead to a proof
of Theorem 1.3 in Section 4.

2 Preliminaries

For definiteness in our subsequent arguments, let us first recall from [26] that any given pair of suitably
regular positive radial functions on Ω can conveniently be approximated by low-energy data.

Lemma 2.1 Let u0 ∈ C0(Ω) and v0 ∈ W 1,∞(Ω) be radially symmetric and positive in Ω. Then there
exist (u0j)j∈N ⊂ C0(Ω) and (v0j)j∈N ⊂ W 1,∞(Ω) such that for all j ∈ N, u0j and v0j are radially
symmetric and positive in Ω with

∫

Ω
u0j =

∫

Ω
u0,

that

u0j → u0 in Lp(Ω) for all p ∈
[
1,

2n

n+ 2

)
and v0j → v0 in W 1,2(Ω)

as j → ∞, and that with F as in (1.11) we have

F(u0j , v0j) → −∞ as j → ∞.

5



Proof. This immediately results from the statement in [26, Lemma 6.1]. �

When employed as initial data in (1.3), all these functions give rise to corresponding local-in-time
classical solutions.

Lemma 2.2 For all ε ∈ (0, 1) and j ∈ N, there exists Tε,j ∈ (0,∞] such that the problem (1.3) with
u0 := u0j and v0 := v0j possesses a positive classical solution (u, v) ≡ (uε,j , vε,j) ∈ (C0(Ω× [0, Tε,j))∩
C2,1(Ω× (0, Tε,j)))

2 which is such that vε,j ∈ C0([0, Tε,j);W
1,2(Ω)) and that

if Tε,j < ∞, then lim sup
tրTε,j

‖uε,j(·, t)‖L∞(Ω) = ∞. (2.1)

Proof. It is well-known ([25]) that the problem in question is solvable in the indicated class, with
some Tε,j ∈ (0,∞] which is such that

if Tε,j < ∞, then ‖uε,j(·, t)‖L∞(Ω) + ‖vε,j(·, t)‖W 1,∞(Ω) → ∞ as t ր Tε,j . (2.2)

To see that actually (2.1) holds, assuming on the contrary that Tε,j be finite, but that uε,j be bounded
in Ω×(0, Tε,j), by applying standard arguments from parabolic regularity theory to the second equation
in (1.3) ([9]) we could find c1 > 0 such that

‖vε,j(·, t)‖W 1,∞(Ω) ≤ c1 for all t ∈
(1
2
Tε,j , Tε,j

)
.

This contradicts (2.2) and thereby verifies (2.1). �

3 A conditional quasi-energy inequality for (1.3)

The following generalization of the energy identity (1.12) to the chemotaxis-growth system (1.3) is
straightforward but fundamental to our approach.

Lemma 3.1 Suppose that (u, v) ∈ (C2,1(Ω× (0, T )))2 is a positive classical solution of the boundary
value problem in (1.3) for some ε ∈ (0, 1), ρ ≥ 0 and T > 0. Then with F and D taken from (1.11)
and (1.13) we have

d

dt
F
(
u(·, t), v(·, t)

)
= −D

(
u(·, t), v(·, t)

)
+ ε

∫

Ω
u2v + ρ

∫

Ω
u lnu+ ρ

∫

Ω
u

−ε

∫

Ω
u2 lnu− ρ

∫

Ω
uv − ε

∫

Ω
u2 for all t ∈ (0, T ). (3.1)

