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Abstract

We consider radially symmetric solutions of the Keller-Segel system with generalized logistic source
given by

{
ut = ∆u−∇ · (u∇v) + λu− µuκ,

0 = ∆v − v + u,
(⋆)

under homogeneous Neumann boundary conditions in the ball Ω = BR(0) ⊂ R
n for n ≥ 3 and

R > 0, where λ ∈ R, µ > 0 and κ > 1.

Under the assumption that

κ <

{
7
6 if n ∈ {3, 4},
1 + 1

2(n−1) if n ≥ 5,

a condition on the initial data is derived which is seen to be sufficient to ensure the occurrence of
finite-time blow-up for the corresponding solution of (⋆). Moreover, this criterion is shown to be
mild enough so as to allow for the conclusion that in fact any positive continuous radial function on
Ω is the limit in L1(Ω) of a sequence (u0k)k∈N of continuous radial initial data which are such that
for each k ∈ N the associated initial-boundary value problem for (⋆) exhibits a finite-time explosion
phenomenon in the above sense.

In particular, this apparently provides the first rigorous detection of blow-up in a superlinearly
dampened but otherwise essentially original Keller-Segel system in the physically relevant three-
dimensional case.
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1 Introduction

The interaction between cross-diffusion and logistic kinetics plays an important role at various levels
in population dynamics ([12], [30]), with applications including pattern formation in bacterial colonies
([50]) and also in populations of macroscopic individuals ([30]), tumor invasion processes ([7]), as well
as self-organization during embryonic development ([28]). In the particular context of Keller-Segel-
type chemotactic cross-diffusion, a prototypical version of a corresponding rudimentary model for such
processes, when reduced to a parabolic-elliptic framework reflecting comparatively fast diffusion of the
respective signal substance, is given by the initial-boundary value problem





ut = ∆u−∇ · (u∇v) + λu− µuκ, x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

with parameters λ ∈ R, µ > 0 and κ > 1, and with Ω ⊂ R
n, n ≥ 1, denoting the underlying physical

habitat. Systems of this type can in fact be found as subsystems in an abundant number of more
elaborate models for taxis mechanisms under the influence of spontaneous proliferation and death in
more complex frameworks (see [21], [2] or also [31] for some recent examples).

The mathematical understanding already of the comparatively simple problem (1.1), however, seems
far from complete especially with regard to the fundamental question how far the superlinear absorp-
tion mechanism expressed in the first equation therein is capable of suppressing taxis-driven explosions.
Indeed, while phenomena of blow-up in finite time constitute one of the certainly most characteristic
effects of chemotactic cross-diffusion in frameworks of pure Keller-Segel systems without cell kinetics
([13], [25], [11], [45]), for the more complex system (1.1) the literature essentially concentrates on
situations in which any such singularity formation is entirely ruled out by the presence of superlinear
death terms.

In the particular setting of (1.1), for instance, it is known that in the case of the most standard choice
κ = 2 and for any λ, if either n ≤ 2 and µ > 0 is arbitrary, or if n ≥ 3 and µ lies above a critical
number µc satisfying µc ≤ n−2

n
, then no blow-up occurs in the sense that for all reasonably regular

initial data the problem (1.1) possesses a globally defined classical solution which is moreover even
bounded in both components in Ω× (0,∞); when κ > 2, the same conclusion holds without any rec-
triction on the size of µ > 0 ([35]). Extending results of this flavor, ensuring global existence of smooth
bounded solutions under quite similar assumptions on κ, λ and µ, is possible also to the case when
Ω = R

n ([29]), and even to the fully parabolic counterpart of (1.1) obtained upon replacing the elliptic
subproblem for v therein by an initial-boundary value problem for vt = ∆v− v+ u ([26], [43]). In the
latter context, for κ = 2 and arbitrary n ≥ 3 it could more recently be shown in [17] that any µ > 0
is sufficient to warrant global solvability at least in the natural framework of weak solutions which
in the case n = 3 moreover, though possibly undergoing some explosions within finite time, at least
eventually become smooth and classical. Resorting to some yet weaker solutions concepts, without
imposing restrictions on the size of the initial data some global solutions could be constructed, and
some asymptotic regularization effects be detected, also for certain subquadratic degradation terms,
namely satisfying κ > 2− 1

n
for n ≥ 2 only, both for (1.1) and its parabolic-parabolic analogue ([42],
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[36], [37], [38]). Apart from that, the literature has identified numerous situations in which the reg-
ularizing effect of logistic growth restrictions is sufficient to warrant global solvability of solutions to
several modifications of (1.1), inter alia accounting for nonlinear cell diffusion ([51], [6], [41], [55], [58]),
for variants in the cross-diffusive interaction ([53], [20], [4], [39], [57]) or also in the signal evolution, or
even containing couplings to further mechanisms and components such as haptotactic cues ([5], [40],
[32]), liquid environments ([15], [34], or competing species ([52], [1]).

Beyond these results essentially concerned with issues related to global well-posedness, the literature
has so far provided only few results rigorously confirming the possibility of aggregation phenomena in
models of type (1.1), as revealed in numerical experiments and moreover indicated by formal analysis
([27], [22]). Indeed, the analysis on qualitative aspects of solution behavior in chemotaxis systems with
logistic kinetics seems widely dominated by studies concerned with effects already known from the
corresponding taxis-free and hence diagnonal reaction-diffusion systems; accordingly available findings
on asymptotic negligibility of cross-diffusion under appropriate assumptions typically assert stabiliza-
tion toward spatially constant equilibria in bounded domains ([10], [19], [3], [47], [33], [56]), or also
large-time invasion of the whole space by means of wave-like propagation ([23], [29]).

The few available exceptions address the taxis-driven spontaneous emergence of arbitrarily large pop-
ulation densities, possibly in the form of transient phenomena, in presence of suitably small diffusion
and death parameters even in spatially one-dimensional, but also in higher-dimensional Keller-Segel
systems with quadratic degradation either of parabolic-elliptic ([16], [14], [46]) or of fully parabolic
type ([48]). The detection of genuine explosion phenomena, however, could so far be accomplished
only in a high-dimensional variant of (1.1), which in comparison to the latter moreover is further sim-
plified in that the signal evolution is considered as governed by the equation 0 = ∆v − µ(t) + u with
the spatially constant average µ(t) := 1

|Ω|

∫
Ω u(·, t); for the radially symmetric version of this problem

posed in n-dimensional balls, namely, it is known that when

n ≥ 5 and κ <
3

2
+

1

2n− 2
, (1.2)

some initial data can be found which finite-time blow-up occurs ([44], cf. also [54] for an analogue
addressing a quasilinear generalization of (1.1)).

Main results. The principal purpose of the present work is to provide some rigorous evidence
indicating that also in low-dimensional spatial settings, in particular including three-dimensional cases,
chemotactic cross-diffusion of the form in (1.1) is strong enough so as to potentially overbalance even
superlinear logistic-type dampening in a substantial manner. More precisely, we shall be concerned
with the problem (1.1) in the ball Ω = BR(0) ⊂ R

n with n ≥ 3 and R > 0, and resorting to a spatially
radial setting we shall assume that

u0 ∈ C0(Ω) is radially symmetric and nonnegative. (1.3)

Our main result will then, in fact for any n ≥ 3, identify a certain dimension-dependent range of
numbers κ > 1 in which blow-up can be observed:

Theorem 1.1 Let Ω = BR(0) ⊂ R
n with n ≥ 3 and R > 0, and let λ ∈ R, µ > 0 and κ > 1 be such

that

κ <

{
7
6 if n ∈ {3, 4},
1 + 1

2(n−1) if n ≥ 5.
(1.4)
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Then for all L > 0, m > 0 and m0 ∈ (0,m) one can find r0 = r0(R, λ, µ, κ, L,m,m0) ∈ (0, R) with
the property that whenever u0 satisfies (1.3) and is such that

u0(x) ≤ L|x|−n(n−1) for all x ∈ Ω (1.5)

as well as ∫

Ω
u0 ≤ m but

∫

Br0 (0)
u0 ≥ m0, (1.6)

there exist Tmax ∈ (0,∞) and a classical solution (u, v) of (1.1), uniquely determined by the inclusions

{
u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) and

v ∈ ⋂
q>n L

∞
loc([0, Tmax);W

1,q(Ω))∩C2,0(Ω× (0, Tmax)),

which blows up at t = Tmax in the sense that

lim sup
tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (1.7)

The following consequence underlines that the latter in fact entails blow-up throughout a considerably
large class of initial data in the indicated range of κ.

