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Abstract

The chemotaxis system

{

ut = ∆u−∇ ·
(

u

v
∇v

)

,

vt = ∆v − uv,
(⋆)

is considered under homogeneous Neumann boundary conditions in the ball Ω = BR(0) ⊂ R
n,

where R > 0 and n ≥ 2.

Despite its great relevance as a model for the spontaneous emergence of spatial structures in pop-
ulations of primitive bacteria, since its introduction by Keller and Segel in 1971 this system has
been lacking a satisfactory theory even at the level of the basic questions from the context of
well-posedness; global existence results in the literature are restricted to spatially one- or two-
dimensional cases so far, or alternatively require certain smallness hypotheses on the initial data.

For all suitably regular and radially symmetric initial data (u0, v0) satisfying u0 ≥ 0 and v0 > 0,
the present paper establishes the existence of a globally defined pair (u, v) of radially symmetric
functions which are continuous in (Ω̄ \ {0})× [0,∞) and smooth in (Ω̄ \ {0})× (0,∞), and which
solve the corresponding initial-boundary value problem for (⋆) with (u(·, 0), v(·, 0)) = (u0, v0) in an
appropriate generalized sense. To the best of our knowledge, this in particular provides the first
result on global existence for the three-dimensional version of (⋆) involving arbitrarily large initial
data.
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1 Introduction

This work is concerned with the initial-boundary value problem



















ut = ∆u−∇ · (u
v
∇v), x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

in a domain Ω ⊂ R
n, where our main focus will be on the case when Ω = BR(0) ⊂ R

n with R > 0
and n ≥ 2, and on solutions which are radially symmetric with respect to |x| and nonnegative in their
first and positive in their second component.

The PDE system in (1.1) has been proposed by Keller and Segel in the second of their seminal works
([15]) in order to describe the spatio-temporal behavior in populations of cells which, besides diffus-
ing randomly, partially orient their movement toward increasing concentrations of a diffusible signal
substance which they consume upon contact; in this framework, u = u(x, t) denotes the density of
cells and v = v(x, t) represents the nutrient concentration (cf. [24], [18], [14], [27] and [19] for further
modeling aspects, also in different biological contexts). As indicated by formal and numerical as well
as rigorous analytical results on existence and stability properties of wave-like solutions ([13], [22], [21],
[10]), the interplay of chemotaxis and absorption mechanisms as modeled by (1.1) is indeed able to
support the emergence of spatially heterogeneous structures, as known from experimental observations
to be a striking feature of such simple biological settings ([1]).

Despite its evident relevance in biological applications, a comprehensive solution theory for (1.1) seems
yet lacking. In fact, the singular behavior near v = 0 of the chemotactic sensitivity function, in (1.1)
chosen as S(u, v) = u

v
, may considerably enhance the relative strength of cross-diffusion at each point

where the signal concentration becomes small, and the second equation in (1.1) suggests to conjecture
that the set of such points should become substantially large during evolution. Accordingly, it is still
an open problem to decide whether in spatially higher-dimensional cases, (1.1) may enforce the spon-
taneous formation of singularities, as known to occur e.g. in the classical Keller-Segel system obtained
on choosing S(u) = u as chemotactic sensitivity, and replacing the second equation in (1.1) by the
equation vt = ∆v − v + u modeling signal production by cells (see [11], [35] and also [3] for a survey
on this and related problems). In presence of non-singular chemotactic cross-diffusion determined
by the choice S(u) = u, the dissipative action due to a signal absorption mechanism as in (1.1) is
known to entirely suppress such blow-up phenomena at least in two-dimensional situations, and in
the case n = 3 at least certain global weak solutions can always be constructed ([30]), being classical
whenever v is suitably small ([29], [39]). However, the destabilizing potential of singular sensitivities
of the form in (1.1) is far from understood even in systems which account for signal production and
hence counteract the tendency of the quantity v to attain small values; for such systems in the case
n ≥ 2, namely, global existence and boundedness of classical solutions is guaranteed only when in the

more general sensitivity function given by S(u, v) = χu
v
with χ > 0 we have χ <

√

2
n
([4], [34], [7],

[40]) or n = 2 and χ < χ0 with some not explicitly known χ0 > 1.015 ([17]), whereas only certain
generalized solutions are known to exist globally under less restrictive restrictions on the size of χ,
after all allowing for choosing any χ > 0 in planar radial cases ([34], [28]).
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Results on global existence of classical solutions to the PDE system in (1.1) currently are available
for arbitrarily large initial data only in spatially one-dimensional frameworks ([31], [23]), whereas in
higher-dimensional cases such solutions have been constructed only under appropriate smallness con-
ditions on the initial data so far, even in the simplified version of (1.1) obtained on neglecting diffusion
in the second equation therein ([38], [20]).

In particular, the Cauchy problem for (1.1) in Ω = R
n is known to have global smooth solutions when

n ∈ {2, 3} and both ‖u0−a‖W 1,2(Rn) and ‖ ln v0‖W 1,2(Rn) are suitably small with some a > 0 ([32]); for
the Neumann problem (1.1) in bounded convex planar domains, even an essentially explicit smallness
condition on the initial data, involving only the quantities

∫

Ω u0 lnu0 and
∫

Ω |∇ ln v0|2, can be identified
to ensure global classical solvability ([37]). To the best of our knowledge, however, global existence of
solutions to (1.1) for large initial data has been achieved only in the spatially two-dimensional case so
far: As recently found, for smoothly bounded convex domains Ω ⊂ R

2 and all suitably regular initial
data, (1.1) possesses at least one globally defined generalized solution in an appropriate framework
([36]).

Main results. It is the purpose of the present paper to demonstrate that in radially symmetric
settings, (1.1) always admits global generalized solutions without any restriction on the spatial dimen-
sion nor the size of the initial data. To make this more precise, throughout the sequel we shall assume
that Ω = BR(0) ⊂ R

n with some n ≥ 2 and R > 0, and that the initial data in (1.1) are such that

{

u0 ∈ C0(Ω̄) is radially symmetric with u0 ≥ 0 in Ω, and

v0 ∈ W 1,∞(Ω) is radially symmetric with v0 > 0 in Ω̄.
(1.2)

Then within the framework of renormalized solutions to be specified in Definition 4.2 below, (1.1) in
fact is globally solvable:

Theorem 1.1 Let n ≥ 2, R > 0 and Ω := BR(0) ⊂ R
n, and suppose that u0 and v0 satisfy (1.2).

Then there exists at least one pair (u, v) of radially symmetric functions

{

u ∈ L∞((0,∞);L1(Ω)) ∩ C0((Ω̄ \ {0})× [0,∞)) ∩ C2,1((Ω̄ \ {0})× (0,∞)),

v ∈ L∞(Ω× (0,∞)) ∩ C0((Ω̄ \ {0})× [0,∞)) ∩ C2,1((Ω̄ \ {0})× (0,∞)),
(1.3)

such that u ≥ 0 and v > 0 in (Ω̄ \ {0})× [0,∞), that

∇u

u+ 1
∈ L2

loc(Ω̄× [0,∞)) and
∇v

v
∈ L2

loc(Ω̄× [0,∞)), (1.4)

and that (u, v) is a global renormalized solution of (1.1) in the sense of Definition 4.2 below. Moreover,
(u, v) solves (1.1) classically in (Ω̄ \ {0})× [0,∞).

Main ideas. Any analytical approach to (1.1) needs to cope with the circumstance that in higher-
dimensional cases, (1.1) apparently lacks any energy-like structure providing regularity information
sufficient for deriving a priori estimates in suitably strong topologies. Even the functional given by

Fµ(u, v) :=
∫

Ω u ln u
µ
+ 1

2

∫

Ω
|∇v|2

v2
for µ > 0, known to constitute a genuine Lyapunov functional for the

variant of (1.1) with second equation simplifed to vt = −uv, and serving as an energy functional for
the full system (1.1) in the two-dimensional case at least along small-data trajectories ([37]), seems
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to lose any such property when n ≥ 3. Accordingly, as a starting point of our analysis we will resort
to the quite weak but dimension-independent global dissipative structure formally expressed in the
identity

d

dt

∫

Ω

(

− ln v
)

+

∫

Ω

|∇v|2
v2

=

∫

Ω
u ≡

∫

Ω
u0, (1.5)

as satisfied by suitably regular solutions of (1.1), as well as the inequality

∫ t

0

∫

Ω

|∇u|2
(u+ 1)2

≤ −
∫

Ω
ln
( v0

‖v0‖L∞(Ω)

)

+ 2

∫

Ω
u0 +

(

∫

Ω
u0

)

· t, (1.6)

which can formally be derived from this (see Lemma 2.1 and Lemma 2.2). These properties have been
used in the two-dimensional setting in [36] already, but unlike in the latter situation it seems that
in the case n ≥ 3 e.g. the inequality (1.6) is insufficient to imply any further useful global regularity
information on the quantity u itself, rather than for ln(u+ 1), in adequate Lebesgue spaces.

The challenge in our analysis will thus consist in making appropriate use of the one-dimensional
structure of the radial version of (1.1) in order to successively derive higher regularity properties
of radial solutions (uε, vε) to a suitably regularized variant of (1.1) (see (2.1)) from the preliminary
estimates implied by the correspondingly obtained rigorous counterparts of (1.5) and (1.6), at least
locally outside the spatial origin. This will be achieved in Section 3 by means of a bootstrapping
procedure involving one-dimensional interpolation arguments as well as several types of results from
parabolic regularity theory for the Neumann problem associated with the inhomogeneous linear heat
equation in the interval (0, R), where a key role will be played by an ε-independent pointwise lower
estimate, locally with respect to x ∈ Ω̄ \ {0} and t ∈ [0,∞) (Lemma 3.2). Based on estimates for

both uε and vε in corresponding local C2+θ,1+ θ
2 spaces (Lemma 3.15 and Lemma 3.14), through a

straightforward extraction procedure we will thereafter obtain limit functions u and v which form a
smooth and classical solution away from the origin (Lemma 4.1), and which due to the global regularity
properties connected to (1.5) and (1.6) can be seen to actually solve (1.1) in a generalized sense that
can be viewed as an adaptation of the well-known concept of renormalized solutions ([6]) to the present
setting (see Definition 4.2 and Lemma 4.3).