Proof. This can be seen by straightforward computation: Indeed, from (1.3) we obtain on inte-
grating by parts that

d

dt

{
1

2

∫

Ω
|∇v|2 + 1

2

∫

Ω
v2
}

=

∫

Ω
(−∆v + v) · vt

= −
∫

Ω
v2t +

∫

Ω
uvt (3.2)
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and

− d

dt

∫

Ω
uv = −

∫

Ω

{
∆u−∇ · (u∇v) + ρu− εu2

}
· v −

∫

Ω
uvt

=

∫

Ω
∇u · ∇v −

∫

Ω
u|∇v|2 − ρ

∫

Ω
uv + ε

∫

Ω
u2v −

∫

Ω
uvt (3.3)

as well as

d

dt

∫

Ω
u lnu =

∫

Ω

{
∆u−∇ · (u∇v) + ρu− εu2

}
·
{
lnu+ 1

}

= −
∫

Ω

|∇u|2
u

+

∫

Ω
∇u · ∇v + ρ

∫

Ω
u lnu− ε

∫

Ω
u2 lnu+ ρ

∫

Ω
u− ε

∫

Ω
u2 (3.4)

for all t ∈ (0, T ). Recalling that

{∫

Ω
∇u · ∇v −

∫

Ω
u|∇v|2

}
+

{
−
∫

Ω

|∇u|2
u

+

∫

Ω
∇u · ∇v

}
= −

∫

Ω

∣∣∣∇u√
u
−
√
u∇v

∣∣∣
2

for all t ∈ (0, T ),

on adding (3.3) and (3.4) to (3.2) we readily arrive at (3.1). �

In order to draw appropriate conclusions from (3.1), we recall from [26] that in the case n ≥ 3 con-
sidered here, the expression

∫
Ω uv can essentially be controlled by a sublinear power of the dissipation

rate D(u, v) from (1.13) in the sense of the following functional inequality that is actually valid for a
large class of radially symmetric functions on Ω.

Lemma 3.2 Let m0 > 0,M > 0, B > 0 and κ > n − 2. Then there exists A(m0,M,B, κ) > 0 such
that for any choice of m ∈ (0,m0], the inequality

∫

Ω
uv ≤ A(m0,M,B, κ) ·

{∥∥∥∆v − v + u
∥∥∥
2θ

L2(Ω)
+
∥∥∥∇u√

u
−
√
u∇v

∥∥∥
L2(Ω)

+ 1

}
(3.5)

holds for all

(u, v) ∈ S(m,M,B, κ) :=

{
(ũ, ṽ) ∈ C1(Ω)× C2(Ω)

∣∣∣∣ ũ and ṽ are positive and radially symmetric

with ∂ṽ
∂ν = 0 on ∂Ω and such that

∫

Ω
ũ = m,

∫

Ω
v ≤ M and

ṽ(x) ≤ B|x|−κ for all x ∈ Ω

}
,

where θ := 1
1+ n

2(n+2)κ
.

Proof. For m := m0, (3.5) has precisely been formulated in [26, Lemma 4.1]. As the reasoning in
the corresponding proof in [26, Section 4] shows, however, the respective constant on the right-hand
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side of (3.5) depends on u only through an upper bound for
∫
Ω u, whence we conclude that (3.5) is

valid for all (u, v) ∈ S(m,M,B, κ) and actually any m ≤ m0. �

Let us next make sure that within a suitably small time interval, all the solutions under consideration
indeed remain in the set S(m,M,B, κ) for appropriate m,M,B and κ. To this end, we firstly note
the following basic observation on the mass evolution in the first component of the solution obtained
in Lemma 2.2.

Lemma 3.3 For any ε ∈ (0, 1) and each j ∈ N we have
∫

Ω
uε,j(·, t) ≤ eρ

∫

Ω
u0 for all t ∈

(
0,min{1, Tε,j}

)
. (3.6)

Proof. Since

d

dt

∫

Ω
uε,j = ρ

∫

Ω
uε,j − ε

∫

Ω
u2ε,j ≤ ρ

∫

Ω
uε,j for all t ∈ (0, Tε,j)

by (1.3), on integration we infer that
∫

Ω
uε,j ≤

{∫

Ω
u0j

}
· eρt for all t ∈ (0, Tε,j),

which implies (3.6) due to the fact that
∫
Ω u0j =

∫
Ω u0. �

Secondly, based on Lemma 3.3 and features of parabolic regularization, also the second solution
component can be seen to comply with the requirements contained in Lemma 3.2.

