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Abstract

A class of Keller-Segel-Stokes systems generalizing the prototype





nt + u · ∇n = ∆n−∇ ·
(
n(n+ 1)−α∇c

)
,

ct + u · ∇c = ∆c− c+ n,

ut +∇P = ∆u+ n∇φ+ f(x, t), ∇ · u = 0,

(⋆)

is considered in a bounded domain Ω ⊂ R
3, where φ and f are given sufficiently smooth functions

such that f is bounded in Ω× (0,∞).

It is shown that under the condition that

α >
1

3
,

for all sufficiently regular initial data a corresponding Neumann-Neumann-Dirichlet initial-boundary
value problem possesses a global bounded classical solution. This extends previous findings assert-
ing a similar conclusion only under the stronger assumption α > 1

2
.

In view of known results on the existence of exploding solutions when α < 1

3
, this indicates that

with regard to the occurrence of blow-up the criticality of the decay rate 1

3
, as previously found

for the fluid-free counterpart of (⋆), remains essentially unaffected by fluid interaction of the type
considered here.
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1 Introduction

One of the most characteristic mathematical features of the classical Keller-Segel system, in its simplest
form given by {

nt = ∆n−∇ · (n∇c),

ct = ∆c− c+ n,
(1.1)

consists in its ability to generate singular behavior by enforcing finite-time blow-up of some solutions in
spatially two- or higher-dimensional situations ([15], [41]). Well-established as a model for the collective
behavior in populations of cells chemotactically biased by a signal substance produced by themselves,
(1.1) thus may well describe phenomena of spontaneous cell aggregation arising in various experimental
contexts ([16]). In order to adequately describe chemotactic migration also in biological frameworks
in which such an emergence of unbounded population densities seems unrealistic, considerable efforts
have been undertaken since the introduction of (1.1) ([18]) to develop modified variants thereof in
which the occurrence of explosions is a priori ruled out.

One frequently discussed and in its mathematical consequences quite comprehensively understood
direction of refinement consists in assuming the cell motility to depend differently on the population
density than supposed in (1.1), especially at large densities; this may lead to certain saturation effects
in the cross-diffusion term, or to nonlinear diffusivities e.g. in the sense of a porous medium-type
enhancement of diffusion at large densities, or to a combination of both (see e.g. the survey [16]).
Focusing here on the former type of modification, as reflected in the variant

{
nt = ∆n−∇ · (nS(n)∇c),

ct = ∆c− c+ n,
(1.2)

of (1.1) with nonnegative S(n) possibly becoming small at large values of n, we may interpret the
corresponding literature as identifying the decay rate of the prototypical choice

S(n) = (n+ 1)−
N−2
N , n ≥ 0, (1.3)

as critical for the occurrence of blow-up in the spatially N -dimensional version of (1.2): Indeed, if
N ≥ 2 and S ∈ C2([0,∞)) is such that

S(n) ≤ KS(n+ 1)−α for all n ≥ 0 (1.4)

and some KS > 0 and α > N−2
N

, then for all reasonably regular nonnegative initial data the no-flux
initial-boundary value problem for (1.2) in smoothly bounded domains Ω ⊂ R

N possesses a globally
defined bounded classical solution ([17], [25]); on the other hand, if

S(n) ≥ K ′
S(n+ 1)−α′

for all n ≥ 0 (1.5)

and some K ′
S > 0 and α′ < N−2

N
, then in each ball Ω ⊂ R

N there exist solutions which become
unbounded ([4], [38]).

It is the purpose of the present work to study the question how far this borderline role of the behavior
(1.3) may be affected by interaction of cells with a liquid environment, where intending to incorporate
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an assumption underlying the model development in [30] we will suppose that this interaction occurs
not only through transport but possibly also through a buoyancy-driven feedback of cells to the fluid
velocity. Indeed, numerical evidence suggests that the combination of these mechanisms may at least
enforce a delay in blow-up of some solutions to an accordingly modified two-dimensional variant of
(1.1) ([22]). More drastically, a recent rigorous analytical result shows that even in absence of any
influence of cells on the fluid motion, a purely transport-determined interplay in fact may fully suppress
blow-up in the sense that for widely arbitrary fixed initial data one can construct a solenoidal fluid
velocity field such that a corresponding initial value problem associated with an either two- or three-
dimensional variant of (1.1) possesses globally bounded solutions ([19]).

With our focus slightly differing from that in the latter study, we will henceforth concentrate on the
problem of deciding whether for some given sensitivity parameter function S, in the extension





nt + u · ∇n = ∆n−∇ ·
(
nS(n)∇c

)
, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut +∇P = ∆u+ n∇φ+ f(x, t), ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν

= 0, ∂c
∂ν

= 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.6)

of the no-flux initial-boundary value problem for (1.2) it is at all possible to observe the occurrence of
blow-up for some solution in presence of some suitably regular gravitational potential φ and external
fluid force f in some bounded domain Ω ⊂ R

N .

Within this problem setting it then immediately becomes clear on letting u0 ≡ 0, φ ≡ 0, f ≡ 0 and
Ω := B1(0) ⊂ R

N that assuming (1.5) to be valid for some K ′
S > 0 and α′ < N−2

N
trivially remains

sufficient for the existence of some exploding solutions in (1.6) as well. In the case N = 2, this
condition in fact appears to stay essentially optimal also for (1.6) in view of recent results asserting
global existence of bounded classical solutions for all suitably regular initial data at least when f ≡ 0,
thus ruling out any blow-up phenomenon ([35]), even in the more complicated case when the fluid
flow is governed by an associated version of the full Navier-Stokes equations ([34]).

In the three-dimensional version of (1.6), the seemingly only available result on global existence and
boundedness of classical solutions for arbitrarily large initial data relies on the requirement that (1.4)
holds for some KS > 0 and α > 1

2 ([36]), thus leaving open the question how far the value 1
3 accordingly

appearing in (1.3) continues to play the role of a critical blow-up exponent for (1.6); after all, under
the mere assumption that (1.4) be valid with some KS > 0 and α > 1

3 , certain global generalized
solutions could be constructed for the actually even more complex Keller-Segel-Navier-Stokes variant
of (1.6) ([31], cf. also [21]), but unless in cases when suitable additional smallness conditions on the
initial data are imposed ([20]) the knowledge on their boundedness features is yet quite poor.

Main results: Criticality of the decay exponent 1
3 . The main outcome of this study reveals

that the validity of (1.8) with some KS > 0 and α > 1
3 is actually sufficient to exclude any singularity

formation also in the full chemotaxis-Stokes system (1.6) unde reasonable assumptions on φ, f and the
initial data, thereby indicating, in the sense specified above, that the possibility of observing blow-up
in a suitable constellation remains unaffected by fluid interaction of the considered type.

To make this more precise, let us consider (1.6) in a bounded domain Ω ⊂ R
3, where for simplicity we
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shall assume that

φ ∈ C2(Ω) and f ∈ C1(Ω× [0,∞);R3) ∩ L∞(Ω× (0,∞);R3), (1.7)

and where we shall suppose throughout the sequel that S ∈ C2([0,∞)) satisfies

|S(n)| ≤ KS(n+ 1)−α for all n ≥ 0 (1.8)

with some α > 0 and KS > 0. The initial data in (1.6) will be assumed to be such that





n0 ∈ C0(Ω̄) with n0 ≥ 0,
c0 ∈ W 1,∞(Ω) with c0 ≥ 0 and
u0 ∈ D(Aβ) for some β ∈ (34 , 1),

(1.9)

where A = −P∆ represents the Stokes operator in L2
σ(Ω) := {ϕ ∈ L2(Ω;R3) | ∇ · ϕ = 0}, with its

domain given by D(A) := W 2,2(Ω;R3) ∩ W
1,2
0 (Ω;R3) ∩ L2

σ(Ω), and with P denoting the Helmholtz
projection from L2(Ω;R3) into L2

σ(Ω).

In this context, our main results read as follows.