2 Approximation of solutions

Following the approach in [36], for ε ∈ (0, 1) let us consider the regularized problems























uεt = ∆uε −∇ · (uεf
′

ε(uε)
vε

∇vε), x ∈ Ω, t > 0,

vεt = ∆vε − fε(uε)vε, x ∈ Ω, t > 0,
∂uε

∂ν
= ∂vε

∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(2.1)

where with a fixed nonincreasing function ρ ∈ C∞([0,∞)) fulfilling ρ ≡ 1 in [0, 1] and ρ ≡ 0 in [2,∞),
we have set

fε(s) :=

∫ s

0
ρ(εσ)dσ, s ≥ 0. (2.2)
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Then the evident properties that for arbitrary ε ∈ (0, 1) we have

fε(s) = s for all s ∈
[

0,
1

ε

]

and f ′
ε(s) = 0 for all s ≥ 2

ε
(2.3)

and that for any s ≥ 0,

fε(s) ր s and f ′
ε(s) ր 1 as ε ց 0,

warrant that (2.1) indeed formally approaches the original system (1.1) in the limit ε ց 0, and that
moreover each individual among the problems (2.1) possesses a globally defined classical solution, as
can readily be verified by means of standard extension arguments (cf. [36, Lemma 2.2] for details in
the particular two-dimensional case). Clearly, this solution (uε, vε) inherits radial symmetry from the
initial data, and from the maximum principle and (1.2) it follows that uε ≥ 0 in Ω̄× [0,∞), and that

0 < vε(x, t) ≤ ‖v0‖L∞(Ω) for all x ∈ Ω̄ and t ≥ 0. (2.4)

In some places below, it will be convenient to consider instead of the second solution component the
nonnegative normalized logarithmic variant thereof given by

wε := − ln
( vε

‖v0‖L∞(Ω)

)

, (2.5)

whereupon (2.1) transforms to























uεt = ∆uε +∇ · (uεf ′
ε(uε)∇wε), x ∈ Ω, t > 0,

wεt = ∆wε − |∇wε|2 + fε(uε), x ∈ Ω, t > 0,
∂uε

∂ν
= ∂wε

∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), wε(x, 0) = w0(x) := − ln v0(x)
‖v0‖L∞(Ω)

, x ∈ Ω.

(2.6)

Some elementary but crucial regularity properties of the solutions to (2.1) can be summarized as
follows.

Lemma 2.1 For each ε ∈ (0, 1) we have

∫

Ω
uε(x, t)dx =

∫

Ω
u0 for all t > 0 (2.7)

as well as
∫

Ω
wε(x, t)dx ≤

∫

Ω
w0 +

(

∫

Ω
u0

)

· t for all t > 0 (2.8)

and
∫ T

0

∫

Ω
|∇wε(x, t)|2dxdt ≤

∫

Ω
w0 +

(

∫

Ω
u0

)

· T for all T > 0. (2.9)
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Proof. The identity (2.7) immediately results on integrating the first equation in (2.1) over Ω ×
(0, t). Thereupon, integrating the second equation in (2.6) shows that

∫

Ω
wε(·, t) +

∫ t

0

∫

Ω
|∇wε|2 =

∫

Ω
w0 +

∫ t

0

∫

Ω
fε(uε)

≤
∫

Ω
w0 +

∫ t

0

∫

Ω
uε

=

∫

Ω
w0 +

(

∫

Ω
u0

)

· t for all t > 0,

from which both (2.8) and (2.9) result thanks to the nonnegativity of wε. �

As already observed in [36], (2.7) and (2.9) entail an important consequence on the regularity of the
spatial gradient of uε.

Lemma 2.2 For any ε ∈ (0, 1),

∫ T

0

∫

Ω

|∇uε|2
(uε + 1)2

≤
∫

Ω
w0 + 2

∫

Ω
u0 +

(

∫

Ω
u0

)

· T for all T > 0. (2.10)

Proof. On testing the first equation in (2.6) against 1
uε+1 , this can be derived by using the

inequality (2.9) to appropriately absorb the resulting expression stemming from the cross-diffusive
interaction; for details we may refer to Lemma 2.4 in [36] which is formulated there for the case n = 2,
but can easily be verified to hold actually for arbitrary n ≥ 1. �

By means of the Cauchy-Schwarz inequality, the latter in conjunction with (2.7) entails an integral
estimate for the gradient of the power-type function

√
uε + 1 of uε, rather than merely for a logarith-

mically transformed version of uε.

Corollary 2.3 We have

∫ T

0

{
∫

Ω

∣

∣

∣
∇
√

uε(·, t) + 1
∣

∣

∣

}2

dt ≤
∫

Ω u0 + |Ω|
2

·
{
∫

Ω
w0 + 2

∫

Ω
u0 +

(

∫

Ω
u0

)

· T
}

for all T > 0

(2.11)
whenever ε ∈ (0, 1).

Proof. We apply the Cauchy-Schwarz inequality and recall (2.7) to estimate

∫ T

0

{
∫

Ω

∣

∣

∣
∇
√

uε(·, t) + 1
∣

∣

∣

}2

dt =
1

2

∫ T

0

{
∫

Ω

∇uε(·, t)
uε(·, t) + 1

·
(

uε(·, t) + 1
)

}2

dt

≤ 1

2

∫ T

0

{
∫

Ω

|∇uε(·, t)|2
(uε(·, t) + 1)2

}

·
{
∫

Ω

(

uε(·, t) + 1
)

}

dt

=

∫

Ω u0 + |Ω|
2

∫ T

0

∫

Ω

|∇uε(·, t)|2
(uε(·, t) + 1)2

dt

for all T > 0. Therefore, (2.11) is implied by (2.10). �

Apart from the above, let us finally also state one further property which does not rely on the radial
symmetry of solutions.
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Lemma 2.4 For all q ∈ [1, n
n−1) and any T > 0 there exists C(q, T ) > 0 such that for each ε ∈ (0, 1),

‖∇vε(·, t)‖Lq(Ω) ≤ C(q, T ) for all t ∈ (0, T ). (2.12)

Proof. Following a standard argument (see e.g. [12, Lemma 4.1]), by means of the Neumann heat
semigroup (eτ∆)τ≥0 on Ω we represent ∇vε according to

∇vε(·, t) = ∇et∆v0 −
∫ t

0
∇e(t−s)∆

(

fε(uε(·, s))vε(·, s)
)

ds, t > 0,

and recall known regularization properties of (eτ∆)τ≥0 ([33, Lemma 1.3]) to find c1 = c1(q) > 0 and
c2 = c2(q) > 0 such that

‖∇vε(·, t)‖Lq(Ω) ≤ c1‖v0‖W 1,q(Ω) + c2

∫ t

0

(

1 + (t− s)
− 1

2
−n

2
(1− 1

q
)
)∥

∥

∥
fε(uε(·, s))vε(·, s)

∥

∥

∥

L1(Ω)
ds (2.13)

for all t > 0. Since 0 ≤ fε(uε) ≤ uε by (2.2) and hence

∥

∥

∥
fε(uε(·, s))vε(·, s)

∥

∥

∥

L1(Ω)
≤ ‖fε(uε(·, s))‖L1(Ω)‖vε(·, s)‖L∞(Ω) ≤ ‖u0‖L1(Ω)‖v0‖L∞(Ω) for all s > 0

according to (2.7) and (2.4), from (2.13) we therefore readily obtain (2.12) on observing that 1
2+

n
2 (1−

1
q
) < 1 due to our hypothesis q < n

n−1 . �

3 Local estimates outside the origin for radial solutions

From now on we explicitly focus on the framework of radial symmetry, and our goal in this section
will consist in providing ε-independent estimates for the solutions of the approximate problems in the
annular regions Ω̄ \ Bδ(0) with arbitrary δ ∈ (0, R). For frequent reference at several stages of this
procedure, let us fix a cut-off function ζ ∈ C∞([0,∞)) satisfying

ζ ≡ 0 in [0, 12 ], ζ ≡ 1 in [1,∞) (3.1)

as well as
0 ≤ ζ ′ ≤ 4 and |ζ ′′| ≤ 32 on [0,∞), (3.2)

and introduce
ζδ(r) := ζ

(r

δ

)

for r ≥ 0 and δ > 0. (3.3)

In order to avoid abundant efforts in presentation, throughout the sequel we shall use the standard
radial notation by e.g. writing uε(r, t) in referring to uε(x, t) for arbitrary x ∈ ∂Br(0) whenever
r ∈ [0, R] and t ≥ 0.

Let us first draw some immediate consequences of Lemma 2.2, Corollary 2.3 and Lemma 2.4 for the
resulting functions uε, vε and wε when accordingly viewed as functions of the one-dimensional spatial
variable r ∈ [0, R] only.
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Lemma 3.1 For all δ ∈ (0, R) there exists C(δ) > 0 such that for each ε ∈ (0, 1) we have

‖uε(·, t)‖L1((δ,R)) ≤ C(δ) for all t > 0, (3.4)

and for each δ ∈ (0, R) and arbitrary T > 0 one can find C(δ, T ) > 0 fulfilling

‖wε(·, t)‖L1((δ,R)) ≤ C(δ, T ) for all t ∈ (0, T ) (3.5)

as well as
∫ T

0

{
∫ R

δ

∣

∣

∣
∂r
√

uε(r, t) + 1
∣

∣

∣
dr

}2

dt ≤ C(δ, T ) (3.6)

and
∫ T

0

∫ R

δ

w2
εr(r, t)drdt ≤ C(δ, T ) (3.7)

for all ε ∈ (0, 1). Moreover, for any choice of q ∈ [1, n
n−1), δ ∈ (0, R) and T > 0 one can fix

C(q, δ, T ) > 0 such that

‖vεr(·, t)‖Lq((δ,R)) ≤ C(q, δ, T ) for all t ∈ (0, T ) (3.8)

whenever ε ∈ (0, 1).