Lemma 3.4 Let κ > n− 2. Then there exists B(κ) > 0 such that for all ε ∈ (0, 1) and any j ∈ N we
have

vε,j(x, t) ≤ B(κ)|x|−κ for all x ∈ Ω and t ∈
(
0,min{1, Tε,j}

)
. (3.7)

Proof. Thanks to Lemma 3.3 and the assumed radial symmetry, this can be seen by straightforward
modification of the reasoning in [26, Section 3]; for completeness, let us briefly outline a proof: Without
loss of generality assuming that κ ≤ n − 1 and then writing p := n

κ+1 > 1, we have p < n
n−1 , so that

a standard result on regularization in the inhomogeneous linear heat equation vt = ∆v − v + u ([9])
applies so as to provide c1 > 0 such that

‖vε,j(·, t)‖W 1,p(Ω) ≤ c1 ·
{
‖v0j‖W 1,2(Ω) + sup

s∈(0,t)
‖uε,j(·, s)‖L1(Ω)

}
for all t ∈ (0, Tε,j),

whence by Lemma 3.3 and the boundedness of (v0j)j∈N in W 1,2(Ω), as asserted by Lemma 2.1, we can
find c2 > 0 such that

‖∇vε,j(·, t)‖Lp(Ω) + ‖vε,j(·, t)‖L1(Ω) ≤ c2 for all t ∈ (0, T̂ ), (3.8)

where T̂ := min{1, Tε,j}. For each fixed t ∈ (0, T̂ ), we can therefore find r0(t) ∈ (R2 , R) such that

letting v(r, t) := vε,j(x, t) for x ∈ ∂Br(0) and t ∈ (0, T̂ ) we have

v(r0(t), t) ≤
c2

|BR(0) \BR
2
(0)|
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and hence

v(r, t) = v(r0(t), t) +

∫ r

r0(t)
vr(σ, t)dσ

≤ c2

|BR(0) \BR
2
(0)| +

{∫ r

r0(t)
σn−1

∣∣∣vr(σ, t)
∣∣∣
p
dσ

} 1
p

·
∣∣∣∣
∫ r

r0(t)
σ
−n−1

p−1 dσ

∣∣∣∣
p−1
p

(3.9)

for all r ∈ (0, R). As can be verified by explicit evaluation, herein we have

∣∣∣∣
∫ r

r0(t)
σ
−n−1

p−1 dσ

∣∣∣∣
p−1
p

≤ 2
n−p

p ·
( p− 1

n− p

) p−1
p · r−

n−p

p

= 2
n−p

p ·
( p− 1

n− p

) p−1
p · r−κ for all r ∈ (0, R),

whence on using (3.8) we can readily derive (3.7) from (3.9). �

Therefore, Lemma 3.2 indeed becomes applicable for the solutions from Lemma 2.2 at least for suitably
small times:

Lemma 3.5 There exist θ ∈ (0, 1) and C0 > 0 with the property that for all ε ∈ (0, 1) and any j ∈ N,
the solution gained in Lemma 2.2 satisfies

∫

Ω
uε,j(·, t)vε,j(·, t) ≤ C0 ·

{
Dθ

(
uε,j(·, t), vε,j(·, t)

)
+ 1

}
for all t ∈

(
0,min{1, Tε,j}

)
, (3.10)

where D is taken from (1.13).

Proof. We fix any θ ∈ [12 , 1) such that

θ >
1

1 + n
2(n+2)(n−2)

,

so that it is possible to pick κ > n− 2 such that still

θ ≥ θ0 :=
1

1 + n
2(n+2)κ

.