Theorem 1.1 Let Ω ⊂ R
3 be a bounded domain with smooth boundary, let φ and f satisfy (1.7), and

let S ∈ C2([0,∞)) be such that (1.8) holds with some

α >
1

3
. (1.10)

Then for all n0, c0 and u0 fulfilling (1.9), the problem (1.6) possesses a global classical solution
(n, c, u, P ), uniquely determined by the inclusions





n ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

c ∈
⋂

p>3C
0([0,∞);W 1,p(Ω)) ∩ C2,1(Ω× (0,∞)),

u ∈ C0([0,∞);D(Aβ)) ∩ C2,1(Ω× [0,∞);R3),

P ∈ C1,0(Ω× (0,∞)),

(1.11)

for which n ≥ 0 and c ≥ 0 in Ω× (0,∞). Moreover, given any p > 1 one can find C > 0 such that

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,p(Ω) + ‖u(·, t)‖L∞(Ω) ≤ C for all t ≥ 0. (1.12)

With regard to the question of global solvability by bounded functions for arbitrary coefficient functions
φ and f and initial data, the problem of identifying a critical decay rate of S, up to evident remaining
open topics arising when e.g. in (1.3) we precisely have equality, thereby seems comprehensively solved
in the spatially three-dimensional case. In comparison to this, the picture seems much less complete in
neighboring families of systems in which chemotactic cross-diffusion interacts with either alternative
or further mechanisms. For instance, logistic-type growth restrictions, as modeled by additional
summands of the form ρn−µn2 in the respective equation for n, have recently been shown to prevent
blow-up in corresponding Keller-Segel-fluid variants of (1.6) if either N = 2 and µ > 0 is arbitrary, even
in the case when the fluid flow is governed by the full Navier-Stokes equations ([8], [29]), or N = 3
and µ > 0 is suitably large ([28]). This generalizes previously known facts for the corresponding
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fluid-free Keller-Segel-growth system ([23], [39]), but due to the lack of any complementary result on
blow-up e.g. for N = 3 and small µ > 0, this only partially clarifies how far the potential to enforce
explosions is influenced by fluid interaction in such circumstances. Similar observations concern related
chemotaxis(-fluid) systems accounting for consumption, rather than production, of the chemical signal
by the cells, in the most prototypical form requiring a replacement of the reaction term −c+ n with
−nc in the equation determining the evolution of c. Models of this form have been studied quite
thoroughly in the literature, both with diffusion and cross-diffusion of the form in (1.6) ([6], [40], [3],
[2]), and also with focus on blow-up-inhibiting effects of either nonlinear variants of cross-diffusion
rates as in (1.2) ([32], [33]), or of porous medium-type diffusion ([5], [7], [27], [44], [37]). In fact,
various sets of conditions could be identified as sufficient for global solvability in such systems within
classes of bounded functions ([37], [44], [42], [26]), but due to missing examples of blow-up it seems
widely unclear yet how far they are necessary therefor in the respective setting.

We remark that as a by-product, Theorem 1.1 also asserts global existence of bounded solutions to the
corresponding Neumann initial-boundary value problem for the two-component chemotaxis-transport
system

{
nt + u · ∇n = ∆n−∇ ·

(
nS(n)∇c

)
, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

with any prescribed sufficiently smooth and bounded solenoidal fluid field u; in fact, this can readily
be verified upon obvious choices of φ and f in Theorem 1.1.

Main ideas. In the literature on the fluid-free system (1.2), proofs for boundedness under the
optimal version of (1.8) could be built on analyzing functionals of the form

y(t) :=

∫

Ω
np(·, t) +

∫

Ω
|∇c(·, t)|r, t > 0,

for suitably chosen p > 1 and r > 1 ([17], [25]). Indeed, it can be seen that in a correspondingly
obtained ODE for y, by making use of (1.8) it becomes possible to control the respective crucial
cross-diffusive contribution by means of appropriate interpolation in order to show that y satisfies an
ODI of the form y′ + ay ≤ b with some a > 0 and b > 0. However, besides on mass conservation any
such interpolation procedure appears to rely on uniform boundedness of c with respect to the norm
in Lq(Ω) for q close to the largest value N

N−2 that can be expected for such a property in the heat

equation ct = ∆c− c+ h in Ω× (0, T ) with h only known to belong to L∞((0, T );L1(Ω)).

Now in presence of an additional fluid interaction of the form in (1.6), it seems unclear whether this is
sufficient to warrant that the latter basic integrability property of the signal c remains to be valid in
the entire optimal range 1 ≤ q < 3 = N

N−2 ; accordingly, pursuing strategies in the flavor of the above
needs to cope with weaker a priori information on c which eventually requires stronger assumptions,
such as e.g. in [36], where bounds for c in L∞((0, T );L2(Ω)), yet available in the whole regime α > 1

3 ,
are used to finally derive boundedness under the suboptimal condition α > 1

2 .

A major technical challenge will thus consist in developing an alternative approach capable of deriv-
ing boundedness of solutions in the optimal range of α but relying on basic regularity information
on n, c and u not substantially going beyond that mentioned above. In the present work this will be
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achieved by a series of arguments which at their core are based on an analysis of the simple functional
z(t) :=

∫
Ω np(·, t), t > 0, for suitably large p > 1. In order to appropriately estimate the respective

cross-diffusive summand arising in an associated ODE for z (cf. (6.8)), unlike in most previous related
works we shall make essential use of maximal Sobolev regularity properties of the heat and the Stokes
evolution equations to derive bounds for the divergence ∆c of the cross-diffusive gradient which im-
mediately arises herein (Lemma 5.1 and Lemma 5.3), and the velocity u to which the regularity of the
latter is linked (Lemma 5.2). These estimates will be formulated in terms of the quantities given by

Ip(T ) := sup
t∈[τ,T−τ ]

∫ t+τ

t

∫

Ω
|∇n

p
2 |2

for suitable τ ∈ (0, 1] and within suitable ranges of T > 2τ , and a crucial observation will reveal
by means of appropriate interpolation arguments (Lemma 3.1, Lemma 4.1 and Lemma 6.1) that
when merely α > 1

3 , for sufficiently large p > 1 these quantities will satisfy inequalities of the form
Ip(T ) ≤ aI

γ
p (T )+ b with some a > 0, b > 0 and γ ∈ (0, 1) conveniently independent of T (Lemma 6.2).

The boundedness properties of Ip(T ) thereby implied will afterwards entail estimates for n with respect
to the norm in Lp(Ω) for arbitrarily large p > 1 (Lemma 6.3) and thus, through subsequent applications
of basically well-established methods, yield estimates sufficient for the derivation of Theorem 1.1
(Section 7). We emphasize that during our interpolation procedures we shall only rely on an easily
obtained weak a priori boundedness information on (n, c, u) in the spaces L1(Ω)× L1(Ω)× Lp(Ω;R3)
for arbitrary p ∈ (1, 3) (see Lemma 2.2 and Lemma 2.3).

2 Preliminaries

2.1 Local existence and basic solution properties

Let us first state a basic result on local existence and extensibilty that can be achieved by means of
arguments well-known in the theory of chemotaxis and chemotaxis-fluid systems ([40], [17], [1]).

Lemma 2.1 Let φ ∈ C2(Ω), f ∈ C1(Ω× [0,∞);R3) and S ∈ C2([0,∞)), and suppose that n0, c0 and
u0 comply with (1.9). Then there exist Tmax ∈ (0,∞] and a uniquely determined quadruple (n, c, u, P )
of functions 




n ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

c ∈
⋂

p>3C
0([0, Tmax);W

1,p(Ω)) ∩ C2,1(Ω× (0, Tmax)),

u ∈ C0([0, Tmax);D(Aβ)) ∩ C2,1(Ω× [0, Tmax);R
3),

P ∈ C1,0(Ω× (0, Tmax)),

(2.1)

which are such that n ≥ 0 and c ≥ 0 in Ω × (0, Tmax), that (n, c, u, P ) solves (1.6) in the classical
sense in Ω× (0, Tmax), and that

if Tmax < ∞ then lim sup
tրTmax

(
‖n(·, t)‖L∞(Ω)+‖c(·, t)‖W 1,p(Ω)+‖Aβu(·, t)‖L2(Ω)

)
= ∞ for all p > 3.