Corollary 1.2 Let Ω = BR(0) ⊂ R
n with n ≥ 3 and R > 0, and assume that λ ∈ R, µ > 0 and κ > 1

are such that (1.4) holds. Then for any positive function u0 fulfilling (1.3), there exist initial data u0k,
k ∈ N, which satisfy (1.3) as well as

u0k → u0 in L1(Ω) as k → ∞, (1.8)

and which are such that for each k ∈ N, the problem (1.1) possesses a classical solution (uk, vk) with
uk|t=0 = u0k and blowing up in finite time in the sense specified in Theorem 1.1.

Let us remark that even in the case n ≥ 5 in which the assumption (1.4) evidently is more restrictive
than that in (1.2), this provides progress in comparison to the results in ([44]) which, indeed, do not
explicitly contain a density statement of the flavor in Corollary 1.2, and which actually refer to a
further simplified problem apparently somewhat simpler than (1.1).

Plan of the paper. Following a well-established approach originating from [13], we will base our
analysis on a transformation of (1.1) into a Dirichlet problem for the scalar parabolic equation

wt = n2s2−
2

nwss + nwws − nzws + λw − nκ−1µ

∫ s

0
wκ
s (σ, t)dσ, (1.9)

satisfied by the mass accumulation functions defined by letting w(s, t) :=
∫
B

s1/n
(0) udx and z(s, t) :=

∫
B

s1/n
(0) vdx, s ∈ [0, Rn], t ∈ [0, Tmax), with Tmax ∈ (0,∞] denoting the maximal existence of a given

radial solution (u, v) to (1.1).

Here a substantial challenge will consist in appropriately making use of the directional character of
the summand +nwws, as originating from the cross-diffusive interaction in (1.1), in comparison to
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both dampening effects stemming from the local second-order expression reflecting diffusion, as well as
from the nonlocal nonlinear absorption term in (1.9). That this can in fact be achieved in the course
of an analsyis of the generalized moment functional φ defined by

φ(t) :=

∫ s0

0
s−γ(s0 − s)w(s, t)ds, t ∈ [0, Tmax),

will be essentially due to the fact that the respective superlinear dissipative term contributing to its
time evolution (see Lemma 4.1) can be controlled through an inequality of the form

u(x, t) ≤ C(ε)|x|−n(n−1)−ε, x ∈ Ω, t ∈ (0, Tmax).

Adequately exploiting the latter estimate, valid as a consequence of a recent result on pointwise
singularity control in radial Keller-Segel systems ([49], cf. also Lemma 3.3 below), will form one
focus of Section 4.1 in which inter alia, as the main reason for our restriction (1.4) on κ, the crucial
assumption (4.12) on the parameter γ will be required. Thereafter, the Sections 4.2 and 4.3 will be
devoted to studying how far the cross-diffusive contribution to the evolution of φ may overbalance
the respective expression originating from the summand in (1.9) which contains z and hence depends,
implicitly, on w in a nonlocal manner as well.

In Lemma 4.9, these preparations will be seen to allow for deriving an autonomous Riccati-type
ODI for φ, and in Section 5 a suitable adjustment of the yet free parameter s0 will thereupon yield
the blow-up result from Theorem 1.1, followed by a verification of Corollary 1.2 via an appropriate
approximation of arbitrary initial data by those falling among the class identified in Theorem 1.1.

2 Local existence and transformation to a scalar problem

The following basic statement on local existence, uniqueness and extensibilty of classical solutions
can be obtained by straightforward adaptation of standard procedures based e.g. on reasonings in
appropriate fixed point frameworks, as detailed e.g. in [24], [9] and [8] for closely related problems; we
may therefore omit repeating arguments of this type here.

Lemma 2.1 Let n ≥ 1, R > 0, λ ∈ R, µ > 0 and κ > 1, and assume that u0 satisfies (1.3). Then
there exist Tmax ∈ (0,∞] and uniquely determined radially symmetric nonnegative functions

{
u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈ ⋂
q>n L

∞
loc([0, Tmax);W

1,q(Ω)) ∩ C2,0(Ω× (0, Tmax)),

such that (u, v) forms a classical solution of (1.1) in Ω× (0, Tmax), and such that

if Tmax <∞, then lim sup
tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (2.1)

Throughout the sequel, given some u0 fulfilling (1.3) we let (u, v) = (u(r, t), v(r, t)) denote the the
corresponding local solution of (1.1), as obtained in Lemma 2.1 and extended up to its maximal
existence time Tmax ≤ ∞, and following [13] we set

w(s, t) :=

∫ s
1
n

0
ρn−1u(ρ, t)dρ, s ∈ [0, Rn], t ∈ [0, Tmax), (2.2)
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as well as

z(s, t) :=

∫ s
1
n

0
ρn−1v(ρ, t)dρ, s ∈ [0, Rn], t ∈ [0, Tmax), (2.3)

Then

ws(s, t) =
1

n
u(s

1

n , t) and wss(s, t) =
1

n2
s

1

n
−1ur(s

1

n , t), s ∈ (0, Rn), t ∈ (0, Tmax), (2.4)

and similarly

zs(s, t) =
1

n
v(s

1

n , t) and zss(s, t) =
1

n2
s

1

n
−1vr(s

1

n , t), s ∈ (0, Rn), t ∈ (0, Tmax), (2.5)

whence the second equation in (1.1) particularly implies that

rn−1vr(r, t) = z(rn, t)− w(rn, t) for all r ∈ (0, R) and t ∈ (0, Tmax). (2.6)

Therefore, an integration in the first equation in (1.1) shows that

wt = n2s2−
2

nwss+nwws−nzws+λw−nκ−1µ

∫ s

0
wκ
s (σ, t)dσ, for all s ∈ (0, Rn) and t ∈ (0, Tmax),

(2.7)
while clearly

0 = w(0, t) ≤ w(s, t) ≤ w(Rn, t) =
1

ωn

∫

Ω
u(·, t) for all s ∈ (0, Rn) and t ∈ (0, Tmax),

and

ws(s, t) ≥ 0 for all s ∈ (0, Rn) and t ∈ (0, Tmax),

where here and throughout the sequel we make use of the abbreviation ωn := n|B1(0)|.

3 Basic estimates on mass evolution and singular behavior

To begin with, we derive an upper bound for the total mass functional
∫
Ω u within conveniently short

time intervals.

Lemma 3.1 Let n ≥ 3, R > 0, λ ∈ R, µ > 0 and κ > 1, and assume (1.3). Then for the solution
(u, v) of (1.1) from Lemma 2.1 we have

∫

Ω
u(x, t)dx ≤ eλ+

∫

Ω
u0 for all t ∈ (0, T̂max), (3.1)

where T̂max := min{1, Tmax} and λ+ := max{0, λ}.
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Proof. As by (1.1) we have

d

dt

∫

Ω
u = λ

∫

Ω
u− µ

∫

Ω
uκ ≤ λ

∫

Ω
u for all t ∈ (0, Tmax)

and hence
∫

Ω
u(·, t) ≤ eλt ·

∫

Ω
u0 for all t ∈ (0, Tmax),

in both cases λ ≥ 0 and λ < 0 this is evident. �

In the particular parabolic-elliptic setting of (1.1), for radial solutions this L1 control of the inhomo-
geneity u therein implies pointwise bounds for v and its gradient which are slightly sharper than those
known for fully parabolic analogues ([45], [49]).