Proof. As
∫ R

δ

uε(r, t)dr ≤ δ1−n

∫ R

δ

rn−1uε(r, t)dr for all t > 0,

the inequality (3.4) is obviously impled by (2.7). Likewise, (3.5), (3.6), (3.7) and (3.8) directly result
from (2.8), (2.11), (2.9) and (2.12), respectively. �

In order to successively improve our knowledge on the regularity of uε, vε and wε away from r = 0,
we observe that given any ξ ∈ C∞([0, R]× [0,∞)) fulfilling supp ξr ⊂ (0, R)× [0,∞), these functions
satisfy the inhomogeneous linear initial-boundary value problems











(ξuε)t = (ξuε)rr + a1r(r, t) + a2(r, t) + a3(r, t), r ∈ (0, R), t > 0,

(ξuε)r(0, t) = (ξuε)r(R, t) = 0, t > 0,

(ξuε)(r, 0) = ξ(r, 0)u0(r), r ∈ (0, R),

(3.9)

with

a1(r, t) ≡ a1(r, t; ξ, ε) := ξ(r, t)uε(r, t)f
′
ε(uε(r, t))wεr(r, t), r ∈ (0, R), t > 0, (3.10)

and

a2(r, t) ≡ a2(r, t; ξ, ε) :=
n− 1

r
ξ(r, t)uεr(r, t)− 2ξr(r, t)uεr(r, t), r ∈ (0, R), t > 0, (3.11)

as well as

a3(r, t) ≡ a3(r, t; ξ, ε) := ξt(r, t)uε(r, t)− ξrr(r, t)uε(r, t)

−ξr(r, t)uε(r, t)f
′
ε(uε(r, t))wεr(r, t)

+
n− 1

r
ξ(r, t)uε(r, t)f

′
ε(uε(r, t))wεr(r, t), r ∈ (0, R), t > 0, (3.12)
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and










(ξvε)t = (ξvε)rr + b1(r, t) + b2(r, t), r ∈ (0, R), t > 0,

(ξvε)r(0, t) = (ξvε)r(R, t) = 0, t > 0,

(ξvε)(r, 0) = ξ(r, 0)v0(r), r ∈ (0, R),

(3.13)

where

b1(r, t) ≡ b1(r, t; ξ, ε) := −2ξr(r, t)vεr(r, t) +
n− 1

r
ξ(r, t)vεr(r, t), r ∈ (0, R), t > 0, (3.14)

and

b2(r, t) ≡ b2(r, t; ξ, ε) := ξt(r, t)vε(r, t)− ξrr(r, t)vε(r, t)

−ξ(r, t)fε(uε(r, t))vε(r, t), r ∈ (0, R), t > 0, (3.15)

and finally










(ξwε)t = (ξwε)rr + d1(r, t) + d2(r, t)− d3(r, t), r ∈ (0, R), t > 0,

(ξwε)r(0, t) = (ξwε)r(R, t) = 0, t > 0,

(ξwε)(r, 0) = ξ(r, 0)w0(r), r ∈ (0, R),

(3.16)

with

d1(r, t) ≡ d1(r, t; ξ, ε) := −2ξr(r, t)wεr(r, t) +
n− 1

r
ξ(r, t)wεr(r, t), r ∈ (0, R), t > 0, (3.17)

and

d2(r, t) ≡ d2(r, t; ξ, ε) := ξt(r, t)wε(r, t)− ξrr(r, t)wε(r, t) + ξ(r, t)fε(uε(r, t)) r ∈ (0, R), t > 0,
(3.18)

as well as
d3(r, t) ≡ d3(r, t; ξ, ε) := ξ(r, t)w2

εr(r, t), r ∈ (0, R), t > 0, (3.19)

for ε ∈ (0, 1).

In what follows, by A we abbreviate the formal differential operator −(·)rr under homogeneous
Neumann boundary conditions in the one-dimensional interval (0, R), along with its realizations in
Lp((0, R)) for p ∈ (1,∞), and the corresponding analytic semigroups (e−τA)τ≥0 which are clearly
independent of p when acting on suitably smooth functions e.g. lying in C0([0, R]).

3.1 A pointwise lower bound for vε

As a first crucial step in our analysis, let us make sure that in regions away from the origin, the com-
ponent vε remains bounded from below by a positive constant, at least locally in time, but uniformly
with respect to ε ∈ (0, 1). In view of (2.5), this is equivalent to deriving a corresponding pointwise
upper bound for wε, which is at the core of the argument in the following lemma.

Lemma 3.2 Let δ ∈ (0, R) and T > 0. Then there exists C(δ, T ) > 0 such that for all ε ∈ (0, 1) we
have

vε(r, t) ≥ C(δ, T ) for all r ∈ (δ,R) and t ∈ (0, T ). (3.20)
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Proof. From standard estimates on the smoothing action of (e−τA)τ≥0 ([26], [33, Lemma 1.3]) we
know that there exist c1 > 0 and c2 > 0 such that for all τ > 0 we have

‖e−τAϕ‖L∞((0,R)) ≤ c1(1 + τ−
1
4 )‖ϕ‖L2(Ω) for all ϕ ∈ L2((0, R)) (3.21)

and
‖e−τAϕ‖L∞((0,R)) ≤ c2(1 + τ−

1
2 )‖ϕ‖L1(Ω) for all ϕ ∈ L1((0, R)). (3.22)

Now given δ ∈ (0, R), in (3.16)-(3.18) we choose ξ(r, t) := ζδ(r), and in order to estimate the product
ζδwε thus addressed in (3.16), for fixed T > 0 we first apply Lemma 3.1 to gain c3 = c3(δ) > 0,
c4 = c4(δ, T ) > 0 and c5 = c5(δ, T ) > 0 such that

∫ R

δ
2

uε(r, t)dr ≤ c3 for all t ∈ (0, T ) (3.23)

and
∫ R

δ
2

wε(r, t)dr ≤ c4 for all t ∈ (0, T ) (3.24)

as well as
∫ T

0

∫ R

δ
2

w2
εr(r, t)drdt ≤ c5. (3.25)

Since 0 ≤ ζδ ≤ 1 as well as |ζδr| ≤ 4
δ
and |ζδrr| ≤ 32

δ2
on (0, R) by (3.1)-(3.3), and since 0 ≤ fε(uε) ≤ uε

according to (2.2), from (3.23) and (3.24) we obtain that in (3.18) we have

‖d2(·, t)‖L1((0,R)) ≤
∫ R

0
|ζδrr(r)|wε(r, t)dr +

∫ R

0
ζδ(r)fε(uε(r, t))dr

≤ c6 :=
32

δ2
· c4 + c3 for all t ∈ (0, T ), (3.26)

whereas (3.25) warrants that in (3.17) we can estimate

∫ T

0
‖d1(·, t)‖2L2((0,R))dt ≤ 2

∫ T

0

∫ R

0
4ζ2δr(r)w

2
εr(r, t)drdt+ 2

∫ T

0

∫ R

0

(n− 1)2

r2
ζ2δ (r)w

2
εr(r, t)drdt

≤ 128

δ2

∫ T

0

∫ R

δ
2

w2
εr(r, t)drdt+

8(n− 1)2

δ2

∫ T

0

∫ R

δ
2

w2
εr(r, t)drdt

≤ c7 :=
128

δ2
· c5 +

8(n− 1)2

δ2
· c5. (3.27)

On the basis of the variation-of-constants representation of wε associated with (3.16), that is, of the
identity

ζδwε(·, t) = e−tA(ζδw0) +

∫ t

0
e−(t−s)Ad1(·, s)ds+

∫ t

0
e−(t−s)Ad2(·, s)ds,

−
∫ t

0
e−(t−s)Ad3(·, s)ds, t > 0,

10



by means of (3.21), (3.22) and the maximum principle we now obtain, using that wε ≥ 0 and that by
(3.19) also d3 is nonnegative, that

‖ζδwε(·, t)‖L∞((0,R)) ≤ ‖ζδw0‖L∞((0,R)) + c1

∫ t

0

(

1 + (t− s)−
1
4

)

‖d1(·, s)‖L2((0,R))ds

+c2

∫ t

0

(

1 + (t− s)−
1
2

)

‖d2(·, s)‖L1((0,R))ds for all t > 0. (3.28)

Again since 0 ≤ ζδ ≤ 1, we herein have

‖ζδw0‖L∞((0,R)) ≤ ‖w0‖L∞((0,R)),

and using (3.26) we see that

c2

∫ t

0

(

1 + (t− s)−
1
2

)

‖d2(·, s)‖L1((0,R))ds ≤ c2c6

∫ t

0

(

1 + (t− s)−
1
2

)

ds

≤ c8 := c2c6(T + 2T
1
2 ) for all t ∈ (0, T ).

Moreover, the Cauchy-Schwarz inequality along with (3.27) guarantees that

c1

∫ t

0

(

1 + (t− s)−
1
4

)

‖d1(·, s)‖L2((0,R))ds

≤ c1 ·
{
∫ t

0

(

1 + (t− s)−
1
4

)2
ds

}
1
2

·
{
∫ t

0
‖d1(·, s)‖2L2((0,R))ds

}
1
2

≤ c1c
1
2
7 ·

{

2

∫ t

0

(

1 + (t− s)−
1
2

)

ds

}
1
2

≤ c9 := c1c
1
2
7 (2T + 4T

1
2 )

1
2 for all t ∈ (0, T ).

According to (3.28), we thus infer that

‖ζδwε(·, t)‖L∞((0,R)) ≤ ‖w0‖L∞((0,R)) + c9 + c8 for all t ∈ (0, T ),

which implies (3.20) due to (2.5) and the fact that ζδ ≡ 1 on (δ,R). �

3.2 Regularity properties of vεr and wεr in dependece on L
p bounds for uε

Our next purpose will be to improve the regularity information on the chemotactic grandient vεr
from Lemma 2.4. As a preliminary step toward this, the following lemma provides a criterion for Lq

boundedness of this quantity in dependence of a supposedly known spatial Lp bound for uε. This will
firstly be used in Corollary 3.4 for arbitrary q < ∞, and a second application in Corollary 3.8 will
later yield a corresponding L∞ bound.

