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Abstract

The Neumann initial-boundary value problem for the chemotaxis system
{

ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v),

vt = ∆v − v + u,
(⋆)

is considered in a bounded domain Ω ⊂ R
n, n ≥ 1, with smooth boundary. In compliance with refined

modeling approaches, the diffusivity function D therein is allowed to decay considerably fast at large
densities, where a particular focus will be on the mathematically delicate case when D(s) decays
exponentially as s → ∞. In such situations, namely, straightforward Moser-type recursive arguments
for the derivation of L∞ estimates for u from corresponding Lp bounds seem to fail. Accordingly,
results on global existence, and especially on quantitative upper bounds for solutions, so far mainly
concentrate on cases when D decays at most algebraically, and hence are unavailable in the present
context.

This work develops an alternative approach, at its core based on a Moser-type iteration for the quantity
eu, to establish global existence of classical solutions for all reasonably regular initial data, as well as a
logarithmic upper estimate for the possible growth of ‖u(·, t)‖L∞(Ω) as t → ∞, under the assumptions

that with some K1 > 0, K2 > 0, β− > 0 and β+ ∈ (−∞, β−] we have K1e
−β−s ≤ D(s) ≤ K2e

−β+s

for all s ≥ 0, and that the size of S relative to D can be estimated according to S(s)
D(s) ≤ K3e

γs for all

s ≥ 0 with some K3 > 0 and γ ∈ [β
+
−β−

2 , β+

2 ).

Making use of the fact that this allows for certain superalgebraic growth of S
D
, as a particular conse-

quence of this and known results on nonexistence of global bounded solutions we shall see that in the
prototypical case when D(s) = e−βs and S(s) = se−αs for all s ≥ 0 and some positive α and β, the
assumptions that n ≥ 2 and that

β > 0 and

{

α ∈
(

β
2 , β

)

if n = 2,

α ∈
(

β
2 , β

]

if n ≥ 3,

warrant the existence of classical solutions which are global but unbounded, and for which this infinite-
time blow-up is slow in the sense that the corresponding grow-up rate is at most logarithmic.
To the best of our knowledge, this inter alia seems to constitute the first quantitative information on
a blow-up rate in a parabolic Keller-Segel system of type (⋆) for widely arbitrary initial data, hence
independent of a particular construction of possibly non-generic exploding solutions.
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1 Introduction

This work is concerned with the parabolic initial-boundary value problem



















ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.1)

in a bounded domain Ω ⊂ R
n, n ≥ 1, with smooth boundary, where D and S are prescribed functions on

[0,∞) with values in (0,∞) and [0,∞), respectively. Systems of this type are used in mathematical bi-
ology to model the dynamics in populations of chemotactically moving individuals, represented through
their density u = u(x, t), that are attracted by a chemical stimulus, with concentration v = v(x, t), which
they produce themselves.

The theoretical study of such processes by means of cross-diffusive parabolic systems of the considered
form was initiated by Keller and Segel in their seminal work ([14]), and numerous results on the appar-
ently simplest reasonable version thereof, as obtained on letting D ≡ 1 and S(s) := s for s ≥ 0, indicate
that (1.1) indeed is able to adequately describe the spontaneous emergence of structures, known to occur
in many experimental frameworks, even in the mathematically extreme sense of singularity formation,
that is, of finite-time blow-up with respect to the norm in L∞(Ω) in the first solution component. In this
classical Keller-Segel system, such explosions have been rigorously detected for some radially symmetric
solutions in the case n = 2 under the additional condition that

∫

Ω u0 > 8π ([10], [17]), and in the case
n ≥ 3 for arbitrary positive values of the total mass

∫

Ω u0 ([25]), whereas it is known that if either

n = 1, or n = 2 and
∫

Ω u0 < 4π, or n ≥ 3 and (u0, v0) is suitably small in L
n
2 (Ω)×W 1,n(Ω), then under

appropriate regularity assumptions on the initial data there always exist global bounded solutions also
in nonradial settings ([19], [18], [3]).

As a refinement of this simple model more appropriate for the description in biological situations when
large values of u seem inadequate, more elaborate modeling approaches suggest to choose D and S as
more general functions of the cell density, preferably remaining significantly below the above prototypes
at large densities and thereby reflecting so-called volume-filling effects, that is, limitations in the ability
of cells to move which due to their nonzero volume naturally arise when they are densely packed (cf. [20]
and also the surveys [11] and [1] for more references on the background of such modeling aspects).

Indeed, numerous analytical studies on such refined, in general quasilinear, chemotaxis systems have
revealed that blow-up phenomena can entirely be ruled out when relative to the diffusion rate D, the
chemotactic sensitivity function S is weakened to a suitably large extent at large values of the cell den-
sity, provided that the diffusivity D(s) does not decay too fast as s → ∞. More precisely, it is known
that whenever n ≥ 2 and

S(s)

D(s)
≤ Cs

2
n
−ε for all s > 1 (1.2)

with some C > 0 and ε > 0, for any suitably regular initial data the problem (1.1) possesses a global
bounded classical solution, provided that in addition there exist p > 0 and c > 0 fulfilling

D(s) ≥ cs−p for all s > 1 (1.3)
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(see [23] and also e.g [16], [15], [21] and [13] for some precedent partial results in this direction). On the
other hand, in this respect the condition (1.2) cannot be relaxed substantially, as indicated by results

on the occurrence of unbounded solutions in radial cases when instead it is assumed that S(s)
D(s) grows

substantially faster than s
2
n as s → ∞ in the sense that e.g.

lim inf
s→∞

s
(

S
D

)′
(s)

(

S
D

)

(s)
>

2

n
, (1.4)

without any further restriction on the behavior of D(s) for large s ([24]); in certain regimes of the
parameters p ∈ R and q ∈ R in the prototypical version of (1.1) obtained by choosing D(s) = (s+ 1)−p

and S(s) = s(s + 1)q−1 for s ≥ 0, this blow-up is even known to take place within finite time, whereas
within certain further ranges of p and q blow-up occurs only in infinite time ([5], [7]; cf. also [8] and [9]
for related and more complete results on an associated parabolic-elliptic simplification of (1.1)).

To the best of our knowledge, in cases when D fails to satisfy (1.3) the question of global solvability in
(1.1) has remained widely unsolved so far in the literature. This may reflect the circumstance that then
Moser-type recursive procedures, constituting a natural and frequently employed approach to derive L∞

estimates for u from corresponding Lp bounds (cf. e.g. [23]), apparently fail to yield the desired conclusion
when applied in a straightforward manner, and consequently their availability seems restricted to special
cases ([2], [7]). As a conceivable alternative, approaches based on De-Giorgi-type iterations have up to
now been found useful only in particular situations, and with an additional drawback of not providing
quantitative information on the growth of possibly unbounded solutions ([4]).

Main results. It is the purpose of the present work to investigate the questions of global solvability
as well as of basic quantitative information on the large time behavior of solutions to (1.1) in cases when
the diffusion rate therein is allowed to decay exponentially at large densities. From a technical point
of view, a particular goal will consist in developing a Moser-type approach for such situations, aiming
at the derivation of L∞ bounds for u from estimates for

∫

Ω eβku with appropriately chosen sequences of
numbers βk diverging to +∞ as k → ∞.

To make our overall hypotheses more precise, we shall assume that there exists ι > 0 such that
{

D ∈ C1+ι([0,∞)) is positive and

S ∈ C1+ι([0,∞)) is nonnegative with S(0) = 0,
(1.5)

and that the behavior of D at large values of its argument can be controlled from below and from above
by exponential bounds in the sense that there exist β− ∈ R, β+ ≤ β− and positive constants K1 and K2

such that
D(s) ≥ K1 e

−β−s for all s ≥ 0 (1.6)

and
D(s) ≤ K2 e

−β+s for all s ≥ 0. (1.7)

Moreover, we shall require that the growth of S relative to D can be estimated according to

S(s)

D(s)
≤ K3 e

γs for all s ≥ 0 (1.8)
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with some γ ∈ R and K3 > 0.

Under the additional assumption that the initial data satisfy

{

u0 ∈ W 1,∞(Ω) with u0 ≥ 0 in Ω and

v0 ∈ W 1,∞(Ω) with v0 ≥ 0 in Ω,
(1.9)

our main result then asserts global solvability, as well as a logarithmic bound on a possibly occurring
asymptotic growth, in the following sense.