Thereupon, Lemma 3.4 applies so as to yield B > 0 fulfilling

vε,j(x, t) ≤ B|x|−κ for all x ∈ Ω and t ∈ (0, T̂ ),

where again T̂ := min{1, Tε,j}. In particular, this entails that
∫

Ω
vε,j(·, t) ≤ M := B

∫

Ω
|x|−κdx for all t ∈ (0, T̂ ),

with M being finite due to the fact that κ < n. Along with Lemma 3.3, this enables us to conclude
from Lemma 3.2 that with A as introduced there we have
∫

Ω
uε,jvε,j ≤ A

(
eρ

∫

Ω
u0,M,B, κ

)
·
{∥∥∥∆vε,j−vε,j+uε,j

∥∥∥
2θ0

L2(Ω)
+
∥∥∥∇uε,j√

uε,j
−√

uε,j∇vε,j

∥∥∥
L2(Ω)

+1

}
(3.11)
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for all t ∈ (0, T̂ ). Here using that θ0 ≤ θ and that θ ≥ 1
2 , by definition of D and Young’s inequality

we can estimate

∥∥∥∆vε,j − vε,j + uε,j

∥∥∥
2θ0

L2(Ω)
+
∥∥∥∇uε,j√

uε,j
−√

uε,j∇vε,j

∥∥∥
L2(Ω)

+ 1

≤
∥∥∥∆vε,j − vε,j + uε,j

∥∥∥
2θ

L2(Ω)
+
∥∥∥∇uε,j√

uε,j
−√

uε,j∇vε,j

∥∥∥
2θ

L2(Ω)
+ 3

≤ 2Dθ(uε,j , vε,j) + 3 for all t ∈ (0, T̂ ),

so that (3.10) results from (3.11). �

As a first important application of the latter, we can use (3.10) to adequately control the crucial ill-
signed summand ε

∫
Ω u2v on the right of (3.1) whenever εu satisfies an upper estimate which we finally

plan to disprove. We can thereby turn the identity (3.1) into an inequality exclusively containing F
and D as follows.

Lemma 3.6 Let θ ∈ (0, 1) and C0 be as in Lemma 3.5, let K > 0 and T⋆ ∈ (0, 1), and suppose that
for some ε ∈ (0, 1) and j ∈ N we have Tε,j ≥ T⋆ and

uε,j(x, t) ≤
K

ε
for all x ∈ Ω and t ∈ (0, T⋆). (3.12)

Then with F and D as in (1.11) and (1.13),

d

dt
F
(
uε,j(·, t)vε,j(·, t)

)
≤ −D

(
uε,j(·, t)vε,j(·, t)

)
+ 2ρF

(
uε,j(·, t)vε,j(·, t)

)

+(K + 2ρ)C0D
θ
(
uε,j(·, t)vε,j(·, t)

)

+(K + 2ρ)C0 + |Ω| ·
(
ρe+

ρ

e
+

1

2e

)
for all t ∈ (0, T⋆). (3.13)

Proof. According to Lemma 3.1, (u, v) := (uε,j , vε,j) satisfies

d

dt
F(u, v) = −D(u, v) + ε

∫

Ω
u2v + ρ

∫

Ω
u lnu+ ρ

∫

Ω
u

−ε

∫

Ω
u2 lnu− ρ

∫

Ω
uv − ε

∫

Ω
u2 for all t ∈ (0, Tε,j), (3.14)

where clearly

−ρ

∫

Ω
uv − ε

∫

Ω
u2 ≤ 0 for all t ∈ (0, Tε,j), (3.15)

and where since ε ∈ (0, 1) we have

−ε

∫

Ω
u2 lnu ≤ ε · |Ω|

2e
≤ |Ω|

2e
for all t ∈ (0, Tε,j) (3.16)
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due to the validity of the inequality ξ2 ln ξ ≥ − 1
2e for all ξ > 0. Moreover, again using that ξ ln ξ ≥ −1