(2.2)

The first two solution components can easily be seen to belong to L∞((0, Tmax);L
1(Ω)):
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Lemma 2.2 Under the assumptions of Lemma 2.1, the solution of (1.6) satisfies

∫

Ω
n(·, t) =

∫

Ω
n0 for all t ∈ [0, Tmax) (2.3)

and ∫

Ω
c(·, t) ≤ max

{∫

Ω
n0 ,

∫

Ω
c0

}
for all t ∈ [0, Tmax). (2.4)

Proof. We firstly obtain (2.3) as an immediate consequence of the fact that d
dt

∫
Ω n = 0 for all

t ∈ (0, Tmax) by (1.6). Thereafter, noting that thus d
dt

∫
Ω c = −

∫
Ω c +

∫
Ω n = −

∫
Ω c +

∫
Ω n0 for all

t ∈ (0, Tmax), we may invoke an ODE comparison argument to readily verify (2.4). �

Under the boundedness assumption on f from Theorem 1.1, due to (2.3) also the fluid velocity enjoys a
basic boundedness property. As precedent derivations of similar features in related systems apparently
only address contexts without external source terms (see e.g. [36, Lemma 2.5]), let us include a short
proof of this essentially well-known fact here for completeness.

Lemma 2.3 If, beyond the assumptions of Lemma 2.1, f is bounded in Ω × (0,∞), then for each
p ∈ (1, 3) there exists C > 0 such that

‖u(·, t)‖Lp(Ω) ≤ C for all t ∈ [0, Tmax). (2.5)

Proof. Since p < 3 and hence 3
2 − 3

2p < 1, it is possible to fix γ ∈ (0, 1) such that γ > 3
2 − 3

2p ,
which by a known embedding property ([43, Lemma 3.3]) ensures the existence of C1 > 0 such that

‖A−γPϕ‖Lp(Ω) ≤ C1‖ϕ‖L1(Ω) for all ϕ ∈ C1(Ω;R3).

According to well-known smoothing properties of the Stokes semigroup ([24], [12]), on the basis of a
variation-of-constants representation of u we thus infer that with some C2 > 0 and λ1 > 0 we have

‖u(·, t)‖Lp(Ω) =

∥∥∥∥e
−tAu0 +

∫ t

0
Aγe−(t−s)AA−γP

[
n(·, s)∇φ+ f(·, s)

]
ds

∥∥∥∥
Lp(Ω)

ds

≤ C2‖u0‖Lp(Ω) + C2

∫ t

0
(t− s)−γe−λ1(t−s)

∥∥∥A−γP
[
n(·, s)∇φ+ f(·, s)

]∥∥∥
L1(Ω)

ds

≤ C2‖u0‖Lp(Ω) + C1C2

∫ t

0
(t− s)−γe−λ1(t−s)‖n(·, s)∇φ+ f(·, s)‖L1(Ω)

for all t ∈ [0, Tmax). Since using (2.3) we obtain that

‖n(·, s)∇φ+ f(·, s)‖L1(Ω) ≤ ‖∇φ‖L∞(Ω)

∫

Ω
n0 + |Ω| · ‖f‖L∞(Ω×(0,∞)) for all s ∈ (0, Tmax),

and since the requirement that γ < 1 implies that
∫ t

0 (t− s)−γe−λ1(t−s)ds ≤
∫∞
0 σ−γe−λ1σdσ < ∞ for

all t ≥ 0, this immediately yields (2.5). �
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2.2 An ODE lemma

For later use in Lemma 4.1 and Lemma 6.2, let us provide an elementary statement on upper estimates
in superlinearly dampened ordinary differential inequalities involving forcing terms only known to be
bounded in average.

Lemma 2.4 Let t⋆ ∈ R, T > t⋆ and τ ∈ (0, T − t⋆), and suppose that y ∈ C0([t⋆, T )) ∩ C1((t⋆, T )),
g ∈ L1((t⋆, T )) and h ∈ L1((t⋆, T )) are nonnegative and such that

y′(t) + ayγ(t) + g(t) ≤ h(t) for all t ∈ (t⋆, T ) (2.6)

and ∫ t+τ

t

h(s)ds ≤ b for all t ∈ [t⋆, T − τ ] (2.7)

with some a > 0, b > 0 and γ > 1. Then

y(t) ≤ b+ C for all t ∈ [t⋆, T ] (2.8)

and ∫ t+τ

t

g(s)ds ≤ 2b+ C for all t ∈ [t⋆, T − τ ], (2.9)

where

C := max

{
y(t⋆) , [(γ − 1)aτ ]

− 1
γ−1

}
. (2.10)

Proof. Abbreviating C1 := [(γ− 1)a]
− 1

γ−1 and without loss of generality assuming that t⋆ = 0, we
first claim that then for any choice of t0 ∈ [0, T ) we have

y(t) ≤ y(t) := C1(t− t0)
− 1

γ−1 +

∫ t

t0

h(s)ds for all t ∈ (t0, T ]. (2.11)

To verify this, we observe that

y′(t) + ayγ(t)− h(t) = −
C1

γ − 1
(t− t0)

− γ
γ−1 + h(t) + a ·

{
C1(t− t0)

− 1
γ−1 +

∫ t

t0

h(s)ds

}γ

− h(t)

≥ −
C1

γ − 1
(t− t0)

− γ
γ−1 + a ·

{
C1(t− t0)

− 1
γ−1

}γ

= 0 for all t ∈ (t0, T ),

because C1
γ−1 = aC

γ
1 according to our definition of C1. Since y is bounded and y(t) ր +∞ as t ց t0,

an ODE comparison argument on [t0 + δ, T ] with suitably small δ ∈ (0, T − t0) therefore yields (2.11).
Now for t ≥ τ , we may therein choose t0 := t− τ to see that in view of (2.7) and (2.10),

y(t) ≤ C1τ
− 1

γ−1 +

∫ t

t−τ

h(s)ds ≤ C1τ
− 1

γ−1 + b ≤ C + b for all t ∈ [τ, T ],
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whereas for smaller t we simply neglect two nonnegative summands on the left of (2.6) to find upon
integration that again due to (2.7),

y(t) ≤ y(0) +

∫ t

0
h(s)ds ≤ C +

∫ τ

0
h(s)ds ≤ C + b for all t ∈ [0, τ),

because h is nonnegative.
Having thereby established (2.8), by means of another integration in (2.6) we finally obtain that

∫ t+τ

t

g(s)ds ≤ y(t)− y(t+ τ) +

∫ t+τ

t

h(s)ds

≤ (b+ C) + b for all t ∈ [0, T − τ ],

and that thus also (2.9) is valid. �

3 A space-time regularity property of n implied by bounds for ∇n
p

2

In order to simplify notation, throughout the remaining analysis we assume unless otherwise stated
that φ, f , S and (n0, c0, u0) are such that the hypotheses of Lemma 2.1 are satisfied, that moreover f is
bounded, and that (1.8) holds with some KS > 0 and α > 0. We then let (n, c, u, P ) and Tmax ∈ (0,∞]
be as provided by Lemma 2.1, and set

τ := min
{
1 ,

1

4
Tmax

}
. (3.1)

Now in the major part of our subsequent reasoning, a crucial role will be played by the quantities
defined by

Ip(T ) := sup
t∈[τ,T−τ ]

∫ t+τ

t

∫

Ω
|∇n

p
2 |2 for T ∈ (2τ, Tmax) and p > 1, (3.2)

which contain the dissipated quantity appearing in a standard Lp testing procedure when applied to
the first equation in (1.6). Our arguments to control the cross-diffusive contributions therein will be
prepared by a series of bounds for n, c and u in terms of Ip, with the final ambition to estimate Ip(T )
by, essentially, a sublinear power thereof (Lemma 6.2).

Our first step in this direction, based on a simple interpolation argument involving (2.3), will frequently
be applied in the following lemmata.