Theorem 1.1 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, that D and S comply

with (1.5), and that there exist β− > 0, β+ ∈ (−∞, β−] and

γ ∈
[β+ − β−

2
,
β+

2

)

(1.10)

such that (1.6), (1.7) and (1.8) are valid with certain positive constants K1,K2 and K3. Then for any
u0 and v0 satisfying (1.9), there exists a pair (u, v) of nonnegative functions which for any ϑ > n is
uniquely determined by the inclusions

{

u ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

v ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) ∩ L∞
loc([0,∞);W 1,ϑ(Ω)),

(1.11)

and which solves (1.1) in the classical sense in Ω×(0,∞). Moreover, for any ε > 0 there exists C(ε) > 0
such that this solution satisfies

‖u(·, t)‖L∞(Ω) ≤
( 1

β+ − 2γ
+ ε

)

· ln(1 + t) + C(ε) for all t > 0. (1.12)

Let us underline that in the case when β+ is positive, the condition (1.10) is mild enough so as to include
some positive values of γ, in accordance with (1.8) thus allowing for situations in which S even may
grow exponentially relative to D, and in which thus the condition (1.2) is quite drastically violated. In
order to illustrate this and further aspects of Theorem 1.1, let us draw some conclusions of the above for
the prototypical situation obtained on choosing D(s) := e−βs and S(s) := se−αs with β > 0 and α ∈ R

in (1.1). For the corresponding problem



















ut = ∇ · (e−βu∇u)−∇ · (ue−αu∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.13)

from Theorem 1.1 we then firstly infer the following.

Corollary 1.2 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, and suppose that

β > 0 and α >
β

2
. (1.14)
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Then for any (u0, v0) satisfying (1.9), the problem (1.13) possesses a global classical solution (u, v) which
is uniquely determined by (1.11) for arbitrary ϑ > n. Moreover, for all ε > 0 one can find C(ε) > 0 such
that

‖u(·, t)‖L∞(Ω) ≤
( 1

min{β, 2α− β}
+ ε

)

· ln(1 + t) + C(ε) for all t > 0. (1.15)

Secondly, however, by making use of the mentioned option to choose γ in (1.8) positive we shall derive
as a further consequence of Theorem 1.1 when combined with the known unboundedness result from [24]
that the somewhat rare phenomenon of infinite-time blow-up can also be detected in (1.13) whenever
D decays exponentially but S

D exhibits suitably slow exponential growth at large densities. According
to the growth estimates achieved so far, we furthermore obtain that any such grow-up must occur at
most at a logarithmic rate. Since to the best of our knowledge this is the first quantitative information
on infinite-time blow-up in a Keller-Segel system in the literature, and since this moreover seems to
constitute the first estimate on a blow-up rate in a parabolic Keller-Segel system of type (1.1) for widely
arbitrary initial data, hence independent of a particular construction of possibly non-generic exploding
solutions as e.g. in [10], for reasons of adequate emphasis let us repeat the corresponding estimate from
the above corollary again in the following.

Theorem 1.3 Let n ≥ 2, R > 0 and Ω := BR(0) ⊂ R
n, and suppose that

β > 0 and

{

α ∈
(β
2 , β

)

if n = 2,

α ∈
(β
2 , β

]

if n ≥ 3.
(1.16)

Then for all m > 0 there exist radially symmetric initial data which are such that (1.9) holds as well as
∫

Ω u0 = m, and which are such that the problem (1.13) possesses a unique global solution (u, v) fulfilling
(1.11) which blows up in infinite time in that

lim sup
t→∞

‖u(·, t)‖L∞(Ω) = ∞. (1.17)

Moreover, this infinite-time blow-up occurs at a rate no faster than logarithmic in the sense that for each
ε > 0 one can find C(ε) > 0 such that

‖u(·, t)‖L∞(Ω) ≤
( 1

min{β, 2α− β}
+ ε

)

· ln(1 + t) + C(ε) for all t > 0. (1.18)

We finally apply Theorem 1.1 to a particular case of the volume-filling chemotaxis model proposed in
[20], hence following the suggestion therein to link D and S in (1.1) via the relations

D(s) = Q(s)− sQ′(s) and S(s) = sQ(s), s ≥ 0,

on the basis of a supposedly known function Q for which Q(u) represents the probability that a cell,
when located at a point of current cell density u, finds space in some neighboring site. Let us recall from
the introductory discussion and the literature that if Q decays algebraically in that Q(s) = (s+1)−λ for

s ≥ 0 with some λ > 0, and hence S(s)
D(s) =

s
1+λ for all s ≥ 0, then it is known that unbounded solutions

exist whenever n ≥ 3 ([24]), and that these explosions occur only in infinite time when in addition

5



λ > 2− 2
n ([7]; cf. also [6] for a discussion on a related two-dimensional situation). For the corresponding

prototypical choice in the case of exponential decay, as determined by

Q(s) := e−βs, s ≥ 0,

for β > 0, (1.1) takes the form






















ut = ∇ ·
(

(1 + βu)e−βu∇u
)

−∇ · (ue−βu∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.19)

For this system, in view of the asymptotically constant behavior of S(s)
D(s) =

s
1+βs one might expect from

the discussion around (1.2) and (1.4) that global solutions always exist and remain bounded. Beyond
re-establishing the claim herein on global existence, as already proved in [4], our Theorem 1.1, albeit not
asserting boundedness in this general setup, at least provides an upper bound on solutions in the flavor
of (1.12). More precisely, we have the following.

Proposition 1.4 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, and let β > 0 and

(u0, v0) be such that (1.9) holds. Then (1.19) possesses a unique global classical solution (u, v) fulfilling
(1.11) which is such that for all ε > 0 there exists C(ε) > 0 with the property that

‖u(·, t)‖L∞(Ω) ≤
( 1

β
+ ε

)

· ln(1 + t) + C(ε) for all t > 0. (1.20)

The structure of this paper is as follows. In Section 2 we collect some preliminaries, in particular including
a comparison result for the nonlocal ordinary differential inequality (2.2) and a result on independence of
a constant in a Gagliardo-Nirenberg inequality within certain ranges of the exponents appearing therein
(Lemma 2.5). In Section 3 we will then derive a fundamental a priori estimate for eu in Lβ(Ω) for
some appropriately large β > 0, thereby making essential use of the right inequality in (1.10). After a
preparatory selection of parameters and a sequence (βk)k∈N diverging to +∞ (Lemma 4.1), based on an
autonomous ODI for eβku (Lemma 4.2) we will then proceed to develop this into an L∞ estimate for eu,
and hence also to the claimed global existence results, by means of an iterative argument of Moser type
in Lemma 5.1. The applications to the particular systems (1.13) and (1.19) will finally be presented in
Section 6.

2 Preliminaries

The following basic statement on local existence and extensibility of solutions can be obtained in a
straightforward manner by adapting well-established arguments to the present context ([4], [13], [22],
[26]).

Lemma 2.1 Suppose that D and S satisfy (1.5) and that u0 and v0 fulfill (1.9), and let ϑ > n. Then
there exist Tmax ∈ (0,∞] and a unique couple of nonnegative functions

{

u ∈ C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)),

v ∈ C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)) ∩ L∞
loc([0, Tmax);W

1,ϑ(Ω))
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such that (u, v) is a classical solution of (1.1) in Ω× (0, Tmax), and such that we have the alternative

either Tmax = ∞, or lim sup
tրTmax

(

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,ϑ(Ω)

)

= ∞. (2.1)

2.1 Two ODE comparison results

In the derivation of our basic quantitative growth estimate in Lemma 3.2, we shall employ the following
comparison argument involving a nonlocal ordinary differential inequality.

Lemma 2.2 Let T > 0, and suppose that y ∈ C0([0, T )) ∩ C1((0, T )) is nonnegative and such that

y′(t) ≤ a ·
{

max
s∈[0,t]

y(s)
}λ

for all t ∈ (0, T ) (2.2)

with certain constants a > 0 and λ ∈ (0, 1). Then

y(t) ≤
{

y1−λ(0) + (1− λ)at
}

1
1−λ

for all t ∈ (0, T ). (2.3)

Proof. For fixed ε > 0, we let yε ∈ C1([0,∞)) denote the solution of the initial-value problem

{

y′ε(t) = a ·
{

yε(t) + ε
}λ

, t > 0,

yε(0) = y(0) + ε,

that is, we define

yε(t) :=
{

(y(0) + 2ε)1−λ + (1− λ)at
}

1
1−λ

− ε, t ≥ 0. (2.4)

Then using that yε(0) > y(0), we see that

Mε :=
{

T0 ∈ [0, T )
∣

∣

∣
y(t) < yε(t) for all t ∈ [0, T0)

}

is not empty and hence t⋆ := supMε a well-defined element of (0, T ]. To see that actually t⋆ = T ,
assuming this to be false we would obtain from the regularity properties of y and yε that y(t) ≤ yε(t)
for all t ∈ [0, t⋆] and that y′(t⋆) ≥ y′ε(t⋆). Now since yε is nondecreasing, the latter entails that for any
t ∈ [0, t⋆],

y′(t⋆) ≥ a ·
{

yε(t⋆) + ε
}λ

≥ a ·
{

yε(t) + ε
}λ

≥ a ·
{

y(t) + ε
}λ

and thus

y′(t⋆) > a ·
{

max
t∈[0,t⋆]

y(t)
}λ

.