Lemma 3.3 Let p ≥ 1 and q ≥ 1 be such that
{

q < ∞ if p = 1,

q ≤ ∞ if p > 1.
(3.29)

11



Then for all δ ∈ (0, R) and any T > 0 there exists C(p, q, δ, T ) > 0 with the property that for all
ε ∈ (0, 1) we have

‖vεr(·, t)‖Lq((δ,R)) ≤ C(p, q, δ, T ) ·
{

1 + sup
s∈(0,t)

‖uε(·, t)‖Lp(( δ
2
,R))

}

for all t ∈ (0, T ). (3.30)

Proof. Without loss of generality we may assume that p < n
n−1 and q ≥ p. Then since for each

ϕ ∈ W 1,q((0, R)) and any τ > 0 we clearly have ∂re
−τAϕ = e−τADϕr with AD denoting the operator

−(·)rr under homogeneous Dirichlet boundary conditions in (0, R), so that

‖∂re−τAϕ‖Lq((0,R)) ≤ ‖ϕr‖Lq((0,R)) for all τ > 0 and each ϕ ∈ W 1,q((0, R)). (3.31)

Moreover, again relying on known regularizing features of (e−τA)τ≥0 we can find c1 > 0 such that

‖∂re−τAϕ‖Lq((0,R)) ≤ c1(1 + τ−γ)‖ϕ‖Lp((0,R)) for all τ > 0 and any ϕ ∈ Lp((0, R)), (3.32)

where in both cases q < ∞ and q = ∞, our assumption (3.29) warrants that

γ :=

{

1
2 + 1

2(
1
p
− 1

q
) if q < ∞,

1
2 + 1

2p if q = ∞,

satisfies γ < 1. Therefore, in the identity

∂r(ζδvε(·, t)) = ∂re
−tA(ζδv0) +

∫ t

0
∂re

−(t−s)Ab1(·, s)ds+
∫ t

0
∂re

−(t−s)Ab2(·, s)ds, t > 0,

as obtained from (3.13)-(3.15) on choosing ξ(r, t) := ζδ(r) for (r, t) ∈ [0, R]×[0,∞) and fixed δ ∈ (0, R),
we can estimate

‖vεr(·, t)‖Lq((δ,R)) ≤ ‖∂r(ζδvε(·, t))‖Lq((0,R))

≤ ‖∂r(ζδv0)‖Lq((0,R)) + c1

∫ t

0

(

1 + (t− s)−γ
)

‖b1(·, s)‖Lp((0,R))ds

+c1

∫ t

0

(

1 + (t− s)−γ
)

‖b2(·, s)‖Lp((0,R))ds (3.33)

for t > 0. Here since p < n
n−1 , Lemma 3.1 applies so as to yield c2 = c2(p, δ, T ) > 0 fulfilling

‖vεr(·, s)‖Lp(( δ
2
,R)) ≤ c2 for all s ∈ (0, T ),

whence again using that ζδ ≡ 0 in (0, δ2) and 0 ≤ ζδ ≤ 1 as well as |ζδr| ≤ 4
δ
, we see that

‖b1(·, s)‖Lp((0,R)) ≤
∥

∥

∥
2ζδrvεr(·, s)

∥

∥

∥

Lp((0,R))
+
∥

∥

∥

n− 1

r
ζδvεr(·, s)

∥

∥

∥

Lp((0,R))

≤ 8

δ
‖vεr(·, s)‖Lp(( δ

2
,R)) +

2(n− 1)

δ
‖vεr(·, s)‖Lp(( δ

2
,R))

≤ c3 :=
8

δ
c2 +

2(n− 1)

δ
c2 for all s ∈ (0, T ),
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and that hence

c1

∫ t

0

(

1 + (t− s)−γ
)

‖b1(·, s)‖Lp((0,R))ds ≤ c1c3

∫ t

0

(

1 + (t− s)−γ
)

ds

= c1c3

(

t+
t1−γ

1− γ

)

≤ c1c3

(

T +
T 1−γ

1− γ

)

for all t ∈ (0, T ), (3.34)

because γ < 1. Similarly, as |ζδrr| ≤ 32
δ2

and 0 ≤ fε(uε) ≤ uε, thanks to (2.4) we find that

‖b2(·, s)‖Lp((0,R)) ≤ ‖ζδrrvε(·, s)‖Lp((0,R)) + ‖ζδfε(uε(·, s))vε(·, s)‖Lp((0,R))

≤ 32

δ2
R

1
p ‖vε(·, s)‖L∞((0,R)) + ‖uε(·, s)‖Lp(( δ

2
,R))‖vε(·, s)‖L∞((0,R))

≤ 32

δ2
R

1
p ‖v0‖L∞((0,R)) + ‖uε(·, s)‖Lp(( δ

2
,R))‖v0‖L∞((0,R))

≤ c4 ·
{

1 + sup
σ∈(0,T )

‖uε(·, σ)‖Lp(( δ
2
,R))

}

for all s ∈ (0, T )

with an evident choice of c4 = c4(p, δ), whence also

c1

∫ t

0

(

1+ (t− s)−γ
)

‖b2(·, s)‖Lp((0,R))ds ≤ c1c4 ·
(

T +
T 1−γ

1− γ

)

·
{

1+ sup
s∈(0,T )

‖uε(·, s)‖Lp(( δ
2
,R))

}

(3.35)

for all t ∈ (0, T ). Since finally the number c5 ≡ c5(q, δ) := ‖∂r(ζδv0)‖Lq((0,R)) is finite thanks to the
assumed inclusion v0 ∈ W 1,∞((0, R)) asserted by (1.2), it follows from (3.33), (3.34) and (3.35) that

indeed (3.30) holds if we choose C(p, q, δ, T ) := c5 + c1(c3 + c4)(T + T 1−γ

1−γ
), for instance. �

By means of Lemma 2.1, a first consequence of the latter is immediate.

Corollary 3.4 Let q ∈ [1,∞). Then for all δ ∈ (0, R) and T > 0 there exists C(q, δ, T ) > 0 such that

‖wεr(·, t)‖Lq((δ,R)) ≤ C(q, δ, T ) for all t ∈ (0, T ) (3.36)

whenever ε ∈ (0, 1).

Proof. In view of (3.4), we may apply Lemma 3.3 to p := 1 to find c1 = c1(q, δ, T ) > 0 such that
for all ε ∈ (0, 1),

‖vεr(·, t)‖Lq((δ,R)) ≤ c1 for all t ∈ (0, T ).

Since Lemma 3.2 implies the existence of c2 = c2(δ, T ) > 0 such that

vε(r, t) ≥ c2 for all r ∈ (δ,R), t ∈ (0, T ) and ε ∈ (0, 1),

in view of the identity wεr = −vεr
vε

this directly yields (3.36). �
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3.3 Time-independent bounds for uε in L
2. Space-time L

2 estimates for uεr

We shall next be concerned with the regularity properties of uε. Here the standard approach of
pursuing the time evolution of spatial Lp norms thereof can easily be seen to require quite thorough
knowledge on the regularity of the gradient of wε, going far beyond (2.9) even for small positive p

when the corresponding procedure is carried out at a spatially global level. In light of e.g the outcome
of Corollary 3.4, however, an adequately localized testing procedure may be expected to provide some
information on regularity at least away from the origin. Our analysis of certain spatially weighted
functionals of this type is prepared by the following observation which will below be applied twice,
namely first to some p ∈ (1, 2) in Lemma 3.7, and thereafter to p := 2 in Lemma 3.9.

Lemma 3.5 Let p > 1. Then for all δ ∈ (0, R) one can pick C(p, δ) > 0 such that for all ε ∈ (0, 1)
we have

d

dt

∫ R

0
rn−1ζδ(r)u

p
ε(r, t)dr +

p(p− 1)δn−1

2

∫ R

δ

up−2
ε (r, t)u2εr(r, t)dr

≤ C(p, δ)

∫ R

δ
2

upε(r, t)
(

w2
εr(r, t) + 1

)

dr for all t > 0. (3.37)

Proof. We multiply the radial version of the first equation in (2.6) by ζδ(r)u
p−1
ε (r, t) and integrate

by parts over r ∈ (0, R) to obtain

1

p

d

dt

∫ R

0
rn−1ζδ(r)u

p
ε(r, t)dr + (p− 1)

∫ R

0
rn−1ζδ(r)u

p−2
ε (r, t)u2εr(r, t)dr

= −
∫ R

0
rn−1ζδr(r)u

p−1
ε (r, t)uεr(r, t)dr

−(p− 1)

∫ R

0
rn−1ζδ(r)u

p−1
ε (r, t)f ′

ε(uε(r, t))uεr(r, t)wεr(r, t)dr

−
∫ R

0
rn−1ζδr(r)u

p
ε(r, t)f

′
ε(uε(r, t))wεr(r, t)dr for all t > 0. (3.38)

Here, another integration by parts shows that in view of (3.1)-(3.3) we can find c1 = c1(δ) > 0 such
that

−
∫ R

0
rn−1ζδr(r)u

p−1
ε (r, t)uεr(r, t)dr =

1

p

∫ R

0
(rn−1ζδr)ru

p
ε(r, t)dr

≤ c1

∫ R

δ
2

upε(r, t)dr for all t > 0, (3.39)

whereas two applications of Young’s inequality reveal that

−(p− 1)

∫ R

0
rn−1ζδ(r)u

p−1
ε (r, t)f ′

ε(uε(r, t))uεr(r, t)wεr(r, t)dr ≤ p− 1

2

∫ R

0
rn−1ζδ(r)u

p−2
ε (r, t)u2εr(r, t)dr

+
p− 1

2

∫ R

0
rn−1ζδ(r)u

p
ε(r, t)w

2
εr(r, t)dr
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≤ p− 1

2

∫ R

0
rn−1ζδ(r)u

p−2
ε (r, t)u2εr(r, t)dr

+
p− 1

2
Rn−1

∫ R

δ
2

upε(r, t)w
2
εr(r, t)dr(3.40)

and

−
∫ R

0
rn−1ζδr(r)u

p
ε(r, t)f

′
ε(uε(r, t))wεr(r, t)dr ≤ 1

2

∫ R

0
rn−1ζδr(r)u

p
ε(r, t)

(

w2
εr(r, t) + 1

)

dr

≤ 2Rn−1

δ

∫ R

δ
2

upε(r, t)
(

w2
εr(r, t) + 1

)

dr (3.41)

for all t > 0, again because of (3.1)-(3.3) and the fact that 0 ≤ f ′
ε ≤ 1. Combined with (3.39)-(3.41),

once more in view of (3.1) the identity (3.38) thus entails (3.37). �

In estimating the integral on the right of (3.37) appropriately for p < 2 in Lemma 3.7, we will make
use of the following consequence of Lemma 3.1 when combined with a one-dimensional interpolation
argument.

Lemma 3.6 Let δ ∈ (0, R) and T > 0. Then there exists C(δ, T ) > 0 such that

∫ T

0

∫ R

δ

u2ε(r, t)drdt ≤ C(δ, T ) for all ε ∈ (0, 1). (3.42)

Proof. According to the one-dimensional version of the Gagliardo-Nirenberg inequality, there
exists c1 = c1(δ) > 0 such that

‖ϕ‖4L4((δ,R)) ≤ c1‖ϕr‖2L1((δ,R))‖ϕ‖2L2((δ,R)) + c1‖ϕ‖4L2((δ,R)) for all ϕ ∈ W 1,1((δ,R)).