Lemma 3.1 Let p > 1, and suppose that κ > 1 and λ > 0 are such that

κ ≤ 3p (3.3)

and
3(κ− 1)

(3p− 1)κ
· λ < 1. (3.4)

Then there exists C > 0 such that for all T ∈ (2τ, Tmax) we have

∫ t+τ

t

‖n(·, s)‖λLκ(Ω)ds ≤ C + CI
3(κ−1)λ
(3p−1)κ
p (T ) for all t ∈ [0, T − τ ]. (3.5)
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Proof. Using that κ ≥ 1 and κ ≤ 3p, we invoke the Gagliardo-Nirenberg inequality to fix C1 > 0
such that

‖ϕ‖
2λ
p

L
2κ
p (Ω)

≤ C1‖∇ϕ‖
6(κ−1)λ
(3p−1)κ

L2(Ω)
‖ϕ‖

2(3p−κ)λ
p(3p−1)κ

L
2
p (Ω)

+ C1‖ϕ‖
2λ
p

L
2
p (Ω)

for all ϕ ∈ W 1,2(Ω),

and apply this to ϕ := n
p
2 (·, s) for s ∈ (τ, Tmax) to see upon a time integration that since ‖n

p
2 (·, s)‖

2
p

L
2
p (Ω)

=

C2 :=
∫
Ω n0 for all s ∈ (τ, Tmax) by (2.3),

∫ t+τ

t

‖n(·, s)‖λLκ(Ω)ds =

∫ t+τ

t

‖n
p
2 (·, s)‖

2λ
p

L
2κ
p (Ω)

ds

≤ C3

∫ t+τ

t

‖∇n
p
2 (·, s)‖

6(κ−1)λ
(3p−1)κ

L2(Ω)
ds+ C4τ for all t ∈ [τ, Tmax − τ) (3.6)

with C3 := C1C
(3p−κ)λ
(3p−1)κ

2 and C4 := C1C
λ
2 . Here thanks to the fact that 6(κ−1)λ

(3p−1)κ < 2 according to (3.4),
we may employ the Hölder inequality to obtain that

∫ t+τ

t

‖∇n
p
2 (·, s)‖

6(κ+1)λ
(3p−1)κ

L2(Ω)
ds ≤

{∫ t+τ

t

‖∇n
p
2 (·, s)‖2L2(Ω)ds

} 3(κ−1)λ
(3p−1)κ

· τ
1−

3(κ−1)λ
(3p−1)κ for all t ∈ [τ, Tmax − τ).

Using that τ ≤ 1, given T ∈ (2τ, Tmax) from (3.6) we thus conclude that due to the definition of Ip
we have

∫ t+τ

t

‖n(·, s)‖λLκ(Ω)ds ≤ C3I
3(κ−1)λ
(3p−1)κ
p (T ) + C4 for all t ∈ [τ, T − τ ],

which implies (3.5) due to the fact that n is bounded in Ω× [0, τ) by Lemma 2.1. �

4 An L
q bound for c in terms of Ip(T )

A first application of Lemma 3.1 yields the following Lq estimate for c in dependence on Ip(T ), provided
that p is suitably large relative to q. Our derivation thereof is based on an Lq testing procedure for
the second equation in (1.6) and thus, due to the solenoidality of the velocity field, does not rely on
any explicit bound on u.

Lemma 4.1 Let p > 1 and q > 1 be such that

q < 3p. (4.1)

Then there exists C > 0 such that for all T ∈ (2τ, Tmax),

∫

Ω
cq(·, t) ≤ C + CI

q−1
3p−1
p (T ) for all t ∈ [0, T ]. (4.2)
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Proof. We use cq−1 as a test function for the second equation in (1.6) and note that ∇ · u ≡ 0 to
see by means of the Hölder inequality that

1

q

d

dt

∫

Ω
cq + (q − 1)

∫

Ω
cq−2|∇c|2 +

∫

Ω
cq =

∫

Ω
ncq−1 =

∫

Ω
n · (c

q
2 )

2(q−1)
q

≤ ‖n‖
L

3q
2q+1 (Ω)

‖c
q
2 ‖

2(q−1)
q

L6(Ω)
for all t ∈ (0, Tmax).(4.3)

Here employing the three-dimensional Sobolev inequality followed by Young’s inequality we can find
C1 > 0 and C2 > 0 such that

‖n‖
L

3q
2q+1 (Ω)

‖c
q
2 ‖

2(q−1)
q

L6(Ω)
≤ C1‖n‖

L
3q

2q−1 (Ω)
·

{
‖∇c

q
2 ‖2L2(Ω) + ‖c

q
2 ‖2L2(Ω)

} q−1
q

≤
2(q − 1)

q2
·

{
‖∇c

q
2 ‖2L2(Ω) + ‖c

q
2 ‖2L2(Ω)

}
+ C2‖n‖

q

L
3q

2q+1 (Ω)

≤
2(q − 1)

q2

∫

Ω
|∇c

q
2 |2 +

∫

Ω
cq + C2‖n‖

q

L
3q

2q+1 (Ω)
for all t ∈ (0, Tmax),

because 2(q−1)
q2

≤ 1. Since (q − 1)
∫
Ω cq−2|∇c|2 = 4(q−1)

q2

∫
Ω |∇c

q
2 |2 for all t ∈ (0, Tmax), from (4.3) we

thus infer that

d

dt

∫

Ω
cq + C3

∫

Ω
|∇c

q
2 |2 ≤ C2q‖n‖

q

L
3q

2q+1 (Ω)
for all t ∈ (0, Tmax) (4.4)

with C3 := 2(q−1)
q

> 0. Now combining the Gagliardo-Nirenberg inequality with the fact that

‖c
q
2 (·, t)‖

2
q

L
2
q (Ω)

≤ max{
∫
Ω n0,

∫
Ω c0} by (2.4), we can furthermore find C4 > 0 and C5 > 0 such

that

{∫

Ω
cq
} 3q−1

3(q−1)

= ‖c
q
2 ‖

2(3q−1)
3(q−1)

L2(Ω)

≤ C4‖∇c
q
2 ‖2L2(Ω)‖c

q
2 ‖

4
3(q−1)

L
2
q (Ω)

+ C4‖c
q
2 ‖

2(3q−1)
3(q−1)

L
2
q (Ω)

≤ C5‖∇c
q
2 ‖2L2(Ω) + C5 for all t ∈ (0, Tmax)

and hence

∫

Ω
|∇c

q
2 |2 ≥

1

C5
·

{∫

Ω
cq
} 3q−1

3(q−1)

− 1 for all t ∈ (0, Tmax).

Consequently, (4.4) can be turned into the inequality

d

dt

∫

Ω
cq +

C3

C5
·

{∫

Ω
cq
} 3q−1

3(q−1)

≤ C2q‖n‖
q

L
3q

2q+1 (Ω)
+ C3 for all t ∈ (0, Tmax),
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which by Lemma 2.4 implies that whenever T ∈ (2τ, Tmax),
∫

Ω
cq(·, t) ≤ sup

s∈[τ,T−τ ]

∫ s+τ

s

{
C2q‖n(·, σ)‖

q

L
3q

2q+1 (Ω)
+ C3

}
dσ + C6

= C2q sup
s∈[τ,T−τ ]

∫ s+τ

s

‖n(·, σ)‖q

L
3q

2q+1 (Ω)
dσ + C3τ + C6 for all t ∈ [τ, T ] (4.5)

with C6 := max
{∫

Ω c
q
0, [

2
3(q−1) ·

C3
C5

· τ ]−
3(q−1)

2

}
.

In order to further estimate the right-hand side in (4.5) on the basis of Lemma 3.1, we observe that
κ := 3q

2q+1 and λ := q satisfy

1 <
2q + q

2q + 1
= κ <

3q

2q
=

3

2
< 3p

due to our assumptions that q > 1 and p > 1, and that our additional requirement (4.1) ensures that

3(κ− 1)

(3p− 1)κ
· λ =

q − 1

3p− 1
< 1.

Therefore, Lemma 3.1 indeed becomes applicable so as to yield C7 > 0 such that
∫ s+τ

s

‖n(·, σ‖q

L
3q

2q+1 (Ω)
dσ ≤ C7 + C7I

q−1
3p−1
p (T ) for all s ∈ [τ, T − τ ],

whereupon (4.2) results from (4.5) and the boundedness of c in Ω× [0, τ) entailed by Lemma 2.1. �

5 Estimates for ∆c in terms of Ip(T ) via maximal Sobolev regularity

Approaching the core of our analysis, our next goal consists in controlling the cross-diffusive gradient
in (1.6) by quantities containing suitably small powers of Ip(T ) under appropriate further assumptions
on α and the yet free parameter p. Here our first result will relate a second-order Sobolev norm of c
to regularity properties of the three quantities n, c and u making up the inhomogeneity h := n−u ·∇c

in the heat equation ct = ∆c− c+ h. This will be achieved through an argument based on a maximal
Sobolev regularity feature of the latter, along with a suitable temporal regularization procedure which
we prepare by fixing a nondecreasing ζ0 ∈ C∞(R) such that ζ0 ≡ 0 in (−∞,−τ ] and ζ0 ≡ 1 in [0,∞),
and defining a family of functions (ζ(t0))t0∈R by letting

ζ(t0)(t) := ζ0(t− t0) for t0 ∈ R and t ∈ R. (5.1)

Our first step toward estimating ∆c will now consist in the following inequality.

