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Abstract

This paper deals with an initial-boundary value problem for the chemotaxis-(Navier-)Stokes system




nt + u · ∇n = ∆n−∇ · (n∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nc, x ∈ Ω, t > 0,

ut + κ(u · ∇)u = ∆u−∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

in a bounded convex domain Ω ⊂ R2 with smooth boundary, with κ ∈ R and a given smooth
potential φ : Ω → R.

It is known that for each κ ∈ R and all sufficiently smooth initial data this problem possesses
a unique global classical solution (n(κ), c(κ), u(κ)). The present work asserts that these solutions
stabilize to (n(0), c(0), u(0)) uniformly with respect to the time variable. More precisely, it is shown
that there exist µ > 0 and C > 0 such that whenever κ ∈ (−1, 1),
∥∥∥n(κ)(·, t)− n(0)(·, t)

∥∥∥
L∞(Ω)

+
∥∥∥c(κ)(·, t)− c(0)(·, t)

∥∥∥
L∞(Ω)

+
∥∥∥u(κ)(·, t)− u(0)(·, t)

∥∥∥
L∞(Ω)

≤ C|κ|e−µt

for all t > 0.

This result thereby provides an example for a rigorous quantification of stability properties in
the Stokes limit process, as frequently considered in the literature on chemotaxis-fluid systems in
application contexts involving low Reynolds numbers.
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1 Introduction

The interaction of chemotaxis and diffusion of nutrients in bacterial suspensions can produce a vari-
ety of structures with locally high concentrations of cells, including phyllotactic patterns, filaments,
and concentrations in fabricated microstructures. To explore a class of situations in which actually
concentrating hydrodynamic flows may arise in such circumstances, Goldstein et al. conducted a de-
tailed experimental study of the collective behavior in populations of swimming bacteria of the species
Bacillus subtilis when suspended in a sessile drop of water, as a striking result revealing spontaneous
emergence of structures such as the formation of plume-like structures and large-scale convection pat-
terns ([32]). As a model for the theoretical description of such processes, coupled chemotaxis-fluid
systems of the form





nt + u · ∇n = ∇ · (D(n)∇n)−∇ · (nχ(n, c)∇c),
ct + u · ∇c = ∆c− nf(c),
ut + κ(u · ∇)u +∇P = ς∆u + n∇φ,
∇ · u = 0

(1.1)

are proposed in [32] as extensions of the classical Keller-Segel-type chemotaxis models to such sit-
uations of nontrivial interaction of chemotactically migrating cells with liquid environments. Here,
the parameters κ and ς are related to the strength of nonlinear fluid convection and the viscosity of
the incompressible fluid, represented through its velocity u and the associated pressure P , and where
n and c, respectively, denote the population density of cells and the concentration of the oxygen by
which they are attracted and which they consume upon contact. The corresponding cell mobility
D(n), the chemotactic sensitivity function χ(c), and the per-capita oxygen consumption rate f(c) are
given scalar functions, where prototypical choices are given by

D ≡ const., χ ≡ const. and f(c) = c, c ≥ 0. (1.2)

Chemotaxis-Navier-Stokes vs. chemotaxis-Stokes systems. Mathematically analyzing mod-
els of the above form needs to adequately cope, inter alia, with the evident challenges related to the
corresponding chemotaxis system and the equations from fluid mechanics, both contained in (1.1)
as subsystems. Indeed, even the former seems well-understood only in the two-dimensional setting
where global bounded classical solutions to an associated Neumann initial-boundary value problem
are known to exist for widely arbitrary initial data ([28]); in the three-dimensional analogue, such so-
lutions could be found under a smallness assumption on the initial data ‖c(·, 0)‖L∞(Ω) ([27]), whereas
for large data up to now only global weak solutions could be constructed which, after all, become
eventually smooth and classical ([28]).
As for the Navier-Stokes subsystem of (1.1) related to the choices n = c ≡ 0 and κ = ς = 1, despite
tremendous efforts throughout the past decades a comprehensive theory of global well-posedness in
frameworks of smooth solutions e.g. to an associated Dirichlet problem in bounded domains seems
available also only in the two-dimensional case, while in three-dimensional scenarios there apparently
still remains a gap in knowledge, between Leray’s old result on globally existing weak solutions on the
one hand, and various statements on unique local-in-time regular solutions under diverse assumptions
on the other ([19], [12], [25]). In sharp contrast to this, the knowledge on the corresponding linear
Stokes evolution system, as obtained on letting κ = 0 and thus neglecting the nonlinear convective
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term (u ·∇)u, is substantially more complete, yielding global smooth solutions without any restrictions
on the spatial dimension ([25]).

Accordingly, several works on coupled systems of the form (1.1) concentrate on the respective chemotaxis-
Stokes variant, relying on experimental observations on average swimming speeds of bacteria in water
which suggest the relevant Reynolds number Re = κ

ς to be of order Re ≈ 10−5. Indeed, this sim-
plification has turned out to allow for significantly more extensive results on existence and also on
qualitative properties of solutions, especially in three-dimensional situations. For the initial-boundary
value problem for (1.1) in smoothly bounded convex domains Ω ⊂ R3 with ∂n

∂ν = ∂c
∂ν = 0 and u = 0

on ∂Ω, for instance, only global weak solutions are known to exist for κ = ς = 1 and χ and f
as in (1.2) in the linear case D ≡ 1 ([39]), but also in presence of nonlinear diffusion of the form
D(n) = nm−1, n > 0, for m ≥ 2

3 ([46]); in the case D ≡ 1 these solutions become smooth and classical
after a certain time T > 0 ([40]), but possibly irregular behavior prior to this relaxation time can
not yet be excluded, not even in cases of large m in which cell diffusion is substantially enhanced
at large population densities. Contrary to this, for the corresponding chemotaxis-Stokes variant with
D(n) = nm−1, n > 0, it could be shown that global weak solutions, yet known to exist whenever m ≥ 1
([8], [37]), are locally bounded in Ω̄× [0,∞) if m > 8

7 ([30]) and even globally bounded if m > 7
6 ([41]).

In full chemotaxis-Navier-Stokes systems, further boundedness properties could only be established
upon imposing appropriate smallness conditions on the initial data ([7], [5], [18], [4], [44], [26]).
We remark here that essential use of corresponding Stokes simplifications has also been made in several
earlier works on models of type (1.1) ([7], [6], [21], [33], [34], [35], [29]).

Quantifying the Stokes approximation error. Main results. In light of the above, it seems
natural to ask to which extent the Stokes approximation affects the solution behavior in systems of
type (1.1). Indeed, in view of results on continuous parameter dependence known from other contexts
it appears to be not very daring to conjecture that in the limit κ → 0, solutions to (1.1) will approach
a solution of the corresponding chemotaxis-Stokes problem at least locally with respect to the time
variable. The purpose of the present work is to perform a detailed quantitative analysis of the re-
spective error, and to thereby show that actually the relaxation properties induced by the dissipative
mechanisms of diffusion and, especially, of signal consumption in (1.1) are strong enough so as to allow
for a uniform and global-in-time control of this error in terms of the parameter κ. In order to focus
on this aspect, we concentrate on a concrete situation in which all parameter functions in (1.1) are
specified through respective prototypical choices, and in which both the corresponding Stokes and the
Navier-Stokes version are essentially well-understood. Accordingly, for κ ∈ R we shall subsequently
consider 




nt + u · ∇n = ∆n−∇ · (n∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nc, x ∈ Ω, t > 0,

ut + κ(u · ∇)u = ∆u−∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

(1.3)

under the boundary conditions
∂n

∂ν
= 0,

∂c

∂ν
= 0 and u = 0, x ∈ ∂Ω, t > 0, (1.4)

and the initial conditions

n(x, 0) = n0(x), c(x, 0) = c0(x) and u(x, 0) = u0(x), x ∈ Ω, (1.5)
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in a bounded convex domain Ω ⊂ R2 with smooth boundary. Here for simplicity we shall assume that
φ ∈ W 2,∞(Ω), and that the initial data are such that





n0 ∈ C0(Ω̄) is nonnegative with n0 6≡ 0,
c0 ∈ W 1,∞(Ω) is nonnegative, and
u0 ∈ D(Aα) for some α ∈ (1

2 , 1),
(1.6)

where A := −P∆ denotes the realization of the Stokes operator in L2(Ω; R2), defined on its domain
D(A) := W 2,2(Ω;R2) ∩W 1,2

0 (Ω;R2) ∩ L2
σ(Ω) with L2

σ(Ω) := {ϕ ∈ L2(Ω;R2) | ∇ · u = 0}, and with P
representing the Helmholtz projection of L2(Ω;R2) onto L2

σ(Ω).

Indeed, it is known that in this framework, (1.3)-(1.5) possesses a uniquely determined global classical
solution ([37], cf. also Lemma 2.1 below for details of the precise regularity class, and [47] for a related
result in the case Ω = R2). For κ = 1, and actually for arbitrary κ ∈ R, any nontrivial of these
solutions is moreover known to approach the spatially homogeneous equilibrium (n0, 0, 0) in the large
time limit ([38]), at a rate recently found to be exponential ([45]), where n0 := 1

|Ω|
∫
Ω n0.

Now our main result asserts temporally uniform convergence of these solutions in the limit κ → 0;
more precisely:

Theorem 1.1 Let Ω ⊂ R2 be a bounded convex domain with smooth boundary, let φ ∈ W 2,∞(Ω),
and suppose that n0, c0 and u0 satisfy (1.6). Then letting (n(κ), c(κ), u(κ), P (κ)) denote the solution of
(1.3)-(1.5) corresponding to κ ∈ (−1, 1), for all p ∈ (1,∞) one can find µ(p) > 0 and C(p) > 0 with
the property that for each κ ∈ (−1, 1) we have
∥∥∥n(κ)(·, t)− n(0)(·, t)

∥∥∥
L∞(Ω)

+
∥∥∥c(κ)(·, t)− c(0)(·, t)

∥∥∥
W 1,p(Ω)

+
∥∥∥Aαu(κ)(·, t)−Aαu(0)(·, t)

∥∥∥
L2(Ω)

≤ C(p)|κ|e−µ(p)t for all t > 0. (1.7)

In particular, there exist µ > 0 and C > 0 such that whenever κ ∈ (−1, 1),
∥∥∥n(κ)(·, t)− n(0)(·, t)

∥∥∥
L∞(Ω)

+
∥∥∥c(κ)(·, t)− c(0)(·, t)

∥∥∥
L∞(Ω)

+
∥∥∥u(κ)(·, t)− u(0)(·, t)

∥∥∥
L∞(Ω)

≤ C|κ|e−µt for all t > 0. (1.8)

To our best knowledge, this seems to be the first rigorous mathematical result on a small-convection
limit in a chemotaxis-fluid system indeed, thereby supplementing previously gained knowledge mainly
based on numerical experiments such as e.g. performed in certain intermediate Reynolds number limits
for jet propulsion ([17]).

Outline of our approach. The first step in our analysis is based on the observation that for
suitably large a > 0 not depending on κ ∈ (−1, 1),

∫

Ω
n lnn +

1
2

∫

Ω

|∇c|2
c

+ a

∫

Ω
|u|2
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acts as a quasi-energy functional for (1.3). Through a series of subsequent bootstrap arguments, the a
priori information thereby obtained finally enables us in Section 2 to derive κ-independent boundedness
properties of solutions to (1.3) with respect to, inter alia, the norm in C1(Ω̄)× C2(Ω̄)×D(Aα).

Partially relying on these regularity features, Section 3 will thereupon reveal, as a key feature of
(1.3), that the quantity ‖c(κ)(·, t)‖L∞(Ω) decays in the large time limit, uniformly with respect to the
parameter κ ∈ (−1, 1). Combined with an analysis of functionals as

∫
Ω |n(κ) − n0|2 and

∫
Ω |u(κ)|2,

thus differing from previously pursued strategy such as that e.g. in [38], in Section 4 this will imply
stabilization toward the steady state (n0, 0, 0) at an exponential rate, again uniformly with respect to
κ ∈ (−1, 1).

Thereafter, the limit behavior as κ → 0 in

n̂ := n(κ) − n(0), ĉ := c(κ) − c(0), û := u(κ) − u(0) and P̂ := P (κ) − P (0)

will be examined in Section 5. Here our first step will consist in establishing a corresponding L2

estimate for (n̂, ĉ, û) on the basis of an analysis of the coupled quantity
∫

Ω
n̂2 + k

∫

Ω
ĉ2 + l

∫

Ω
|û|2

with appropriate k > 0 and l > 0, which will be seen to satisfy an absorptive ODI with certain
perturbation terms which thanks to the previously obtained exponential stabilization property decay
conveniently fast in the large time limit (Section 5.1). The conclusion thereby gained will thereafter
enable us in Section 5.2 to perform two more bootstrap precedures in separately showing that firstly
the rightmost summand in (1.7) exhibits the claimed behavior, and that secondly moreover

∫

Ω
n̂p +

∫

Ω
|∇ĉ|p

for arbitrary integers p ≥ 4 satisfies a perturbed absorptive ODI of the above type, implying that also
the first two summands in (1.7) can be estimated in the claimed manner.