e
for all positive ξ we can estimate

ρ

∫

Ω
u lnu+ ρ

∫

Ω
u = ρ

∫

Ω
u lnu+ ρ

∫

{u≥e}
u+ ρ

∫

{u<e}
u

≤ ρ

∫

Ω
u lnu+ ρ

∫

{u≥e}
u lnu+ ρ

∫

{u<e}
u

= 2ρ

∫

Ω
u lnu− ρ

∫

{u<e}
u lnu+ ρ

∫

{u<e}
u

≤ 2ρ

∫

Ω
u lnu+

ρ|Ω|
e

+ ρe|Ω|

= 2ρ ·
{
F(u, v)− 1

2

∫

Ω
|∇v|2 − 1

2

∫

Ω
v2 +

∫

Ω
uv

}
+

ρ|Ω|
e

+ ρe|Ω|

≤ 2ρF(u, v) + 2ρ

∫

Ω
uv +

ρ|Ω|
e

+ ρe|Ω| for all t ∈ (0, Tε,j). (3.17)

Since finally our assumption (3.12) ensures that

ε

∫

Ω
u2v ≤ ε‖u‖L∞(Ω)

∫

Ω
uv ≤ K

∫

Ω
uv for all t ∈ (0, T⋆),

and since from Lemma 3.5 we know that

(K + 2ρ) ·
∫

Ω
uv ≤ (K + 2ρ)C0 ·

{
Dθ(u, v) + 1

}
for all t ∈ (0, T⋆),

on using (3.15)-(3.17) we infer from (3.14) that indeed (3.13) is valid. �

In order to relate the summands in (3.13) containing D to certain expressions only involving F , we
once more apply Lemma 3.5 to achieve the following estimate on D from below in terms of F .

Lemma 3.7 Let θ ∈ (0, 1) and C0 > 0 be as in Lemma 3.5. Then for any choice of ε ∈ (0, 1) and
j ∈ N,

D
(
uε,j(·, t), vε,j(·, t)

)
≥

{−F(uε,j(·, t), vε,j(·, t))
C0

−1− |Ω|
C0e

} 1
θ

+

for all t ∈
(
0,min{1, Tε,j}

)
, (3.18)

where D and F are as in (1.13) and (1.11).

Proof. Writing (u, v) := (uε,j , vε,j) and T̂ := min{1, Tε,j}, from Lemma 3.5 we know that
∫

Ω
uv ≤ C0 ·

{
Dθ(u, v) + 1

}
for all t ∈ (0, T̂ )

and hence

−F(u, v) = −1

2

∫

Ω
|∇v|2 − 1

2

∫

Ω
v2 +

∫

Ω
uv −

∫

Ω
u lnu

≤
∫

Ω
uv −

∫

Ω
u lnu

≤ C0Dθ(u, v) + C0 +
|Ω|
e

for all t ∈ (0, T̂ ),
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because ξ ln ξ ≥ −1
e for all ξ > 0. By nonnegativity of D, this immediately yields (3.18). �

As long as F attains suitably large negative numbers, this implies that up to a multiplicative constant,
D even dominates a superlinear power of F itself.

Corollary 3.8 Suppose that for some T⋆ ∈ (0, 1), ε ∈ (0, 1) and j ∈ N we have Tε,j ≥ T⋆ and

F
(
uε,j(·, t), vε,j(·, t)

)
≤ −2C0 −

2|Ω|
e

for all t ∈ (0, T⋆), (3.19)

with C0 and F taken from Lemma 3.5 and (1.11), respectively. Then the quantity D defined in (1.13)
satisfies

D
(
uε,j(·, t), vε,j(·, t)

)
≥

{−F
(
uε,j(·, t), vε,j(·, t)

)

2C0

} 1
θ

for all t ∈ (0, T⋆). (3.20)

Proof. Once more with (u, v) := (uε,j , vε,j), (3.19) says that

−F(u, v)

C0
− 1− |Ω|

e
≥ −F(u, v)

C0
+

F(u, v)

2C0
=

−F(u, v)

2C0
for all t ∈ (0, T⋆).