Lemma 5.1 Let q > 3
2 and r > 1. Then there exists C > 0 such that

∫ t+τ

t

‖c(·, s)‖r
W 2, 32 (Ω)

ds ≤ C + C

∫ t+τ

t−τ

‖n(·, s)‖r
L

3
2 (Ω)

ds

+C ·

{
sup

s∈[0,t+τ ]
‖c(·, s)‖Lq(Ω)

}r

·

∫ t+τ

t−τ

‖u(·, s)‖2r
L

6q
2q−3 (Ω)

ds

+C · sup
s∈[0,t+τ ]

‖c(·, s)‖r
L

3
2 (Ω)

for all t ∈ [τ, Tmax − τ). (5.2)
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Proof. We fix t0 ∈ [τ, Tmax − τ), and with ζ := ζ(t0) as defined in (5.1) we let

ĉ(x, t) := ζ(t)c(x, t), x ∈ Ω, t ∈ [t0 − τ, Tmax).

Then ĉ is a solution of




ĉt = ∆ĉ− ĉ+ ζn− ζu · ∇c+ ζtc, x ∈ Ω, t ∈ (t0 − τ, Tmax),
∂ĉ
∂ν

= 0, x ∈ ∂Ω, t ∈ (t0 − τ, Tmax),

ĉ(x, t0 − τ) = 0, x ∈ Ω,

so that known results on maximal Sobolev regularity in the Neumann problem for the heat equation
([13]) provide C1 > 0 such that

∫ t0+τ

t0−τ

‖ĉ(·, s)‖r
W 2, 32 (Ω)

ds ≤ C1

∫ t0+τ

t0−τ

∥∥∥ζ(s)n(·, s)− ζ(s)u(·, s) · ∇c(·, s) + ζt(s)c(·, s)
∥∥∥
r

L
3
2 (Ω)

ds

≤ C1

∫ t0+τ

t0−τ

‖n(·, s)‖r
L

3
2 (Ω)

ds+ C1

∫ t0+τ

t0−τ

∥∥∥ζ(s)u(·, s) · ∇c(·, s)
∥∥∥
r

L
3
2 (Ω)

ds

+2C1C2 sup
s∈[0,t0+τ ]

‖c(·, s)‖r
L

3
2 (Ω)

(5.3)

with C2 := ‖(ζ0)t‖
r
L∞((−τ,τ)), because |ζ0| ≤ 1 and τ ≤ 1. Moreover, using the Hölder inequality we

see that
∫ t0+τ

t0−τ

∥∥∥ζ(s)u(·, s) · ∇c(·, s)
∥∥∥
r

L
3
2 (Ω)

ds

≤

∫ t0+τ

t0−τ

ζr(s)‖u(·, s)‖r
L

6q
2q−3 (Ω)

‖∇c(·, s)‖r
L

6q
2q+3 (Ω)

ds

≤

{∫ t0+τ

t0−τ

‖u(·, s)‖2r
L

6q
2q−3 (Ω)

ds

} 1
2

·

{∫ t0+τ

t0−τ

ζ2r(s)‖∇c(·, s)‖2r
L

6q
2q+3 (Ω)

ds

} 1
2

, (5.4)

where according to the Gagliardo-Nirenberg inequality there exists C2 > 0 such that

ζ2r(s)‖∇c(·, s)‖2r
L

6q
2q+3 (Ω)

≤ C2ζ
2r(s)‖c(·, s)‖r

W 2, 32 (Ω)
‖c(·, s)‖rLq(Ω)

≤ C2‖ĉ(·, s)‖
r

W 2, 32 (Ω)
·

{
sup

σ∈[0,t0+τ ]
‖c(·, σ)‖Lq(Ω)

}r

for all s ∈ [t0 − τ, t0 + τ ],

again due to the fact that |ζ0| ≤ 1. Upon an application of Young’s inequality, (5.4) therefore entails
that

C1

∫ t0+τ

t0−τ

∥∥∥ζ(s)u(·, s) · ∇c(·, s)
∥∥∥
r

L
3
2 (Ω)

ds

≤ C1

√
C2 ·

{
sup

s∈[0,t0+τ ]
‖c(·, s)‖Lq(Ω)

} r
2

·

{∫ t0+τ

t0−τ

‖u(·, s)‖2r
L

6q
2q−3 (Ω)

ds

} 1
2

·

{∫ t0+τ

t0−τ

‖ĉ(·, s)‖r
W 2, 32 (Ω)

ds

} 1
2

≤
1

2

∫ t0+τ

t0−τ

‖ĉ(·, s)‖r
W 2, 32 (Ω)

ds+
C2
1C2

2
·

{
sup

s∈[0,t0+τ ]
‖c(·, s)‖Lq(Ω)

}r

·

∫ t0+τ

t0−τ

‖u(·, s)‖2r
L

6q
2q−3 (Ω)

ds.
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In view of the fact that ζ ≡ 1 on [t0, t0 + τ ] and that hence ĉ ≡ c throughout Ω× [t0, t0 + τ ], together
with (5.3) this establishes (5.2). �

The expressions on the right of (5.2) containing n and c can be estimated in terms of Ip(T ) by means
of Lemma 3.1 and Lemma 4.1. In relating the remaining rightmost integral therein to Ip(T ) as well,
we rely on a maximal Sobolev regularity property now of the Stokes evolution system to see that this
indeed is possible when the summability power r in (5.2) is suitably small.

Lemma 5.2 Let p > 1, q > 3
2 and r > 1 be such that

r <
(3p− 1)q

3
. (5.5)

Then one can find C > 0 with the property that for all T ∈ (2τ, Tmax),

∫ t+τ

t

‖u(·, s)‖2r
L

6q
2q−3 (Ω)

ds ≤ C + CI
3r

(3p−1)q
p (T ) for all t ∈ [0, T − τ ]. (5.6)

Proof. As u is bounded in Ω× [0, τ) by Lemma 2.1, we only need to derive the claimed inequality
in the time interval [τ, T − τ ] for arbitrary T ∈ (2τ, Tmax). To this end, fixing t0 ∈ [τ, T − τ ] we once
more take ζ := ζ(t0) from (5.1) and let

û(x, t) := ζ(t)u(x, t), x ∈ Ω, t ∈ [t0 − τ, Tmax),

so that




ût = ∆û− ζ∇P + ζn∇φ+ ζtu+ ζf, x ∈ Ω, t ∈ (t0 − τ, Tmax),

û = 0, x ∈ ∂Ω, t ∈ (t0 − τ, Tmax),

û(x, t0 − τ) = 0, x ∈ Ω.

A maximal Sobolev regularity property of the Stokes evolution semigroup ([13]) thus yields C1 > 0
such that
∫ t0+τ

t0−τ

‖û(·, s)‖2r
W

2,
2q

2q−1 (Ω)
ds ≤ C1

∫ t0+τ

t0−τ

∥∥∥ζ(s)n(·, s)∇φ+ ζt(s)u(·, s) + ζ(s)f(·, s)
∥∥∥
2r

L
2q

2q−1 (Ω)
ds

≤ C2

∫ t0+τ

t0−τ

‖n(·, s)‖2r
L

2q
2q−1 (Ω)

ds+ C3

∫ t0+τ

t0−τ

‖u(·, s)‖2r
L

2q
2q−1 (Ω)

ds+ C4 (5.7)

with C2 := C1‖∇φ‖L∞(Ω), C3 := C1‖(ζ0)t‖L∞((−τ,τ)) and C4 := 2C1|Ω|
r(2q−1)

q ‖f‖2r
L∞(Ω×(0,∞)), because

|ζ0| ≤ 1 and (t0 + τ)− (t0 − τ) = 2τ ≤ 2.
To estimate the two integrals on the right-hand side herein, we write κ := 2q

2q−1 and λ := 2r and note

that since q > 3
2 we have

1 < κ <
2 · 3

2

2 · 3
2 − 1

=
3

2
< 3 < 3p, (5.8)

and that thanks to (5.5) we moreover know that

3(κ− 1)

(3p− 1)κ
· λ =

3r

(3p− 1)q
< 1. (5.9)
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From (5.8) we particularly see that Lemma 2.3 becomes applicable to show that there exists C4 > 0
such that

‖u(·, s)‖
L

2q
2q−1 (Ω)

≤ C4 for all s ∈ (0, Tmax), (5.10)

and combining (5.8) with (5.9) we may invoke Lemma 3.1 to find C5 > 0 fulfilling

∫ t+τ

t

‖n(·, s)‖2r
L

2q
2q−1 (Ω)

ds ≤ C5 + C5I
3r

(3p−1)q
p (T ) for all t ∈ [0, T − τ ],

so that from (5.7) and (5.10) we thus infer that

∫ t0+τ

t0−τ

‖û(·, s)‖2r
W

2,
2q

2q−1 (Ω)
ds ≤ 2C2C5 + 2C2C5I

3r
(3p−1)q
p (T ) + 2C3C

2r
4 τ,

Since û ≡ u in Ω × [t0, t0 + τ ] by (5.1), and since W
2, 2q

2q−1 (Ω) →֒ L
6q

2q−3 (Ω) in the present three-
dimensional setting, this establishes (5.6) in the time interval [τ, T − τ ], as intended. �

We can now formulate the main result of this section by combining Lemma 5.1 with Lemma 5.2,
Lemma 4.1 and Lemma 3.1, where the latter turns out to be applicable here under a further smallness
assumption on r.