This contradiction to (2.2) shows that actually y(t) ≤ yε(t) for all t ∈ [0, T ) and any ε > 0, so that (2.3)
results on observing that by (2.4) we have

yε(t) →
{

y1−λ(0) + (1− λ)at
}

1
1−λ

as ε → 0
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for any t ≥ 0. �

For later reference, let us furthermore state the following result of a straightforward elementary compar-
ison argument.

Lemma 2.3 Let a, d, α and δ denote positive constants, and suppose that for some T > 0, y ∈ C0([0, T ))∩
C1((0, T )) is positive on [0, T ) and such that

y′(t) + dyδ(t) ≤ a(1 + t)α for all t ∈ (0, T ). (2.5)

Then

y(t) ≤ max

{

y(0) ,
(a

d

)
1
δ
(1 + t)

α
δ

}

for all t ∈ [0, T ). (2.6)

Proof. Writing

yε(t) := max

{

y(0) ,
(a

d

)
1
δ
(1 + t)

α
δ

}

+ ε

for t ∈ [0, T ) and ε > 0, we see that for any fixed ε > 0 we have y(0) < yε(0), and since yε possesses a
nonnegative left derivative D−yε(t) at each t ∈ (0, T ), using that yδε(t) >

a
d (1 + t)α for all t ∈ [0, T ) we

can estimate

D−yε(t) + dyδε(t)− a(1 + t)α > d ·
a

d
(1 + t)α − a(1 + t)α = 0 for all t ∈ (0, T ).

Therefore, an elementary comparison argument shows that y < yε throughout [0, T ), which yields (2.6)
upon letting ε ց 0. �

2.2 Independence of constants from exponents in some interpolation inequalities

In the course of our Moser-type iteration (cf. Lemma 4.2), it will be important to notice that the con-
stants appearing in some Gagliardo-Nirenberg inequalities can be chosen so as to be independent from
the respective summability powers, provided that the latter remain within certain subcritical ranges. In
proving our statement in this direction, as specified in Lemma 2.5, we will rely on the following straight-
forward consequence of the compact embedding of W 1,2(Ω) into L2(Ω), to be used again independently
also in Lemma 4.2.

Lemma 2.4 Let p⋆ > 0. Then there exists C > 0 such that for any p ≥ p⋆ we have

‖ϕ‖2W 1,2(Ω) ≤ C ·
{

‖∇ϕ‖2L2(Ω) + ‖ϕ‖2Lp(Ω)

}

for all ϕ ∈ W 1,2(Ω). (2.7)

Proof. Due to the compactness of the embedding W 1,2(Ω) →֒ L2(Ω), by means of an associated
Ehrling-type lemma we can find c1 > 0 such that

‖ϕ‖2L2(Ω) ≤
1

2
‖ϕ‖2W 1,2(Ω) + c1‖ϕ‖

2
Lp⋆ (Ω) for all ϕ ∈ W 1,2(Ω).

Since the Hölder inequality says that herein

‖ϕ‖2Lp⋆ (Ω) ≤ |Ω|
2(p−p⋆)

pp⋆ ‖ϕ‖2Lp(Ω) for all ϕ ∈ W 1,2(Ω),
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and since 2(p−p⋆)
pp⋆

≤ 2
p⋆
, we conclude that for all ϕ ∈ W 1,2(Ω),

‖ϕ‖2W 1,2(Ω) = ‖∇ϕ‖2L2(Ω) + ‖ϕ‖2L2(Ω) ≤ ‖∇ϕ‖2L2(Ω) +
1

2
‖ϕ‖2W 1,2(Ω) + c1 ·max

{

1 , |Ω|
2
p⋆

}

· ‖ϕ‖2Lp(Ω),

from which (2.7) readily follows. �

Now the announced version of the Gagliardo-Nirenberg inequality reads as follows.

Lemma 2.5 Let p⋆, p
⋆, r⋆ and r⋆ be positive numbers satisfying

r⋆ ≤ r⋆ < p⋆ ≤ p⋆ <
2n

(n− 2)+
. (2.8)

Then there exists C > 0 such that for any choice of p ∈ [p⋆, p
⋆] and r ∈ [r⋆, r

⋆] we have

‖ϕ‖Lp(Ω) ≤ C‖∇ϕ‖aL2(Ω)‖ϕ‖
1−a
Lr(Ω) + C‖ϕ‖Lr(Ω) for all ϕ ∈ W 1,2(Ω) (2.9)

with

a =

n
r − n

p

1− n
2 + n

r

∈ [a⋆, a
⋆], (2.10)

where

a⋆ :=

n
r⋆ − n

p⋆

1− n
2 + n

r⋆
> 0 and a⋆ :=

n
r⋆

− n
p⋆

1− n
2 + n

r⋆

< 1. (2.11)

Proof. According to the Gagliardo-Nirenberg inequality, since r⋆ < p⋆ < 2n
(n−2)+

we can find c1 ≥ 1
such that

‖ϕ‖Lp⋆ (Ω) ≤ c1‖ϕ‖
b
W 1,2(Ω)‖ϕ‖

1−b
Lr⋆ (Ω)

for all ϕ ∈ W 1,2(Ω) (2.12)

with

b =

n
r⋆ − n

p⋆

1− n
2 + n

r⋆
∈ (0, 1).

Since the Hölder inequality asserts that for any such ϕ we have

‖ϕ‖Lp(Ω) ≤ ‖ϕ‖c
Lp⋆ (Ω)

‖ϕ‖1−c
Lr(Ω)

and

‖ϕ‖Lr⋆ (Ω) ≤ ‖ϕ‖dLp(Ω)‖ϕ‖
1−d
Lr(Ω)

with

c =

1
r −

1
p

1
r −

1
p⋆

∈ (0, 1) and d =
1
r −

1
r⋆

1
r −

1
p

∈ (0, 1),

from (2.12) we thus obtain that

‖ϕ‖Lp(Ω) ≤

{

c1‖ϕ‖
b
W 1,2(Ω) ·

(

‖ϕ‖dLp(Ω)‖ϕ‖
1−d
Lr(Ω)

)1−b
}c

· ‖ϕ‖1−c
Lr(Ω) for all ϕ ∈ W 1,2(Ω),
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that is,

‖ϕ‖Lp(Ω) ≤ c
c

1−(1−b)cd

1 ‖ϕ‖
bc

1−(1−b)cd

W 1,2(Ω)
‖ϕ‖

1−c+(1−b)c(1−d)
1−(1−b)cd

Lr(Ω) for all ϕ ∈ W 1,2(Ω). (2.13)

Now a straightforward computation reveals that with a as in (2.10) we have

bc

1− (1− b)cd
= a and

1− c+ (1− b)c(1− d)

1− (1− b)cd
= 1− a,

so that since p⋆ < 2n
(n−2):+ warrants that indeed 0 < a⋆ ≤ a ≤ a⋆ < 1 with a⋆ and a⋆ taken from (2.11),

we see that moreover

c

1− (1− b)cd
=

a

b
≤

a⋆

b

and hence

c
c

1−(1−b)cd

1 ≤ c2 := c
a⋆

b
1 ,

because c1 ≥ 1. As the inequalities a⋆ ≤ a ≤ a⋆ along with Lemma 2.4 furthermore entail that with
some c3 > 0 we have

‖ϕ‖aW 1,2(Ω) ≤ c3 ·
{

‖∇ϕ‖aL2(Ω) + ‖ϕ‖aLr(Ω)

}

,

from (2.13) we altogether infer that

‖ϕ‖Lp(Ω) ≤ c2‖ϕ‖
a
W 1,2(Ω)‖ϕ‖

1−a
Lr(Ω) ≤ c2c3‖∇ϕ‖aL2(Ω)‖ϕ‖

1−a
Lr(Ω) + c2c3‖ϕ‖Lr(Ω) for all ϕ ∈ W 1,2(Ω),

as desired. �

3 Bounds for eu in Lβ(Ω) for large β > 0

The goal of this section is to properly exploit (1.8) in deriving a quantitative estimate on the growth of
u, formulated in terms of the norm of eu in Lβ(Ω) with appropriately large β > 0. This will be achieved
in Lemma 3.2 which, as furthermore also Lemma 4.2 below, makes use of the following consequence
of an assumed boundedness property of

∫

Ω eβu on regularity of the chemoattractive gradient, obtained
through a standard argument based on well-known smoothing properties of the second equation in (1.1)
when viewed as an inhomogeneous linear heat equation.