When applied to ϕ :=
√

uε(·, t) + 1 and integrated with respect to t ∈ (0, T ), this shows that

∫ T

0

∫ R

δ

(

uε(r, t) + 1
)2

drdt ≤ c1

∫ T

0

{
∫ R

δ

∣

∣

∣
∂r
√

uε(r, t) + 1
∣

∣

∣
dr

}2

·
{
∫ R

δ

(

uε(r, t) + 1
)

dr

}

dt

+c1

∫ T

0

{
∫ R

δ

(

uε(r, t) + 1
)

dr

}2

dt

for all T > 0. Since Lemma 3.1 provides c2 = c2(δ) > 0 fulfilling

∫ R

δ

(

uε(r, t) + 1
)

dr ≤ c2 for all t > 0,

from this we particularly infer that

∫ T

0

∫ R

δ

u2ε(r, t)dr ≤ c1c2

∫ T

0

{
∫ R

δ

∣

∣

∣
∂r
√

uε(r, t) + 1
∣

∣

∣
dr

}2

dt+ c1c
2
2T for all T > 0,

and that thus (3.42) is a consequence of (3.6). �

With this estimate at hand, from Lemma 3.6 we can now derive a spatially local Lp bound for uε
whenever p < 2.
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Lemma 3.7 Let p ∈ (1, 2). Then for all δ ∈ (0, R) and each T > 0 there exists C(p, δ, T ) > 0 fulfilling

∫ R

δ

upε(r, t)dr ≤ C(p, δ, T ) for all t ∈ (0, T ) and any ε ∈ (0, 1). (3.43)

Proof. Given p ∈ (1, 2), δ ∈ (0, R) and T > 0, from Lemma 3.6 we obtain c1 = c1(δ, T ) > 0 such
that for all ε ∈ (0, 1),

∫ T

0

∫ R

δ
2

u2ε(r, t)drdt ≤ c1, (3.44)

whereas since p < 2 we may invoke Corollary 3.4 to find c2 = c2(p, δ, T ) > 0 satisfying

∫ R

δ
2

|wεr(r, t)|
4

2−pdr ≤ c2 for all t ∈ (0, T ) and ε ∈ (0, 1). (3.45)

Therefore, using Young’s inequality we can estimate the integral appearing on the right-hand side of
(3.37) according to

∫ R

δ
2

upε(r, t)
(

w2
εr(r, t) + 1

)

dr ≤ 2

∫ R

δ
2

u2ε(r, t) +

∫ R

δ
2

|wεr(r, t)|
4

2−pdr +R

≤ 2

∫ R

δ
2

u2ε(r, t) + c2 +R for all t ∈ (0, T ) and ε ∈ (0, 1),

whence from Lemma 3.5 we infer the existence of c3 = c3(p, δ, T ) > 0 such that for all ε ∈ (0, 1) we
have

∫ R

0
rn−1ζδ(r)u

p
ε(r, t)dr ≤

∫ R

0
rn−1ζδ(r)u

p
0(r)dr + c3 ·

{

1 +

∫ T

0

∫ R

δ
2

u2ε(r, t)drdt

}

for all t ∈ (0, T ).

In view of (3.44) and (3.1), this immediately leads to (3.43). �

In view of our preparation made in Lemma 3.3, from the above we can conclude without any further
efforts an L∞ bound for vεr, and hence also for wεr, outside the origin.

Corollary 3.8 For all δ ∈ (0, R) and T > 0 one can find C(δ, T ) > 0 such that for each ε ∈ (0, 1) we
have

|vεr(r, t)| ≤ C(δ, T ) for all r ∈ (δ,R) and t ∈ (0, T ) (3.46)

and
|wεr(r, t)| ≤ C(δ, T ) for all r ∈ (δ,R) and t ∈ (0, T ). (3.47)

Proof. Choosing any p ∈ (1, 2) in Lemma 3.5, we see that then (3.46) becomes a consequence of
the latter when combined with Lemma 3.3. Thereafter, (3.47) results from (3.46) on recalling Lemma
3.2. �

As a particular outcome of Corollary 3.8, we obtain that even for the value p = 2, yet excluded in
Lemma 3.7, the integral on the right of (3.37) can be adequately controlled by means of Lemma 3.6,
in consequence leading to the following main result of this section.
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Lemma 3.9 Let δ ∈ (0, R) and T > 0. Then one can choose C(δ, T ) > 0 with the property that
whenever ε ∈ (0, 1),

∫ R

δ

u2ε(r, t)dr ≤ C(δ, T ) for all t ∈ (0, T ) (3.48)

and
∫ T

0

∫ R

δ

u2εr(r, t)drdt. (3.49)

Proof. By means of Corollary 3.8 taking c1 = c1(δ, T ) > 0 such that |wεr| ≤ c1 in ( δ2 , R) × (0, T )
for all ε ∈ (0, 1), from Lemma 3.5 we see that with some c2 = c2(δ) > 0 we have

d

dt

∫ R

0
rn−1ζδ(r)u

2
ε(r, t)dr + δn−1

∫ R

δ

u2εr(r, t)dr

≤ c2

∫ R

δ
2

u2ε(r, t)
(

w2
εr(r, t) + 1

)

dr

≤ c2 · (c21 + 1)

∫ R

δ
2

u2ε(r, t)dr for all t ∈ (0, T ) (3.50)

and each ε ∈ (0, 1). As again Lemma 3.6 yields c3 = c3(δ, T ) > 0 such that

∫ T

0

∫ R

δ
2

u2ε(r, t)drdt ≤ c3 for all ε ∈ (0, 1),

on integrating (3.50) in time we infer that for all ε ∈ (0, 1),

∫ R

0
rn−1ζδ(r)u

2
ε(r, t)dr + δn−1

∫ t

0

∫ R

δ

u2εr(r, s)drds

≤
∫ R

0
rn−1ζδ(r)u

2
0(r)dr + c2 · (c21 + 1)c3 for all t ∈ (0, T ),

from which both (3.48) and (3.49) follow thanks to (3.1). �

We remark that in light of this new information, on suitably interpolating between (3.48) and (3.49)
it would be possible to improve Lemma 3.6 so as to provide a bound for uε in corresponding spatio-
temporal L6 spaces, thereafter go back to Lemma 3.5 to derive a spatially local bound for uε in
L6, and repeat this bootstrapping procedure so as to finally obtain boundedness of (uε)ε∈(0,1) in
L∞
loc([0,∞);Lp

loc((0, R])) for any p ∈ [1,∞). In view of a stronger result to be obtained more directly
in Lemma 3.11 and Corollary 3.12 below, however, we do not pursue this any further here.

3.4 A Hölder estimate for vε

In order to verify the claimed continuity property of the second solution component stated in Theorem
1.1, let us note a uniform Hölder regularity feature enjoyed by vε according to standard parabolic
regularity results and the estimates provided by Lemma 3.9 and Corollary 3.8.
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Lemma 3.10 For all δ ∈ (0, R) and T > 0 there exist θ = θ(δ, T ) ∈ (0, 1) and C(δ, T ) > 0 such that

‖vε‖
Cθ, θ2 ([δ,R]×[0,T ])

≤ C(δ, T ) for all ε ∈ (0, 1). (3.51)

Proof. For fixed δ ∈ (0, R) we choose ξ(r, t) := ζδ(r), (r, t) ∈ [0, R] × [0,∞), in (3.13). Then
applying Lemma 3.9 and Corollary 3.8 to fix c1 = c1(δ, T ) > 0 and c2 = c2(δ, T ) > 0 such that for all
ε ∈ (0, 1) we have

∫ R

δ
2

u2ε(r, t)dr ≤ c1(δ, T )

and

|vεr(r, t)| ≤ c2 for all r ∈ ( δ2 , R) and t ∈ (0, T ),

we see using (3.1)-(3.3) and (2.4) that in (3.14) and (3.15) we can estimate

|b1(r, t)| ≤ 2|ζδr(r)| · |vεr(r, t)|+
2(n− 1)

δ
ζδ(r)|vεr(r, t)|

≤ 8

δ
c2 +

2(n− 1)

δ
c2 for all r ∈ (0, R), t ∈ (0, T ) and ε ∈ (0, 1)

and
∫ R

0
b22(r, t)dr ≤ 2

∫ R

δ
2

1024

δ4
v2ε(r, t)dr + 2

∫ R

δ
2

u2ε(r, t)v
2
ε(r, t)dr

≤ 2048

δ4
‖v0‖2L∞((0,R))R+ 2‖v0‖2L∞((0,R))c1 for all t ∈ (0, T ) and each ε ∈ (0, 1).

As this implies an estimate for b1 + b2 in Lr̂((0, T );Lq̂((0, R))) with r̂ := ∞ and q̂ := 2 fulfilling
1
r̂
+ 1

2q̂ = 1
4 < 1, a known result on Hölder regularity properties of the Neumann problem for the

inhomogeneous linear heat equation ([25, Theorem 1.3, Remark 1.4]) yields θ1 = θ1(δ, T ) ∈ (0, 1) and
c3 = c3(δ, T ) > 0 such that

‖ζδvε‖
Cθ1,

θ1
2 ([0,R)×[0,T ])

≤ c3 for all ε ∈ (0, 1).

As ζδ ≡ 1 in [δ,R], this clearly implies (3.51). �

3.5 L
∞ and Hölder bounds for uε

Now an important consequence of the two estimates from Lemma 3.9, along with the chemotactic
gradient bounds from Corollary 3.8, can be obtained by means of a proper exploitation of standard
smoothing estimates for the heat semigroup associated with the linear inhomogeneous Neumann prob-
lem (3.9). We formulate our result in this direction in such a manner that it will firstly imply an L∞

bound for uε in (δ,R)× (0, T ) for arbitrary δ ∈ (0, R) and T > 0 in Corollary 3.12, and that later on
it can moreover be used to guarantee continuity of the correspondingly obtained limit function down
to t = 0 in Lemma 4.1.
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Lemma 3.11 For all δ ∈ (0, R) and T > 0 there exists C(δ, T ) > 0 such that whenever ε ∈ (0, 1), we
have

∥

∥

∥
ζδuε(·, t)− e−tA(ζδu0)

∥

∥

∥

L∞((0,R))
≤ C(δ, T ) · t 1

4 for all t ∈ (0, T ). (3.52)

Proof. We once more recall known smoothing properties of the Neumann heat semigroup in (0, R)
([33], [8]) to find c1 > 0 and c2 > 0 such that for any τ > 0 we have

‖e−τAϕ‖L∞((0,R)) ≤ c1(1 + τ−
1
4 )‖ϕ‖L2((0,R)) for all ϕ ∈ L2((0, R)) (3.53)

and

‖e−τAϕr‖L∞((0,R)) ≤ c2(1 + τ−
3
4 )‖ϕ‖L2((0,R)) for all ϕ ∈ W 1,2((0, R)) satisfying ϕ(0) = ϕ(R) = 0.