Lemma 3.2 Let n ≥ 3, R > 0, λ ∈ R, µ > 0 and κ > 1. Then for all m > 0 there exists C =
C(R, λ,m) > 0 such that if (1.3) holds with

∫
Ω u0 ≤ m, then

|vr(r, t)| ≤ Cr1−n for all r ∈ (0, R) and t ∈ (0, T̂max) (3.2)

as well as
v(r, t) ≤ Cr2−n for all r ∈ (0, R) and t ∈ (0, T̂max), (3.3)

where T̂max = min{1, Tmax}.

Proof. We first note that since clearly
∫
Ω v(·, t) =

∫
Ω u(·, t) for all t ∈ (0, Tmax) by (1.1), the

inequality (3.1) entails that

∫

Ω
u(·, t) ≤ c1 := eλ+m and

∫

Ω
v(·, t) ≤ c1 for all t ∈ (0, T̂max). (3.4)

Due to the nonnegativity of both u and v, this implies that the functions w and z defined in (2.2) and
(2.3) satisfy

0 ≤ w(s, t) ≤ w(Rn, t) =
1

ωn

∫

Ω
u(·, t) ≤ c1

ωn
for all s ∈ (0, Rn) and t ∈ (0, T̂max)

and

0 ≤ z(s, t) ≤ z(Rn, t) =
1

ωn

∫

Ω
v(·, t) ≤ c1

ωn
for all s ∈ (0, Rn) and t ∈ (0, T̂max),

whence according to (2.6),

rn−1vr(r, t) ≤ z(rn, t) ≤ c1

ωn
for all r ∈ (0, R) and t ∈ (0, T̂max) (3.5)

as well as
rn−1vr(r, t) ≥ −w(rn, t) ≥ − c1

ωn
for all r ∈ (0, R) and t ∈ (0, T̂max). (3.6)
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This directly yields (3.2), while (3.3) readily results due to the fact that thus for all r0 ∈ (0, R), r ∈
(0, R) and t ∈ (0, T̂max),

|v(r, t)− v(r0, t)| =

∣∣∣∣
∫ r

r0

vr(ρ, t)dρ

∣∣∣∣ ≤
c1

ωn

∣∣∣∣
∫ r

r0

ρ1−ndρ

∣∣∣∣ =
c1

(n− 2)ωn
|r2−n − r2−n

0 |,

and that again by (3.4),

min
r0∈[

R
2
,R]
v(r0, t) ≤

c1

|Ω \BR
2

(0)|

for all t ∈ (0, Tmax). �

We next utilize a recent general result on pointwise bounds for radial solutions to heat equations,
perturbed by linear drift terms with possibly singular behavior controlled in the flavor of (3.2), to
turn the latter into a pointwise upper bound for u.

Lemma 3.3 Let n ≥ 3, R > 0, λ ∈ R, µ > 0 and κ > 1. Then for all m > 0, L > 0 and ε > 0 there
exists C = C(R, λ, L,m, ε) > 0 such that if u0 satisfies (1.3) and

∫

Ω
u0 ≤ m (3.7)

as well as
u0(r) ≤ Lr−n(n−1) for all r ∈ (0, R), (3.8)

then
u(r, t) ≤ Cr−n(n−1)−ε for all r ∈ (0, R) and each t ∈ (0, T̂max), (3.9)

where again T̂max = min{1, Tmax}.

Proof. Given m > 0, we first invoke Lemma 3.2 to find c1 = c1(R, λ,m) > 0 such that if (1.3) and
(3.7) hold, then

|vr(r, t)| ≤ c1r
1−n for all r ∈ (0, R) and t ∈ (0, T̂max),

which entails that if for fixed ε > 0 we pick q > n large enough such that

α := n(n− 1) + ε >
n(n− 1)q

q − n
, (3.10)

then

∫

Ω
|x|(n−1)q|∇v(x, t)|qdx = ωn

∫ R

0
r(n−1)(q+1)|vr(r, t)|qdr

≤ c
q
1ωn

∫ R

0
rn−1dr

=
c
q
1ωnR

n

n
for all t ∈ (0, T̂max). (3.11)
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Now letting U(x, t) := e−λtu(x, t) for (x, t) ∈ Ω× [0, Tmax), from (1.1) we obtain that

Ut = e−λtut − λe−λtu

=
{
∆U −∇ · (U∇v) + λU − µe−λtuκ

}
− λU

≤ ∆U −∇ · (U∇v) in Ω× (0, Tmax)

with ∂U
∂ν

= 0 on ∂Ω × (0, Tmax) and
∫
Ω U(·, 0) =

∫
Ω u0 ≤ m. Therefore, (3.10) and (3.11) warrant

that [49, Theorem 1.1] becomes applicable so as to show that due to (3.7) and (3.8) we can find
c2 = c2(R, λ, L,m, ε) > 0 fulfilling

U(x, t) ≤ c2|x|−α for all x ∈ Ω and t ∈ (0, T̂max),

which immediately implies (3.9) on choosing C(R, λ, L,m, ε) := c2e
λ+ . �

4 A differential inequality for a moment-type functional

We proceed to introduce the main object that will serve as a means for the derivation of our blow-up
result, namely the functional φ given by (4.1) which may be viewed as a generalized moment of the
function w from (2.2), conveniently localized to a region near the origin. A basic differential inequality
describing the evolution of φ can be obtained through straightforward integration by parts and an
application of Fubini’s theorem in the respective nonlocal expression from (2.7).

Lemma 4.1 Let n ≥ 3, R > 0, λ ∈ R, µ > 0 and κ > 1, and assume (1.3). Then for any choice of
γ ∈ (1− 2

n
, 1) and s0 ∈ (0, Rn), the function φ : [0, Tmax) → R defined by

φ(t) :=

∫ s0

0
s−γ(s0 − s)w(s, t)ds, t ∈ [0, Tmax), (4.1)

belongs to C0([0, Tmax)) ∩ C1((0, Tmax)) and satisfies

φ′(t) ≥ n

∫ s0

0
s−γ(s0 − s)w(s, t)ws(s, t)ds

−n(γ + 1)s0

∫ s0

0
s−γ−1z(s, t)w(s, t)ds

−n2
(
2− 2

n
− γ

)(
γ +

2

n

)
s0

∫ s0

0
s−γ− 2

nw(s, t)ds

−λ−
∫ s0

0
s−γ(s0 − s)w(s, t)ds

−n
κ−1µ

1− γ
s
1−γ
0

∫ s0

0
(s0 − s)wκ

s (s, t)ds for all t ∈ (0, Tmax), (4.2)

where λ− := max{0,−λ}.