Lemma 5.3 Suppose that p > 1, q > 3
2 and r > 1 are such that (4.1) and (5.5) hold as well as

r < 3p− 1. (5.11)

Then there exists C > 0 such that whenever T ∈ (2τ, Tmax),

∫ t+τ

t

‖∆c(·, s)‖r
L

3
2 (Ω)

ds ≤ C + CI
r

3p−1
p (T ) + CI

(q+2)r
(3p−1)q
p (T ) for all t ∈ [τ, T − τ ]. (5.12)

Proof. Based on our assumptions that q > 3
2 and that (4.1) and (5.5) hold, we first employ Lemma

4.1 and Lemma 5.2 to find positive constants C1, C2 and C3 such that given T ∈ (2τ, Tmax) we know
that

‖c(·, s)‖rLq(Ω) ≤ C1 + C1I
(q−1)r
(3p−1)q
p (T ) for all s ∈ [0, T ] (5.13)

and

‖c(·, s)‖r
L

3
2 (Ω)

≤ C2 + C2I
r

3(3p−1)
p (T ) for all s ∈ [0, T ] (5.14)

as well as ∫ t0+τ

t0

‖u(·, s)‖2r
L

6q
2q−3 (Ω)

ds ≤ C3 + C3I
3r

(3p−1)q
p (T ) for all t0 ∈ [0, T − τ ]. (5.15)

Moreover, writing κ := 3
2 and λ := r we obviously have 1 < κ < 3p, whereas (5.11) guarantees that

3(κ− 1)

(3p− 1)κ
· λ < 1,
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so that as a consequence of Lemma 3.1 we can pick C4 > 0 satisfying
∫ t0+τ

t0

‖n(·, s)‖r
L

3
2 (Ω)

ds ≤ C4 + C4I
r

3p−1
p (T ) for all t0 ∈ [0, T − τ ]. (5.16)

Now from Lemma 5.1 it follows that there exists C5 > 0 such that
∫ t+τ

t

‖∆c(·, s)‖r
L

3
2 (Ω)

ds

≤ C5 + C5

∫ t+τ

t−τ

‖n(·, s)‖r
L

3
2 (Ω)

ds

+C5 ·

{
sup

s∈[0,t+τ ]
‖c(·, s)‖Lq(Ω)

}r

·

∫ t+τ

t−τ

‖u(·, s)‖2r
L

6q
2q−3 (Ω)

ds

+C5 sup
s∈[0,t+τ ]

‖c(·, s)‖
L

3
2 (Ω)

for all t ∈ [τ, Tmax − τ),

which in light of (5.13)-(5.16) particularly entails that
∫ t+τ

t

‖∆c(·, s)‖r
L

3
2 (Ω)

ds

≤ C5 + C5 ·
{
2C4 + 2C4I

r
3p−1
p (T )

}

+C5 ·
{
C1 + C1I

(q−1)r
(3p−1)q
p (T )

}
·
{
2C3 + 2C3I

3r
(3p−1)q
p (T )

}

+C5 ·
{
C2 + C2I

r
3(3p−1)
p (T )

}
for all t ∈ [τ, T − τ ].

As three applications of Young’s inequality show that

{
C1 + C1I

(q−1)r
(3p−1)q
p (T )

}
·
{
2C3 + 2C3I

3r
(3p−1)q
p (T )

}

= 2C1C3 ·
{
1 + I

(q−1)r
(3p−1)q
p (T ) + I

3r
(3p−1)q
p (T ) + I

(q+2)r
(3p−1)q
p (T )

}

≤ 2C1C3 ·
{
3 + 3I

(q+2)r
(3p−1)q
p (T )

}

and

C2I
r

3(3p−1)
p (T ) ≤ C2I

r
3p−1
p (T ) + C2,

the derivation of (5.12) is complete. �

6 L
p bounds for n by closing the loop

Now controlling the cross-diffusive action in the announced testing procedure for n, to be detailed in
Lemma 6.2, will amount to appropriately estimating

∫
Ω np−α|∆c|. This can be achieved by means of

Lemma 5.3 and, again, Lemma 3.1 if the exponent r in addition to the assumptions therein satisfies
a further condition requiring r not to be too small:
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Lemma 6.1 Let p > 1, q > 3
2 and r > 1 satisfy (4.1), (5.5) and (5.11) as well as

p > α+
1

3
(6.1)

and

r >
3p− 1

3α
. (6.2)

Then one can find C > 0 such that for each T ∈ (2τ, Tmax),
∫ t+τ

t

‖n(·, s)‖p−α

L3(p−α)(Ω)
‖∆c(·, s)‖

L
3
2 (Ω)

ds ≤ C+CI
3(p−α)
3p−1

p (T )+CI
3(p−α)q+2
(3p−1)q

p (T ) for all t ∈ [τ, T −τ ].

(6.3)

Proof. By the Hölder inequality,
∫ t+τ

t

‖n(·, s)‖p−α

L3(p−α)(Ω)
‖∆c(·, s)‖

L
3
2 (Ω)

ds

≤

{∫ t+τ

t

‖n(·, s)‖
(p−α)r
r−1

L3(p−α)(Ω)
ds

}1− 1
r

·

{∫ t+τ

t

‖∆c(·, s)‖r
L

3
2 (Ω)

} 1
r

for all t ∈ [τ, Tmax − τ). (6.4)

Here letting κ := 3(p− α) we trivially have κ < 3p, while (6.1) asserts that κ > 1. Furthermore, the

hypothesis (6.2) guarantees that if we define λ := (p−α)r
r−1 , then

3(κ− 1)

(3p− 1)κ
· λ =

3(p− α)− 1

(3p− 1) · (1− 1
r
)
<

3(p− α)− 1

(3p− 1) · (1− 3α
3p−1)

= 1,

whence invoking Lemma 3.1 we can fix C1 > 0 such that for all T ∈ (2τ, Tmax),

{∫ t+τ

t

‖n(·, s)‖
(p−α)r
r−1

L3(p−α)(Ω)
ds

}1− 1
r

≤ C1 + C1I

3(p−α)−1

(3p−1)·(1− 1
r )

·(1− 1
r
)

p (T )

= C1 + C1I
3(p−α)−1

3p−1
p (T ) for all t ∈ [τ, T − τ ]. (6.5)

Next, relying on (4.1), (5.5) and (5.11) we employ Lemma 5.3 to find C2 > 0 with the property that
for any such T ,

{∫ t+τ

t

‖∆c(·, s)‖r
L

3
2 (Ω)

ds

} 1
r

≤ C2 + C2I
1

3p−1
p (T ) + C2I

q+2
(3p−1)q
p (T ) for all t ∈ [τ, T − τ ].