In view of Lemma 3.7, the latter being applicable since T⋆ < 1 and T⋆ ≤ Tε,j , this directly yields
(3.20). �

We next intend to make sure that as long as εu is conveniently small and −F is suitably large, D also
substantially exceeds the last three summands in (3.13), the first among which is considered in the
following.

Lemma 3.9 Let K > 0 and T⋆ ∈ (0, 1), and suppose ε ∈ (0, 1) and j ∈ N are such that Tε,j ≥ T⋆ and

uε,j(x, t) ≤
K

ε
for all x ∈ Ω and t ∈ (0, T⋆), (3.21)

and that (3.19) holds as well as

F
(
uε,j(·, t), vε,j(·, t)

)
≤ −2C0 ·

{
4(K + 2ρ)C0

} θ
1−θ

for all t ∈ (0, T⋆), (3.22)

where θ ∈ (0, 1) and C0 > 0 are as provided by Lemma 3.5 and F is as in (1.11). Then with D taken
from (1.13) we have

(K + 2ρ)C0 · Dθ
(
uε,j(·, t), vε,j(·, t)

)
≤ 1

4
D
(
uε,j(·, t), vε,j(·, t)

)
for all t ∈ (0, T⋆). (3.23)

Proof. Due to (3.19), Corollary 3.8 may be applied so as to guarantee that

D(u, v) ≥
{−F(u, v)

2C0

} 1
θ

for all t ∈ (0, T⋆)
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with (u, v) := (uε,j , vε,j). Therefore, using (3.22) and the fact that θ < 1 we can estimate

1
4D(u, v)

(K + 2ρ)C0 · Dθ(u, v)
=

1

4(K + 2ρ)C0
· D1−θ(u, v)

≥ 1

4(K + 2ρ)C0
·
{−F(u, v)

2C0

} 1−θ
θ

≥ 1 for all t ∈ (0, T⋆),

which is equivalent to (3.23). �

The last two summands in (3.13) can be dealt with similarly.

Lemma 3.10 Let K > 0 and T⋆ ∈ (0, 1), and assume that ε ∈ (0, 1) and j ∈ N have the properties
that Tε,j ≥ T⋆ and

uε,j(x, t) ≤
K

ε
for all x ∈ Ω and t ∈ (0, T⋆), (3.24)

that (3.19) is valid, and such that with θ ∈ (0, 1) and C0 > 0 from Lemma 3.5 we have

−F
(
uε,j(·, t), vε,j(·, t)

)
≥ −2C0 ·4θ ·

{
(K+2ρ)C0+ |Ω|

(
ρe+

ρ

e
− 1

2e

)}θ

for all t ∈ (0, T⋆), (3.25)

where F is as in (1.11). Then the functional D from (1.13) satisfies

(K + 2ρ)C0 + |Ω| ·
(
ρe+

ρ

e
+

1

2e

)
≤ 1

4
D
(
uε,j(·, t), vε,j(·, t)

)
for all t ∈ (0, T⋆). (3.26)

Proof. We again use that thanks to Corollary 3.8 our assumption that (3.19) holds ensures that
for (u, v) := (uε,j , vε,j) we have

D(u, v) ≥
{−F(u, v)

2C0

} 1
θ

for all t ∈ (0, T⋆).

Therefore, namely, from (3.25) we immediately obtain that

1

4
D(u, v) ≥ 1

4
·
{
4θ ·

{
(K + 2ρ)C0 + |Ω|

(
ρe+

ρ

e
+

1

2e

)}θ
} 1

θ

= (K + 2ρ)C0 + |Ω|
(
ρe+

ρ

e
+

1

2e

)
for all t ∈ (0, T⋆),

as claimed. �

In conclusion, if all of the above hypotheses are met, F will satisfy a superlinear autonomous ordinary
differential inequality.
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Lemma 3.11 Let F be as in (1.11), let K > 0 and T⋆ < 1, and suppose that ε ∈ (0, 1) and j ∈ N are
such that Tε,j ≥ T⋆, and that (3.21), (3.19), (3.22) and (3.25) are valid with θ ∈ (0, 1) and C0 > 0
taken from Lemma 3.5. Then

d

dt
F
(
uε,j(·, t), vε,j(·, t)