2 Uniform boundedness properties

Let us first make sure that all the problems in question possess globally defined solutions. Indeed,
the following result on unique global solvability can be derived by straightforward adaptation of the
respective arguments from [37], where only the special case κ = 1 was detailed but actually the general
case of arbitrary κ ∈ R was covered.

Lemma 2.1 Assume that Ω ⊂ R2 is a bounded convex domain with smooth boundary, that φ ∈
W 2,∞(Ω), and that n0, c0 and u0 satisfy (1.6). Then for any κ ∈ R there exist uniquely determined
functions 




n(κ) ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),
c(κ) ∈ ⋂

p>2 C0([0,∞);W 1,p(Ω)) ∩ C2,1(Ω̄× (0,∞)),
u(κ) ∈ C0([0,∞);D(Aα)) ∩ C2,1(Ω̄× (0,∞);R2),
P (κ) ∈ C1,0(Ω̄× (0,∞)),

(2.1)
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which are such that n(κ) and c(κ) are nonnegative in Ω × (0,∞), and such that (n(κ), c(κ), u(κ), P (κ))
form a classical solution of (1.3)-(1.5).

Two basic but important properties of these solutions are immediate.

Lemma 2.2 For any κ ∈ R, we have
∫

Ω
n(κ)(·, t) =

∫

Ω
n0 for all t > 0 (2.2)

and
‖c(κ)(·, t)‖L∞(Ω) ≤ ‖c0‖L∞(Ω) for all t > 0. (2.3)

Proof. The identity (2.2) directly results on integrating the first equation in (1.3), whereas (2.3)
follows by an application of the maximum principle to the second equation in (1.3). ¤
Based on the analysis of a quasi-energy functional which slightly differs from that used in the global
existence analysis from [37], we can assert some first κ-independent boundedness properties beyond
those from Lemma 2.2. We remark that due to a refined construction, including also the fluid velocity
field as part of this functional, unlike those from [37] the estimates obtained here will be uniform also
with respect to time, and thereby form a cornerstone for the derivation of the global estimates claimed
in Theorem 1.1.

Lemma 2.3 There exist C > 0 such that for any choice of κ ∈ (−1, 1) we have
∫

Ω
n(κ)(·, t)

∣∣∣ lnn(κ)(·, t)
∣∣∣ ≤ C for all t > 0 (2.4)

and ∫

Ω
|∇c(κ)(·, t)|2 ≤ C for all t > 0 (2.5)

and ∫

Ω
|u(κ)(·, t)|2 ≤ C for all t > 0 (2.6)

as well as ∫ t+1

t

∫

Ω
(n(κ))2 ≤ C for all t > 0 (2.7)

and ∫ t+1

t

∫

Ω
|∇u(κ)|2 ≤ C for all t > 0. (2.8)

Proof. Omitting the superscript κ for notational convenience, by direct computation using inte-
gration by parts and the solenoidality of u(κ) we first obtain the identity

d

dt

{∫

Ω
n lnn +

1
2

∫

Ω

|∇c|2
c

}
+

∫

Ω

|∇n|2
n

+
∫

Ω
c|D2 ln c|2

= −1
2

∫

Ω

n

c
|∇c|2 +

1
2

∫

∂Ω

1
c

∂|∇c|2
∂ν

−
∫

Ω

1
c
∇c · (∇u · ∇c) (2.9)
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for all t > 0 (cf. [37, Lemma 3.2] and [39, Lemma 3.4] for details). Here we make use of the convexity
of Ω to see that since ∂c

∂ν = 0 on ∂Ω we have ∂|∇c|2
∂ν ≤ 0 on ∂Ω ([23]), so that the first two summands

on the right of (2.9) are nonpositive. In order to estimate the third, we recall that by [37, Lemma
3.3], writing C1 := (2 +

√
2)2 we have

∫

Ω

|∇c|4
c3

≤ C1

∫

Ω
c|D2 ln c|2 for all t > 0, (2.10)

whereupon we apply Young’s inequality to see that due to (2.3),

−
∫

Ω

1
c
∇c · (∇u · ∇c) ≤ 1

2C1

∫

Ω

|∇c|4
c3

+
C1

2

∫

Ω
c|∇u|2

≤ 1
2C1

∫

Ω

|∇c|4
c3

+ C2

∫

Ω
|∇u|2 for all t > 0 (2.11)

with C2 := C1
2 ‖c0‖L∞(Ω). We now fix an arbitrary p > 2 and test the third equation in (1.3) by u,

noting that since W 1,2(Ω) ↪→ Lp(Ω) there exists C3 > 0 such that ‖u‖Lp(Ω) ≤ C3‖∇u‖L2(Ω) for all
t > 0, and that hence also, by the Hölder inequality,

∫

Ω
|u|2 ≤ |Ω| p−2

p

{∫

Ω
|u|p

} 2
p

≤ C4

∫

Ω
|∇u|2 for all t > 0

with C4 := |Ω| p−2
p C2

3 . By using the Hölder inequality and Young’s inequality, abbreviating C5 :=
‖∇φ‖L∞(Ω) we thereby obtain that

1
2

d

dt

∫

Ω
|u|2 +

1
2C4

∫

Ω
|u|2 +

1
2

∫

Ω
|∇u|2 ≤ 1

2
d

dt

∫

Ω
|u|2 +

∫

Ω
|∇u|2

=
∫

Ω
nu · ∇φ

≤ C5‖n‖
L

p
p−1 (Ω)

‖u‖Lp(Ω)

≤ C3C5‖n‖
L

p
p−1 (Ω)

‖∇u‖L2(Ω)

≤ 1
4

∫

Ω
|∇u|2 + C2

3C2
5‖n‖2

L
p

p−1 (Ω)
for all t > 0,

which combined with (2.9), (2.10) and (2.11) shows that

y(t) :=
∫

Ω
n(·, t) ln n(·, t) +

1
2

∫

Ω

|∇c(·, t)|2
c(·, t) + 4C2

∫

Ω
|u(·, t)|2, t ≥ 0,

satisfies

y′(t) +
∫

Ω

|∇n|2
n

+
1

2C1

∫

Ω

|∇c|4
c3

+ 4
C2

C4

∫

Ω
|u|2 + C2

∫

Ω
|∇u|2 ≤ C6‖n‖2

L
p

p−1 (Ω)
for all t > 0 (2.12)
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with C6 := 8C2C
2
3C2

5 . Here we apply the Gagliardo-Nirenberg inequality along with (2.2) and Young’s
inequality to see, relying on our restriction p > 2, that there exist positive constants C7, C8 and C9

fulfilling

C6‖n‖2

L
p

p−1 (Ω)
= C6‖

√
n‖4

L
2p

p−1 (Ω)
≤ C7‖∇

√
n‖

4
p

L2(Ω)
‖√n‖

4(p−1)
p

L2(Ω)
+ C7‖

√
n‖4

L2(Ω)

≤ C8‖∇
√

n‖
4
p

L2(Ω)
+ C8

≤ 2‖∇√n‖2
L2(Ω) + C9

=
1
2

∫

Ω

|∇n|2
n

+ C9 for all t > 0. (2.13)

A similar argument shows that moreover
∫

Ω
n2 = ‖√n‖4

L4(Ω) ≤ C10‖∇
√

n‖2
L2(Ω)‖

√
n‖2

L2(Ω) + C10‖
√

n‖4
L2(Ω)

≤ C11

∫

Ω

|∇n|2
n

+ C11 for all t > 0 (2.14)

with some C10 > 0 and C11 > 0, so that since ξ ln ξ ≤ ξ2 for all ξ > 0 we obtain

1
2

∫

Ω

|∇n|2
n

≥ 1
2C11

∫

Ω
n2 − 1

2
≥ 1

4C11

∫

Ω
n lnn +

1
4C11

∫

Ω
n2 − 1

2
for all t > 0. (2.15)

Finally observing that by Young’s inequality and (2.3) we have

1
8C11

∫

Ω

|∇c|2
c

≤ 1
2C1

∫

Ω

|∇c|4
c3

+
C1

128C2
11

∫

Ω
c ≤ 1

2C1

∫

Ω

|∇c|4
c3

+
C1‖c0‖L∞(Ω)|Ω|

128C2
11

for all t > 0. (2.16)

Without loss of generality, we can further choose C11 such that 1
4C11

≤ 1
C4

and then infer on collecting
(2.13)-(2.16) that (2.12) implies the inequality

y′(t) +
1

4C11
y(t) +

1
4C11

∫

Ω
n2 + C2

∫

Ω
|∇u|2 ≤ C12 := C9 +

C1‖c0‖L∞(Ω)|Ω|
128C2

11

+
1
2

for all t > 0.(2.17)

By a comparison argument, this firstly entails that

y(t) ≤ C13 := max
{

y(0) , 4C11C12

}
for all t > 0, (2.18)

and thereafter an integration of (2.17) yields

1
4C11

∫ t+1

t

∫

Ω
n2 + C2

∫ t+1

t

∫

Ω
|∇u|2 ≤ C12 + y(t)− y(t + 1)− 1

4C11

∫ t+1

t
y

≤ C12 + C13 +
|Ω|
e

+
1

4C11
· |Ω|

e
for all t > 0, (2.19)
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because ξ ln ξ ≥ −1
e for all ξ > 0 and hence y(t) ≥ ∫

Ω n lnn ≥ − |Ω|
e for all t > 0. Since for the same

reason we have
∫

Ω
n| lnn| =

∫

Ω
n lnn− 2

∫

{n<1}
n lnn ≤

∫

Ω
n lnn +

2|Ω|
e

for all t > 0,

from (2.18) together with (2.3) we easily derive (2.4)-(2.6), whereas (2.7) and (2.8) directly result from
(2.19). ¤
By means of a standard testing procedure associates with the Navier-Stokes subsystem of (1.3), from
this we can readily derive a higher-order regularity property of the fluid velocity.

Lemma 2.4 There exists C > 0 such that for all κ ∈ (−1, 1) we have
∫

Ω
|∇u(κ)(·, t)|2 ≤ C for all t > 0. (2.20)

Proof. According to Lemma 2.3, there exist positive constants C1, C2 and C3 such that again
dropping the index κ we have

∫

Ω
|u|2 ≤ C1,

∫ t+1

t

∫

Ω
n2 ≤ C2 and

∫ t+1

t

∫

Ω
|∇u|2 ≤ C3 (2.21)

for all t > 0. In particular, if we multiply the projected version of the third equation in (1.3), that
is, the identity ut + Au = P[n∇φ]− κP[(u · ∇)u], by Au, then making use of Young’s inequality, the
orthogonal projection property of P, the boundedness of ∇φ, the Gagliardo-Nirenberg inequality and
the Hölder inequality we see that with some C4 > 0 we have

1
2

d

dt

∫

Ω
|A 1

2 u|2 +
∫

Ω
|Au|2 =

∫

Ω
P[n∇φ] ·Au− κ

∫

Ω
P[(u · ∇)u] ·Au

≤ 1
2

∫

Ω
|Au|2 +

∫

Ω
|n∇φ|2 + κ2

∫

Ω
|(u · ∇)u|2

≤ 1
2

∫

Ω
|Au|2 + ‖∇φ‖2

L∞(Ω)

∫

Ω
n2 + κ2‖u‖2

L4(Ω)‖∇u‖2
L4(Ω)

≤ 1
2

∫

Ω
|Au|2 + ‖∇φ‖2

L∞(Ω)

∫

Ω
n2

+C4

(
‖∇u‖L2(Ω)‖u‖L2(Ω)

)
·
(
‖Au‖L2(Ω)‖∇u‖L2(Ω)

)

≤
∫

Ω
|Au|2 + ‖∇φ‖2

L∞(Ω)

∫

Ω
n2 +

C1C
2
4

2

{∫

Ω
|∇u|2

}2

for all t > 0.

Since
∫
Ω |∇u|2 =

∫
Ω |A

1
2 u|2 for all t ≥ 0, writing y(t) :=

∫
Ω |∇u(·, t)|2, g(t) := 2‖∇φ‖2

L∞(Ω)

∫
Ω n2 and

h(t) := C1C
2
4

∫
Ω |∇u(·, t)|2 for t ≥ 0, we thus obtain that

y′(t) ≤ g(t) + h(t)y(t) for all t > 0, (2.22)

where by (2.21),
∫ t+1

t
g(s)ds ≤ C5 := 2C2‖∇φ‖2

L∞(Ω) and
∫ t+1

t
h(s)ds ≤ C6 := C1C3C

2
4 for all t > 0.
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Now for fixed t > 0, in view of (2.21) we can find t0 = t0(κ, t) ≥ 0 such that t0 ∈ (t − 1, t) and
y(t0) ≤ C7 := max{C3,

∫
Ω |∇u0|2}, so that on integrating (2.22) we infer that

y(t) ≤ y(t0)e
∫ t

t0
h(s)ds +

∫ t

t0

e
∫ t

s h(σ)dσg(s)ds ≤ C7e
C6 + C5e

C6 ,

as desired. ¤
In turning this together with the bounds from Lemma 2.3 into κ-independent global estimates for

∫
Ω np

and
∫
Ω |∇c|2p with arbitrary p > 1, we shall make use of the following special case of a more gen-

eral Gagliardo-Nirenberg-type interpolation inequality ([31]) which can be proved by straightforward
adaptation of the argument introduced in [3].