In conjunction with (6.4) and (6.5), on three straightforward applications of Young’s inequality this
shows that
∫ t+τ

t

‖n(·, s)‖p−α

L3(p−α)(Ω)
‖∆c(·, s)‖

L
3
2 (Ω)

ds

≤ C1C2 ·
{
1 + I

3(p−α)−1
3p−1

p (T )
}
·
{
1 + I

1
3p−1
p (T ) + I

q+2
(3p−1)q
p (T )

}

= C1C2 ·
{
1 + I

1
3p−1
p (T ) + I

q+2
(3p−1)q
p (T ) + I

3(p−α)−1
3p−1

p (T ) + I
3(p−α)
3p−1

p (T ) + I
3(p−α)q+2
(3p−1)q

p (T )
}

≤ C1C2 ·
{
4 + 3I

3(p−α)
3p−1

p (T ) + 2I
3(p−α)q+2
(3p−1)q

p (T )
}

17



for all t ∈ [τ, T − τ ]. �

We are now prepared for closing our circle of arguments by an application of Lemma 2.4 to an ODI
obtained on the basis of the announced Lp testing when combined with Lemma 6.1, provided that α
satisfies the assumption from Theorem 1.1 and the exponent q originating from Lemma 4.1 is thereafter
fixed appropriately large.

Lemma 6.2 Suppose that α > 1
3 , and let p > 1, q > 3

2 and r > 1 be such that (4.1), (5.5), (5.11),
(6.1) and (6.2) hold, and such that moreover

q >
2

3α− 1
. (6.6)

Then there exists C > 0 such that
∫

Ω
np(·, t) ≤ C for all t ∈ [0, Tmax). (6.7)

Proof. We multiply the first equation in (1.6) by np−1 to find using several integrations by parts
that

d

dt

∫

Ω
np + p(p− 1)

∫

Ω
np−2|∇n|2 = p(p− 1)

∫

Ω
np−1S(n)∇n · ∇c

= p(p− 1)

∫

Ω
∇Ψ(n) · ∇c

= −p(p− 1)

∫

Ω
Ψ(n)∆c for all t ∈ (0, Tmax), (6.8)

where we have set

Ψ(ξ) :=

∫ ξ

0
σp−1S(σ)dσ for ξ ≥ 0.

Here thanks to (1.8), we can estimate

|Ψ(ξ)| ≤ KS

∫ ξ

0
σp−1(σ + 1)−αdσ

≤ KS

∫ ξ

0
σp−1−αdσ

=
KS

p− α
ξp−α for all ξ ≥ 0,

so that by means of the Hölder inequality, on the right-hand side of (6.8) we obtain

−p(p− 1)

∫

Ω
Ψ(n)∆c ≤ C1

∫

Ω
np−α|∆c|

≤ C1‖n‖
p−α

L3(p−α)(Ω)
‖∆c‖

L
3
2 (Ω)

for all t ∈ (0, Tmax)
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with C1 := p(p−1)KS

p−α
. Apart from that, using the Gagliardo-Nirenberg inequality together with (2.3)

we see that with some C2 > 0 and C3 > 0 we have

{∫

Ω
np

} 3p−1
3(p−1)

= ‖n
p
2 ‖

2(3p−1)
3(p−1)

L2(Ω)
≤ C2‖∇n

p
2 ‖2L2(Ω)‖n

p
2 ‖

4
3(p−1)

L
2
p (Ω)

+ C2‖n
p
2 ‖

2(3p−1)
3(p−1)

L
2
p (Ω)

≤ C3‖∇n
p
2 ‖2L2(Ω) + C3

for all t ∈ (0, Tmax), and that abbreviating C4 :=
2(p−1)

p
we thus can estimate

p(p− 1)

∫

Ω
np−2|∇n|2 = 2C4

∫

Ω
|∇n

p
2 |2 ≥

C4

C3
·

{∫

Ω
np

} 3p−1
3(p−1)

−
C4

C3
+ C4

∫

Ω
|∇n

p
2 |2

for all t ∈ (0, Tmax). From (6.8) we thus infer that

y(t) :=

∫

Ω
np(·, t), g(t) := C4

∫

Ω
|∇n

p
2 (·, t)|2 and

h(t) :=
C4

C3
+ C1‖n(·, t)‖

p−α

L3(p−α)(Ω)
‖∆c(·, t)‖

L
3
2 (Ω)

, t ∈ [τ, Tmax),

satisfy

y′(t) +
C4

C3
y

3p−1
3(p−1) (t) + g(t) ≤ h(t) for all t ∈ (τ, Tmax),

where due to (4.1), (5.5), (5.11), (6.1) and (6.2) we may invoke Lemma 6.1 to find C5 > 0 such that
for all T ∈ (2τ, Tmax) we have

∫ t+τ

t

h(s)ds ≤ C5 + C5I
3(p−α)
3p−1

p (T ) + C5I
3(p−α)q+2
(3p−1)q

p (T ) for all t ∈ [τ, T − τ ]. (6.9)

Therefore, Lemma 2.4 firstly states that if we let

C6 := max

{∫

Ω
np(·, τ) ,

[ 2

3(p− 1)
·
C4

C3
· τ

]− 3(p−1)
2

}
,

then
∫ t+τ

t

g(s)ds ≤ 2C5 + 2C5I
3(p−α)
3p−1

p (T ) + 2C5I
3(p−α)q+2
(3p−1)q

p (T ) + C6 for all t ∈ [τ, T − τ ]

and hence, by definition of Ip(T ),

Ip(T ) ≤ C7 + C7I
3(p−α)
3p−1

p (T ) + C7I
3(p−α)q+2
(3p−1)q

p (T ) for all T ∈ (2τ, Tmax − τ) (6.10)

with C7 := 2C5+C6
C4

. We can now rely on our assumptions that α > 1
3 and that (6.6) holds, which

namely ensure that

θ1 :=
3(p− α)

3p− 1
<

3(p− 1
3)

3p− 1
= 1
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and

θ2 :=
3(p− α)q + 2

(3p− 1)q
=

3(p− α) + 2
q

3p− 1
<

3(p− α) + (3α− 1)

3p− 1
= 1,

respectively. Therefore, writing θ := max{θ1, θ1} ∈ (0, 1) and noting that

Ip(T ) ≤ 2C7 + 2C7I
θ
p (T ) for all T ∈ (2τ, Tmax − τ)

by (6.10) and Young’s inequality, we conclude by an elementary argument that

Ip(T ) ≤ C8 := max
{
1 , (4C7)

1
1−θ

}
for all T ∈ (2τ, Tmax − τ).

In view of (6.9), this in turn implies that

∫ t+τ

t

h(s)ds ≤ C9 := C5 + C5C
θ1
8 + C5C

θ2
8 for all t ∈ [τ, Tmax − τ),

whereupon Lemma 2.4 secondly guarantees that

y(t) ≤ C9 + C6 for all t ∈ [τ, Tmax)

and thereby entails (6.7), again because n is bounded in Ω× [0, τ) by Lemma 2.1. �

It remains to make sure that the above requirements on the auxiliary parameters q and r can indeed
be fulfilled for arbitrarily large p to end up with the following.

Lemma 6.3 Suppose that α > 1
3 . Then given any p > 1, one can find C > 0 such that

∫

Ω
np(·, t) ≤ C for all t ∈ [0, Tmax). (6.11)

Proof. As Ω is bounded, without loss of generality we may assume that p additionally satisfies

p > max

{
2

3(3α− 1)
,

1

3α
, α+

1

3

}
. (6.12)

We can then firstly pick q > 3
2 such that

q < 3p (6.13)

and

q >
2

3α− 1
(6.14)

as well as

q >
1

α
, (6.15)

where the latter ensures that

(3p− 1)q

3
>

3p− 1

3α
.
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Since furthermore our hypotheses that p > 1 and q > 3
2 warrant that

(3p− 1)q

3
>

(3 · 1− 1) · 3
2

3
= 1

and that clearly also 3p− 1 > 1, it is thereafter possible to choose r > 1 in such a way that

3p− 1

3α
< r < min

{(3p− 1)q

3
, 3p− 1

}
. (6.16)

Now from (6.13) and the third restriction in (6.12) it follows that (4.1) and (6.1) hold, whereas (6.16)
guarantees validity of (5.5), (5.11) and (6.2). As moreover (6.6) is satisfied thanks to (6.14), Lemma
6.2 becomes applicable so as to assert the claimed boundedness property. �

7 Further regularity properties. Proof of Theorem 1.1

Higher integrability properties can now be derived by applying arguments which are essentially stan-
dard in the analysis of the heat and the Stokes equations. Firstly, the uniform boundedness of n with
respect to the norm in L2(Ω), together with our overall assumption that f be bounded, entails the
following.