(3.54)
Now for fixed δ ∈ (0, R), in (3.9) we choose ξ(r, t) := ζδ(r), (r, t) ∈ [0, R] × [0,∞), to obtain from an
associated variation-of-constants representation that with a1, a2 and a3 as correspondingly defined in
(3.10)-(3.12) we have

ζδuε(·, t) = e−tA(ζδu0) +

∫ t

0
e−(t−s)A

{

a1r(·, s) + a2(·, s) + a3(·, s)
}

ds

and hence
∥

∥

∥
ζδuε(·, t)− e−tA(ζδu0)

∥

∥

∥

L∞((0,R))
≤

∫ t

0
‖e−(t−s)Aa1r(·, s)‖L∞((0,R))ds

+

∫ t

0
‖e−(t−s)Aa2(·, s)‖L∞((0,R))ds

+

∫ t

0
‖e−(t−s)Aa3(·, s)‖L∞((0,R))ds

=: I1(t) + I2(t) + I3(t) (3.55)

for t > 0. To estimate I1, I2 and I3 over (0, T ) for given T > 0, we invoke Lemma 3.9 and Corollary 3.8
to fix positive constants c3, c4 and c5, all possibly depending on δ and T , such that for all ε ∈ (0, 1),

∫ R

δ
2

u2ε(r, t)dr ≤ c3 for all t ∈ (0, T ) (3.56)

and
∫ T

0

∫ R

δ
2

u2εr(r, t)drdt ≤ c4 (3.57)

as well as
|wεr(r, t)| ≤ c5 for all r ∈ ( δ2 , R) and t ∈ (0, T ). (3.58)

In view of (3.1)-(3.3) and (2.2), we can therefore estimate
∫ R

0
a21(r, t)dr =

∫ R

0
ζ2δ (r)u

2
ε(r, t)f

′2
ε (uε(r, t))w

2
εr(r, t)dr

≤
∫ R

δ
2

u2ε(r, t)w
2
εr(r, t)dr

≤ c6 := c3c
2
5 for all t ∈ (0, T ) (3.59)
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and
∫ T

0

∫ R

0
a22(r, t)drdt ≤ 2

∫ T

0

∫ R

0

(n− 1)2

r2
ζ2δ (r)u

2
εr(r, t)drdt+ 2

∫ T

0

∫ R

0
4ζ2δr(r)u

2
εr(r, t)drdt

≤ 8(n− 1)2

δ2

∫ T

0

∫ R

δ
2

u2εr(r, t)drdt+
128

δ2

∫ T

0

∫ R

δ
2

u2εr(r, t)drdt

≤ c7 :=
8(n− 1)2

δ2
c4 +

128

δ2
c4 (3.60)

as well as
∫ R

0
a23(r, t)dr ≤ 3

∫ R

0
ζ2δrr(r)u

2
ε(r, t)dr

+3

∫ R

0
ζ2δr(r)u

2
ε(r, t)f

′2
ε (uε(r, t))w

2
εr(r, t)dr

+3

∫ R

0

(n− 1)2

r2
ζ2δ (r)u

2
ε(r, t)f

′2
ε (uε(r, t))w

2
εr(r, t)dr

≤ 3072

δ4

∫ R

δ
2

u2ε(r, t)dr

+
48

δ2

∫ R

δ
2

u2ε(r, t)w
2
εr(r, t)dr

+
12(n− 1)2

δ2

∫ R

δ
2

u2ε(r, t)w
2
εr(r, t)dr

≤ c8 :=
3072

δ4
c3 +

48

δ2
c3c

2
5 +

12(n− 1)2

δ2
c3c

2
5 for all t ∈ (0, T ) (3.61)

whenever ε ∈ (0, 1). Consequently, using (3.54) and that a1(0, t) = a1(R, t) = 0 due to the fact that
wεr(0, t) = wεr(R, t) = 0 for all t > 0, we find that

I1(t) ≤ c2

∫ t

0

(

1 + (t− s)−
3
4

)

‖a1(·, s)‖L2((0,R))ds

≤ c2c
1
2
6

∫ t

0

(

1 + (t− s)−
3
4

)

ds

= c2c
1
2
6 (t+ 4t

1
4 )

≤ c2c
1
2
6 (T

3
4 + 4) · t 1

4 for all t ∈ (0, T ),

whence combining (3.53) with the Cauchy-Schwarz inequality implies that

I2(t) ≤ c1

∫ t

0

(

1 + (t− s)−
1
4

)

‖a2(·, s)‖L2((0,R))ds

≤ c1 ·
{
∫ t

0

(

1 + (t− s)−
1
4

)2
ds

}
1
2

·
{
∫ t

0
‖a2(·, s)‖2L2((0,R))ds

}
1
2
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≤ c1 ·
{

2

∫ t

0

(

1 + (t− s)−
1
2

)

ds

}
1
2

·
{
∫ t

0
‖a2(·, s)‖2L2((0,R))ds

}
1
2

≤ c1 · (2c7)
1
2 ·

{
∫ t

0

(

1 + (t− s)−
1
2

)

ds

}
1
2

= c1 · (2c7)
1
2 · (t+ 2t

1
2 )

1
2

≤ c1 · (2c7)
1
2 · (T 1

2 + 2)
1
2 · t 1

4 for all t ∈ (0, T ).

As (3.53) moreover warrants that

I3(t) ≤ c1

∫ t

0

(

1 + (t− s)−
1
4

)

‖a3(·, s)‖L2((0,R))ds

≤ c1c
1
2
8

∫ t

0

(

1 + (t− s)−
1
4

)

ds

= c1c
1
2
8

(

t+
4

3
t
3
4

)

≤ c1c
1
2
8

(

T
3
4 +

4

3
T

1
2

)

· t 1
4 for all t ∈ (0, T ),

from (3.55) we thus conclude that (3.52) holds. �

The following conclusion from the latter is evident.

Corollary 3.12 For all δ ∈ (0, R) and any T > 0 there exists C(δ, T ) > 0 such that

uε(r, t) ≤ C(δ, T ) for all r ∈ (δ,R), t ∈ (0, T ) and ε ∈ (0, 1). (3.62)

Proof. Recalling that ζδ ≡ 1 in (δ,R) and observing that e−tA(ζδu0) ≤ ‖u0‖L∞((0,R)) in (0, R) for
all t > 0 according to the maximum principle, one readily derives (3.62) as a consequence of Lemma
3.11. �

With this boundedness property at hand, we can next invoke standard regularity theory for inho-
mogeneous linear parabolic equations, as formulated e.g. in [25] even in a more general quasilinear
framework, so as to obtain Hölder estimates for uε. Since we do not assume higher regularity of u0
beyond continuity, these estimates need to remain local also with respect to t ∈ (0, T ] for given T > 0,
and accordingly their derivation involves a further cut-off procedure involving the time variable.

Lemma 3.13 Let δ ∈ (0, R), T > 0 and τ ∈ (0, T ). Then there exist θ = θ(δ, T, τ) ∈ (0, 1) and
C(δ, T, τ) > 0 such that

‖uε‖
Cθ, θ2 ([δ,R]×[τ,T ])

≤ C(δ, T, τ) for all ε ∈ (0, 1). (3.63)

Proof. We let

ξ(r, t) ≡ ξδτ (r, t) := ζδ(r)ζτ (t), r ∈ [0, R], t ≥ 0,

and apply Corollary 3.12, Corollary 3.8 and Lemma 3.9 to fix c1 = c1(δ, T ) > 0, c2 = c2(δ, T ) > 0 and
c3 = c3(δ, T ) > 0 such that

uε(r, t) ≤ c1 for all r ∈ ( δ2 , R) and t ∈ (0, T ) (3.64)
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and
|wεr(r, t)| ≤ c2 for all r ∈ ( δ2 , R) and t ∈ (0, T ), (3.65)

and that
∫ T

0

∫ R

δ
2

u2εr(r, t)drdt ≤ c3 (3.66)

for all ε ∈ (0, 1). Then due to (3.1)-(3.3) and (2.2), the functions a1, a2 and a3 in (3.9) defined by
(3.10)-(3.12) satisfy

|a1(r, t)| ≤ uε(r, t)f
′
ε(uε(r, t))|wεr(r, t)| ≤ c1c2 for all r ∈ (0, R) and t ∈ (0, T )

and

∫ T

0

∫ R

0
a22(r, t)drdt ≤ 2

∫ T

0

∫ R

δ
2

(n− 1)2

r2
u2εr(r, t)drdt+ 2

∫ T

0

∫ R

δ
2

16

δ2
u2εr(r, t)drdt

≤ 8(n− 1)2

δ2
c3 +

32

δ2
c3 (3.67)

as well as

|a3(r, t)| ≤ 4

τ
uε(r, t) +

32

δ2
uε(r, t)

+
4

δ
uε(r, t)f

′
ε(uε(r, t))|wεr(r, t)|+

2(n− 1)

δ
uε(r, t)f

′
ε(uε(r, t))|wεr(r, t)|

≤ 4

τ
c1 +

32

δ2
c1 +

4

δ
c1c2 +

2(n− 1)

δ
c1c2 for all r ∈ (0, R) and t ∈ (0, T ) (3.68)

whenever ε ∈ (0, 1). We now interpret (3.9) as a PDE for z := ξuε of the form

zt = ∂ra(r, t, zr) + b(r, t)

with a(r, t, p) := p+ a1(r, t) and b(r, t) := a2(r, t) + a3(r, t) for (r, t) ∈ (0, R) × (0, T ) and p ∈ R, and
estimate

a(r, t, p) · p = p2 + a1(r, t)p ≥ 1

2
p2 − 1

2
a21(r, t) ≥

1

2
p2 − 1

2
c21c

2
2 for all (r, t, p) ∈ (0, R)× (0, T )× R

and

|a(r, t, p)| ≤ p+ c1c2 for all (r, t, p) ∈ (0, R)× (0, T )× R.

Since (3.67) and (3.68) imply a bound for b in Lr̂((0, T );Lq̂((0, R))) with q̂ := r̂ := 2 satisfying
1
r̂
+ 1

2q̂ = 3
4 < 1, we may conclude (3.63) directly from a standard result on parabolic Hölder regularity

([25, Theorem 1.3, Remark 1.3]). �
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3.6 Estimates in C
2+θ,1+ θ

2

The goal of this section is to complete the series of our regularity arguments so as to finally provide

estimates in C2+θ,1+ θ
2 spaces involving finite time intervals, locally away from both the spatial and

the temporal origin. In first addressing this topic for the second solution component, we shall employ
a two-step bootstrap procedure, at the first stage relying on maximal Sobolev regularity estimates for
the linear inhomogeneous heat equation ([9]) along with an embedding property of suitable Sobolev
spaces into C1+θ,θ spaces ([2]), and at the second involving classical Schauder theory ([16]).