Lemma 2.5 Let p > 1
2 . Then there exists C(p) > 0 such that for all ε > 0 one can find C(p, ε) > 0

fulfilling

‖ϕ‖
4p

2p−1

L4(Ω)
≤ ε‖∇ϕ‖2

L2(Ω)

∥∥∥ϕ · | ln |ϕ|| p2
∥∥∥

2
2p−1

L
2
p (Ω)

+ C(p, ε) + C(p)‖ϕ‖
4p

2p−1

L
2
p (Ω)

for all ϕ ∈ W 1,2(Ω).

We can thereby make efficient use of the bound on n in L log L(Ω) contained in Lemma 2.3 to achieve
the following.

Lemma 2.6 Let p > 1. Then there exists C(p) with the property that whenever κ ∈ (−1, 1),
∫

Ω
|n(κ)(·, t)|p ≤ C(p) for all t > 0 (2.23)

and ∫

Ω
|∇c(κ)(·, t)|2p ≤ C(p) for all t > 0. (2.24)

Proof. Once more omitting the index κ for convenience, by means of the first two equations in
(1.3), Young’s inequality and (2.3) we see that for all t > 0 we have

1
p

d

dt

∫

Ω
np + (p− 1)

∫

Ω
np−2|∇n|2 = (p− 1)

∫

Ω
np−1∇n · ∇c (2.25)

≤ p− 1
2

∫

Ω
np−2|∇n|2 +

p− 1
2

∫

Ω
np|∇c|2 (2.26)

and

1
2p

d

dt

∫

Ω
|∇c|2p =

∫

Ω
|∇c|2p−2∇c · ∇(∆c− nc− u · ∇c)

≤ −
∫

Ω
|∇c|2p−2|D2c|2 +

∫

Ω
nc|∇c|2p−2∆c + 2(p− 1)

∫

Ω
nc|∇c|2p−4∇c · (D2c · ∇c)

−
∫

Ω
|∇c|2p−2∇c · (∇u · ∇c)

≤ −1
2

∫

Ω
|∇c|2p−2|D2c|2 + C1

∫

Ω
n2|∇c|2p−2 +

∫

Ω
|∇c|2p|∇u| (2.27)

10



with C1 := (2 + 4(p− 1)2)‖c0‖2
L∞(Ω), where we have used that ∇ · u ≡ 0, that ∇c · ∇∆c ≡ 1

2∆|∇c|2 −
|D2c|2, that |∆c| ≤ √

2|D2c| and that

1
2

∫

Ω
|∇c|2p−2∆|∇c|2 = −p− 1

2

∫

Ω
|∇c|2p−4

∣∣∣∇|∇c|2
∣∣∣
2
+

1
2

∫

∂Ω
|∇c|2p−2 ∂|∇c|2

∂ν
≤ 0 for all t > 0,

again thanks to the fact that ∂|∇c|2
∂ν ≤ 0 on ∂Ω. Here due to the Hölder inequality and the Gagliardo-

Nirenberg inequality, Lemma 2.3, Young’s inequality and the pointwise inequality
∣∣∣∇|∇c|p

∣∣∣
2

=
∣∣∣p|∇c|p−2D2c · ∇c

∣∣∣
2
≤ p2|∇c|2p−2|D2c|2, (2.28)

we see that there exist positive constants C2, C3 and C4 such that

p− 1
2

∫

Ω
np|∇c|2 ≤ p− 1

2
‖n p

2 ‖2
L4(Ω)

∥∥∥|∇c|p
∥∥∥

2
p

L
4
p (Ω)

≤ C2‖n
p
2 ‖2

L4(Ω) ·
{∥∥∥∇|∇c|p

∥∥∥
1
p

L2(Ω)

∥∥∥|∇c|p
∥∥∥

1
p

L
2
p (Ω)

+
∥∥∥|∇c|p

∥∥∥
2
p

L
2
p (Ω)

}

≤ C3‖n
p
2 ‖2

L4(Ω) ·
{∥∥∥∇|∇c|p

∥∥∥
1
p

L2(Ω)
+ 1

}

≤ 1
8p2

∫

Ω

∣∣∣∇|∇c|p
∣∣∣
2
+ C4‖n

p
2 ‖

4p
2p−1

L4(Ω)
+ C4

≤ 1
8

∫

Ω
|∇c|2p−2|D2c|2 + C4‖n

p
2 ‖

4p
2p−1

L4(Ω)
+ C4 for all t > 0,

and that, similarly, with some C5 > 0, C6 > 0 and C7 > 0 we have

C1

∫

Ω
n2|∇c|2p−2 ≤ C1‖n

p
2 ‖

4
p

L4(Ω)

∥∥∥|∇c|p
∥∥∥

2p−2
p

L2(Ω)

≤ C5‖n
p
2 ‖

4
p

L4(Ω)

{∥∥∥∇|∇c|p
∥∥∥

2(p−1)2

p2

L2(Ω)

∥∥∥|∇c|p
∥∥∥

2p−2

p2

L
2
p (Ω)

+
∥∥∥|∇c|p

∥∥∥
2p−2

p

L
2
p (Ω)

}

≤ C6‖n
p
2 ‖

4
p

L4(Ω)

{∥∥∥∇|∇c|p
∥∥∥

2(p−1)2

p2

L2(Ω)
+ 1

}

≤ 1
8

∫

Ω
|∇c|2p−2|D2c|2 + C7‖n

p
2 ‖

4p
2p−1

L4(Ω)
+ C7 for all t > 0.

Since using the Cauchy-Schwarz inequality, Lemma 2.3 and the Gagliardo-Nirenberg inequality we
moreover find that there exist C8 > 0, C9 > 0 and C10 > 0 such that

∫

Ω
|∇c|2p|∇u| ≤ ‖∇u‖L2(Ω)

∥∥∥|∇c|p
∥∥∥

2

L4(Ω)

≤ C8

{∥∥∥∇|∇c|p
∥∥∥

2p−1
p

L2(Ω)

∥∥∥|∇c|p
∥∥∥

1
p

L
2
p (Ω)

+
∥∥∥|∇c|p

∥∥∥
2

L
2
p (Ω)

}

≤ C9

{∥∥∥∇|∇c|p
∥∥∥

2p−1
p

L2(Ω)
+ 1

}

≤ 1
8

∫

Ω
|∇c|2p−2|D2c|2 + C10 for all t > 0,
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on adding (2.25) and (2.27) we thus obtain that

d

dt

{
1
p

∫

Ω
np +

1
2p

∫

Ω
|∇c|2p

}
+

2(p− 1)
p2

∫

Ω
|∇n

p
2 |2 +

1
8

∫

Ω
|∇c|2p−2|D2c|2

≤ (C4 + C7)‖n
p
2 ‖

4p
2p−1

L4(Ω)
+ C4 + C7 + C10 for all t > 0. (2.29)

Here in accordance with Lemma 2.3 we can choose C11 > 0 such that
∫
Ω n| lnn

p
2 | ≤ C11 for all t > 0,

and thereupon we combine Lemma 2.5 with Lemma 2.3 to infer the existence of C12 > 0 and C13 > 0
such that

(C4 + C7)‖n
p
2 ‖

4p
2p−1

L4(Ω)
≤ p− 1

p2C
p

2p−1

11

‖∇n
p
2 ‖2

L2(Ω)

∥∥∥n
p
2 | lnn

p
2 | p2

∥∥∥
2

2p−1

L
2
p (Ω)

+ C12 + C12‖n
p
2 ‖

4p
2p−1

L
2
p (Ω)

≤ p− 1
p2

∫

Ω
|∇n

p
2 |2 + C13 for all t > 0.

Since finally, again in view of (2.28), the Poincaré inequality along with Lemma 2.3 provides C14 > 0
and C15 > 0 fulfilling

p− 1
p2

∫

Ω
|∇n

p
2 |2 ≥ C14

∫

Ω
np − 1 for all t > 0

and

1
8

∫

Ω
|∇c|2p−2|D2c|2 ≥ C15

∫

Ω
|∇c|2p − 1 for all t > 0,

from (2.29) we conclude that y(t) := 1
p

∫
Ω np(·, t) + 1

2p

∫
Ω |∇c(·, t)|2p, t ≥ 0, satisfies

y′(t) + C16y(t) ≤ C17 for all t > 0

with some C16 > 0 and C17 > 0, and that hence y(t) ≤ max{y(0) , C17
C16
} for all t > 0. ¤

According to a standard argument, the latter implies a bound for the first component even with respect
to the norm in L∞(Ω).

Lemma 2.7 There exists C > 0 such that for any κ ∈ (−1, 1),

‖n(κ)(·, t)‖L∞(Ω) ≤ C for all t > 0. (2.30)

Proof. We fix an arbitrary q > 2 and then infer from known smoothing properties of the Neumann
heat semigroup (et∆)t≥0 in Ω that there exists C1 > 0 such that for any κ ∈ (−1, 1), again writing
(n, c, u) := (n(κ), c(κ), u(κ)) we have

‖n(·, t)‖L∞(Ω) =
∥∥∥∥emin{t,1}∆n(·, (t− 1)+)−

∫ t

(t−1)+

e(t−s)∆∇ ·
(
n(·, s)∇c(·, s) + n(·, s)u(·, s)

)
ds

∥∥∥∥
L∞(Ω)

≤
∥∥∥emin{t,1}∆n(·, (t− 1)+)

∥∥∥
L∞(Ω)

+C1

∫ t

(t−1)+

(t− s)−
1
2
− 1

q

(
‖n(·, s)∇c(·, s)‖Lq(Ω) + ‖n(·, s)u(·, s)‖Lq(Ω)

)
ds (2.31)
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for all t > 0, and there herein with some C2 > 0, thanks to the maximum principle and (2.2) we have
∥∥∥emin{t,1}∆n(·, (t− 1)+)

∥∥∥
L∞(Ω)

≤ max
{
‖n0‖L∞(Ω) , C2‖n0‖L1(Ω)

}
=: C3 for all t > 0.

Now since W 1,2(Ω) ↪→ L2q(Ω), combining Lemma 2.6 with Lemma 2.4 we see that there exists C4 > 0
fulfilling

‖n∇c‖Lq(Ω) + ‖nu‖Lq(Ω) ≤ ‖n‖L2q(Ω)‖∇c‖L2q(Ω) + ‖n‖L2q(Ω)‖u‖L2q(Ω) ≤ C4 for all t > 0,

so that (2.31) implies that

‖n(·, t)‖L∞(Ω) ≤ C3 + C1C4

∫ t

(t−1)+

(t− s)−
1
2
− 1

q ds ≤ C3 +
C1C4
1
2 − 1

q

for all t > 0

and thereby establishes (2.30). ¤
In particular, this provides some additional boundedness information on the forcing term in the Navier-
Stokes system in (1.3) which thereby enjoys a further regularity property:

Lemma 2.8 There exists C > 0 with the property that whenever κ ∈ (−1, 1),

‖Aαu(κ)(·, t)‖L2(Ω) ≤ C for all t > 0, (2.32)

and that with some θ ∈ (0, 1) we have

‖u(κ)‖
Cθ, θ

2 (Ω̄×[t,t+1])
≤ C for all t > 0. (2.33)

Proof. Using that α < 1, we pick q ∈ (1, 2) suitably close to 2 such that γ := α + 1
q − 1

2 satisfies
γ < 1, and relying on known regularization properties of the Stokes semigroup in Ω we obtain C1 > 0
and C2 > 0 such that again dropping the superscript (κ) and abbreviating f := P[n∇φ]−κP[(u ·∇)u]
we have

‖Aαu(·, t)‖L2(Ω)

=
∥∥∥∥Aαe−min{t,1}Au(·, (t− 1)+) +

∫ t

(t−1)+

Aαe−(t−s)Af(·, s)ds

∥∥∥∥
L2(Ω)

≤
∥∥∥Aαe−min{t,1}Au(·, (t− 1)+)

∥∥∥
L2(Ω)

+ C1

∫ t

(t−1)+

(t− s)−γ‖f(·, s)‖Lq(Ω)ds (2.34)

and
∥∥∥Aαe−min{t,1}Au(·, (t− 1)+)

∥∥∥
L2(Ω)

≤ max
{
‖Aαu0‖L2(Ω) , C2 sup

κ∈(−1,1)
‖u‖L∞((0,∞);L2(Ω))

}
=: C3

for all t > 0. Since W 1,2(Ω) ↪→ L
2q

2−q (Ω) and P is continuous on Lq(Ω;R2) ([13]), Lemma 2.6 and
Lemma 2.4 provide C4 > 0 such that

‖f‖Lq(Ω) ≤ ‖∇φ‖L∞(Ω)‖n‖Lq(Ω) + |κ|‖u‖
L

2q
2−q (Ω)

‖∇u‖L2(Ω) ≤ C4 for all t > 0, (2.35)
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so that (2.34) entails that

‖Aαu(·, t)‖L2(Ω) ≤ C3 +
C1C4

1− γ
for all t > 0

and hence proves (2.32), whereupon (2.34) is a consequence of the fact that α > 1
2 warrants that

D(Aα) ↪→ L∞(Ω;R2) ([16]).