Proof. For fixed τ ∈ (0, Tmax) and T ∈ (τ, Tmax), it follows from Lemma 2.1 that ut is continuous
in Ω× [τ, T ] and that hence, by (2.7), wt is continuous in [0, Rn]× [τ, T ]. As for any choice of γ ∈ (0, 1)
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and s0 ∈ (0, Rn) the function (0, s0) ∋ s 7→ s−γ(s0 − s) is integrable, a standard reasoning based on
the dominated convergence theorem shows that indeed for all such γ and s0, the function φ in (4.1) is
not only continuous on [0, Tmax) but moreover also continuously differentiable in (0, Tmax) with

φ′(t) =

∫ s0

0
s−γ(s0 − s)wtds

= n2
∫ s0

0
s2−

2

n
−γ(s0 − s)wssds

+n

∫ s0

0
s−γ(s0 − s)wwsds− n

∫ s0

0
s−γ(s0 − s)zwsds

+λ

∫ s0

0
s−γ(s0 − s)wds

−nκ−1µ

∫ s0

0
s−γ(s0 − s) ·

{∫ s

0
wκ
s (σ, t)dσ

}
ds for all t ∈ (0, Tmax) (4.3)

by (2.2). Here two integrations by parts yield

n2
∫ s0

0
s2−

2

n
−γ(s0 − s)wssds = −n2

(
2− 2

n
− γ

)∫ s0

0
s1−

2

n
−γ(s0 − s)wsds+ n2

∫ s0

0
s2−

2

n
−γwsds

+n2s2−
2

n
−γ(s0 − s)ws

∣∣∣∣
s0

0

≥ −n2
(
2− 2

n
− γ

)∫ s0

0
s1−

2

n
−γ(s0 − s)wsds

= −n2
(
2− 2

n
− γ

)(
γ − 1 +

2

n

)∫ s0

0
s−γ− 2

n (s0 − s)wds

−n2
(
2− 2

n
− γ

)∫ s0

0
s1−

2

n
−γwds

+ lim inf
δց0

{
n2

(
2− 2

n
− γ

)
δ1−

2

n
−γ(s0 − δ)w(δ, t)

}

≥ −n2
(
2− 2

n
− γ

)(
γ − 1 +

2

n

)∫ s0

0
s−γ− 2

n s0wds

−n2
(
2− 2

n
− γ

)∫ s0

0
s0 · s−γ− 2

nwds

= −n2
(
2− 2

n
− γ

)(
γ +

2

n

)
s0

∫ s0

0
s−γ− 2

nwds (4.4)

for all t ∈ (0, Tmax), because ws is nonnegative and locally bounded in [0, Rn] × [0, Tmax) by Lemma
2.1, and because 2− 2

n
− γ and γ− 1+ 2

n
are positive thanks to our restrictions that γ < 1 and n ≥ 3,

and that γ > 1− 2
n
.

Next, once more integrating by parts we obtain that

−n
∫ s0

0
s−γ(s0 − s)zwsds = n

∫ s0

0
s−γ(s0 − s)zswds− nγ

∫ s0

0
s−γ−1(s0 − s)zwds

−n
∫ s0

0
s−γzwds+ lim inf

δց0

{
nδ−γ(s0 − δ)z(δ, t)w(δ, t)

}
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≥ −nγ
∫ s0

0
s−γ−1(s0 − s)zwds− n

∫ s0

0
s−γzwds

≥ −nγ
∫ s0

0
s−γ−1s0zwds− n

∫ s0

0
s0 · s−γ−1zwds

= −n(γ + 1)s0

∫ s0

0
s−γ−1zwds for all t ∈ (0, Tmax) (4.5)

due to the fact that zs, z and w are all nonnegative.
In the rightmost summand in (4.3) we apply the Fubini theorem to see that for all t ∈ (0, Tmax),

∫ s0

0
s−γ(s0 − s) ·

{∫ s

0
wκ
s (σ, t)dσ

}
ds =

∫ s0

0

{∫ s0

σ

s−γ(s0 − s)ds

}
· wκ

s (σ, t)dσ, (4.6)

where again using that γ < 1 we can estimate

∫ s0

σ

s−γ(s0 − s)ds ≤ (s0 − σ)

∫ s0

0
s−γ =

s
1−γ
0

1− γ
· (s0 − σ) for all σ ∈ 0, s0). (4.7)

As clearly

λ

∫ s0

0
s−γ(s0 − s)wds ≥ −λ−

∫ s0

0
s−γ(s0 − s)wds for all t ∈ (0, Tmax),

combining (4.3)-(4.7) we immediately arrive at (4.2). �

4.1 Estimating the last three integrals in (4.2)

Our key toward our derivation of approppriate estimates for the three rightmost negative summands
in (4.2) consists in the following basic but helpful observation which provides a pointwise upper bound
for widely arbitrary functions in terms of an expression essentially resembling the positive and cross-
diffusion-induced positive contribution on the right of (4.2).

Lemma 4.2 Let γ ∈ (0, 2) and s0 > 0, and let ϕ ∈ C1([0, s0]) be nonnegative with ϕ(0) = 0 and
ϕ′(s) ≥ 0 for all s ∈ (0, s0). Then

ϕ(s) ≤
√
2 · s

γ
2 (s0 − s)−

1

2 ·
{∫ s0

0
σ−γ(s0 − σ)ϕ(σ)ϕ′(σ)dσ

} 1

2

for all s ∈ (0, s0). (4.8)

Proof. As γ < 2, ϕ(0) = 0 and ϕ′ ∈ C0([0, s0]), it follows that ψ(s) := 1
2s

−γ(s0 − s)ϕ2(s), s ∈
(0, s0], actually defines a function ψ ∈ C0([0, s0])∩C1((0, s0)) with ψ(0) = 0, whence the fundamental
theorem of elementary calculus applies so as to warrant that

ψ(s) =

∫ s

0
ψ′(σ)dσ

=

∫ s

0

{
σ−γ(s0 − σ)ϕ(σ)ϕ′(σ)− γ

2
σ

γ
2
−1(s0 − σ)ϕ2(σ)− 1

2
σ−γϕ2(σ)

}
dσ

≤
∫ s0

0
σ−γ(s0 − σ)ϕ(σ)ϕ′(σ)dσ for all s ∈ (0, s0),

11



because γ > 0 and ϕ′ is nonnegative. By definition of ψ, this directly implies (4.8). �

A first application yields an estimate for the integral in (4.2) originating from the cell diffusion process
in (1.1), provided that the exponent γ is conveniently small.

Lemma 4.3 Let n ≥ 3 and γ ∈ (0, 2 − 4
n
). Then there exists C = C(γ) > 0 such that if R > 0, λ ∈

R, µ > 0 and κ > 1, and if u0 is such that (1.3) holds, then for arbitrary s0 ∈ (0, Rn) we have

s0

∫ s0

0
s−γ− 2

nw(s, t)ds ≤ Cs
3−γ
2

− 2

n
0 ·

{∫ s0

0
s−γ(s0 − s)w(s, t)ws(s, t)ds

} 1

2

for all t ∈ (0, Tmax).

(4.9)

Proof. Using Lemma 4.2, we estimate

s0

∫ s0

0
s−γ− 2

nwds ≤
√
2·
{∫ s0

0
s−γ(s0−s)wwsds

} 1

2

·s0
∫ s0

0
s−

γ
2
− 2

n (s0−s)−
1

2ds for all t ∈ (0, Tmax),

(4.10)
where by a simple variable transformation,

s0

∫ s0

0
s−

γ
2
− 2

n (s0 − s)−
1

2ds = s0

∫ 1

0
(s0σ)

− γ
2
− 2

n [s0(1− σ)]−
1

2 · s0dσ

= s
3−γ
2

− 2

n
0 B

(
1− γ

2
− 2

n
,
1

2

)
.

Since herein the latter expression involving Euler’s Beta function B is well-defined due to the fact that
our assumption γ < 2− 4

n
ensures that γ

2 + 2
n
< 1, (4.9) directly results upon an evident definition of

C. �

Secondly, Lemma 4.2 can be used to control the second last summand in (4.2) as follows.