)
≤ −1

2
·
{−F

(
uε,j(·, t), vε,j(·, t)

)

2C0

} 1
θ

for all t ∈ (0, T⋆). (3.27)

Proof. According to the assumed inequality in (3.19), we particularly know that (u, v) := (uε,j , vε,j)
satisfies

F(u, v) ≤ 0 for all t ∈ (0, T⋆),

whereas the hypotheses that (3.21), (3.22) and (3.25) be valid guarantee that

(K + 2ρ)C0 · Dθ(u, v) ≤ 1

4
D(u, v) for all t ∈ (0, T⋆)

as well as

(K + 2ρ)C0 + |Ω|
(
ρe+

ρ

e
+

1

2e

)
≤ 1

4
Dθ(u, v) for all t ∈ (0, T⋆)

due to Lemma 3.9 and Lemma 3.10. Therefore, from Lemma 3.6 we obtain that

d

dt
F(u, v) ≤ −D(u, v) + 2ρF(u, v) + (K + 2ρ)C0 · Dθ(u, v)

+(K + 2ρ)C0 + |Ω|
(
ρe+

ρ

e
+

1

2e

)

≤ −D(u, v) +
1

4
D(u, v) +

1

4
D(u, v)

= −1

2
D(u, v) for all t ∈ (0, T⋆),

so that another application of Corollary 3.8 establishes (3.27). �

The latter inequality, however, cannot hold throughout the considered time interval if the energy
functional attains suitably large negative values initially. The contradiction thereby obtained leads to
the following conlcusion.

Lemma 3.12 Let K > 0 and T ∈ (0, 1). Then there exists j0(K,T ) ∈ N with the property that for
all j ≥ j0(K,T ) and each ε ∈ (0, 1) one can find xε,j ∈ Ω and tε,j ∈ (0,min{T, Tε,j}) such that

uε,j(xε,j , tε,j) >
K

ε
. (3.28)

Proof. Given K > 0 and T ∈ (0, 1), we abbreviate

c1 := 2C0 +
2|Ω|
e
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and

c2 := 2C0 ·
{
4(K + 2ρ)C0

} θ
1−θ

as well as

c3 := 2C0 · 4θ ·
{
(K + 2ρ)C0 + |Ω|

(
ρe+

ρ

e
+

1

2e

)}θ

and

c4 :=

{
4(2C0)

1
θ θ

(1− θ)T

} θ
1−θ

,

and then obtain from Lemma 2.1 that there exists J0 = j0(K,T ) ∈ N fulfilling

F(u0j , v0j) < −max{c1, c2, c3, c4} for all j ≥ j0. (3.29)

Then in order to verify that j0 has the claimed property, assuming this to be false we could find j > j0
and ε ∈ (0, 1) such that in view of (2.1) we would have

Tε,j ≥ T (3.30)

and

uε,j(x, t) ≤
K

ε
for all x ∈ Ω and t ∈ (0, T ). (3.31)

For these fixed values of ε and j, we would thus obtain that

y(t) := −F
(
uε,j(·, t), vε,j(·, t)

)
, t ∈ [0, T ),

is well-defined with its initial value satisfying

y(0) > y0 := max{c1, c2, c3, c4} (3.32)

according to (3.29). Therefore, by continuity of y,

S :=
{
T⋆ ∈ (0, T )