Similarly, fixing any β ∈ (1
2 , α), for t0 ≥ 0 and t ∈ [t0, t0 + 1] we can use (2.35) to estimate

‖Aβu(·, t)−Aβu(·, t0)‖L2(Ω) ≤
∥∥∥[e−tA − e−t0A]Aβu0

∥∥∥
L2(Ω)

+
∫ t0

0

∥∥∥Aβ[e−(t−s)A − e−(t0−s)A]f(·, s)
∥∥∥

L2(Ω)
ds

+
∫ t

t0

∥∥∥Aβe−(t−s)Af(·, s)
∥∥∥

L2(Ω)
ds

=
∥∥∥∥

∫ t

t0

A1−α+βe−σAAαu0dσ

∥∥∥∥
L2(Ω)

+
∫ t0

0

∥∥∥∥
∫ t

t0

A1+βe−(σ−s)Af(·, s)dσ

∥∥∥∥
L2(Ω)

ds

+
∫ t

t0

∥∥∥Aβe−(t−s)Af(·, s)
∥∥∥

L2(Ω)
ds

≤ C5

{∫ t

t0

σ−1+α−βdσ

}
‖Aαu0‖L2(Ω)

+C5

∫ t0

0

∫ t

t0

(σ − s)−1−β−( 1
q
− 1

2
)‖f(·, s)‖Lq(Ω)dσds

+C5

∫ t

t0

(t− s)−β−( 1
q
− 1

2
)‖f(·, s)‖Lq(Ω)ds

≤ C5

α− β

(
tα−β − tα−β

0

)
‖Aαu0‖L2(Ω)

+C4C5

∫ t0

0

∫ t

t0

(σ − s)−1−β−( 1
q
− 1

2
)
dσds

+C4C5

∫ t

t0

(t− s)−β−( 1
q
− 1

2
)
ds

≤ 2α−βC5

α− β
(t− t0)

α−β‖Aαu0‖L2(Ω)

+
C4C5

(β + 1
q − 1

2)(3
2 − β − 1

q )

{
t

3
2
−β− 1

q

0 + (t− t0)
3
2
−β− 1

q − t
3
2
−β− 1

q

}

+
C4C5

3
2 − β − 1

q

(t− t0)
3
2
−β− 1

q (2.36)
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with some C5 > 0. Since for any such β we have D(Aβ) ↪→ Cθ(Ω̄;R2) whenever θ ∈ (0, 2β− 1), (2.36)
together with (2.32) entails (2.33). ¤
Finally, bounds for solutions in any spaces compatible with the smoothness of ∂Ω and φ can be
achieved, at least away from the initial time. For our subsequent analysis, the following result in this
direction will be sufficient.

Lemma 2.9 There exists C > 0 such that for all κ ∈ (−1, 1),

‖n(κ)(·, t)‖C1(Ω̄) ≤ C for all t > 1 (2.37)

as well as
‖c(κ)(·, t)‖C2(Ω̄) ≤ C for all t > 1. (2.38)

Proof. We first employ a known result on Hölder regularity in scalar parabolic equations ([24]) to
obtain θ1 ∈ (0, 1) and C1 > 0 such that for (n, c, u) := (n(κ), c(κ), u(κ)) with arbitrary κ ∈ (−1, 1) we
have

‖n‖
Cθ1,

θ1
2 (Ω̄×[t,t+1])

≤ C1 for all t >
1
2
, (2.39)

because combining Lemma 2.7 with Lemma 2.8 and Lemma 2.6 shows that for each p ∈ (1,∞) we can
find C2(p) > 0 such that f := n∇c + nu satisfies ‖f‖Lp(Ω) ≤ C2(p) for all t > 0. Next, by a standard
result on maximal Sobolev regularity for the Neumann problem associated with the inhomogeneous
linear heat equation ct = ∆c + g, g := −nc − u · ∇c ([15]), we infer that for any p ∈ (1,∞) we can
pick C3(p) > 0 fulfilling

∫ t+1

t

{
‖c(·, t)‖p

W 2,p(Ω)
+ ‖ct(·, t)‖p

Lp(Ω)

}
ds ≤ C3(p) for all t >

1
2
, (2.40)

because from Lemma 2.7, Lemma 2.8 and Lemma 2.6 we know that for any such p there exists
C4(p) > 0 such that ‖g‖Lp(Ω) ≤ C4(p) for all t > 0. In particular, according to a known embedding
property ([1]), (2.40) entails the existence of θ2 ∈ (0, 1) and C5 > 0 fulfilling

‖c‖C1+θ2,θ2 (Ω̄×[t,t+1]) ≤ C5 for all t >
1
2
, (2.41)

which together with (2.39) and Lemma 2.8 yields θ3 ∈ (0, 1) and C6 > 0 such that ‖f‖
Cθ3,

θ3
2 (Ω̄×[t,t+1])

≤
C6 for all t > 1

2 . Therefore, a well-known result on gradient Hölder regularity in general quasilinear
parabolic equations ([22]) becomes applicable so as to assert that

‖n‖
C1+θ4,

1+θ4
2 (Ω̄×[t,t+1])

≤ C7 for all t > 1 (2.42)

with some θ4 ∈ (0, 1) and C7 > 0. Finally, in view of (2.39), (2.41) and Lemma 2.8 we now know
that there exist θ5 ∈ (0, 1) and C8 > 0 such that ‖g‖

Cθ5,
θ5
2 (Ω̄×[t,t+1])

≤ C8 for all t > 1
2 , by means of

classical parabolic Schauder theory ([20]) implying that actually

‖c‖
C2+θ6,1+

θ6
2 (Ω̄×[t,t+1])

≤ C9 for all t > 1 (2.43)

with some θ6 ∈ (0, 1) and C9 > 0. Whereas (2.42) entails (2.37), from (2.43) we obtain (2.38). ¤
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3 Uniform decay of c(κ)

The purpose of this section consists in deriving a statement on temporal decay of c(κ) which will yet
be qualitative in that no rate is provided, but which is uniform not only with respect to x ∈ Ω but also
with regard to κ ∈ (−1, 1). In comparison to the original introduction of the strategy pursued here
([38]), our argument yields both a refinement which shows the desired independence of κ ∈ (−1, 1), as
well as a compactification in presentation.

We first derive, in a way essentially independent from all our above results, the following very weak
decay information.

Lemma 3.1 For all ε > 0 one can find T = T (ε) > 0 with the property that for all κ ∈ (−1, 1) there
exists t0 = t0(ε, κ) ∈ (0, T ) such that

∫ t0+1

t0

∫

Ω

{
n(κ)c(κ) + |∇c(κ)|2

}
< ε. (3.1)

Proof. Omitting the index κ again, we multiply the second equation in (1.3) by 1 and c, respec-
tively, to see upon integration that

∫ T

0

∫

Ω

{
nc + |∇c|2

}
=

∫

Ω
c0 +

1
2

∫

Ω
c2
0 −

∫

Ω
c(·, T )− 1

2

∫

Ω
c2(·, T )−

∫ T

0

∫

Ω
nc2

≤ C1 :=
∫

Ω
c0 +

1
2

∫

Ω
c2
0 for all T > 0,

and that hence ∫ ∞

0

∫

Ω

{
nc + |∇c|2

}
≤C1. (3.2)

Thus, if given ε > 0 we fix an integer k = k(ε) ≥ 1 such that k > C1
ε , then

ε >
C1

k
≥ 1

k

∫ k

0

∫

Ω

{
nc + |∇c|2

}
=

1
k

k−1∑

j=0

∫ j+1

j

∫

Ω

{
nc + |∇c|2

}
≥ min

j∈{0,...,k−1}

∫ j+1

j

∫

Ω

{
nc + |∇c|2

}
,

so that we can pick j0 = j0(ε, κ) ∈ {0, ..., k − 1} such that
∫ j0+1
j0

∫
Ω{nc + |∇c|2} < ε, thus implying

the claimed conclusion if we let T (ε) := k(ε) and t0(ε, κ) := j0(ε, κ). ¤
Now by including some of the regularity information gained above, we can indeed assert the following
doubly uniform decay property.

Lemma 3.2 We have
sup

κ∈(−1,1)
‖c(κ)(·, t)‖L∞(Ω) → 0 as t →∞. (3.3)

Proof. The proof will be divided into two steps.

Step 1. We first claim that

sup
κ∈(−1,1)

‖c(κ)(·, t)‖L1(Ω) → 0 as t →∞. (3.4)
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To see this, we employ a Poincaré inequality and recall Lemma 2.7 to find C1 > 0 and C2 > 0 such
that writing ϕ := 1

|Ω|
∫
Ω ϕ for ϕ ∈ L1(Ω) we have

∫

Ω
|ϕ− ϕ|2 ≤ C1

∫

Ω
|∇ϕ|2 for all ϕ ∈ W 1,2(Ω), (3.5)

and such that for all κ ∈ (−1, 1),

‖n(κ)(·, t)‖L∞(Ω) ≤ C2 for all t > 0. (3.6)

Then given ε > 0, we fix δ > 0 small enough fulfilling

δ +
√

C1C2

√
|Ω|
√

δ < n0ε, (3.7)

and thereafter we apply Lemma 3.1 to choose T = T (δ) > 0 such that for all κ ∈ (−1, 1) there exists
t0 = t0(δ, κ) ∈ (0, T ) satisfying

∫ t0+1

t0

∫

Ω

{
n(κ)c(κ) + |∇c(κ)|2

}
< δ. (3.8)

Then by (2.2), the Cauchy-Schwarz inequality, (3.5), (3.6) and (3.7), we can estimate

n0

∫ t0+1

t0

∫

Ω
c(κ) =

∫ t0+1

t0

∫

Ω
n(κ)(x, t)c(κ)(·, t)dxdt

=
∫ t0+1

t0

∫

Ω
n(κ)(x, t)c(κ)(x, t)dxdt−

∫ t0+1

t0

∫

Ω
n(κ)(x, t)

(
c(κ)(x, t)− c(κ)(·, t)

)
dxdt

≤
∫ t0+1

t0

∫

Ω
n(κ)(x, t)c(κ)(x, t)dxdt

+
{∫ t0+1

t0

∫

Ω
|n(κ)(x, t)|2dxdt

} 1
2

·
{∫ t0+1

t0

∫

Ω

(
c(κ)(x, t)− c(κ)(·, t)

)2
dxdt

} 1
2

≤
∫ t0+1

t0

∫

Ω
n(κ)(x, t)c(κ)(x, t)dxdt

+
√

C1

{∫ t0+1

t0

∫

Ω
|n(κ)(x, t)|2dxdt

} 1
2

·
{∫ t0+1

t0

∫

Ω
|∇c(κ)(x, t)|2dxdt

} 1
2

≤ δ +
√

C1C2

√
|Ω| ·

√
δ

< n0ε for all κ ∈ (−1, 1).

As d
dt

∫
Ω c(κ) = − ∫

Ω n(κ)c(κ) ≤ 0 for all t > 0 by (1.3), this entails that for all κ ∈ (−1, 1) and each
t > T + 1,

∫

Ω
c(κ)(·, t) ≤

∫

Ω
c(κ)(·, t0 + 1) ≤

∫ t0+1

t0

∫

Ω
c(κ) < ε,

because any such t satisfies t > t0 + 1.
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Step 2. We next make sure that (3.3) holds.

To this end, we only need to observe that by Lemma 2.9 there exists C3 > 0 such that

‖c(κ)(·, t)‖C1(Ω̄) ≤ C3 for all t > 1,

and that due to the Gagliardo-Nirenberg inequality we can find C4 > 0 fulfilling

‖ϕ‖L∞(Ω) ≤ C4‖ϕ‖
2
3

C1(Ω̄)
‖ϕ‖

1
3

L1(Ω)
for all ϕ ∈ C1(Ω̄).