Lemma 4.4 Let n ≥ 3 and γ ∈ (0, 2). Then there exists C = C(γ) > 0 such that if R > 0, λ ∈ R, µ >

0 and κ > 1, for any choice of u0 fulfilling (1.3) and each s0 ∈ (0, Rn) we have

∫ s0

0
s−γ(s0 − s)w(s, t)ds ≤ C · s

3−γ
2

0 ·
{∫ s0

0
s−γ(s0 − s)w(s, t)ws(s, t)ds

} 1

2

for all t ∈ (0, Tmax).

(4.11)

Proof. In a way quite similar to that in Lemma 4.3, from Lemma 4.2 we derive the inequality
∫ s0

0
s−γ(s0 − s)wds ≤ s0

∫ s0

0
s−γwds

≤
√
2 ·

{∫ s0

0
s−γ(s0 − s)wwsds

} 1

2

· s0
∫ s0

0
s−

γ
2 (s0 − s)−

1

2ds

=
√
2 ·

{∫ s0

0
s−γ(s0 − s)wwsds

} 1

2

· s
3−γ
2

0 B
(
1− γ

2
,
1

2

)
for all t ∈ (0, Tmax),

because γ
2 < 1. �

When combined with a pointwise inequality for ws implied by Lemma 3.3, a third application of
Lemma 4.2 shows that if unlike in Lemma 4.3 γ now is suitably large, then also the dampening action
of the logistic death term can be estimated in terms of the positive summand on the right of (4.2).
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Lemma 4.5 Let n ≥ 3, R > 0, λ ∈ R, µ > 0, κ > 1 and γ ∈ (0, 2) be such that

(n− 1)(κ− 1) <
γ

2
. (4.12)

Then for all m > 0 and L > 0 and any choice of ε > 0 one can find C = C(R, λ, κ, γ, L,m, ε) > 0 such
that if u0 satisfies (1.3) and

∫
Ω u0 ≤ m as well as (3.8), then for any s0 ∈ (0, Rn) and all t ∈ (0, T̂max),

s
1−γ
0

∫ s0

0
(s0 − s)wκ

s (s, t)ds ≤ Cs
−(n−1)(κ−1)+ 3−γ

2
−ε

0 ·
{∫ s0

0
s−γ(s0 − s)w(s, t)ws(s, t)ds

} 1

2

, (4.13)

where T̂max = min{1, Tmax}.

Proof. Given ε > 0, according to (4.12) we can fix η > 0 small enough such that both

η

n
· (κ− 1) ≤ min{ε, 1} (4.14)

and
(n− 1)(κ− 1) +

η

n
· (κ− 1) <

γ

2
, (4.15)

and thereupon invoke Lemma 3.3 to find c1 = c1(R, λ, L,m, ε) > 0 such that whenever u0 satisfies
(1.3) and

∫
Ω u0 ≤ m as well as (3.8), we have

u(r, t) ≤ c1r
−n(n−1)−η for all r ∈ (0, R) and t ∈ (0, Tmax).

For any such u0, rewritten through (2.2) this means that

wκ−1
s (s, t) =

(
u(s

1

n , t)

n

)κ−1

≤ c2s
−(n−1)(κ−1)− η

n
(κ−1) for all s ∈ (0, Rn) and t ∈ (0, T̂max)

with c2 := ( c1
n
)κ−1. In the integral under consideration this enables us to integrate by parts to see

that thanks to (4.14), for all t ∈ (0, T̂max) we have

s
1−γ
0

∫ s0

0
(s0 − s)wκ

s ds ≤ c2s
1−γ
0

∫ s0

0
s−(n−1)(κ−1)− η

n
(κ−1)(s0 − s)wsds

=
[
(n− 1)(κ− 1) +

η

n
(κ− 1)

]
c2s

1−γ
0

∫ s0

0
s−(n−1)(κ−1)−1− η

n
(κ−1)(s0 − s)wds

+c2s
1−γ
0

∫ s0

0
s−(n−1)(κ−1)− η

n
(κ−1)wds

− lim inf
δց0

{
c2s

1−γ
0 δ(n−1)(κ−1)− η

n
(κ−1)(s0 − δ)w(δ, t)

}

≤ [(n− 1)(κ− 1) + 2]c2s
2−γ
0

∫ s0

0
s−(n−1)(κ−1)−1− η

n
(κ−1)wds, (4.16)
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where again by means of Lemma 4.2 we can estimate
∫ s0

0
s−(n−1)(κ−1)−1− η

n
(κ−1)wds

≤
√
2 ·

{∫ s0

0
s−γ(s0 − s)wwsds

} 1

2

·
∫ s0

0
s−(n−1)(κ−1)−1+ γ

2
− η

n
(κ−1)(s0 − s)−

1

2ds

≤
√
2 ·

{∫ s0

0
s−γ(s0 − s)wwsds

} 1

2

· s−(n−1)(κ−1)+ γ−1

2
− η

n
(κ−1)

0 · c3 for all t ∈ (0, T̂max)(4.17)

with c3 := B
(
γ
2 − (n− 1)(κ− 1)− η

n
(κ− 1) , 1

2

)
being well-defined and finite because of the fact that

γ
2 − (n− 1)(κ− 1)− η

n
(κ− 1) is positive by (4.15).

Combining (4.16) with (4.17) thus shows that for all t ∈ (0, T̂max),

s
1−γ
0

∫ s0

0
(s0 − s)wκ

s ds

≤
√
2[(n− 1)(κ− 1) + 2]c2c3s

−(n−1)(κ−1)+ 3−γ
2

− η
n
(κ−1)

0 ·
{∫ s0

0
s−γ(s0 − s)wwsds

} 1

2

≤
√
2[(n− 1)(κ− 1) + 2]c2c3R

nε−η(κ−1)s
−(n−1)(κ−1)+ 3−γ

2
−ε

0 ·
{∫ s0

0
s−γ(s0 − s)wwsds

} 1

2

,

for η
n
(κ− 1) ≤ ε due to (4.14). �

4.2 A pointwise inequality for z

In order to prepare an adequate estimation of the second integral on the right of (4.2), in this section
we derive an upper bound for the function z appearing therein. As through (1.1) this quantity depends
on w in a nonlocal manner obtained by two successive integrations, let us first focus on the essential
part appearing therein:

Lemma 4.6 Let α ∈ (1, 2) and β ∈ (0, 1). Then there exists C = C(α, β) > 0 such that if s0 > 0,
then ∫ s

0

∫ s0

σ

ξ−α(s0 − ξ)−βdξdσ ≤ Cs
−β
0 s2−α for all s ∈ (0, s0). (4.18)

Proof. By means of the Fubini theorem, we rewrite

J(s) :=

∫ s

0

∫ s0

σ

ξ−α(s0 − ξ)−βdξdσ, s ∈ [0, s0],

according to

J(s) =

∫ s

0

{∫ ξ

0
dσ

}
· ξ−α(s0 − ξ)−βdξ +

∫ s0

s

{∫ s

0
dσ

}
· ξ−α(s0 − ξ)−βdξ

=

∫ s

0
ξ1−α(s0 − ξ)−βdξ + s ·

∫ s0

s

ξ−α(s0 − ξ)−βdξ

=: J1(s) + J2(s) for all s ∈ [0, s0]. (4.19)
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Here, first concentrating on the case when s ≤ s0
2 we may use that α < 2 to see that

J1(s) ≤
(s0
2

)−β
∫ s

0
ξ1−αdξ =

2β

2− α
s
−β
0 s2−α for all s ∈

[
0,
s0

2

]
, (4.20)

and rely on the assumptions that α > 1 and β < 1 in estimating

J2(s) = s ·
∫ s0

2

s

ξ−α(s0 − ξ)−βdξ + s ·
∫ s0

s0
2

ξ−α(s0 − ξ)−βdξ

≤
(s0
2

)−β

s ·
∫ ∞

s

ξ−αdξ + s ·
(s0
2

)−α

·
∫ s0

s0
2

(s0 − ξ)−βdξ

=
2β

α− 1
s
−β
0 s2−α +

1

1− β

(s0
2

)1−α−β

· s for all s ∈
[
0,
s0

2

]
.