Lemma 3.1 Under the assumptions of Lemma 2.1, for all β > 0, q > 1 and δ > 0 there exists
C(β, q, δ) > 0 such that

‖v(·, t)‖W 1,q(Ω) ≤ C(β, q, δ) ·

{

max
s∈[0,t]

∫

Ω
eβu(·,s)

}δ

for all t ∈ (0, Tmax). (3.1)
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Proof. Given q > 1 and δ > 0, we fix p > 1 large enough such that

p >
nq

n+ q
(3.2)

and
1

p
< δ. (3.3)

Then since (3.2) means that q < np
n−p , a standard reasoning on the basis of well-known smoothing

estimates for the Neumann heat semigroup ([13, Lemma 4.1]) provides c1 > 0 such that

‖v(·, t)‖W 1,q(Ω) ≤ c1 ·
{

1 + max
s∈[0,t]

‖u(·, s)‖Lp(Ω)

}

for all t ∈ (0, Tmax). (3.4)

Now picking c2 > 0 such that ξp ≤ c2 e
βξ for all ξ ≥ 0, we can herein estimate

‖u(·, s)‖Lp(Ω) =

{
∫

Ω
up(·, s)

}
1
p

≤ c
1
p

2 ·

{
∫

Ω
eβu(·,s)

}
1
p

for all s ∈ [0, Tmax),

so that since
1

|Ω|

∫

Ω
eβu(·,s) ≥ 1 for all s ∈ [0, Tmax), (3.5)

it follows from (3.3) that

‖u(·, s)‖Lp(Ω) ≤ c
1
p

2 |Ω|
1
p ·

{

1

|Ω|

∫

Ω
eβu(·,s)

}δ

for all s ∈ [0, Tmax).

Once more making use of (3.5), from (3.4) we can therefore readily derive that (3.1) holds if we let

C(β, q, δ) := c1 ·
(

|Ω|−δ + c
1
p

2 |Ω|
1
p
−δ)

, for instance. �

Now if the growth of S relative to D is limited according to (1.8) with some γ satisfying the upper
inequality in (1.10), we can indeed find the following time-dependent estimate for

∫

Ω eβu for all suitably
large β.

Lemma 3.2 Let u0 and v0 be compatible with (1.9), and suppose that D and S satisfy (1.7) and (1.8)
with some K2 > 0,K3 > 0, β+ ∈ R and

γ <
β+

2
. (3.6)

Then for all β > β+ − 2γ and each ε > 0 one can find C(β, ε) > 0 with the property that
∫

Ω
eβu(x,t)dx ≤ C(β, ε) · (1 + t)

β

β+−2γ
+ε

for all t ∈ (0, Tmax). (3.7)

Proof. Using (1.1) and integrating by parts, we compute

1

β2

d

dt

∫

Ω
eβu =

1

β

∫

Ω
eβu∇ ·

(

D(u)∇u− S(u)∇v
)

= −

∫

Ω
eβuD(u)|∇u|2 +

∫

Ω
eβuS(u)∇u · ∇v for all t ∈ (0, Tmax), (3.8)
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where by Young’s inequality,

∫

Ω
eβuS(u)∇u · ∇v ≤

∫

Ω
eβuD(u)|∇u|2 +

1

4

∫

Ω
eβu

S2(u)

D(u)
|∇v|2 for all t ∈ (0, Tmax). (3.9)

Here we first invoke (1.7) and (1.8) to find that

1

4

∫

Ω
eβu

S2(u)

D(u)
|∇v|2 =

1

4

∫

Ω
eβuD(u) ·

( S(u)

D(u)

)2
· |∇v|2

≤
K2K

2
3

4

∫

Ω
e(β−β++2γ)u|∇v|2 for all t ∈ (0, Tmax), (3.10)

and in order to estimate the latter integral we observe that (3.6) entails that β − β+ + 2γ < β, so that
it is possible to fix θ > 1 sufficiently close to 1 such that still θ(β − β+ + 2γ) < β. As β − β+ + 2γ is
positive, we may therefore twice apply the Hölder inequality to see that

∫

Ω
e(β−β++2γ)u|∇v|2 ≤

{
∫

Ω
eθ(β−β++2γ)u

}
1
θ
{
∫

Ω
|∇v|

2θ
θ−1

}
θ−1
θ

≤ |Ω|
β−θ(β−β++2γ)

βθ

{
∫

Ω
eβu

}
β−β++2γ

β
{
∫

Ω
|∇v|

2θ
θ−1

}
θ−1
θ

(3.11)

for all t ∈ (0, Tmax). Again using (3.6), we nox fix δ > 0 small enough satisfying

δ <
β+ − 2γ

2β
(3.12)

and
β

β+ − 2γ − 2βδ
≤

β

β+ − 2γ
+ ε (3.13)

to infer from Lemma 3.1 that there exists c1 > 0 fulfilling

{
∫

Ω
|∇v(·, t)|

2θ
θ−1

}
θ−1
θ

= ‖∇v(·, t)‖2
L

2θ
θ−1 (Ω)

≤ c1 ·

{

max
s∈[0,t]

∫

Ω
eβu(·,s)

}2δ

for all t ∈ (0, Tmax).

Combined with (3.8)-(3.11), this yields c2 > 0 such that

d

dt

∫

Ω
eβu ≤ c2 ·

{
∫

Ω
eβu

}
β−β++2γ

β

·

{

max
s∈[0,t]

∫

Ω
eβu(·,s)

}2δ

for all t ∈ (0, Tmax),

which implies that y(t) :=
∫

Ω eβu(x,t)dx, t ∈ [0, Tmax), has the property that

y′(t) ≤ c2y
β−β++2γ

β (t) ·
{

max
s∈[0,t]

y(s)
}2δ

≤ c2 ·
{

max
s∈[0,t]

y(s)
}

β−β++2γ
β

+2δ
for all t ∈ (0, Tmax).
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As (3.12) asserts that λ := β−β++2γ
β + 2δ < 1, an application of Lemma 2.2 thus shows that

y(t) ≤
{

y1−λ(0) + (1− λ)c2t
}

1
1−λ

for all t ∈ (0, Tmax),

which immediately entails (3.7), because

1

1− λ
=

β

β+ − 2γ − 2βδ
≤

β

β+ − 2γ
+ ε

according to (3.13). �

4 Preparations for a recursive argument

Let us next prepare a Moser-type iteration within which we will estimate the norm of eu in Lβk(Ω)
for an appropriately chosen sequence (βk)k∈N ⊂ (0,∞). A fundamental ordinary differential inequality
for these norms, of recursive nature in containing a source term involving

∫

Ω eβk−1u, will be derived in
Lemma 4.2 based on a selection of (βk)k∈N achieved in Lemma 4.1. For a further exploitation of this
ODI in the next section, Lemma 4.3 will provide an elementary estimate for sequences satisfying certain
recursive inequalities with asymptotically quadratic source terms.

4.1 Selection of parameters

For definiteness in our subsequent procedure, by now making full use of our assumptions in (1.10) on γ

let us fix a sequence (βk)k∈N ⊂ (0,∞) and list some basic properties thereof.