Therefore, namely,

‖c(κ)(·, t)‖L∞(Ω) ≤ C
2
3
3 C4‖c(κ)(·, t)‖

1
3

L1(Ω)
for all t > 1,

so that (3.3) results from (3.4). ¤

4 Uniformly exponential stabilization

Our next goal will be to make sure that as a consequence of Lemma 3.2 when combined with the
boundedness properties from Section 2, solutions stabilize toward the spatially homogeneous equilib-
rium (n0, 0, 0) at an exponential rate, again even uniformly with respect to κ ∈ (−1, 1). We thereby
generalize the results both on mere convergence ([38]) and on exponential stabilization rates ([45])
previously obtained for the particular case κ = 1. Unlike the strategy in [38] which was essentially
based on the observation that whenever p > 1,

∫
Ω

np

(δ−c)γ acts as a genuine energy functional for (1.3)
for t > t0(p) if δ = δ(p) > 0 as well as γ = γ(p) > 0 is chosen appropriately, our approach is much
more direct in that it mainly relies on an analysis of the functionals

∫
Ω |n(κ) − n0|2 and

∫
Ω |u(κ)|2.

We first state the following implication, to be used in both Lemma 4.4 and Lemma 4.7 below, of the
uniform boundedness property of n(κ) asserted in Lemma 2.7.

Lemma 4.1 There exists C > 0 such that for any κ ∈ (−1, 1) we have

d

dt

∫

Ω
|n(κ)(·, t)− n0|2 +

1
C

∫

Ω
|n(κ)(·, t)− n0|2 ≤ C

∫

Ω
|∇c(κ)(·, t)|2 for all t > 0. (4.1)

Proof. We multiply the first equation in (1.3) by n(κ) − n0 and integrate by parts to see using
Young’s inequality that since d

dt

∫
Ω n = 0,

1
2

d

dt

∫

Ω
|n(κ) − n0|2 + |∇n(κ)|2 =

∫

Ω
n(κ)∇n(κ) · ∇c(κ) ≤ 1

2

∫

Ω
|∇n(κ)|2 +

1
2

∫

Ω
|n(κ)|2|∇c(κ)|2

for all t > 0, so that

d

dt

∫

Ω
|n(κ) − n0|2 +

∫

Ω
|∇n(κ)|2 ≤

∫

Ω
|n(κ)|2|∇c(κ)|2 ≤ C1

∫

Ω
|∇c(κ)|2 for all t > 0 (4.2)

with C1 := supκ′∈(−1,1) ‖n(κ′)‖2
L∞(Ω×(0,∞)) being finite according to Lemma 2.7. Since a Poincaré

inequality provides C2 > 0 such that
∫

Ω
|n(κ) − n0|2 ≤ C2

∫

Ω
|∇n(κ)|2 for all t > 0,

18



from (4.2) we obtain (4.1) on choosing C := max{C1, C2}. ¤
Now a first κ-independent estimate for the right-hand side herein can directly be obtained from Lemma
3.2:

Lemma 4.2 We have
sup

κ∈(−1,1)

∫ ∞

t

∫

Ω
|∇c(κ)|2 → 0 as t →∞. (4.3)

Proof. On testing the second equation in (1.3) by c(κ) we obtain

∫ T

t

∫

Ω
|∇c(κ)|2 =

1
2

∫

Ω
|c(κ)(·, t)|2 − 1

2

∫

Ω
|c(κ)(·, T )|2 −

∫ T

t

∫

Ω
n(κ)|c(κ)|2

≤ |Ω|
2
· sup

κ′∈(−1,1)
‖c(κ′)(·, t)‖2

L∞(Ω) for all t > 0 and T > t,

so that (4.3) results from Lemma 3.2. ¤
In Lemma 4.4 we shall need the following statement on uniform decay in families of linearly dampened
ODIs, an elementary proof of which can be obtained by straightforward adaptation of the arguments
detailed in [9, Lemma 4.6] for the case of a single inequality.

Lemma 4.3 Let I be any set and λ > 0, and for each ι ∈ I let yι ∈ C0([0,∞)) ∩ C1((0,∞)) and
fι ∈ C0((0,∞)) be nonnegative and such that

y′ι(t) + λyι(t) ≤ fι(t) for all t > 0 (4.4)

and
sup
ι∈I

yι(0) < ∞, (4.5)

and such that
sup
ι∈I

‖fι‖L∞((0,∞)) < ∞ (4.6)

as well as

sup
ι∈I

∫ t+1

t
fι(s)ds → 0 as t →∞. (4.7)

Then
sup
ι∈I

yι(t) → 0 as t →∞. (4.8)

We are now in the position to show that also the first solution component stabilizes uniformly with
respect to x ∈ Ω and κ ∈ (−1, 1).

Lemma 4.4 The solutions of (1.3) satisfy

sup
κ∈(−1,1)

‖n(κ)(·, t)− n0‖L∞(Ω) → 0 as t →∞. (4.9)
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Proof. In view of Lemma 4.3, it follows from Lemma 4.1, Lemma 4.2 and the uniform bound for
∇c(κ) in L∞((0,∞);L2(Ω)) provided by Lemma 2.6 that

sup
κ∈(−1,1)

∫

Ω
|n(κ)(·, t)− n0|2 → 0 as t →∞. (4.10)

Since from the Gagliardo-Nirenberg inequality we infer the existence of C1 > 0 fulfilling

‖n(κ) − n0‖2
L∞(Ω) ≤ C1‖n(κ) − n0‖C1(Ω̄)‖n(κ) − n0‖L2(Ω)

≤ C1

(
‖n(κ)‖C1(Ω̄) + n0

)
‖n(κ) − n0‖L2(Ω) for all t > 1,

on combining (4.10) with Lemma 2.9 we directly obtain (4.9). ¤
Making essential use of the uniformity in the above statement with respect to x ∈ Ω, by means of a
straightforward comparison argument we can derive the following improvement of Lemma 3.2 which
now contains an exponential rate of convergence.

Lemma 4.5 There exist µ > 0 and C > 0 such that for any choice of κ ∈ (−1, 1) we have

‖c(κ)(·, t)‖L∞(Ω) ≤ Ce−µt for all t > 0. (4.11)

Proof. We first apply Lemma 4.4 to obtain t0 > 0 such that for each κ ∈ (−1, 1),

n(κ)(x, t) ≥ C1 :=
n0

2
for all x ∈ Ω and t > t0.

Therefore,

c
(κ)
t ≤ ∆c(κ) − C1c

(κ) in Ω× (t0,∞),

so that by means of the comparison principle and (2.3) we easily infer that

c(κ)(·, t) ≤ ‖c(κ)(·, t0)‖L∞(Ω)e
−C1(t−t0) ≤ ‖c0‖L∞(Ω)e

−C1(t−t0) for all t > t0,

and hence again (2.3) asserts that (4.11) is valid actually for all t > 0 if we let C := ‖c0‖L∞(Ω)e
C1t0

and µ := n0
2 , noting that µ is positive according to (1.6). ¤

By interpolation with Lemma 2.9, this entails exponential decay also of ∇c(κ) in the following sense.

Lemma 4.6 For all p > 1, there exist µ > 0 and C > 0 such that

‖c(κ)(·, t)‖W 1,p(Ω) ≤ Ce−µt for all t > 0 (4.12)

whenever κ ∈ (−1, 1).

Proof. Assuming without loss of generality that p > 2, by the Gagliardo-Nirenberg inequality we
obtain C1 > 0 such that

‖c(κ)(·, t)‖W 1,p(Ω) ≤ C1‖c(κ)(·, t)‖
p−2
2p

C2(Ω̄)
‖c(κ)(·, t)‖

p+2
2p

L∞(Ω) for all t > 0.

Therefore, Lemma 4.5 in conjunction with Lemma 2.9 yields (4.12). ¤
This in turn improves our knowledge on temporal decay of the integral on the right of (4.1), as
compared to the outcome from Lemma 4.2. Using this, we obtain that also the stabilization asserted
by Lemma 4.4 occurs at an exponential rate.
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Lemma 4.7 There exist µ > 0 and C > 0 with the property that for each κ ∈ (−1, 1),

‖n(κ)(·, t)− n0‖L∞(Ω) ≤ Ce−µt for all t > 0. (4.13)

Proof. In view of Lemma 4.6, Lemma 4.1 says that with some C1 > 0, C2 > 0 and µ1 ∈ (0, C1),
the function y ∈ C0([0,∞)) ∩ C1((0,∞)) defined by y(t) :=

∫
Ω |n(κ)(·, t)− n0|2, t ≥ 0, satisfies

y′(t) + C1y(t) ≤ C2e
−µ1t for all t > 0.

On integration, this shows that writing C3 :=
∫
Ω |n0 − n0|2 we have

y(t) ≤ C3e
−C1t + C2

∫ t

0
e−C1(t−s)e−µ1sds

= C3e
−C1t +

C2

C1 − µ1
(e−µ1t − e−C1t)

≤
(
C3 +

C2

C1 − µ1

)
e−µ1t for all t > 0,

because µ1 < C1. Again by interpolation using Lemma 2.9, this implies (4.13). ¤
The latter, finally, implies exponential decay also in the fluid component.

Lemma 4.8 There exist µ > 0 and C > 0 such that for any κ ∈ (−1, 1),

‖u(κ)(·, t)‖L∞(Ω) ≤ Ce−µt for all t > 0. (4.14)

Proof. Using that by the Poincaré inequality there exists C1 > 0 such that
∫

Ω
|∇u(κ)|2 ≥ C1

∫

Ω
|u(κ)|2 for all t > 0,

on testing the third equation in (1.3) by u(κ) we see that writing C2 := ‖∇φ‖L∞(Ω), thanks to Young’s
inequality we have

1
2

d

dt

∫

Ω
|u(κ)|2 +

C1

2

∫

Ω
|u(κ)|2 ≤ 1

2
d

dt

∫

Ω
|u(κ)|2 +

1
2

∫

Ω
|∇u(κ)|2

= −1
2

∫

Ω
|∇u(κ)|2 +

∫

Ω
(n(κ) − n0)u(κ) · ∇φ

≤ −1
2

∫

Ω
|∇u(κ)|2 + C2

√
|Ω|‖n(κ) − n0‖L∞(Ω)‖u(κ)‖L2(Ω)

≤ −1
2

∫

Ω
|∇u(κ)|2 +

C2

√
|Ω|√

C1
‖n(κ) − n0‖L∞(Ω)‖∇u(κ)‖L2(Ω)

≤ C2
2 |Ω|
2C1

· ‖n(κ) − n0‖2
L∞(Ω) for all t > 0.

Due to Lemma 4.7, we thus obtain C3 > 0 and µ1 ∈ (0, C1) such that y(t) :=
∫
Ω |u(κ)(·, t)|2, t ≥ 0,

satisfies

y′(t) + C1y(t) ≤ C3e
−µ1t for all t > 0,
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from which by integration we infer that

y(t) ≤ C4e
−C1t + C3

∫ t

0
e−C1(t−s)e−µ1sds ≤ C5e

−µ1t for all t > 0

with C4 :=
∫
Ω |u0|2 and C5 := C4 + C3

C1−µ1
. We now recall Lemma 2.8 to find C6 > 0 such that

‖Aαu(κ)(·, t)‖L2(Ω) ≤ C6 for all t > 0,

and fixing an arbitrary β ∈ (1
2 , α) we apply a known interpolation result ([10]) to obtain C7 > 0

fulfilling

‖Aβu(κ)(·, t)‖L2(Ω) ≤ C7‖Aαu(κ)(·, t)‖
β
α

L2(Ω)
‖u(κ)(·, t)‖1− β

α

L2(Ω)
≤ C7C

β
α
6 C

1− β
α

5 e−(1− β
α

)µ1t for all t > 0.

As D(Aβ) ↪→ L∞(Ω;R2) ([16]), this establishes (4.14). ¤

5 Convergence as κ → 0. Proof of Theorem 1.1

We next return to our original purpose by deriving estimates for the differences addressed in Theorem
1.1. In order to keep readability, throughout the sequel we abbreviate

n̂ := n(κ) − n(0), ĉ := c(κ) − c(0), û := u(κ) − u(0) and P̂ := P (κ) − P (0), (5.1)

for κ ∈ (−1, 1), and observe that according to (1.3), (1.4) and (1.5) we have




n̂t = ∆n̂−∇ · (n̂∇c(κ))−∇ · (n(0)∇ĉ)− u(κ) · ∇n̂− û · ∇(n(0) − n0), x ∈ Ω, t > 0,

ĉt = ∆ĉ− n(κ)ĉ− n̂c(0) − u(κ) · ∇ĉ− û · ∇c(0), x ∈ Ω, t > 0,

ût = ∆û−∇P̂ + n̂∇φ− κ(u(κ) · ∇)u(κ), x ∈ Ω, t > 0,

∇ · û = 0, x ∈ Ω, t > 0,

(5.2)

and
∂n̂

∂ν
= 0,

∂ĉ

∂ν
= 0 and û = 0, x ∈ ∂Ω, t > 0,

as well as

n̂(x, 0) = 0, ĉ(x, 0) = 0 and û(x, 0) = 0, x ∈ Ω.