As within this range we have s = sα−1 · s2−α ≤ ( s02 )
α−1s2−α, this shows that in fact

J2(s) ≤
2β

α− 1
s
−β
0 s2−α +

1

1− β

(s0
2

)−β

s2−α for all s ∈
[
0,
s0

2

]
,

which combined with (4.20) and (4.19) entails that

J(s) ≤
( 2β

2− α
+

2β

α− 1
+

2β

1− β

)
s
−β
0 s2−α for all s ∈

[
0,
s0

2

]
. (4.21)

For larger values of s, however, we only need to observe that [0, s0] ∋ s 7→ J(s) is nondecreasing and
hence

J(s) ≤ J(s0) = J1(s0) =

∫ s0

0
ξ1−α(s0 − ξ)−βdξ = c1s

2−α−β
0 for all s ∈

[s0
2
, s0

]
,

with finiteness of c1 := B(2 − α, 1 − β) guaranteed by the inequalities α < 2 and β < 1. Therefore,
namely, we obtain that

J(s) ≤ c1s
−β
0 s2−α

0 ≤ c1s
−β
0 · (2s)2−α for all s ∈

[s0
2
, s0

]
,

which together with (4.21) establishes (4.18) upon an obvious definition of C. �

Through an appropriate representation formula based on (1.1), we can thereby achieve the following
pointwise inequality for z, again containing the first integral from the right-hand side in (4.2), and
again under the restriction on γ from Lemma 4.3.

Lemma 4.7 Let n ≥ 3, R > 0, λ ∈ R, µ > 0 and κ > 1, and suppose that γ > 0 is such that
γ < 2 − 4

n
. Then for all m > 0 there exists C = C(R, λ,m, γ) > 0 such that whenever u0 satisfies

(1.3) and
∫
Ω u0 ≤ m, then for any s0 ∈ (0, Rn), the function z defined in (2.3) has the property that

z(s, t) ≤ Cs
2

n
−1

0 s+ Cs
− 1

2

0 s
2

n
+ γ

2 ·
{∫ s0

0
σ−γ(s0 − σ)w(σ, t)ws(σ, t)dσ

} 1

2

for all s ∈ (0, s0) and any t ∈ (0, T̂max), (4.22)

where as before T̂max := min{1, Tmax}.
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Proof. We first employ Lemma 3.2 to find c1 = c1(R, λ,m) > 0 such that if u0 is such that (1.3)
holds with

∫
Ω u0 ≤ m, then

v(r, t) ≤ c1r
2−n for all r ∈ (0, R) and t ∈ (0, T̂max). (4.23)

Moreover, going back to (2.6) we obtain the one-sided inequality

rn−1vr(r, t) ≥ −w(rn, t) for all r ∈ (0, R) and any t ∈ (0, Tmax),

which when rephrased in terms of the variables z and s says that

zss(s, t) ≥ − 1

n2
s

2

n
−2w(s, t) for all s ∈ (0, Rn) and t ∈ (0, Tmax).

Upon two integrations, for arbitrary s0 ∈ (0, Rn) this entails that due to (4.23),

zs(s, t) = zs(s0, t)−
∫ s0

s

zss(σ, t)dσ

=
1

n
v(s

1

n
0 , t)−

∫ s0

s

zss(σ, t)dσ

≤ c1

n
s

2

n
−1

0 +
1

n2

∫ s0

s

σ
2

n
−2w(σ, t)dσ for all s ∈ (0, s0) and t ∈ (0, T̂max)

and that hence

z(s, t) =

∫ s

0
zs(σ, t)dσ

≤ c1

n
s

2

n
−1

0 s+
1

n2

∫ s

0

∫ s0

σ

ξ
2

n
−2w(ξ, t)dξdσ for all s ∈ (0, s0) and t ∈ (0, T̂max).

Once more by means of Lemma 4.2, we thus infer that for all s ∈ (0, s0) and t ∈ (0, T̂max),

z(s, t) ≤ c1

n
s

2

n
−1

0 s

+

√
2

n2
·
{∫ s0

0
σ−γ(s0 − σ)w(σ, t)ws(σ, t)dσ

} 1

2

·
∫ s

0

∫ s0

σ

ξ
2

n
−2+ γ

2 (s0 − ξ)−
1

2dξdσ, (4.24)

where since our assumption γ < 2 − 4
n
warrants that 2 > − 2

n
+ 2 − γ

2 > − 2
n
+ 2 − 2− 4

n
2 = 1, we may

invoke Lemma 4.6 to pick c2 = c2(γ) > 0 fulfilling

∫ s

0

∫ s0

σ

ξ
2

n
−2+ γ

2 (s0 − ξ)−
1

2dξdσ ≤ c2s
− 1

2

0 s
2

n
+ γ

2 for all s ∈ (0, s0).

Therefore, (4.22) is a consequence of (4.24). �
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4.3 Estimating the fourth last integral in (4.2)

Now once more invoking Lemma 4.2, in quite a straightforward manner we obtain the following from
Lemma 4.7.

Lemma 4.8 Let n ≥ 3, R > 0, λ ∈ R, µ > 0 and κ > 1, and let γ ∈ (0, 1) be such that γ < 2 − 4
n
.

Then for all m > 0 one can find K = K(R, λ, γ,m) > 0 such that if (1.3) holds with
∫
Ω u0 ≤ m, then

for all s0 ∈ (0, Rn), with T̂max = min{1, Tmax} we have

n(γ + 1)s0

∫ s0

0
s−γ−1z(s, t)w(s, t)ds ≤ Ks

2

n
+1−γ

0 +Ks
2

n
0

∫ s0

0
s−γ(s0 − s)w(s, t)ws(s, t)ds (4.25)

for all t ∈ (0, T̂max).

Proof. According to Lemma 4.7, there exists c1 = c1(R, λ,m, γ) > 0 such that if (1.3) holds and∫
Ω u0 ≤ m, then for any choice of s0 ∈ (0, Rn),

z(s, t) ≤ c1s
2

n
−1

0 s+ c1s
− 1

2

0 s
2

n
+ γ

2 ·
{∫ s0

0
σ−γ(s0 − σ)wwsdσ

} 1

2

for all s ∈ (0, s0) and t ∈ (0, T̂max),

(4.26)
whereas Lemma 3.1 provides c2 = c2(λ,m) > 0 such that

w(s, t) ≤ c2 for all s ∈ (0, Rn) and each t ∈ (0, T̂max). (4.27)

Thus, by (4.26) we see that for all t ∈ (0, T̂max),

s0

∫ s0

0
s−γ−1zwds ≤ c1s

2

n
0

∫ s0

0
s−γwds+ c1

{∫ s0

0
s−γ(s0 − s)wwsds

} 1

2

· s
1

2

0

∫ s0

0
s

2

n
−1− γ

2wds, (4.28)

where due to (4.27) and the restriction that γ < 1,

c1s
2

n
0

∫ s0

0
s−γwds ≤ c1c2s

2

n
0

∫ s0

0
s−γds

=
c1c2

1− γ
s

2

n
+1−γ

0 for all t ∈ (0, T̂max). (4.29)

Furthermore, again relying on Lemma 4.2 we can estimate

s
1

2

0

∫ s0

0
s

2

n
−1− γ

2wds ≤
√
2 ·

{∫ s0

0
s−γ(s0 − s)wwsds

} 1

2

· s
1

2

0

∫ s0

0
s

2

n
−1(s0 − s)−

1

2ds

=
√
2 ·

{∫ s0

0
s−γ(s0 − s)wwsds

} 1

2

· s
2

n
0 B

( 2

n
,
1

2

)
for all t ∈ (0, T̂max),

which when together with (4.29) inserted into (4.28) yields (4.25). �
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4.4 An autonomous superlinear differential inequality for φ

Now it turns out that if κ satisfies the requirements from Theorem 1.1, then one can find some γ > 0
which is simultaneously admissible in all of the previously gained estimates, provided that s0 is chosen
suitably small. Upon collecting, in summary we can thereby develop the inequality from Lemma 4.1
into an autonomous ODI for φ which contains a quadratic source term.