Lemma 4.1 Let β− > 0, β+ ≤ β− and γ ∈ [β
+−β−

2 , β
+

2 ), and fix p⋆ ∈ (2, 2n
(n−2)+

). Then there exists

θ > 1 with the property that for all δ > 0 one can find β0 > max{1, β−} such that with

βk := 2kβ0, k ∈ N, (4.1)

we have
βk − β− > 0 and βk − β+ + 2γ > 0 for all k ∈ N, (4.2)

and that with

ak :=

n(βk−β−)
βk

− n(βk−β−)
2θ(βk−β++2γ)

1− n
2 + n(βk−β−)

βk

, k ∈ N, (4.3)

and

qk :=
βk − β−

(βk − β+ + 2γ)ak
, k ∈ N, (4.4)

we have
1

2
≤

βk

βk − β−
≤

3

2
and

2βk
βk − β−

≤ p⋆ for all k ∈ N (4.5)

as well as
a⋆ ≤ ak ≤ a⋆ and q⋆ ≤ qk ≤ q⋆ for all k ∈ N (4.6)
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with

a⋆ :=
n

n+ 6
, a⋆ :=

4n− n
p⋆

3n+ 1
< 1 (4.7)

and

q⋆ :=
β0 − β−

(β0 − β+ + 2γ)a⋆
> 1, q⋆ :=

n+ 6

n
, (4.8)

and such that moreover

2θ ≤
2θ(βk − β+ + 2γ)

βk − β−
≤ p⋆ for all k ∈ N (4.9)

and
βk − β+ + 2γ

βk − β−
· (1− ak) ·

qk

qk − 1
≤ 1 + δ · 2−k for all k ∈ N (4.10)

as well as
βk

βk − β−
≤ 1 + δ · 2−k for all k ∈ N. (4.11)

Proof. We let

ϕ(β) :=
β − β+ + 2γ

β − β−
, β > β−,

and observe that since −β+ + 2γ ≥ −β− according to our assumption that γ ≥ β+−β−

2 , the function ϕ

is positive and nonincreasing on (β−,∞) with ϕ(β) ց 1 as β → ∞. Using the hypothesis that p⋆ > 2
and the easily checked fact that indeed a⋆ < 1, we can therefore pick β⋆ > 1 large enough fulfilling

β⋆ ≥ max
{

3β− ,
p⋆β−

p⋆ − 2

}

(4.12)

as well as

2ϕ(β⋆) < p⋆

and

ϕ(β⋆) <
1

a⋆
, (4.13)

and thereupon choose θ > 1 sufficiently close to 1 such that still

2θϕ(β⋆) ≤ p⋆. (4.14)

Now given δ > 0, we finally fix β0 ≥ β⋆ such that

1

β0
·

n(β− − β+ + 2γ)

1− n
2 + n

2θ −
n(β−−β++2γ)

β0

≤ δ (4.15)

and

β0 ≥
(1 + δ)β−

δ
, (4.16)
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and let (βk)k∈N, (ak)k∈N and (qk)k∈N be defined through (4.1), (4.3) and (4.4), respectively. Then since
βk ≥ β0 for all k ∈ N, (4.2) is obvious from (4.12) and the fact that β⋆ > 1, and (4.9) is immediate from
(4.14) and the observation that

2θ(βk − β+ + 2γ)

βk − β−
= 2θϕ(βk) ∈ [2θ, 2θϕ(β⋆)] for all k ∈ N

by monotonicity of ϕ. Moreover, the first property in (4.2) along with the positivity of β− warrants that

βk

βk − β−
−

1

2
=

βk + β−

2(βk − β−)
≥ 0 for all k ∈ N,

and from the first condition contained in (4.12) we see that

βk

βk − β−
−

3

2
=

−βk + 3β−

2(βk − β−)
≤ 0 for all k ∈ N,

whereas the second ensures that

2βk
βk − β−

− p⋆ =
−(p⋆ − 2)βk + p⋆β−

βk − β−
≤ 0 for all k ∈ N.

Having thus proved (4.5), combining the first two inequalities therein with (4.9) we observe that as a

particular outcome of Lemma 2.5 when applied to r := βk

βk−β−
∈ [12 ,

3
2 ] and p := 2θ(βk−β++2γ)

βk−β−
∈ [2θ, p⋆] ⊂

[2, p⋆] we obtain
n
3/2 − n

2

1− n
2 + n

3/2

≤ ak ≤

n
1/2 − n

p⋆

1− n
2 + n

1/2

< 1 for all k ∈ N,

which can readily be seen to imply (4.6)-(4.8). To verify (4.10), we first use (4.3) and (4.4) in computing

βk − β+ + 2γ

βk − β−
· (1− ak) ·

qk

qk − 1
=

βk − β+ + 2γ

βk
·

1− n
2 + n

2θϕ(βk)

1− n
2 + n

2θ −
n(β−−β++2γ)

βk

for all k ∈ N,

so that since γ < β+

2 guarantees that βk−β++2γ
βk

≤ 1 for all k ∈ N, and again since ϕ(βk) ≥ 1 for all k ∈ N

by monotonicity of ϕ, we can estimate

βk − β+ + 2γ

βk − β−
· (1− ak) ·

qk

qk − 1
≤

1− n
2 + n

2θ

1− n
2 + n

2θ −
n(β−−β++2γ)

βk

= 1 +
1

βk
·

n(β− − β+ + 2γ)

1− n
2 + n

2θ −
n(β−−β++2γ)

βk

≤ 1 +
2−k

β0
·

n(β− − β+ + 2γ)

1− n
2 + n

2θ −
n(β−−β++2γ)

β0

for all k ∈ N,

because βk = 2kβ0 ≥ β0 for any k ∈ N. In view of (4.15), this indeed shows (4.10).
Finally, (4.16) entails that since β− > 0 we have

1

δ · 2−k
·

βk

βk − β−
− 1 =

β−

δβ0 − δ · 2−kβ−
− 1 ≤

β−

δβ0 − δβ−
− 1 =

−δβ0 + (1 + δ)β−

δ(β0 − β−)
≤ 0

for all k ∈ N, and that thus also (4.11) is valid. �
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4.2 A recursive integral inequality

With the above definition at hand, we can now derive an ODI for
∫

Ω eβku in which according to the
parameter estimates provided by Lemma 4.1 the dependence on k ∈ N can be controlled in an essentially
explicit manner.

Lemma 4.2 Suppose that D and S satisfy (1.6), (1.7) and (1.8) with some β− ∈ R, β+ ≤ β− and

γ ∈ [β
+−β−

2 , β
+

2 ), and some K1 > 0,K2 > 0 and K3 > 0. Then for all δ > 0 there exist β0 > max{1, β−}
and C(δ) > 0 such that with (βk)k∈N, (ak)k∈N and (qk)k∈N as defined in (4.1), (4.3) and (4.4), for any
choice of k ∈ N we have

d

dt

∫

Ω
eβku +

1

C(δ)
·

{
∫

Ω
eβku

}

βk−β−

βk

≤ Ck(δ) · (1 + t)δ ·

{
∫

Ω
eβk−1u

}

2(βk−β++2γ)

βk
·(1−ak)·

qk
qk−1

+Ck(δ) · (1 + t)δ ·

{
∫

Ω
eβk−1u

}

2(βk−β++2γ)

βk

+C(δ) ·

{
∫

Ω
eβk−1u

}

2(βk−β−)

βk

for all t ∈ (0, Tmax). (4.17)

Proof. We fix any p⋆ ∈ (2, 2n
(n−2)+

) and let θ > 1 be as thereupon provided by Lemma 4.1, due to
the latter implying that given δ > 0 we can find β0 > 0 with the properties listed there. Then again
by straightforward computation and Young’s inequality, from (1.1), (1.7) and (1.8) we obtain that for
k ∈ N,

1

β2
k

d

dt

∫

Ω
eβku = −

∫

Ω
eβkuD(u)|∇u|2 +

∫

Ω
eβkuS(u)∇u · ∇v

≤ −
1

2

∫

Ω
eβkuD(u)|∇u|2 +

1

2

∫

Ω
eβku

S2(u)

D(u)
|∇v|2

≤ −
1

2

∫

Ω
eβkuD(u)|∇u|2 +

K2K
2
3

2

∫

Ω
e(βk−β++2γ)u|∇v|2 for all t ∈ (0, Tmax), (4.18)

where unlike in Lemma 3.2 we now additionally make use of (1.6) to estimate

1

2

∫

Ω
eβkuD(u)|∇u|2 ≥

K1

2

∫

Ω
e(βk−β−)u|∇u|2

=
2K1

(βk − β−)2

∫

Ω

∣

∣

∣
∇e

βk−β−

2
u
∣

∣

∣

2
for all t ∈ (0, Tmax). (4.19)

To prepare an appropriate control the last summand in (4.18), we fix an arbitrary number β > β+ − 2γ
and employ Lemma 3.2 to obtain κ > 0 and c1 > 0 such that

∫

Ω
eβu ≤ c1(1 + t)κ for all t ∈ (0, Tmax).