As a preparation for our analysis of (n̂, ĉ, û), let us separately state the following auxiliary lemma on
exponential decay in a linear absorptive ODI with certain exponentially decreasing perturbations, to
be used in both Lemma 5.6 and Lemma 5.9 below.

Lemma 5.1 Let a > 0, b > 0, µ1 > 0, µ2 > 0 and µ3 ∈ (0, µ1), and suppose that y ∈ C0([0,∞)) ∩
C1((0,∞)) is a nonnegative function satisfying y(0) = 0 and

y′(t) + µ1y(t) ≤ ae−µ2ty(t) + be−µ3t for all t > 0. (5.3)

Then
y(t) ≤ b

µ1 − µ3
e

a
µ2 e−µ3t for all t > 0. (5.4)
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Proof. As y(0) = 0, an integration of (5.3) shows that

y(t) ≤ b

∫ t

0
exp

{∫ t

s

(
ae−µ2σ − µ1

)
dσ

}
· e−µ3sds for all t > 0,

where
∫ t

s

(
ae−µ2σ − µ1

)
dσ =

a

µ2

(
e−µ2s − e−µ2t

)
− µ1(t− s)

≤ a

µ2
− µ1(t− s) for all t > 0 and each s ∈ (0, t).

Therefore, thanks to our hypothesis µ1 > µ3 we obtain

y(t) ≤ be
a

µ2 ·
∫ t

0
e−µ1(t−s)e−µ3sds

=
b

µ1 − µ3
e

a
µ2 ·

(
e−µ3t − e−µ1t

)
for all t > 0,

which implies (5.4). ¤

5.1 Convergence with respect to spatial L2 norms

Our first crucial step toward Theorem 1.1 will consist in the derivation of a corresponding estimate for
(n̂, ĉ, û) with respect to the norm in (L2(Ω))4. This will be accomplished in Lemma 5.5 and Lemma
5.6 on the basis of an ODI of the above structure for

∫

Ω
n̂2 + k

∫

Ω
ĉ2 + l

∫

Ω
|û|2, t ≥ 0,

with suitably chosen k > 0 and l > 0. In order to motivate our selections of these parameters, we
separately state the respective results of the three associated testing procedures in the following three
lemmata, the first of which is concerned with the first solution component.

Lemma 5.2 There exist µ > 0 and C > 0 such that for each κ ∈ (−1, 1),

d

dt

∫

Ω
n̂2 +

∫

Ω
|∇n̂|2 ≤ C

∫

Ω
|∇ĉ|2 + Ce−µt ·

{∫

Ω
n̂2 +

∫

Ω
|û|2

}
for all t > 0. (5.5)

Proof. We multiply the first equation in (5.2) by n̂ and integrate by parts over Ω to obtain

1
2

d

dt

∫

Ω
n̂2 +

∫

Ω
|∇n̂|2 =

∫

Ω
n̂∇n̂ · ∇c(κ) +

∫

Ω
n(0)∇n̂ · ∇ĉ +

∫

Ω
(n(0)−n0)û · ∇n̂ for all t > 0, (5.6)

where we have made use of the fact that ∇ · u(κ′) ≡ 0 for all κ′ ∈ (−1, 1). On the right-hand side
herein, employing Young’s inequality we see that

∫

Ω
n̂∇n̂ · ∇c(κ) ≤ 1

8

∫

Ω
|∇n̂|2 + 2

∫

Ω
n̂2|∇c(κ)|2 for all t > 0, (5.7)
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where by the Cauchy-Schwarz inequality and the Gagliardo-Nirenberg inequality, we find that

2
∫

Ω
n̂2|∇c(κ)|2 ≤ 2‖n̂‖2

L4(Ω)‖∇c(κ)‖2
L4(Ω)

≤ C1‖∇n̂‖L2(Ω)‖n̂‖L2(Ω)‖∇c(κ)‖2
L4(Ω) for all t > 0 (5.8)

with some C1 > 0, bearing in mind that according to (2.2) we know that
∫

Ω
n̂ = 0 for all t > 0.

Now since Lemma 4.6 provides µ1 > 0 and C2 > 0 fulfilling
∫

Ω
|∇c(κ)|4 ≤ C2e

−µ1t for all t > 0,

again using Young’s inequality in (5.8) we can proceed to estimate

C1‖∇n̂‖L2(Ω)‖n̂‖L2(Ω)‖∇c(κ)‖2
L4(Ω) ≤ 1

8

∫

Ω
|∇n̂|2 + 2C2

1‖n̂‖2
L2(Ω)‖∇c(κ)‖4

L4(Ω)

≤ 1
8

∫

Ω
|∇n̂|2 + 2C2

1C2e
−µ1t

∫

Ω
n̂2 for all t > 0,

whence by (5.7),
∫

Ω
n̂∇n̂ · ∇c(κ) ≤ 1

4

∫

Ω
|∇n̂|2 + 2C2

1C2e
−µ1t

∫

Ω
n̂2 for all t > 0. (5.9)

Next, recalling that due to Lemma 2.7 there exists C3 > 0 such that

‖n(0)‖L∞(Ω) ≤ C3 for all t > 0,

once more thanks to Young’s inequality we see that the second summand on the right of (5.6) can be
controlled according to

∫

Ω
n(0)∇n̂ · ∇ĉ ≤ 1

8

∫

Ω
|∇n̂|2 + 2

∫

Ω
|n(0)|2|∇ĉ|2

≤ 1
8

∫

Ω
|∇n̂|2 + 2C2

3

∫

Ω
|∇ĉ|2 for all t > 0. (5.10)

Finally, since Lemma 4.7 yields µ2 > 0 and C4 > 0 fulfilling

‖n(0) − n0‖L∞(Ω) ≤ C4e
−µ2t for all t > 0,

by Young’s inequality we obtain
∫

Ω
(n(0) − n0)û · ∇n̂ ≤ 1

8

∫

Ω
|∇n̂|2 + 2

∫

Ω
|n(0) − n0|2|û|2

≤ 1
8

∫

Ω
|∇n̂|2 + 2‖n(0) − n0‖2

L∞(Ω)

∫

Ω
|û|2

≤ 1
8

∫

Ω
|∇n̂|2 + 2C2

4e−2µ2t

∫

Ω
|û|2 for all t > 0.
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Together with (5.9) and (5.10) inserted into (5.6), this shows that

d

dt

∫

Ω
n̂2 +

∫

Ω
|∇n̂|2 ≤ 4C2

1C2e
−µ1t

∫

Ω
n̂2 + 4C2

3

∫

Ω
|∇ĉ|2 + 4C2

4e−2µ2t

∫

Ω
|û|2 for all t > 0

and thereby establishes (5.5). ¤
Fortunately, the first integral on the right of (5.5) appears as part of the dissipation rate in a corre-
sponding inequality derived on testing the second equation in (5.2) against ĉ.

Lemma 5.3 There exists µ > 0 with the property that for any ε > 0 one can find C(ε) > 0 such that
for all κ ∈ (−1, 1) we have

d

dt

∫

Ω
ĉ2 +

∫

Ω
|∇ĉ|2 + n0

∫

Ω
ĉ2 ≤ ε

∫

Ω
|∇û|2 + C(ε)e−µt ·

{∫

Ω
n̂2 +

∫

Ω
ĉ2 +

∫

Ω
|û|2

}
for all t > 0.

(5.11)

Proof. Testing the second equation in (5.2) by ĉ we see that

1
2

d

dt

∫

Ω
ĉ2 +

∫

Ω
|∇ĉ|2 = −

∫

Ω
n(κ)ĉ2 −

∫

Ω
n̂c(0)ĉ−

∫

Ω
ĉû · ∇c(0) for all t > 0, (5.12)

again because ∇·u(κ) ≡ 0. Here an appropriate absorptive term containing a genuine spatial L2 norm
of ĉ can be created by splitting

−
∫

Ω
n(κ)ĉ2 = −n0

∫

Ω
ĉ2 −

∫

Ω
(n(κ) − n0)ĉ2 for all t > 0,

where thanks to Lemma 4.7,

‖n(κ) − n0‖L∞(Ω) ≤ C1e
−µ1t for all t > 0

with some µ1 > 0 and C1 > 0, so that

−
∫

Ω
n(κ)ĉ2 ≤ −n0

∫

Ω
ĉ2 + C1e

−µ1t

∫

Ω
ĉ2 for all t > 0. (5.13)

Next, in Lemma 4.5 we have seen that there exist µ2 > 0 and C2 > 0 fulfilling

‖c(0)‖L∞(Ω) ≤ C2e
−µ2t for all t > 0,

by using Young’s inequality we see that

−
∫

Ω
n̂c(0)ĉ ≤ ‖c(0)‖L∞(Ω) ·

{
1
2

∫

Ω
n̂2 +

1
2

∫

Ω
ĉ

}

≤ C2

2
e−µ2t ·

{∫

Ω
n̂2 +

∫

Ω
ĉ2

}
for all t > 0. (5.14)

For adequately treating the rightmost summand in (5.12), we first note that due to Lemma 4.6 we
can find µ3 > 0 and C3 > 0 such that

‖∇c(0)‖L4(Ω) ≤ C3e
−µ3t for all t > 0,

25



whence by Young’s inequality and the Cauchy-Schwarz inequality we infer that

−
∫

Ω
ĉû · ∇c(0) ≤ n0

2

∫

Ω
ĉ2 +

1
2n0

∫

Ω
|û|2|∇c(0)|2

≤ n0

2

∫

Ω
ĉ2 +

1
2n0

‖û‖2
L4(Ω)‖∇c(0)‖2

L4(Ω)

≤ n0

2

∫

Ω
ĉ2 +

C2
3

2n0
e−2µ3t‖û‖2

L4(Ω) for all t > 0.

As in view of the inclusion û(·, t) ∈ W 1,2
0 (Ω;R2) for all t > 0 the Gagliardo-Nirenberg inequality

provides C4 > 0 such that

‖û‖2
L4(Ω) ≤ C4‖∇û‖L2(Ω)‖û‖L2(Ω) for all t > 0,

by means of Young’s inequality we thus infer that given ε > 0 we have

−
∫

Ω
ĉû · ∇c(0) ≤ n0

2

∫

Ω
ĉ2 +

C2
3C4

2n0
e−2µ3t‖∇û‖L2(Ω)‖û‖L2(Ω)

≤ n0

2

∫

Ω
ĉ2 +

ε

2

∫

Ω
|∇û|2 +

C4
3C2

4

8n2
0ε

e−4µ3t

∫

Ω
|û|2 for all t > 0.

Along with (5.13) and (5.14), this shows that (5.12) entails (5.11). ¤
Finally, the first summand on the right of (5.11) will be compensated by using the standard energy
inequality associated with the Stokes subsystem of (5.2), in our framework leading to the following.

Lemma 5.4 There exist µ > 0 and C > 0 such that for any κ ∈ (−1, 1),

d

dt

∫

Ω
|û|2 +

∫

Ω
|∇û|2 ≤ C

∫

Ω
n̂2 + Cκ2e−µt for all t > 0. (5.15)

Proof. We use û as a test function in the third equation in (5.2) to find on applying the Cauchy-
Schwarz inequality that

1
2

d

dt

∫

Ω
|û|2 +

∫

Ω
|∇û|2

=
∫

Ω
n̂û · ∇φ− κ

∫

Ω
û · (u(κ) · ∇)u(κ)

≤ ‖û‖L2(Ω) ·
{

C1‖n̂‖L2(Ω) + |κ| · ‖(u(κ) · ∇)u(κ)‖L2(Ω)

}
for all t > 0 (5.16)

with C1 := ‖∇φ‖L∞(Ω). Here we observe that by the Poincaré inequality we can find C2 > 0 such that

‖û‖L2(Ω) ≤ C2‖∇û‖L2(Ω) for all t > 0,

and that Lemma 4.8 and Lemma 2.4 warrant that

‖u(κ)‖L∞(Ω) ≤ C3e
−µ1t for all t > 0
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and

‖∇u(κ)‖L2(Ω) ≤ C4 for all t > 0

with some positive constants µ1, C3 and C4. Therefore, on the right-hand side of (5.16) we can estimate
by means of Young’s inequality according to

‖û‖L2(Ω) ·
{

C1‖n̂‖L2(Ω) + |κ| · ‖(u(κ) · ∇)u(κ)‖L2(Ω)

}

≤ C2‖∇û‖L2(Ω) ·
{

C1‖n̂‖L2(Ω) + |κ| · ‖u(κ)‖L∞(Ω)‖∇u(κ)‖L2(Ω)

}

≤ 1
2

∫

Ω
|∇û|2 +

C2
2

2
·
{

C1‖n̂‖L2(Ω) + |κ| · ‖u(κ)‖L∞(Ω)‖∇u(κ)‖L2(Ω)

}2

≤ 1
2

∫

Ω
|∇û|2 + C2

1C2
2

∫

Ω
n̂2 + C2

2κ2‖u(κ)‖2
L∞(Ω)‖∇u(κ)‖2

L2(Ω)

≤ 1
2

∫

Ω
|∇û|2 + C2

1C2
2

∫

Ω
n̂2 + C2

2C2
3C2

4κ2e−2µ1t for all t > 0,

whence (5.15) results from (5.16). ¤
Now taking a suitable linear combination of the inequalities from Lemma 5.2, Lemma 5.3 and Lemma
5.4, we obtain the following quasi-energy inequality of the structure as addressed in Lemma 5.1.