∣∣∣ y(t) > y0 for all t ∈ [0, T⋆)
}

would be nonempty and hence also

T⋆ := supS

well-defined. To see that we actually must have T⋆ = T , we observe that (3.32) especially entails
that y ≥ c1 and y ≥ c2 as well as y ≥ c3 on (0, T⋆), which along with (3.30) and (3.31) asserts the
hypotheses of Lemma 3.11. An application of the latter thus shows that

y′(t) ≥ 1

2
·
(y(t)
2C0

) 1
θ

for all t ∈ (0, T⋆), (3.33)
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so that, in particular, y′ ≥ 0 on (0, T⋆) and hence y ≥ y(0) > y0 on (0, T⋆). This would clearly be
incompatible with the assumption that T⋆ < T , meaning that indeed T⋆ = T and that hence the
inequality in (3.33) is valid for all t ∈ (0, T ). On integration, however, this would entail that

y1−
1
θ (t)− y1−

1
θ (0)

1− 1
θ

≥ 1

2(2C0)
1
θ

· t for all t ∈ (0, T )

and hence

y1−
1
θ (t) ≤ y1−

1
θ (0)− 1− θ

2(2C0)
1
θ θ

· t

< y
1− 1

θ

0 − 1− θ

2(2C0)
1
θ θ

· t for all t ∈ (0, T )

by (3.32). Since y0 ≥ c4 and thus

y
1− 1

θ

0 ≤ c
1− 1

θ

4 =
(1− θ)T

4(2C0)
1
θ θ

,

namely, this would lead to the absurd conclusion that

y1−
1
θ

(T
2

)
<

(1− θ)T

4(2C0)
1
θ θ

− 1− θ

2(2C0)
1
θ θ

· T
2
= 0.

This contradiction shows that actually no such j > j0 and ε ∈ (0, 1) can exist. �

We thereby immediately arrive at our main results on (1.3).

Proof of Theorem 1.1. With j0(K,T ) ∈ N taken from Lemma 3.12, we only need to relabel the
solution sequence from Lemma 2.2 by substituting k := j − j0(K,T ) for j > j0(K,T ), and thereupon
apply Lemma 3.12. �

Also, our statement on a corresponding growth phenomenon in (1.3) for fixed initial data thus becomes
evident.

Proof of Corollary 1.2. The statement follows on applying Theorem 1.1 to any fixed initial data
and thereafter choosing (u0, v0) := (u01, v01), for instance. �

4 Large densities enforced by large sensitivities

Thanks to the particular quantitative information on the minimal size of solutions achieved in Theorem
1.1, a simple variable transformation enables us to apply the latter, without further preparations, so as
to obtain our main result on enforcement of large population densities by large chemotactic sensitivities
in presence of otherwise fixed parameter values.

Proof of Theorem 1.3. An application of Theorem 1.1 to K := µL and arbitrary fixed nontrivial
smooth radial initial data particularly shows that there exists a pair (u0, v0) ∈ C0(Ω) ×W 1,∞(Ω) of
radially symmetric positive functions u0 and v0 such that for each ε ∈ (0, 1), under the initial condition
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(uε(·, 0), vε(·, 0)) = (u0, v0), with some t̃ε ∈ (0, T ) the boundary value problem in (1.3) possesses a
solution (uε, vε) ∈ (C0(Ω× [0, t̃ε]) ∩ C2,1(Ω× (0, t̃ε)))

2 fulfilling

uε(x̃ε, t̃ε) >
µL

ε
for some x̃ε ∈ Ω. (4.1)

Given µ > χ, we now only need to observe that

w ≡ wχ :=
uε

χ
and z ≡ zχ :=

vε

χ
with ε :=

µ

χ
∈ (0, 1)

satisfy the boundary-value problem in (1.8) with

wχ(·, 0) = w0χ :=
u0

χ
and zχ(·, 0) = z0χ :=

v0

χ
in Ω. (4.2)

Then, namely, (1.9) is obvious from (4.2), whereas (4.1) ensures that if we let xχ := x̃µ/χ and tχ := t̃µ/χ
for χ > µ, then again with ε = µ

χ we have

wχ(xχ, tχ) =
uε(x̃ε, t̃ε)

χ
>

µL
ε

χ
= L,

whence also (1.10) holds. �
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