Lemma 4.9 Let n ≥ 3, R > 0, λ ∈ R and µ > 0, and let κ > 1 be such that

κ <

{
7
6 if n ∈ {3, 4},
1 + 1

2(n−1) if n ≥ 5.
(4.30)

Then there exists γ = γ(κ) ∈ (1 − 2
n
, 1) with the property that for all m > 0 and L > 0 one can find

s⋆ = s⋆(R, λ,m) ∈ (0, Rn) and C = C(R, λ, µ, κ, L,m) > 0 such that whenever u0 satisfies (1.3) as
well as

∫
Ω u0 ≤ m and (3.8), for any choice of s0 ∈ (0, s⋆) the function φ defined in (4.1) satisfies

φ′(t) ≥ 1

C
s
γ−3
0 φ2(t)− Cs

2

n
+1−γ

0 for all t ∈ (0, T̂max) (4.31)

with T̂max = min{1, Tmax}.

Proof. In the case n = 3, (4.30) entails that (n− 1)(κ− 1) = 2(κ− 1) < 1
3 =

2− 4

n
2 , while if n ≥ 4

then from (4.30) we know that (n − 1)(κ − 1) < (n − 1) · 1
2(n−1) = 1

2 . In both cases it is therefore

possible to pick γ = γ(κ) ∈ (1− 2
n
, 1) such that γ < 2− 4

n
and that still

(n− 1)(κ− 1) <
γ

2
. (4.32)

Keeping this value of γ fixed henceforth and choosing any ε > 0 fulfilling

2ε ≤ 1− 2

n
, (4.33)

given m > 0 and L > 0 we take K = K(R, λ, γ,m) > 0 as provided by Lemma 4.8, and we claim that
the desired conclusion is valid if we let s⋆ = s⋆(R, λ,m) ∈ (0, Rn) be small enough such that

Ks
2

n
⋆ ≤ n

8
. (4.34)

To this end, we invoke Lemma 4.1 to find c1 = c1(λ, µ, κ) > 0 such that for any u0 fulfilling (1.3) as
well as

∫
Ω u0 ≤ m and (3.8), for φ as in (4.1) we have

φ′(t) ≥ nψ(t)− n(γ + 1)s0

∫ s0

0
s−γ−1zwds− c1s0

∫ s0

0
s−γ− 2

nwds

−c1
∫ s0

0
s−γ(s0 − s)wds− c1s

1−γ
0

∫ s0

0
(s0 − s)wκ

s ds for all t ∈ (0, T̂max), (4.35)

where

ψ(t) :=

∫ s0

0
s−γ(s0 − s)wwsds, t ∈ (0, Tmax).
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Here since γ < 2 − 4
n
, Lemma 4.3 provides c2 = c2(λ, µ, κ) > 0 such that for any such u0 and all

s0 ∈ (0, Rn), due to Young’s inequality we can estimate

c1s0

∫ s0

0
s−γ− 2

nwds ≤ c2s
3−γ
2

− 2

n
0

√
ψ(t)

≤ n

8
ψ(t) +

2c22
n
s
3−γ− 4

n
0 for all t ∈ (0, T̂max), (4.36)

whereas thanks to (4.32) we may employ Lemma 4.5 to similarly conclude that for some c3 =
c3(R, λ, µ, κ, L,m) > 0 and all s0 ∈ (0, Rn),

c1s
1−γ
0

∫ s0

0
(s0 − s)wκ

s ds ≤ c3s
−(n−1)(κ−1)+ 3−γ

2
−ε

0

√
ψ(t)

≤ n

8
ψ(t) +

2c23
n
s
−2(n−1)(κ−1)+3−γ−2ε
0 for all t ∈ (0, T̂max). (4.37)

We next use Lemma 4.8 to see that whenever s0 ∈ (0, s⋆), according to (4.34) we have

n(γ + 1)s0

∫ s0

0
s−γ−1zwds ≤ Ks

2

n
0 ψ(t) +Ks

2

n
+1−γ

0

≤ n

8
ψ(t) +Ks

2

n
+1−γ

0 for all t ∈ (0, T̂max). (4.38)

Finally, Lemma 4.4 yields c4 = c4(γ) > 0 such that if s0 ∈ (0, Rn), then

∫ s0

0
s−γ(s0 − s)wds ≤ c4s

3−γ
2

0

√
ψ(t) for all t ∈ (0, Tmax),

which by Young’s inequality firstly entails that

c1

∫ s0

0
s−γ(s0 − s)wds ≤ n

8
ψ(t) +

2c24
n
s
3−γ
0 for all t ∈ (0, Tmax), (4.39)

and which secondly ensures that

n

2
ψ(t) ≥ n

2c24
s
γ−3
0 φ2(t) for all t ∈ (0, Tmax). (4.40)

Summarizing, from (4.35)-(4.40) we infer that whenever s0 ∈ (0, s⋆) and t ∈ (0, T̂max),

φ′(t) ≥ n

2c24
s
γ−3
0 φ2(t)

−2c22
n
s
3−γ− 4

n
0 − 2c23

n
s
−2(n−1)(κ−1)+3−γ−2ε
0 −Ks

2

n
+1−γ

0 − 2c24
n
s
3−γ
0 , (4.41)

where we note that since n ≥ 3,

c5 := (3− γ)−
( 2

n
+ 1− γ

)
>

(
3− γ − 4

n

)
−
( 2

n
+ 1− γ

)
= 2− 6

n
≥ 0,
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and that due to (4.33), (4.32) and the inequality γ < 1 also

c6 :=
(
− 2(n− 1)(κ− 1) + 3− γ − 2ε

)
−
( 2

n
+ 1− γ

)
= −2(n− 1)(κ− 1) + 2− 2

n
− 2ε

> 1− 2

n
− 2ε ≥ 0.

We may therefore estimate

2c22
n
s
3−γ− 4

n
0 +

2c23
n
s
−2(n−1)(κ−1)+3−γ−2ε
0 +Ks

2

n
+1−γ

0 +
2c24
n
s
3−γ
0

≤
(2c22
n
R(2− 6

n
)n +

2c23
n
Rc6n +K +

2c24
n
Rc5n

)
· s

2

n
+1−γ

0 for all s0 ∈ (0, s⋆)

and hence derive (4.31) from (4.41). �

5 Conclusion. Proof of Theorem 1.1 and Corollary 1.2

By suitably making use of the properties of φ(0) enforced by (1.4), we can thus establish our main
result on blow-up in (1.1) by means of a contradictory argument.