Lemma 5.5 There exist positive constants k, l, µ and C such that for any choice of κ ∈ (−1, 1) we
have

d

dt

{∫

Ω
n̂2 + k

∫

Ω
ĉ2 + l

∫

Ω
|û|2

}
+

1
C
·
{∫

Ω
n̂2 + k

∫

Ω
ĉ2 + l

∫

Ω
|û|2

}

≤ Ce−µt ·
{∫

Ω
n̂2 + k

∫

Ω
ĉ2 + l

∫

Ω
|û|2 + κ2

}
(5.17)

for all t > 0.

Proof. In order to prepare our definition of k and l, according to two versions of the Poincaré
inequality let us fix C1 > 0 and C2 > 0 such that

∫

Ω
ϕ2 ≤ C1

∫

Ω
|∇ϕ|2 for all ϕ ∈ W 1,2(Ω) such that

∫

Ω
ϕ = 0, (5.18)

and that ∫

Ω
|ϕ|2 ≤ C2

∫

Ω
|∇ϕ|2 for all ϕ ∈ W 1,2

0 (Ω;R2). (5.19)

Moreover, employing Lemma 5.2 and Lemma 5.4 we can find positive constants µ1, µ2, C3 and C4 such
that

d

dt

∫

Ω
n̂2 +

∫

Ω
|∇n̂|2 ≤ C3

∫

Ω
|∇ĉ|2 + C3e

−µ1t ·
{∫

Ω
n̂2 +

∫

Ω
|û|2

}
for all t > 0 (5.20)

and
d

dt

∫

Ω
|û|2 +

∫

Ω
|∇û|2 ≤ C4

∫

Ω
n̂2 + C4κ

2e−µ2t for all t > 0. (5.21)
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We now fix k > 0 large enough and l > 0 suitably small fulfilling

k ≥ C3 (5.22)

and
l ≤ 1

2C1C4
, (5.23)

and then obtain from Lemma 5.3 when applied to ε := l
2k that there exist µ3 > 0 and C5 > 0 satisfying

d

dt

∫

Ω
ĉ2 +

∫

Ω
|∇ĉ|2 + n0

∫

Ω
ĉ2 ≤ l

2k

∫

Ω
|∇û|2 + C5e

−µ3t ·
{∫

Ω
n̂2 +

∫

Ω
ĉ2 +

∫

Ω
|û|2

}
for all t > 0.

On adding this to (5.20) and (5.21), thanks to (5.18) and (5.19) as well as our restrictions (5.22) and
(5.23) we thus infer that

d

dt

{∫

Ω
n̂2 + k

∫

Ω
ĉ2 + l

∫

Ω
|û|2

}
+

1
C1

∫

Ω
n̂2 + k

∫

Ω
|∇ĉ|2 + kn0

∫

Ω
ĉ2 + l ·

{
1

2C2

∫

Ω
|û|2 +

1
2

∫

Ω
|∇û|2

}

≤ C3

∫

Ω
|∇ĉ|2 + C3e

−µ1t ·
{∫

Ω
n̂2 +

∫

Ω
|û|2

}

+C4l

∫

Ω
n̂2 + C4lκ

2e−µ2t

+
l

2

∫

Ω
|∇û|2 + C5ke−µ3t ·

{∫

Ω
n̂2 +

∫

Ω
ĉ2 +

∫

Ω
|û|2

}

≤ C3

∫

Ω
|∇ĉ|2 +

1
2C1

∫

Ω
n̂2 +

l

2

∫

Ω
|∇û|2

+C6e
−µ4t ·

{∫

Ω
n̂2 +

∫

Ω
ĉ2 +

∫

Ω
|û|2

}

+C4lκ
2e−µ2t for all t > 0

with C6 := C3 + C3k and µ4 := min{µ1, µ3}. On straightforward rearrangement, this simplifies to

d

dt

{∫

Ω
n̂2 + k

∫

Ω
ĉ2 + l

∫

Ω
|û|2

}
+

1
2C1

∫

Ω
n̂2 + kn0

∫

Ω
ĉ2 +

l

2C2

∫

Ω
|û|2

≤ C6e
−µ4t ·

{∫

Ω
n̂2 +

∫

Ω
ĉ2 +

∫

Ω
|û|2

}
+ C4lκ

2e−µ2t

for all t > 0, and thereby leads to (5.17) if we let µ := min{µ2, µ4} and C := max{2C1,
1

kn0
, 2C2

l , C6, C4l},
for instance. ¤
By means of Lemma 5.1, the latter thus entails the following.

Lemma 5.6 There exist µ > 0 and C > 0 such that for any κ ∈ (−1, 1),

‖n̂(·, t)‖L2(Ω) + ‖ĉ(·, t)‖L2(Ω) + ‖û(·, t)‖L2(Ω) ≤ C|κ|e−µt for all t > 0. (5.24)
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Proof. From Lemma 5.5 we know that with k > 0 and l > 0 as introduced there, we can find
C1 > 0, C2 > 0 and µ1 ∈ (0, C1) such that for any choice of κ ∈ (−1, 1), the fucntion defined by

y(t) :=
∫

Ω
n̂2(·, t) + k

∫

Ω
ĉ2(·, t) + l

∫

Ω
|û(·, t)|2, t ≥ 0,

satisfies

y′(t) + C1y(t) ≤ C2e
−µ1ty(t) + C2κ

2e−µ1t for all t > 0.

As y(0) = 0 and µ1 < C1, Lemma 5.1 applies so as to show that therefore

y(t) ≤ C2κ
2

C1 − µ1
e

C2
µ1 e−µ1t for all t > 0,

and that thus (5.24) holds with µ := µ1

2 and some appropriately large C > 0. ¤

5.2 Higher norms. Proof of Theorem 1.1

We next turn our attention to the convergence statements involving the norms appearing in Theorem
1.1. Unlike in the previous section, in our analysis we will now be able to address the solution
components of (5.2) more separately. Indeed, as a first part of our final result we will obtain the
respective estimate for û claimed in (1.7) on the basis of Lemma 5.6 and the following elementary
inequality.

Lemma 5.7 Let β ∈ [0, 1), µ1 > 0 and µ2 ∈ (0, µ1). Then for all µ ∈ (0, µ2) one can find C(µ) > 0
such that ∫ t

0
(t− s)−βe−µ1(t−s)e−µ2sds ≤ C(µ)e−µt for all t > 0. (5.25)

Proof. We fix θ ∈ (0, 1) such that θ > µ
µ2

, and given t ≥ 1 we then split

I(t) :=
∫ t

0
(t− s)−βe−µ1(t−s)e−µ2sds =

∫ θt

0
(t− s)−βe−µ1(t−s)e−µ2sds +

∫ t

θt
(t− s)−βe−µ1(t−s)e−µ2sds,

where
∫ θt

0
(t− s)−βe−µ1(t−s)e−µ2sds ≤ (t− θt)−β

∫ θt

0
e−µ1(t−s)e−µ2sds

= (1− θ)−βt−β · 1
µ1 − µ2

e−µ1t
(
e(µ1−µ2)θt − 1

)

≤ (1− θ)−β

µ1 − µ2
t−βe−(1−θ)µ1te−µ2θt

≤ (1− θ)−β

µ1 − µ2
e−µ2θt for all t ≥ 1 (5.26)
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and
∫ t

θt
(t− s)−βe−µ1(t−s)e−µ2sds ≤ e−µ2θt

∫ t

θt
(t− s)−βds

=
(1− θ)1−β

1− β
t1−βe−µ2θt for all t ≥ 1. (5.27)

Since our restriction θ > µ
µ2

warrants that with some C1 > 0 we have

e−µ2θt ≤ t1−βe−µ2θt ≤ C1e
−µt for all t ≥ 1,

and since clearly

I(t) ≤
∫ t

0
(t− s)−βds =

t1−β

1− β
≤ eµ

1− β
e−µt for all t ∈ (0, 1),

from (5.26) and (5.27) we obtain (5.25). ¤
In fact, combining Lemma 5.6 with Lemma 4.8 and Lemma 2.4 we thereby obtain the following.

Lemma 5.8 There exist µ > 0 and C > 0 such that whenever κ ∈ (−1, 1),

‖Aαû(·, t)‖L2(Ω) ≤ C|κ|e−µt for all t > 0 (5.28)

and
‖û(·, t)‖L∞(Ω) ≤ C|κ|e−µt for all t > 0. (5.29)

Proof. We represent Aαû according to

Aαû(·, t) =
∫ t

0
Aαe−(t−s)Af(·, s)ds, t > 0,

where

f := P[n̂∇φ]− κP[(u(κ) · ∇)u(κ)],

and use known smoothing properties of the Stokes semigroup to find µ1 > 0 and C1 > 0 such that

‖Aαû(·, t)‖L2(Ω) ≤ C1

∫ t

0
(t− s)−αe−µ1(t−s)‖f(·, s)‖L2(Ω)ds for all t > 0. (5.30)

Here we observe that
∫

Ω
|f(·, t)|2 =

∫

Ω

∣∣∣n̂(·, t)∇φ− κ(u(κ)(·, t) · ∇)u(κ)(·, t)
∣∣∣
2

≤ 2‖∇φ‖2
L∞(Ω)

∫

Ω
n̂2(·, t) + 2κ2‖u(κ)(·, t)‖2

L∞(Ω)

∫

Ω
|∇u(κ)(·, t)|2 for all t > 0,

where using Lemma 4.8 and Lemma 2.4 we can find positive constants µ2, C2 and C3 such that

‖u(κ)(·, t)‖L∞(Ω) ≤ C2e
−µ2t for all t > 0
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and
∫

Ω
|∇u(κ)(·, t)|2 ≤ C3 for all t > 0,

and that we now thanks to Lemma 5.6 moreover know that
∫

Ω
n̂2(·, t) ≤ C4κ

2e−µ3t for all t > 0

with some C4 > 0 and µ3 ∈ (0, µ1). We thus conclude that if we let µ4 := min{µ3, 2µ2} and
C5 := 2‖∇φ‖2

L∞(Ω)C4 + 2C2
2C3, then

∫

Ω
|f(·, t)|2 ≤ C5κ

2e−µ4t for all t > 0,

and that hence, by (5.30),

‖Aαû(·, t)‖L2(Ω) ≤ C1C5κ
2

∫ t

0
(t− s)−αe−µ1(t−s)e−µ4sds for all t > 0. (5.31)

Here as µ4 ≤ µ3 < µ1, Lemma 5.7 applies so as to yield C6 > 0 such that
∫ t

0
(t− s)−αe−µ1(t−s)e−µ4sds ≤ C6e

−µ4
2

t for all t > 0,

so that (5.28) follows from (5.31). Once more using that D(Aα) ↪→ L∞(Ω;R2), from this we immedi-
ately obtain (5.29). ¤
Now the core of this section can be found in the next lemma within which a functional of the form

∫

Ω
n̂p +

∫

Ω
|∇ĉ|p, t ≥ 0,

is shown to satisfy an ODI of the form in Lemma 5.1 for arbitrary even integers p ≥ 4. We remark
that coupling densities and chemoattractive gradients at such equal integrability powers seems rather
unusual in the context of Keller-Segel systems in which, as e.g. done in Lemma 2.6, terms of the form∫
Ω np are commonly combined with integrals of the type

∫
Ω |∇c|2p for p > 1.

Lemma 5.9 For all p ≥ 2 there exist µ(p) > 0 and C(p) > 0 with the property that

‖n̂(·, t)‖Lp(Ω) + ‖ĉ(·, t)‖W 1,p(Ω) ≤ C(p)|κ|e−µ(p)t for all t > 0 (5.32)

and any κ ∈ (−1, 1).