Lemma 3.14 For any δ ∈ (0, R), T > 0 and τ ∈ (0, T ) one can pick θ = θ(δ, T, τ) ∈ (0, 1) and
C(δ, T, τ) > 0 such that

‖vε‖
C2+θ,1+ θ

2 ([δ,R]×[τ,T ])
≤ C(δ, T, τ) (3.69)

and
‖wε‖

C2+θ,1+ θ
2 ([δ,R]×[τ,T ])

≤ C(δ, T, τ) (3.70)

for all ε ∈ (0, 1).

Proof. The proof proceeds in two steps.

Step 1. We first claim that for any choice of δ ∈ (0, R), T > 0 and τ ∈ (0, T ) there exist θ1 ∈ (0, 1)
and c1 = c1(δ, T, τ) > 0 such that

‖vε‖C1+θ1,θ1 ([δ,R]×[τ,T ]) ≤ c1 (3.71)

for all ε ∈ (0, 1).

To verify this, for such δ, T and τ we again choose ξ(r, t) ≡ ξδτ (r, t) := ζδ(r)ζτ (t), (r, t) ∈ [0, R]×[0,∞),
and then infer from Corollary 3.8, Corollary 3.12 and (2.4) that for the correspondingly defined
functions b1 and b2 in (3.14) and (3.15) we can find c2 = c2(δ, T, τ) > 0 such that for all ε ∈ (0, 1) we
have

|b1(r, t)|+ |b2(r, t)| ≤ c2 for all r ∈ (0, R) and t ∈ (0, T ),

again because of the fact that ζ ≡ 0 on [0, 12 ]. As (ξδτvε)r = 0 for (r, t) ∈ {0, R} × (0,∞) and
(ξδτvε)(r, 0) = 0 for all r ∈ (0, R), an application of known estimates on maximal Sobolev regularity
in the Neumann problem for the inhomogeneous linear heat equation in (0, R) ([9]) shows that given
any p ∈ (1,∞) we can find c3 = c3(p, δ, T, τ) > 0 with the property that

∫ T

0

∥

∥

∥
(ξδτvε)(·, t)

∥

∥

∥

p

W 2,p((0,R))
dt+

∫ T

0

∥

∥

∥
(ξδτvε)t(·, t)

∥

∥

∥

p

Lp((0,R))
dt ≤ c3

for all ε ∈ (0, 1). According to a known embedding result ([2]), on choosing p suitably large here we
can achieve that for some θ1 ∈ (0, 1) and c4 = c4(δ, T, τ) > 0 we have

‖ξδτvε‖C1+θ1,θ1 ([0,R]×[0,T ]) ≤ c4 for all ε ∈ (0, 1),

from which (3.71) immediately follows with c1 := c4.
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Step 2. We proceed to show that the desired conlcusion holds.

For this purpose, given δ ∈ (0, R), T > 0 and τ ∈ (0, T ) we let ξδτ be as above and then obtain
from Step 1 in conjunction with Lemma 3.13 that in fact we can pick θ2 = θ2(δ, T, τ) ∈ (0, 1) and
c5 = c5(δ, T, τ) > 0 such that the functions in (3.14) and (3.15) satisfy

‖b1 + b2‖
Cθ2,

θ2
2 ([0,R]×[0,T ])

≤ c5 for all ε ∈ (0, 1).

Therefore, classical parabolic Schauder estimates ([16]) provide c6 = c6(δ, T, τ) > 0 fulfilling

‖ξδτvε‖
C2+θ2,1+

θ2
2 ([0,R]×[0,T ])

≤ c6 for all ε ∈ (0, 1),

which again due to the properties of ξδτ implied by (3.1)-(3.3), and due to (2.4) and (2.5), readily
entails both (3.69) and (3.70). �

Utilizing similar tools from standard parabolic regularity theory, we can finally achieve a similar
conclusion also for uε. In comparison to the above, the more delicate coupling through the chemotactic
term, according to (3.9) interpreted as an (r, t)-dependent given source here, apparently requires the
use of an iterative procedure rather than a one-step reasoning at the level of the argument involving
maximal Sobolev regularity.

Lemma 3.15 Let δ ∈ (0, R), T > 0 and τ ∈ (0, T ). Then there exist θ = θ(δ, T, τ) ∈ (0, 1) and
C(δ, T, τ) > 0 such that

‖uε‖
C2+θ,1+ θ

2 ([δ,R]×[τ,T ])
≤ C(δ, T, τ) for all ε ∈ (0, 1). (3.72)

Proof. The argument will be divided into four steps, where throughout the proof, given δ ∈
(0, R), T > 0 and τ ∈ (0, T ) we once again abbreviate ξ(r, t) ≡ ξδτ (r, t) := ζδ(r)ζτ (t), (r, t) ∈ [0, R] ×
[0,∞), and in accordance with Corollary 3.12, Corollary 3.8, Lemma 3.14 and Lemma 3.9 we fix
positive constants c1 = c1(δ, T ), c2 = c2(δ, T ), c3 = c3(δ, T, τ) and c4 = c4(δ, T ) fulfilling

uε(r, t) ≤ c1 for all r ∈ ( δ2 , R) and t ∈ (0, T ) (3.73)

and
|wεr(r, t)| ≤ c2 for all r ∈ ( δ2 , R) and t ∈ (0, T ) (3.74)

as well as
|wεrr(r, t)| ≤ c3 for all r ∈ ( δ2 , R) and t ∈ ( τ2 , T ) (3.75)

and
∫ T

0

∫ R

δ
2

u2εr(r, t)drdt ≤ c4 (3.76)

for all ε ∈ (0, 1).

Step 1. We first claim that for all δ ∈ (0, R), T > 0 and τ ∈ (0, T ) there exists c5 = c5(δ, T, τ) > 0
with the property that for each ε ∈ (0, 1) we have

∫ T

τ

‖uε(·, t)‖2W 2,2((δ,R))dt+

∫ T

τ

‖uεt‖2L2((δ,R))dt ≤ c5. (3.77)

24



To see this, we observe that as a consequence of (3.73)-(3.76) and (3.1)-(3.3) as well as (2.2), the
functions a1, a2 and a3 in (3.9) satisfy

∫ T

0

∫ R

0
a21r(r, t)drdt =

∫ T

0

∫ R

0

{

(ξδτ )r(r, t)uε(r, t)f
′
ε(uε(r, t))wεr(r, t)

+ξδτ (r, t)uεr(r, t)f
′
ε(uε(r, t))wεr(r, t)

+ξδτ (r, t)uε(r, t)f
′′
ε (uε(r, t))uεr(r, t)wεr(r, t)

+ξδτ (r, t)uε(r, t)f
′
ε(uε(r, t))wεrr(r, t)

}2
drdt

≤ 4

∫ T

0

∫ R

δ
2

16

δ2
u2ε(r, t)w

2
εr(r, t)drdt+ 4

∫ T

0

∫ R

δ
2

u2εr(r, t)w
2
εr(r, t)drdt

+4

∫ T

0

∫ R

δ
2

u2ε(r, t) · ε2‖ρ′‖2L∞((0,∞))u
2
εr(r, t)w

2
εr(r, t)drdt

+4

∫ T

0

∫ R

δ
2

u2ε(r, t)w
2
εrr(r, t)drdt

≤ 64

δ2
c21c

2
2RT + 4c22c4 + 4‖ρ′‖2L∞((0,∞))c

2
1c

2
2c4 + 4c21c

2
3RT (3.78)

and, similarly,
∫ T

0

∫ R

0
a22(r, t)drdt ≤ 2

∫ T

0

∫ R

δ
2

(n− 1)2

r2
u2εr(r, t)drdt+ 2

∫ T

0

∫ R

δ
2

64

δ2
u2εr(r, t)drdt

≤ 8(n− 1)2

δ2
c4 +

128

δ2
c4 (3.79)

as well as
∫ T

0

∫ R

0
a23(r, t)drdt ≤ 4

∫ T

0

∫ R

δ
2

16

τ2
u2ε(r, t)drdt+ 4

∫ T

0

∫ R

δ
2

1024

δ4
u2ε(r, t)drdt

+4

∫ T

0

∫ R

δ
2

16

δ2
u2ε(r, t)f

′2
ε (uε(r, t))w

2
εr(r, t)drdt

+4

∫ T

0

∫ R

δ
2

(n− 1)2

r2
u2ε(r, t)f

′2
ε (uε(r, t))w

2
εr(r, t)drdt

≤ 64

τ2
c21RT +

4096

δ4
c21RT +

64

δ2
c21RT +

16(n− 1)2

δ2
c21c

2
2RT (3.80)

whenever ε ∈ (0, 1). Now since (ξδτuε)r(0, t) = (ξδτuε)r(R, t) = 0 for all t > 0 and (ξδτuε)(r, 0) = 0
for all r ∈ (0, R), known maximal Sobolev regularity properties of the Neumann heat semigroup on
(0, R) imply the existence of c6 > 0, possibly depending on T > 0, such that

∫ T

0

∥

∥

∥
(ξδτuε)(·, t)

∥

∥

∥

2

W 2,2((0,R))
dt+

∫ T

0

∥

∥

∥
(ξδτuε)t(·, t)

∥

∥

∥

2

L2((0,R))
dt

≤ c6

∫ T

0

∥

∥

∥
a1r(·, t) + a2(·, t) + a3(·, t)

∥

∥

∥

2

L2((0,R))
dt
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for all ε ∈ (0, 1). Therefore, the claimed conclusion is a consequence of (3.78), (3.79) and (3.80).

Step 2. Our next goal is to make sure that for each positive integer k and any δ ∈ (0, R), T > 0 and
τ ∈ (0, T ) there exists c7 = c7(k, δ, T, τ) > 0 such that

∫ T

τ

‖uε(·, t)‖pkW 2,pk ((δ,R))
dt+

∫ T

τ

‖uεt‖pkLpk ((δ,R))dt ≤ c7 for all ε ∈ (0, 1), (3.81)

where pk := 2k.

For an inductive verification thereof on the basis of Step 1 as a starting point, assuming this property
to be valid for some k ≥ 1, given δ ∈ (0, R), T > 0 and τ ∈ (0, T ) we can particularly fix c8 =
c8(k, δ, T, τ) > 0 such that

∫ T

0
‖uε(·, t)‖pk

W 2,pk (( δ
2
,R))

dt ≤ c8 for all ε ∈ (0, 1).

Since by means of the Gagliardo-Nirenberg inequality we can find c9 = c9(k, δ) > 0 fulfilling

∫ T

0
‖uεr(·, t)‖2pk

L2pk (( δ
2
,R))

dt ≤ c9

∫ T

0
‖uε(·, t)‖pk

W 2,pk (( δ
2
,R))

‖uε(·, t)‖pk
L∞(( δ

2
,R))

dt for all ε ∈ (0, 1),

along with (3.73) this yields c10 = c10(k, δ, T, τ) > 0 such that

∫ T

0

∫ R

δ
2

|uεr(r, t)|pk+1drdt ≤ c10 for all ε ∈ (0, 1).