Proof of Theorem 1.1. For fixed L > 0 and m > 0, according to (1.4) we may apply Lemma 4.9 to
find γ = γ(κ) ∈ (1− 2

n
, 1), s⋆ = s⋆(R, λ,m) ∈ (0, Rn) and ci = ci(R, λ, µ, κ, L,m) > 0, i ∈ {1, 2}, such

that for any s0 ∈ (0, s⋆) and arbitrary u0 fulfilling
∫
Ω u0 ≤ m and (1.5), the function φ introduced in

(4.1) satisfies

φ′(t) ≥ c1s
γ−3
0 φ2(t)− c2s

2

n
+1−γ

0 for all t ∈ (0, T̂max), (5.1)

where once more T̂max = min{1, Tmax}.
Next, given m0 ∈ (0,m) we specify our selection of an appropriate value of s0 herein by choosing
s0 = s0(R, λ, µ, κ, L,m,m0) ∈ (0, s⋆) small enough fulfilling

s
2

n
0 ≤ 22γ−7c1m

2
0

c2ω2
n

(5.2)

and
s0 ≤

c1m0

26−γωn
, (5.3)

and thereupon we let

r0 :=
(s0
4

) 1

n ∈ (0, R). (5.4)

We now suppose that u0 is a fixed function complying with (1.3) as well as with (1.5) and (1.6), and
let (u, v) denote the associated solution of (1.1) from Lemma 2.1, defined up to its maximal existence
time Tmax ∈ (0,∞]. To see that actually Tmax ≤ 1

2 , assuming on the contrary that Tmax >
1
2 we note

that restated in the correspondingly transformed variables in (2.2), due to (5.4) the second restriction
in (1.6) means that

w(s, 0) ≥ w
(s0
4
, 0
)
≥ m0

ωn
for all s ∈

(s0
4
, Rn

)
,
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which in particular implies that with φ as in (4.1) we have

φ(0) =

∫ s0

0
s−γ(s0 − s)w(s, 0)ds

≥
∫ s0

2

s0
4

(s0
2

)−γ

· s0
2

· m0

ωn
ds

=
2γ−3m0

ωn
· s2−γ

0 . (5.5)

In view of (5.2), this entails that

c1
2 s

γ−3
0 φ2(0)

c2s
2

n
+1−γ

0

=
c1

2c2
s
2γ−4− 2

n
0 φ2(0)

≥ 22γ−7c1m
2
0

c2ω2
n

· s−
2

n
0

≥ 1

and hence

c1s
γ−3
0 φ2(0)− c2s

2

n
+1−γ

0 ≥ c1

2
s
γ−3
0 φ2(0).

Therefore, applying a straightforward ODE comparison argument to (5.1) shows that

c1s
γ−3
0 φ2(t)− c2s

2

n
+1−γ

0 ≥ c1

2
s
γ−3
0 φ2(t) for all t ∈

(
0,

1

2

)

and that thus

φ′(t) ≥ c1

2
s
γ−3
0 φ2(t) for all t ∈

(
0,

1

2

)
,

afer integration implying that

c1

2
s
γ−3
0 t ≤ − 1

φ(t)
+

1

φ(0)
≤ 1

φ(0)
for all t ∈

(
0,

1

2

)
.

Again by (5.5), however, according to (5.3) this leads to the absurd conclusion that

t <
2

c1
s
3−γ
0 · ωn

2γ−3m0
s
γ−2
0 =

24−γωn

c1m0
· s0 ≤

1

4
for all t ∈

(
0,

1

2

)

and thereby shows that indeed we actually must have Tmax ≤ 1
2 . Therefore, both the statement on

local existence of a classical solution and the claimed blow-up property (1.7) immediately result from
Lemma 2.1. �

Suitably approximating widely arbitrary initial data finally shows that indeed blow-up in (1.1) occurs
for a considerably large set of solutions:
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Proof of Corollary 1.2. We fix any β ∈ [n, n(n − 1)], and given a positive u0 fulfilling (1.3) we
write m :=

∫
Ω u0 and pick (mk)k∈N ⊂ (0,m) such that

2
β+4

2 mk ≤ 1 for all k ∈ N (5.6)

and
mk ց 0 as k → ∞. (5.7)

With
L := ‖u0‖L∞(Ω)R

n(n−1), (5.8)

for k ∈ N we then let r0k := r0(R, λ, µ, κ, L,m+1,mk) ∈ (0, R) be as thereupon provided by Theorem
1.1, and using the positivity of u0 we choose rk ∈ (0, r0k] small enough such that

rnk ≤ c1mk

I
(5.9)

and
1

2
u0(0) ≤ u0(rk) ≤ 2u0(0), (5.10)

where

I :=

∫ 1

0
ξn−1(ξ2 + 1)−

β
2 dξ and c1 :=

2

ωnu0(0)
. (5.11)

Observing that then for any k ∈ N,

Ik(η) :=

∫ 1

0
ξn−1

(
ξ2 +

η2

r2k

)−β
2

dξ, η ∈ (0, rk],

defines a continuous function satisfying

Ik(rk) = I ≤ c1mkr
−n
k and Ik(η) ր +∞ as η ց 0

due to (5.9) and our restriction that β ≥ n, for each k ∈ N we can finally fix ηk ∈ (0, rk] such that

Ik(ηk) = c1mkr
−n
k . (5.12)

Then for k ∈ N letting

u0k(r) :=





u0(rk) ·
(
r2k+η2k
r2+η2k

)β
2

if r ∈ [0, rk],

u0(r) if r ∈ (rk, R],
(5.13)

we clearly obtain a sequence of positive functions u0k which all satisfy (1.3), and about which thanks
to (5.12) and (5.11) we moreover know that

∫

Brk
(0)
u0k = ωnu0(rk) · (r2k + η2k)

β
2

∫ rk

0
rn−1(r2 + η2k)

−β
2 dr

= ωnu0(rk) · (r2k + η2k)
β
2 · rn−β

k Ik(ηk)

= ωnu0(rk) ·
(
1 +

η2k
r2k

)β
2 · c1mk

= 2 · u0(rk)
u0(0)

·
(
1 +

η2k
r2k

)β
2 ·mk. (5.14)
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Using (5.10) and that ηk ≤ rk for all k ∈ N, from this and (5.13) we particularly infer that
∫

Brk
(0)
u0k ≤ 2

β+4

2 mk for all k ∈ N (5.15)

and that hence, by (5.6),
∫

Ω
u0k ≤

∫

Ω
u0 +

∫

Brk
(0)
u0k ≤ m+ 1 for all k ∈ N, (5.16)

whereas our definition (5.8) of L together with the restriction β ≤ n(n− 1) ensures that

rn(n−1)u0k(r) ≤ u0(rk) · rn(n−1)
(r2k + η2k
r2 + η2k

)β
2

≤ u0(rk) · rn(n−1)
(r2k
r2

)β
2

= u0(rk) · rβk rn(n−1)−β

≤ ‖u0‖L∞(Ω)R
β ·Rn(n−1)−β

≤ L for all r ∈ (0, rk] (5.17)

and

rn(n−1)u0k(r) = rn(n−1)u0(r) ≤ Rn(n−1)‖u0‖L∞(Ω) ≤ L for all r ∈ (rk, R]. (5.18)

Since moreover the inequality rk ≤ r0k guarantees that as a further consequence of (5.14) when
combined with (5.10) we obtain that

∫

Br0k
(0)
u0k ≥

∫

Brk
(0)
u0k ≥ 2 · 1

2
mk = mk for all k ∈ N,

we may use this along with (5.16), (5.17) and (5.18) to conclude on applying Theorem 1.1 that in fact
for all k ∈ N the problem (1.1) admits a classical solution (uk, vk) emanating from uk|t=0 = u0k and
blowing up in finite time.
To finally verify the approximation property (1.8), we only need to go back to (5.15) once again, which
in conjunction with (5.13) and (5.7) namely shows that indeed

‖u0k − u0‖L1(Ω) = ‖u0k − u0‖L1(Brk
(0) ≤

∫

Brk
(0)
u0k + ‖u0‖L∞(Ω) · |Brk(0)|

≤ 2
β+4

2 mk + ‖u0‖L∞(Ω) · |Brk(0)|
→ 0 as k → ∞

due to the fact that clearly rk → 0 as k → ∞ by (5.9) and (5.10). �
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