We may therefore invoke Lemma 3.1 to infer the existence of c2 > 0, actually only depending on δ due
to the fact that θ and β are fixed numbers, such that with q⋆ > 1 as in (4.8) we have

‖∇v(·, t)‖
L

2θ
θ−1 (Ω)

≤ c2(1 + t)
(q⋆−1)δ

2q⋆ for all t ∈ (0, Tmax), (4.20)
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whence using the Hölder inequality we obtain that

K2K
2
3

2

∫

Ω
e(βk−β++2γ)u|∇v|2 ≤

K2K
2
3

2
·

{
∫

Ω
eθ(βk−β++2γ)u

}
1
θ

·

{
∫

Ω
|∇v|

2θ
θ−1

}
θ−1
θ

≤ c3(1 + t)
(q⋆−1)δ

q⋆ ·

{
∫

Ω
eθ(βk−β++2γ)u

}
1
θ

(4.21)

for all t ∈ (0, Tmax) with c3 :=
K2K2

3c
2
2

2 . In order to estimate the rightmost factor by means of the
Gagliardo-Nirenberg inequality from Lemma 2.5, we observe that according to (4.9) we have

2 < 2θ ≤
2θ(βk − β+ + 2γ)

βk − β−
≤ p⋆ <

2n

(n− 2)+
for all k ∈ N,

whereas (4.5) asserts that
1

2
≤

βk

βk − β−
≤

3

2
< 2 for all k ∈ N. (4.22)

Therefore, Lemma 2.5 provides c4 > 0 such that for any k ∈ N we have

{
∫

Ω
eθ(βk−β++2γ)u

}
1
θ

=
∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−

L

2θ(βk−β++2γ)

βk−β− (Ω)

≤ c4

∥

∥

∥
∇e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·ak

L2(Ω)
·
∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·(1−ak)

L

βk
βk−β− (Ω)

+c4

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−

L

βk
βk−β− (Ω)

for all t ∈ (0, Tmax) (4.23)

with ak ∈ (0, 1) determined by the relation

−
n(βk − β−)

2θ(βk − β+ + 2γ)
=

(

1−
n

2

)

ak −
n(βk − β−)

βk
(1− ak),

that is, with ak given by (4.3).
We now combine (4.23) with (4.21) and apply Young’s inequality in the form

AB ≤ ηAq + (q − 1)q
− q

q−1 η
− 1

q−1B
q

q−1 ,
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valid for all A ≥ 0, B ≥ 0, q > 1 and η > 0, to see that with qk = βk−β−

(βk+β++2γ)ak
as in (4.4) we have

K2K
2
3

2

∫

Ω
e(βk−β++2γ)u|∇v|2

≤ c3c4(1 + t)
(q⋆−1)δ

q⋆

∥

∥

∥
∇e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·ak

L2(Ω)
·
∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·(1−ak)

L

βk
βk−β− (Ω)

+c3c4(1 + t)
(q⋆−1)δ

q⋆

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−

L

βk
βk−β− (Ω)

≤
K1

(βk − β−)2

∥

∥

∥
∇e

βk−β−

2
u
∥

∥

∥

2

L2(Ω)

+(qk − 1)q
−

qk
qk−1

k

{

K1

(βk − β−)2

}− 1
qk−1

·

{

c3c4(1 + t)
(q⋆−1)δ

q⋆

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·(1−ak)

L

βk
βk−β− (Ω)

}

qk
qk−1

+c3c4(1 + t)
(q⋆−1)δ

q⋆

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−

L

βk
βk−β− (Ω)

. (4.24)

Here thanks to the preparatory observation that 1 < q⋆ ≤ qk ≤ q⋆ for all k ∈ N, as made in Lemma 4.1,
we can find c5 > 0 independent of k ∈ N such that

(qk − 1)q
−

qk
qk−1

k

{

K1

(βk − β−)2

}− 1
qk−1

·

{

c3c4(1 + t)
(q⋆−1)δ

q⋆

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·(1−ak)

L

βk
βk−β− (Ω)

}

qk
qk−1

≤ c5(βk − β−)
2

qk−1 (1 + t)
(q⋆−1)δ

q⋆
·

qk
qk−1

∥

∥

∥
e

βk−β−

u

∥

∥

∥

2(βk−β++2γ)

βk−β−
·(1−ak)·

qk
qk−1

L

βk
βk−β− (Ω)

for all t ∈ (0, Tmax), and moreover recalling the definition of (βk)k∈N we conclude that there exists c6 > 0
fulfilling

(qk − 1)q
−

qk
qk−1

k

{

K1

(βk − β−)2

}− 1
qk−1

·

{

c3c4(1 + t)
(q⋆−1)δ

q⋆

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·(1−ak)

L

βk
βk−β− (Ω)

}

qk
qk−1

≤ c6 · 2
2k

q⋆−1 (1 + t)δ
∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·(1−ak)·

qk
qk−1

L

βk
βk−β− (Ω)

for all t ∈ (0, Tmax). As clearly

c3c4(1 + t)
(q⋆−1)δ

q⋆

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−

L

βk
βk−β− (Ω)

≤ c3c4(1 + t)δ
∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−

L

βk
βk−β− (Ω)

for all t ∈ (0, Tmax),
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from (4.24) together with (4.18) and (4.19) we infer that

1

β2
k

d

dt

∫

Ω
eβku +

K1

(βk − β−)2

∫

Ω

∣

∣

∣
∇e

βk−β−

2
u
∣

∣

∣

2

≤ c6 · 2
2k

q⋆−1 (1 + t)δ
∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·(1−ak)·

qk
qk−1

L

βk
βk−β− (Ω)

+c3c4(1 + t)δ
∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−

L

βk
βk−β− (Ω)

for all t ∈ (0, Tmax). (4.25)

In order to turn the Dirichlet integral herein into a zero-order absorptive term, we recall that by (4.22)
and (4.5) we have

1 ≤
2βk

βk − β−
≤ p⋆ for all k ∈ N,

whence an application of Lemma 2.4 provides c7 > 0 such that for any choice of k ≥ 1 we can estimate
∫

Ω
eβku =

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2βk
βk−β−

L

2βk
βk−β− (Ω)

≤

{

c7 ·

(

∥

∥

∥
∇e

βk−β−

2
u
∥

∥

∥

2

L2(Ω)
+
∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2

L

βk
βk−β− (Ω)

)

}

βk
βk−β−

for all t ∈ (0, Tmax).

Therefore,

K1

(βk − β−)2

∫

Ω

∣

∣

∣
∇e

βk−β−

2
u
∣

∣

∣

2
≥

K1

c7(βk − β−)2
·

{
∫

Ω
eβku

}

βk−β−

βk

−
K1

(βk − β−)2

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2

L

βk
βk−β− (Ω)

for all t ∈ (0, Tmax), whence (4.25) yields the inequality

d

dt

∫

Ω
eβku +

K1β
2
k

(βk − β−)2
·

{
∫

Ω
eβku

}

βk−β−

βk

≤ c6 · 2
2k

q⋆−1β2
k(1 + t)δ

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−
·(1−ak)·

qk
qk−1

L

βk
βk−β− (Ω)

+c3c4β
2
k(1 + t)δ

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2(βk−β++2γ)

βk−β−

L

βk
βk−β− (Ω)

+
K1β

2
k

(βk − β−)2

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

2

L

βk
βk−β− (Ω)

for all t ∈ (0, Tmax).

Since βk = 2βk−1 and hence

∥

∥

∥
e

βk−β−

2
u
∥

∥

∥

L

βk
βk−β− (Ω)

=

{
∫

Ω
eβk−1u

}

βk−β−

βk

for all t ∈ (0, Tmax),

once more recalling (4.22) we readily end up with (4.17) on choosing C(δ) > 0 suitably large. �
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4.3 Bounds in recursions involving asymptotically quadratic nonlinearities

In general, the right-hand side of (4.17) may contain powers of
∫

Ω eβk−1u which are subquadratic, but
which thanks to the observations made in Lemma 4.1 will at least become quadratic asymptotically at a
sufficiently fast rate. This will be essential to our next step, to be achieved in Lemma 5.1 below on the
basis of the following elementary estimate which has implicitly been used in precedent Moser iterations
for quasilinear parabolic equations such as e.g. in [23, Lemma A.1].