Proof. It is evident that we may restrict ourselves to the convenient case when p ≥ 4 is an even
integer, in which we first note that due to Lemma 4.7, Lemma 4.5, Lemma 4.6, Lemma 4.8, Lemma
2.7, Lemma 5.6 and Lemma 5.8 we may fix positive constants µ1, ..., µ4 and C1, ..., C7 such that for
any κ ∈ (−1, 1),

‖n(κ) − n0‖L∞(Ω) ≤ C1e
−µ1t for all t > 0 (5.33)
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and
‖c(κ)(·, t)‖L∞(Ω) + ‖∇c(κ)(·, t)‖L2p(Ω) ≤ C2e

−µ2t for all t > 0 (5.34)

and
‖u(κ)(·, t)‖L∞(Ω) ≤ C3e

−µ3t for all t > 0, (5.35)

that
‖n(κ)(·, t)‖L∞(Ω) ≤ C4 for all t > 0, (5.36)

and that
‖n̂(·, t)‖L2(Ω) ≤ C5|κ|e−µ4t for all t > 0 (5.37)

and
‖ĉ(·, t)‖L2(Ω) ≤ C6|κ| for all t > 0 (5.38)

as well as
‖û(·, t)‖L2p(Ω) ≤ C7|κ| for all t > 0. (5.39)

Now for the functions n̂, ĉ and û introduced in (5.1), we use (5.2) to compute
1
p

d

dt

∫

Ω
n̂p +

∫

Ω
n̂p + (p− 1)

∫

Ω
n̂p−2|∇n̂|2 = (p− 1)

∫

Ω
n̂p−1∇n̂ · ∇c(κ)

+(p− 1)
∫

Ω
n(0)n̂p−2∇n̂ · ∇ĉ +

∫

Ω
n̂p

+(p− 1)
∫

Ω
(n(0) − n0)n̂p−2û · ∇n̂ (5.40)

for all t > 0, because ∇ · û ≡ 0. Here using Young’s inequality and Hölder’s inequality as well as
(5.34), we can estimate

(p− 1)
∫

Ω
n̂p−1∇n̂ · ∇c(κ) ≤ p− 1

2

∫

Ω
n̂p−2|∇n̂|2 +

p− 1
2

∫

Ω
n̂p|∇c(κ)|2

≤ p− 1
2

∫

Ω
n̂p−2|∇n̂|2 +

p− 1
2

|Ω| p−2
2p

{∫

Ω
n̂2p

} 1
2

·
{∫

Ω
|∇c(κ)|2p

} 1
p

≤ p− 1
2

∫

Ω
n̂p−2|∇n̂|2 +

p− 1
2

|Ω| p−2
2p C2

2e−2µ2t

{∫

Ω
n̂2p

} 1
2

(5.41)

for all t > 0, where by the Gagliardo-Nirenberg inequality, (5.37) and Young’s inequality with some
C8 > 0 and C9 > 0 we have

p− 1
2

|Ω| p−2
2p

C2
2e−2µ2t

{∫

Ω
n̂2p

} 1
2

=
p− 1

2
|Ω| p−2

2p C2
2e−2µ2t‖n̂ p

2 ‖2
L4(Ω)

≤ C8e
−µ2t ·

{
‖∇n̂

p
2 ‖

2(p−1)
p

L2(Ω)
‖n̂ p

2 ‖
2
p

L
4
p (Ω)

+ ‖n̂ p
2 ‖2

L
4
p (Ω)

}

≤ C8e
−µ2t ·

{
C5|κ|‖∇n̂

p
2 ‖

2(p−1)
p

L2(Ω)
+ Cp

5κp

}

≤ p− 1
p2

‖∇n̂
p
2 ‖2

L2(Ω) + C9κ
pe−pµ2t + Cp

5C8κ
pe−µ2t

≤ p− 1
4

∫

Ω
n̂p−2|∇n̂|2 + (C9 + Cp

5C8)κpe−µ2t (5.42)
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for all t > 0. On the right-hand side of (5.40) we next use Young’s inequality along with (5.36) and
the Hölder inequality to estimate

(p− 1)
∫

Ω
n(0)n̂p−2∇n̂ · ∇ĉ +

∫

Ω
n̂p ≤ p− 1

8

∫

Ω
n̂p−2|∇n̂|2 + 2(p− 1)

∫

Ω
|n(0)|2n̂p−2|∇ĉ|2 +

∫

Ω
n̂p

≤ p− 1
8

∫

Ω
n̂p−2|∇n̂|2 + 2(p− 1)C2

4

∫

Ω
n̂p−2|∇ĉ|2 +

∫

Ω
n̂p

≤ p− 1
8

∫

Ω
n̂p−2|∇n̂|2

+2(p− 1)C2
4

{∫

Ω
n̂p

} p−2
p

·
{∫

Ω
|∇ĉ|p

} 2
p

+
∫

Ω
n̂p

≤ p− 1
8

∫

Ω
n̂p−2|∇n̂|2 +

n0

2

∫

Ω
|∇ĉ|p + C10

∫

Ω
n̂p (5.43)

for all t > 0 with some C10 > 0, where again due to the Gagliardo-Nirenberg inequality, (5.37) and
Young’s inequality we see that there exist C11 > 0 and C12 > 0 fulfilling

C10

∫

Ω
n̂p = C10‖n̂

p
2 ‖2

L2(Ω)

≤ C11‖∇n̂
p
2 ‖

2(p−2)
p

L2(Ω)
‖n̂ p

2 ‖
4
p

L
4
p (Ω)

+ C11‖n̂
p
2 ‖2

L
4
p (Ω)

≤ C11C
2
5κ2e−2µ4t‖∇n̂

p
2 ‖

2(p−2)
p

L2(Ω)
+ C11C

p
5κpe−pµ4t

≤ p− 1
4p2

‖∇n̂
p
2 ‖2

L2(Ω) + C12κ
pe−pµ4t

=
p− 1
16

∫

Ω
n̂p−2|∇n̂|2 + C12κ

pe−pµ4t for all t > 0. (5.44)

Finally, in the rightmost summand in (5.40) we once more rely on Young’s inequality and the Cauchy-
Schwarz inequality and use (5.33) as well as (5.39) to see that for all t > 0,

(p− 1)
∫

Ω
(n(0) − n0)n̂p−2û · ∇n̂ ≤ p− 1

16

∫

Ω
n̂p−2|∇n̂|2 + 4(p− 1)

∫

Ω
|n(0) − n0|2n̂p−2|û|2
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16
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16
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16
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|Ω| · Cp

7κp

}
,

which combined with (5.40)-(5.44) shows that there exist µ5 > 0 and C13 > 0 such that

1
p

d

dt

∫

Ω
n̂p +

∫

Ω
n̂p ≤ n0

2

∫

Ω
|∇ĉ|p + C13e

−µ5t ·
{∫

Ω
n̂p + κp

}
for all t > 0. (5.45)
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In order to adequately compensate the first summand on the right-hand side herein, we use the second
equation in (5.2) to calculate

1
p

d

dt

∫

Ω
|∇ĉ|p =

∫

Ω
|∇ĉ|p−2∇ĉ · ∇ĉt

=
∫

Ω
|∇ĉ|p−2∇ĉ · ∇∆ĉ− n0

∫

Ω
|∇ĉ|p +

∫

Ω
(n(κ) − n0)ĉ∇ · (|∇ĉ|p−2∇ĉ)

+
∫
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+
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(u(κ) · ∇ĉ)∇ · (|∇ĉ|p−2∇ĉ) +

∫
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(û · ∇c(0))∇ · (|∇ĉ|p−2∇ĉ) (5.46)

for all t > 0, where again by convexity of Ω,
∫

Ω
|∇ĉ|p−2∇ĉ · ∇∆ĉ =

1
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∫
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≤ −
∫

Ω
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Now since |∆ĉ| ≤ √
2|D2ĉ|, we may use the pointwise estimate
∣∣∣∇ · (|∇ĉ|p−2∇ĉ)
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2

|∇ĉ|p−4∇ĉ · ∇|∇ĉ|2
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≤ C14|∇ĉ|p−2|D2ĉ| in Ω× (0,∞), (5.47)

valid with C14 :=
√

2+p− 2, to see by Young’s inequality and (5.33) that there exists C15 > 0 fulfilling
∫
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(n(κ) − n0)ĉ∇ · (|∇ĉ|p−2∇ĉ) ≤ C14

∫

Ω
|n(κ) − n0| · |ĉ| · |∇ĉ|p−2|D2ĉ|
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|∇ĉ|p−2|D2ĉ|2 + C15e

−2µ1t ·
{∫

Ω
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(5.48)

for all t > 0, because according to the Gagliardo-Nirenberg inequality, Young’s inequality and (5.38)
we see that with some C16 > 0 we have
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Lp(Ω) + 2C16‖ĉ‖p
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Similarly, using (5.47) together with Young’s inequality, (5.34) and (5.35) we obtain
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≤ 1
4

∫

Ω
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|∇ĉ|p

}
(5.49)

and
∫

Ω
(u(κ) · ∇ĉ)∇ · (|∇ĉ|p−2∇ĉ) ≤ C14
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|∇ĉ|p, (5.50)

and that thanks to Young’s inequality, the Hölder inequality, (5.34) and (5.39),
∫

Ω
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(5.51)

for all t > 0. Collecting (5.48)-(5.51), from (5.46) we thus infer the existence of µ6 > 0 and C17 > 0
such that

1
p

d

dt

∫

Ω
|∇ĉ|p + n0

∫

Ω
|∇ĉ|p ≤ C17e

−µ6t ·
{∫

Ω
n̂p +

∫

Ω
|∇ĉ|p + κp

}
for all t > 0,

whence in view of (5.45) we obtain that if we let C18 := p min{1, n0
2 }, C19 := 2p(C13 +C17) and choose

any µ7 ∈ (0, C18) such that µ7 ≤ min{µ5, µ6}, then

y(t) :=
∫

Ω
n̂p(·, t) +

∫

Ω
|∇ĉ(·, t)|p, t ≥ 0,

satisfies

y′(t) + C18y(t) ≤ C19e
−µ7ty(t) + C19κ

pe−µ7t for all t > 0.
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Since y(0) = 0, using that µ7 < C18 we may invoke Lemma 5.1 to conclude that this entails the
inequality

y(t) ≤ C19κ
p

C18 − µ7
e

C19
µ7 e−µ7t for all t > 0

and thereby proves the lemma. ¤
Again, passing to a corresponding estimate for n̂ with respect to spatial L∞ norms is quite straight-
forward.

Lemma 5.10 There exist µ > 0 and C > 0 such that

‖n̂(·, t)‖L∞(Ω) ≤ C|κ|e−µt for all t > 0 (5.52)

whenever κ ∈ (−1, 1).

Proof. Using that ∇ · u(κ) ≡ 0 for all κ ∈ (−1, 1), we may rewrite the first equation in (5.2) in the
form

n̂t = ∆n̂−∇ · f(x, t), x ∈ Ω, t > 0,

where

f := n̂∇c(κ) + n(0)∇ĉ + n̂u(κ) + n(0)û

satisfying f · ν = 0 on ∂Ω, so that if we fix an arbitrary p > 2, then a known regularization feature
of the Neumann heat semigroup over Ω ([11, Lemma 3.3] and [36, Lemma 1.3]) applies so as to yield
µ1 > 0 and C1 > 0 such that

‖n̂(·, t)‖L∞(Ω) ≤ C1

∫ t

0
(t− s)−

1
2
− 1

p e−µ1(t−s)‖f(·, s)‖Lp(Ω)ds for all t > 0. (5.53)

We now estimate

‖f‖Lp(Ω) ≤ ‖n̂‖L2p(Ω)‖∇c(κ)‖L2p(Ω) + ‖n(0)‖L∞(Ω)‖∇ĉ‖Lp(Ω) + ‖n̂‖Lp(Ω)‖u(κ)‖L∞(Ω) + ‖n(0)‖Lp(Ω)‖û‖L∞(Ω)

for t > 0, so that combining the decay estimates provided by Lemma 5.8 and Lemma 5.9 with the
boundedness properties from Lemma 2.6, Lemma 2.7 and Lemma 2.8 we obtain µ2 ∈ (0, µ1) and
C2 > 0 such that

‖f(·, t)‖Lp(Ω) ≤ C2|κ|e−µ2t for all t > 0.

In view of Lemma 5.7, from (5.53) we therefore obtain that with some C3 > 0 we have

‖n̂(·, t)‖L∞(Ω) ≤ C1C2|κ|
∫ t

0
(t− s)−

1
2
− 1

p e−µ1(t−s)e−µ2sds

≤ C3|κ|e−
µ2
2

t for all t > 0,
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as desired. ¤
It remains to summarize:

Proof of Theorem 1.1. We only need to collect the outcomes of Lemma 5.10, Lemma 5.9 and
Lemma 5.8, and once more make use of the continuity of the embeddings W 1,p(Ω) ↪→ L∞(Ω) for p > 2
and D(Aα) ↪→ L∞(Ω;R2). ¤
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[22] Lieberman, G.: Hölder continuity of the gradient of solutions of uniformly parabolic equations
with conormal boundary conditions. Ann. Mat. Pura Appl. 148, 77-99 (1987)
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