Lemma 7.1 Let α > 1
3 . Then there exists C > 0 such that

‖Aβu(·, t)‖L2(Ω) ≤ C for all t ∈ [0, Tmax) (7.1)

and
‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ [0, Tmax). (7.2)

Proof. On the basis of a Duhamel formula associated with the Stokes subsystem of (1.6), by means
of well-known smoothing properties of the Stokes semigroup ([24]) we see that with some λ1 > 0 and
C1 > 0 we have

‖Aβu(·, t)‖L2(Ω) =

∥∥∥∥e
−tAAβu0 +

∫ t

0
Aβe−(t−s)AP

[
n(·, s)∇φ+ f(·, s)

]
ds

∥∥∥∥
L2(Ω)

≤ ‖Aβu0‖L2(Ω) + C1

∫ t

0
(t− s)−βe−λ1(t−s)

∥∥∥P
[
n(·, s)∇φ+ f(·, s)

]∥∥∥
L2(Ω)

ds

for all t ∈ [0, Tmax), because P acts as an orthogonal projection on L2(Ω;R3) ([24]). Since Lemma 6.3
together with the boundedness of ∇φ and f entails the existence of C2 > 0 such that ‖n(·, s)∇φ +
f(·, s)‖L2(Ω) ≤ C2 for all s ∈ [0, Tmax), and since C3 :=

∫∞
0 σ−βe−λ1σdσ is finite due to the fact that

β < 1, this implies that

‖Aβu(·, t)‖L2(Ω) ≤ ‖Aβu0‖L2(Ω) + C1C2C3‖∇φ‖L∞(Ω) for all t ∈ [0, Tmax)

and hence proves (7.1), for u0 ∈ D(Aβ) by (1.9). As our assumption β > 3
4 warrants that D(Aβ) →֒

L∞(Ω;R3) ([11], [14]), this also entails (7.2). �

In conjunction again with Lemma 6.3, the latter entails a bound for c in the flavor needed for an
application of Lemma 2.1 for the derivation of Theorem 1.1.
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Lemma 7.2 If α > 1
3 , then for all p > 1 there exists C > 0 such that

‖c(·, t)‖W 1,p(Ω) ≤ C for all t ∈ [0, Tmax). (7.3)

Proof. We let B denote the realization of −∆+ 1
2 under homogeneous Neumann boundary condi-

tions in Lp(Ω) and then obtain that B is sectorial with its spectrum contained in [12 ,∞), and that for
arbitrary γ ∈ (12 , 1) the corresponding fractional power Bγ has its domain satisfy D(Bγ) →֒ W 1,p(Ω)
([14]), so that

‖ϕ‖W 1,p(Ω) ≤ C1(γ)‖B
γϕ‖Lp(Ω) for all ϕ ∈ D(Bγ) (7.4)

with some C1(γ) > 0. Hencoforth fixing any γ ∈ (12 , 1) and γ′ ∈ (12 , γ), by a well-known interpolation
property ([9]) we can find C2 > 0 such that

‖Bγ′

ϕ‖Lp(Ω) ≤ C2‖B
γϕ‖aLp(Ω)‖ϕ‖

1−a
Lp(Ω) for all ϕ ∈ D(Bγ) (7.5)

with a := γ′

γ
∈ (0, 1), where according to the Gagliardo-Nirenberg inequality there exists C3 > 0

fulfilling

‖ϕ‖1−a
Lp(Ω) ≤ C3‖ϕ‖

(1−a)b
W 1,p(Ω)

‖ϕ‖
(1−a)(1−b)
L1(Ω)

for all ϕ ∈ W 1,p(Ω)

with b := 3(p−1)
4p−3 ∈ (0, 1). Together with (7.4) and (7.5), this shows that if we let d := a+(1−a)b ∈ (0, 1)

and C4 := C
(1−a)b
1 (γ)C2C3, then

‖Bγ′

ϕ‖Lp(Ω) ≤ C4‖B
γϕ‖dLp(Ω)‖ϕ‖

1−d
L1(Ω)

for all ϕ ∈ D(Bγ). (7.6)

Now since ct = −(B + 1
2)c+ n− u · ∇c in Ω× (0, Tmax) by (1.6), an associated variation-of-constants

representation together with known regularization features of the corresponding analytic semigroup
(e−tB)t≥0 shows that there exists C5 > 0 such that

‖Bγc(·, t)‖Lp(Ω) =

∥∥∥∥B
γe−(t−τ)(B+ 1

2
)c(·, τ) +

∫ t

τ

Bγe−(t−s)(B+ 1
2
)n(·, s)ds

−

∫ t

τ

Bγe−(t−s)(B+ 1
2
)u(·, s) · ∇c(·, s)ds

∥∥∥∥
Lp(Ω)

≤ C5‖B
γc(·, τ)‖Lp(Ω) + C5

∫ t

τ

(t− s)−γe−
1
2
(t−s)‖n(·, s)‖Lp(Ω)ds

+C5

∫ t

τ

(t− s)−γe−
1
2
(t−s)

∥∥∥u(·, s) · ∇c(·, s)
∥∥∥
Lp(Ω)

ds for all t ∈ [τ, Tmax). (7.7)

Here by Lemma 6.3 we can find C6 > 0 such that

‖n(·, s)‖Lp(Ω) ≤ C6 for all s ∈ [τ, Tmax), (7.8)

while Lemma 7.1 together with (7.4), (7.6) and (2.4) shows that with some C7 > 0 we have

∥∥∥u(·, s) · ∇c(·, s)
∥∥∥
Lp(Ω)

≤ ‖u(·, s)‖L∞(Ω)‖∇c(·, s)‖Lp(Ω)
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≤ C7‖∇c(·, s)‖Lp(Ω)

≤ C1(γ
′)C7‖B

γ′

c(·, s)‖Lp(Ω)

≤ C1(γ
′)C4C7‖B

γc(·, s)‖dLp(Ω)‖c(·, s)‖
1−d
L1(Ω)

≤ C8‖B
γc(·, s)‖dLp(Ω) for all s ∈ [τ, Tmax)

with C8 := C1(γ
′)C2C5 · max

{∫
Ω c0,

∫
Ω n0

}
. Combining this with (7.8) and (7.7) and abbreviating

C9 :=
∫∞
0 σ−γe−

σ
2 dσ < ∞ as well as M(T ) := supt∈[τ,T ] ‖B

γc(·, t)‖Lp(Ω) for T ∈ (τ, Tmax), we obtain

‖Bγc(·, t)‖Lp(Ω) ≤ C5‖B
γc(·, τ)‖Lp(Ω) + C5C6C9 + C5C8C9M

d(T ) for all t ∈ [τ, T ]

and hence

M(T ) ≤ C10 + C10M
d(T ) for all T ∈ [τ, Tmax)

with C10 := max {C5‖B
γc(·, τ)‖Lp(Ω) + C5C6C9, C5C8C9}. As d < 1, this entails that M(T ) ≤

max{1, (2C10)
1

1−d } for all T ∈ [τ, Tmax), which in light of (7.4) establishes (7.3) due to the inclusion
c ∈ L∞((0, τ);W 1,p(Ω)) asserted by Lemma 2.1. �

Finally, pointwise boundednes of n results from a standard argument contained in the literature.

Lemma 7.3 Let α > 1
3 . Then with some C > 0 we have

‖n(·, t)‖L∞(Ω) ≤ C for all t ∈ [0, Tmax). (7.9)

Proof. We write the first equation in (1.6) in the form nt = ∆n+∇·h(x, t) with h := −nS(n)∇c−
nu and then obtain from (1.6) that h · ν = 0 on ∂Ω × (0, Tmax), whereas (1.8), Lemma 6.3, Lemma
7.2 and Lemma 7.1 entail that h ∈ L∞((0, Tmax);L

p(Ω;R3)) for each p > 1. Since moreover n ∈
L∞((0, Tmax);L

p(Ω)) for any such p, (7.9) can e.g. be derived by a Moser-type iterative argument; for
a statement precisely covering the present situation we refer to [25, Lemma A.1]. �

Thanks to the extensibility criterion (2.2), the derivation of our main results thus consists in a mere
collection of the latter three lemmata.

Proof of Theorem 1.1. In view of Lemma 2.1, the boundedness properties obtained Lemma 7.3,
Lemma 7.2 and Lemma 7.1 assert both global extensibility and the claimed regularity features of the
local-in-time solution from Lemma 2.1, as well as the temporally uniform estimate in (1.12). �
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