Lemma 4.3 Let (Mk)k∈N0 ⊂ [1,∞) be such that

Mk ≤ bkM
θk
k−1 for all k ∈ N (4.26)

with some b ≥ 1 and (θk)k∈N ⊂ (0,∞) having the property that there exists d > 0 fulfilling

θk ≤ 2(1 + d · 2−k) for all k ∈ N. (4.27)

Then
Mk ≤ bk+ed·2k+1

·M ed·2k

0 for all k ∈ N. (4.28)

Proof. By straightforward induction, from (4.26) we first obtain that

Mk ≤ bk+
∑k

j=1(j−1)·
∏k

i=j θi ·M
∏k

i=1 θi
0 for all k ∈ N. (4.29)

Here using (4.27) and the fact that ln(1 + ξ) ≤ ξ for all ξ ≥ 0 we can estimate

k
∏

i=j

θi ≤ 2k+1−je
∑k

i=j ln(1+d·2−k)

≤ 2k+1−je
∑k

i=j d·2
−k

≤ c1 · 2
k+1−j for all k ∈ N and each j ∈ {1, ..., k}

with c1 := exp
{

∑∞
i=1 d · 2−k

}

= ed. Therefore, (4.29) along with the inequalities b ≥ 1 and M0 ≥ 1

implies that

Mk ≤ bk+c1·2k+1
∑k

j=1(j−1)·2−j

·M c1·2k

0 for all k ∈ N,

which directly yields (4.28), because
∑k

j=1(j − 1) · 2−j ≤ 1
4

∑∞
l=1 l · 2

−(l−1) = 1 for all k ∈ N. �

5 Bounds for eu in L∞(Ω). Proof of Theorem 1.1

By appropriately applying the results of the previous section along with the outcome of Lemma 3.2, we
can now accomplish the main step toward both the statement on global existence as well as the upper
estimate claimed in Theorem 1.1.

Lemma 5.1 Suppose that (1.5), (1.6), (1.7) and (1.8) hold with some β− ∈ R, β+ ≤ β−, γ ∈ [β
+−β−

2 , β
+

2 )
and positive K1,K2 and K3, and that (u0, v0) satisfies (1.9). Then for all ε > 0 there exists C(ε) > 0
such that for the solution of (1.1) we have

‖eu(·,t)‖L∞(Ω) ≤ C(ε) · (1 + t)
1

β+−2γ
+ε

for all t ∈ (0, Tmax). (5.1)
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Proof. Given ε > 0, let us first fix

µ0 :=
1

β+ − 2γ
+

ε

2
, (5.2)

whence it is possible to pick η > 0 sufficiently small such that

µ0 e
η ≤

1

β+ − 2γ
+ ε. (5.3)

We finally choose δ ∈ (0, 1] fulfilling

δ ≤
µ0

3µ0 + 2
· η (5.4)

and thereafter let θ > 1, β0 > max{1, β−} and (βk)k∈N be as obtained from an application of Lemma
4.1 to any fixed p⋆ ∈ (2, 2n

(n−2)+
). We then recursively define

κ0 := β0µ0 and κk := 2(1 + η · 2−k)κk−1, k ∈ N, (5.5)

that is, we let

κk :=

( k
∏

j=1

(1 + η · 2−j)

)

· 2kκ0 for k ∈ N, (5.6)

and for nonnegative integers k we moreover introduce the numbers

Mk := max

{

1 , sup
t∈(0,Tmax)

(1 + t)−κk

∫

Ω
eβku(·,t)

}

, (5.7)

which are all finite thanks to Lemma 3.2, because

κk > 2kκ0 >
βk

β+ − 2γ
for all k ∈ N

thanks to (5.6), (5.5), (4.1) and (5.2). In order to estimate Mk for k ∈ N, we first apply Lemma 4.2 to
gain constants c1 > 0 and c2 ≥ 1 such that for any choice of k ∈ N, the function yk defined on [0, Tmax)
by letting yk(t) :=

∫

Ω eβku(x,t)dx, t ∈ [0, Tmax), satisfies

y′k(t) + c1y

βk−β−

βk

k (t) ≤ ck2(1 + t)δ ·

{
∫

Ω
eβk−1u

}

2(βk−β−+2γ)

βk
·(1−ak)·

qk
qk−1

+ck2(1 + t)δ ·

{
∫

Ω
eβk−1u

}

2(βk−β++2γ

βk

+c2

{
∫

Ω
eβk−1u

}

2(βk−β−)

βk

for all t ∈ (0, Tmax),

where ak and qk are as defined in Lemma 4.1. Here since by (5.7) we have
∫

Ω
eβk−1u ≤ Mk−1(1 + t)κk−1 for all t ∈ (0, Tmax),
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using (4.10) and that 2(βk−β−)
βk

≤ 2 and 2(βk−β++2γ)
βk

≤ 2 by positivity of both β− as well as β+ − 2γ,
from this we infer that

y′k(t) + c1y

βk−β−

βk

k (t) ≤ ck2(1 + t)δ ·

{

Mk−1(1 + t)κk−1

}

2(βk−β−+2γ)

βk
·(1−ak)·

qk
qk−1

+ck2(1 + t)δ ·

{

Mk−1(1 + t)κk−1

}

2(βk−β++2γ

βk

+c2

{

Mk−1(1 + t)κk−1

}

2(βk−β−)

βk

≤ ck2(1 + t)δ ·

{

Mk−1(1 + t)κk−1

}2(1+δ·2−k)

+ck2(1 + t)δ ·

{

Mk−1(1 + t)κk−1

}2

+c2

{

Mk−1(1 + t)κk−1

}2

≤ 3ck2M
2(1+δ·2−k)
k−1 (1 + t)2(1+δ·2−k)κk−1+δ for all t ∈ (0, Tmax), (5.8)

where in increasing the respective exponents we also rely on the inequality Mk−1 ≥ 1 guaranteed by
(5.7).
Now Lemma 2.3 enables us to conclude from (5.8) that

yk(t) ≤ max

{

yk(0) ,

(

3ck2
c1

·M
2(1+δ·2−k)
k−1

)

βk
βk−β−

· (1+ t)
βk

βk−β−
·[2(1+δ·2−k)κk−1+δ]

}

for all t ∈ (0, Tmax).

(5.9)
Here since (4.11) warrants that

βk

βk − β−
≤ 1 + δ · 2−k (5.10)

and hence implies that
βk

βk − β−
≤ 2 (5.11)

as a particular consequence of our restriction that δ ≤ 1, we see that

(

3ck2
c1

·M
2(1+δ·2−k)
k−1

)

βk
βk−β−

≤
(3ck2
c1

)2
·M

2(1+δ·2−k)2

k−1

≤
(3ck2
c1

)2
·M

2(1+η·2−k)
k−1 , (5.12)

for our assumption (5.4) implies that δ ≤ η
3 and hence

(1 + δ · 2−k)2 − (1 + η · 2−k) = (2δ + δ2 · 2−k − η) · 2−k ≤ (3δ − η) · 2−k ≤ 0,
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again because δ ≤ 1.
To treat the time-dependent factor on the right of (5.9), we now make full use of (5.4), which along with
(5.10), (5.11) and (5.5) guarantees that

βk

βk − β−
·
[

2(1 + δ · 2−k)κk−1 + δ
]

≤ 2(1 + δ · 2−k)2κk−1 + 2δ ≤ 2(1 + η · 2−k)κk−1 = κk,

because once more due to the fact that δ ≤ 1, (5.4) can be used to estimate

2(1 + δ · 2−k)2κk−1 + 2δ − 2(1 + η · 2−k)κk−1 = 2(2δ + δ2 · 2−k − η) · 2−kκk−1 + 2δ

≤ (3δ − η) · 2−kκk−1 + 2δ

≤
(

3 ·
µ0

3µ0 + 2
· η − η

)

· 2−kκk−1 +
2µ0

3µ0 + 2
· η

=
2η

3µ0 + 2
·
(

− 21−kκk−1 + µ0

)

,

and because (5.6) and the restriction β0 > 1 ensure that

−21−kκk−1 + µ0 ≤ −21−k · 2k−1κ0 + µ0 = −β0µ0 + µ0 < 0.

Accordingly, (5.9) shows that

yk(t) ≤ max

{

yk(0) ,
(3ck2
c1

)2
M

2(1+η·2−k)
k−1 (1 + t)κk

}

for all t ∈ (0, Tmax),

which implies that

(1− t)−κk

∫

Ω
eβku(·,t) ≤ max

{
∫

Ω
eβku0 ,

(3ck2
c1

)2
M

2(1+η·2−k)
k−1

}

for all t ∈ (0, Tmax),

and that hence

Mk ≤ max

{

1 ,

∫

Ω
eβku0 ,

(3ck2
c1

)2
M

2(1+η·2−k)
k−1

}

. (5.13)

Now if there exists (kj)j∈N ⊂ N such that kj → ∞ as j → ∞ and

Mkj ≤ max

{

1 ,

∫

Ω
e
βkj

u0

}

for all j ∈ N,

it is evident from (5.7) that

∥

∥eu(·,t)
∥

∥

L∞(Ω)
= lim

j→∞

{
∫

Ω
e
βkj

u(·,t)
}

1
βkj

≤ lim sup
j→∞

{

(1 + t)
κkjMkj

}
1

βkj

≤ lim sup
j→∞

(1 + t)

κkj
βkj ·max

{

1 , lim sup
j→∞

{
∫

Ω
e
βkj

u0

}
1

βkj

}

= max
{

1 ,
∥

∥eu0
∥

∥

L∞(Ω)

}

· lim sup
j→∞

(1 + t)

κkj
βkj for all t ∈ (0, Tmax). (5.14)
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Observing that by (4.1), (5.6) and (5.5) we have

κk

βk
=

κ0

β0

k
∏

j=1

(1 + η · 2−j)

= µ0 e
∑k

j=1 ln(1+η·2−j)

≤ µ0 e
∑k

j=1 η·2
−j

≤ µ0 e
η

≤
1

β+ − 2γ
+ ε for all k ∈ N (5.15)

thanks to (5.3), (5.14) shows that in this case we have

∥

∥eu(·,t)
∥

∥

L∞(Ω)
≤ max

{

1 ,
∥

∥eu0
∥

∥

L∞(Ω)

}

· (1 + t)
1

β+−2γ
+ε

for all t ∈ (0, Tmax). (5.16)

Conversely, if such a sequence does not exist, then (5.13) implies the existence of some suitably large
b ≥ 1 such that

Mk ≤ bkM
2(1+η·2−k)
k−1 for all k ∈ N,

whence Lemma 4.3 applies so as to ensure that

Mk ≤ bk+eη ·2k−1
·M eη ·2k

0 for all k ∈ N.

Consequently, by a reasoning similar to that in (5.14) we obtain

∥

∥eu(·,t)
∥

∥

L∞(Ω)
= lim

k→∞

{
∫

Ω
eβku(·,t)

}
1
βk

≤ lim sup
k→∞

{

(1 + t)κkMk

}
1
βk

≤

{

lim sup
k→∞

(1 + t)
κk
βk

}

·

{

lim sup
k→∞

M
1
βk

k

}

for all t ∈ (0, Tmax),

where by (4.1) and the trivial inequality k ≤ 2k we have

M
1
βk

k ≤ b
k+eη ·2k+1

βk ·M
eη ·2k

βk
0

= b
k+eη ·2k+1

2kβ0 ·M
eη ·2k

2kβ0
0

≤ b
1+2eη

β0 ·M
eη

β0
0 =: c3 for all k ∈ N.

In view of (5.15), we thus infer that in this case

∥

∥eu(·,t)
∥

∥

L∞(Ω)
≤ c3(1 + t)

1
β+−2γ

+ε
for all t ∈ (0, Tmax),
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which combined with (5.16) completes the proof. �

Our main results thereby become obvious.

Proof of Theorem 1.1. Due to the extensibility criterion (2.1), Lemma 5.1 together with Lemma
2.1 and Lemma 3.1 firstly entails global solvability in the indicated class, whereupon the estimate (1.12)
directly results from (5.1). �

6 Applications. Proofs of Corollary 1.2, Theorem 1.3 and Proposition

1.4

We can next verify the claimed consequences of Theorem 1.1 on the particular systems (1.13) and (1.19).
Let us first address (1.13), that is, the Neumann problem for

{

ut = ∇ · (e−βu∇u)−∇ · (ue−αu∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
(6.1)

and make sure that indeed for any choice of β > 0 and α > β
2 a global solution exists which satisfies the

estimate (1.15).

Proof of Corollary 1.2. Observing that (1.14) ensures that min{β, 2α − β} ≡ β − 2(β − α)+ is
positive, given ε > 0 we can fix η > 0 suitably small such that

1

β − 2(β − α)+ − 2η
≤

1

β − 2(β − α)+
+

ε

2
, (6.2)

and such that moreover
2η < β − 2(β − α)+, (6.3)

where by positivity of η and (6.3), the number γ := (β − α)+ + η then satisfies

γ > 0 and γ < (β − α)+ +
1

2

(

β − 2(β − α)+

)

=
β

2
. (6.4)

As the positivity of η moreover asserts that κ := γ + α − β is positive, using that therefore se−κs ≤ 1
κe

for all s ≥ 0 we obtain that

se−αs

e−βs
= se−κs · eγs ≤

1

κe
eγs for all s ≥ 0,

and that hence (1.6), (1.7) and (1.8) hold for D(s) := e−βs and S(s) := se−αs, s ≥ 0, if we let
β− := β+ := β as well as K1 := K2 := 1 and K3 := 1

κe . Since (6.4) in particular warrants the validity
of (1.10), we may thus apply Theorem 1.1 to obtain a global classical solution having the indicated
uniqueness and regularity properties and furthermore satisfying

‖u(·, t)‖L∞(Ω) ≤
( 1

β − 2γ
+

ε

2

)

· ln(1 + t) + c1 for all t > 0
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with some c1 = c1(ε) > 0. Since herein by definition of γ and (6.2) we can estimate

1

β − 2γ
+

ε

2
=

1

β − 2(β − α)+ − 2η
≤

1

β − 2(β − α)+
+

ε

2
=

1

min{β, 2α− β}
+

ε

2
,

this implies (1.15) with C(ε) := c1. �

Now if α > β
2 is not too large in the sense that α < β if n = 2 and α ≤ β if n = 3, as specified in (1.16),

the ratio e−αs

e−βs of the chemotactic sensitivity and the cell diffusivity in (6.1) grows even exponentially
and hence faster than any algrebraic function of s as s → ∞. In light of a known result on nonexistence
of global bounded solutions in such constellations, the conclusion that in this case there exist global
solutions which blow up in infinite time at a slow rate controlled by (1.17) is thus straightforward:

Proof of Theorem 1.3. Once more writing D(s) := s−β and S(s) := se−αs for s ≥ 0, observing that

then again S(s)
D(s) = se(α−β)s for all s ≥ 0, we conclude from (1.16) that in the case n = 2 when α < β we

have

S(s)
D(s)

s ln s
=

e(β−α)s

ln s
→ +∞ as s → ∞,

whereas if n ≥ 3, then the inequality α ≤ β ensures that

s
(

S
D

)′
(s)

S
D (s)

= 1 + (β − α)s ≥ 1 for all s ≥ 1.

Therefore, for any prescribed m > 0 we obtain from a known result ([24, Theorem 5.1, Corollary 5.2])
that there exist radial initial data (u0, v0) satisfying (1.9) as well as

∫

Ω u0 = m, which are such that
(1.13) does not possess any global classical solution for which u belongs to L∞(Ω × (0,∞)). Since on
the other hand Corollary 1.2 guarantees the existence of a global classical solution fulfilling (1.15), this
solution must actually satisfy (1.17). �

For (1.19), that is, the corresponding initial-boundary value problem for

{

ut = ∇ ·
(

(1 + βu)e−βu∇u
)

−∇ · (ue−βu∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

Theorem 1.1 immediately yields global existence and the logarithmic upper bound claimed in Proposition
1.4:

Proof of Proposition 1.4. Given ε > 0, we fix β+ ∈ (0, β) sufficiently close to β such that

1

β+
<

1

β
+

ε

2
. (6.5)

which implies that writing D(s) := (1 + λs)e−βs and S(s) := se−βs for s ≥ 0, we obtain that

eβ
+sD(s) = (1 + βs)e−(β−β+)s ≤ K2 := 1 +

β

(β − β+)e
for all s ≥ 0,
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and that hence (1.7) holds. Since clearly (1.6) is valid with β− := β and K1 := 1, and since moreover

S(s)

D(s)
=

s

1 + βs
≤ K3 :=

1

β
for all s ≥ 0,

we may thus apply Theorem 1.1 to γ := 0 ∈ (β
+−β
2 , β

+

2 ) to infer that the claimed existence and uniqueness
statement holds, and that we can find c1 = c1(ε) > 0 fulfilling

‖u(·, t)‖L∞(Ω) ≤
( 1

β+
+

ε

2

)

· ln(1 + t) + c1 for all t > 0.

In view of (6.5), this establishes (1.20) with C(ε) := c1. �
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