Together with (3.73)-(3.75) and the properties of ξδτ entailed by (3.1)-(3.3), this now provides an es-
timate in Lpk+1((0, R)× (0, T )) for the functions a1r and a2 determined by (3.10) and (3.11), whereas
a corresponding bound for a3 can independently be obtained solely from (3.73)-(3.75). Another ap-
plication of maximal Sobolev regularity estimates on the Neumann problem for (3.9) with vanishing
initial data thus readily yields c11 = c11(k, δ, T, τ) > 0 such that

∫ T

0

∥

∥

∥
(ξδτuε)(·, t)

∥

∥

∥

pk+1

W
2,pk+1((0,R))

dt+

∫ T

0

∥

∥

∥
(ξδτuε)t(·, t)

∥

∥

∥

pk+1

L
pk+1 ((0,R))

dt ≤ c11 for all ε ∈ (0, 1)

and thereby completes Step 2.

Step 3. Let us next verify for any δ ∈ (0, R), T > 0 and τ ∈ (0, T ) there exist θ1 ∈ (0, 1) and
c12 = c12(δ, T, τ) > 0 fulfilling

‖uε‖C1+θ1,θ1 ([δ,R]×[τ,T ]) ≤ c12 for all ε ∈ (0, 1). (3.82)

Indeed, this again results from a known embedding property stated in [2] by fixing some appropriately
large k ∈ N in Step 2.

Step 4. We finally derive the conclusion of the lemma.

To achieve this, we fix δ ∈ (0, R), T > 0 and τ ∈ (0, T ) and then obtain from Step 3 combined with
the outcome of Lemma 3.13 and Lemma 3.14 that there exists θ2 = θ2(δ, T, τ) ∈ (0, 1) such that in
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(3.9) all the functions a1r, a2 and a3 satisfy estimates in Cθ2
θ2
2 ([0, R]× [0, T ]) which are independent

of ε ∈ (0, 1). Classical parabolic Schauder estimates ([16]) therefore yield c13 = c13(δ, T, τ) > 0 such
that

‖ξδτuε‖
C2+θ2,1+

θ2
2 ([0,R]×[0,T ])

≤ c13 for all ε ∈ (0, 1),

which obviously entails (3.72). �

4 Global renormalized solutions. Proof of Theorem 1.1

In this section we shall construct a globally defined object (u, v) as a limit of solutions to (2.1), and
investigate its properties with regard to the original problem (1.1), thereby proving Theorem 1.1.

4.1 Identification of a locally smooth limit

Let us first exploit the estimates gathered in the previous section to identify, via straightforward
compactness and extraction arguments, a pair of limit functions u and v which are smooth outside
the origin and solve (1.1) classically in this region.

Lemma 4.1 There exist (εk)k∈N ⊂ (0, 1) fulfilling εk ց 0 as k → ∞, as well as a couple (u, v) of
nonnegative functions

{

u ∈ C0((0, R]× [0,∞)) ∩ C2,1((0, R]× (0,∞)),

v ∈ C0((0, R]× [0,∞)) ∩ C2,1((0, R]× (0,∞)),
(4.1)

such that

uε → u and vε → v in C0
loc((0, R]× [0,∞)) ∩ C

2,1
loc ((0, R]× (0,∞)) as ε = εk ց 0, (4.2)

that v > 0 in (0, R] × [0,∞), and such that (u, v) solves the radial version of (1.1) in the classical
sense in (0, R]× [0,∞); that is, we have



















ut =
1

rn−1 (r
n−1ur)r − 1

rn−1 (r
n−1 u

v
vr)r, r ∈ (0, R], t > 0,

vt =
1

rn−1 (r
n−1vr)r − uv, r ∈ (0, R], t > 0,

ur(R, t) = vr(R, t) = 0, t > 0,

u(r, 0) = u0(r), v(r, 0) = v0(r), r ∈ (0, R].

(4.3)

Proof. According to Lemma 3.15 and Lemma 3.14, an application of the Arzelà-Ascoli theorem
provides (εk)k∈N ⊂ (0, 1) with εk ց 0 as k → ∞, and nonnegative functions u and v on (0, r]× [0,∞)
which have the properties in (4.1) and are such that

uε → u and vε → v in C
2,1
loc ((0, R]× (0,∞)) (4.4)

as ε = εk ց 0. Thanks to Lemma 3.10, we know that actually also

vε → v in C0
loc((0, R]× [0,∞)) (4.5)
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as ε = εk ց 0, and the uniform lower bound on vε implied by Lemma 3.2 guarantees that v is positive
in (0, R] × [0,∞). Consequently, we may let ε = εk ց 0 in both boundary value problems in the
corresponding radial version of (2.1) separately to conclude that in fact (u, v) is a classical solution of
the boundary value problem in (4.3) in (0, R]× (0,∞).
According to (4.5), it is clear that furthermore v ∈ C0((0, R] × [0,∞)) with v(r, 0) = v0(r) for all
r ∈ (0, R], so that it remains to draw the corresponding conclusion also for u. To this end, we fix
δ ∈ (0, R) and go back to Lemma 3.11 to obtain c1 = c1(δ) > 0 such that

∥

∥

∥
ζδuε(·, t)− e−tA(ζδu0)

∥

∥

∥

L∞((0,R))
≤ c1t

1
4 for all t ∈ (0, 1) (4.6)

whenever ε ∈ (0, 1). By well-known continuity properties of solutions to the Neumann problem for
the heat equation in (0, R), however, we see that

e−tA(ζδu0) → ζδu0 in L∞((0, R)) as t ց 0, (4.7)

because ζδu0 is continuous on [0, R] due to (1.2). As (4.6) implies that

sup
t∈(0,τ)

∥

∥

∥
ζδu(·, t)− ζδu0

∥

∥

∥

L∞((0,R))
≤ sup

t∈(0,τ)
lim

ε=εkց0

∥

∥

∥
ζδuε(·, t)− ζδu0

∥

∥

∥

L∞((0,R))

≤ sup
t∈(0,τ)

lim
ε=εkց0

∥

∥

∥
ζδuε(·, t)− e−tA(ζδu0)

∥

∥

∥

L∞((0,R))

+ sup
t∈(0,τ)

∥

∥

∥
e−tA(ζδu0)− ζδu0

∥

∥

∥

L∞((0,R))

≤ c1τ
1
4 + sup

t∈(0,τ)

∥

∥

∥
e−tA(ζδu0)− ζδu0

∥

∥

∥

L∞((0,R))
for all τ ∈ (0, 1),

from (4.7) we infer that

ζδu(·, t) → ζδu0 in L∞((0, R)) as t ց 0

and thus, since δ ∈ (0, R) was arbitrary, conclude that indeed also u belongs to C0((0, R] × [0,∞))
and satisfies u(r, 0) = u0(r) for all r ∈ (0, R]. �

4.2 A spatially global solution concept. Renormalized solutions

In order to assign the above functions u and v the role of a solution to (1.1) in an appropriate spatially
global sense, let us introduce the following generalized solution concept for (1.1) which follows the
tradition of renormalized solutions of scalar evolution problems ([6]), and which actually does not
require any restriction on radial symmetry or the space dimension.

Definition 4.2 Suppose that n ≥ 1, that Ω ⊂ R
n is a bounded domain and that u0 ∈ L1(Ω) and

v0 ∈ L1(Ω) are nonnegative. Then a pair (u, v) of functions

{

u ∈ L1
loc(Ω̄× [0,∞)),

v ∈ L∞
loc(Ω̄× [0,∞)),

(4.8)
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satisfying u ≥ 0 and v > 0 a.e. in Ω× (0,∞), will be called a global renormalized solution of (1.1) if

{

χ{u<M}∇u ∈ L2
loc(Ω̄× [0,∞)) for all M > 0 and

∇v
v

∈ L2
loc(Ω̄× [0,∞)),

(4.9)

if for all φ ∈ C∞([0,∞)) with φ′ ∈ C∞
0 ([0,∞)) we have

−
∫ ∞

0

∫

Ω
φ(u)ϕt −

∫

Ω
φ(u0)ϕ(·, 0) = −

∫ ∞

0

∫

Ω
φ′′(u)|∇u|2ϕ−

∫ ∞

0

∫

Ω
φ′(u)∇u · ∇ϕ

+

∫ ∞

0

∫

Ω
uφ′′(u)

(

∇u · ∇v

v

)

ϕ+

∫ ∞

0

∫

Ω
uφ′(u)

∇v

v
· ∇ϕ (4.10)

for all ϕ ∈ C∞
0 (Ω̄× [0,∞)), and if moreover the identity

∫ ∞

0

∫

Ω
vϕt +

∫

Ω
v0ϕ(·, 0) =

∫ ∞

0

∫

Ω
∇v · ∇ϕ+

∫ ∞

0

∫

Ω
uvϕ (4.11)

is valid for any ϕ ∈ C∞
0 (Ω̄× [0,∞)).

Remark. It can readily be verified that under the integrability assumptions in (4.8) and (4.9), each
of the summands appearing in (4.10) and (4.11) indeed is well-defined. Moreover, it follows from
standard arguments that any pair (u, v) which is a global renormalized solution of (1.1) in the sense
of Definition 4.2, and which in addition is suitably smooth in the sense that (u, v) ∈ (C0(Ω̄× [0,∞))∩
C2,1(Ω̄× (0,∞)))2, in fact already is a solution of (1.1) in Ω× (0,∞) in the classical sense.

Now combining the local solution properties of (u, v) outside the origin, as stated in Lemma 4.1, with
the global regularity properties implied by Lemma 2.1 and Lemma 2.2, it is possible to show that
(u, v) actually is a solution of (1.1) in the above sense.

Lemma 4.3 Let n ≥ 2, R > 0 and Ω := BR(0) ⊂ R
n, and suppose that u0 and v0 satisfy (1.2). Then

the functions u and v obtained in Lemma 4.1 form a global renormalized solution of (1.1). Moreover,
u and v have the additional regularity properties in (1.3) and (1.4).

Proof. With (εk)k∈N ⊂ (0, 1) taken from Lemma 4.1, combining (2.7) and (2.4) with (4.2) we
see that u ∈ L∞((0,∞);L1(Ω)) and v ∈ L∞(Ω × (0,∞)), which clearly entails that both (4.8) and
(1.3) are satisfied. From (4.2) it moreover follows that wε → w := − ln v

‖v0‖L∞(Ω)
a.e. in Ω× (0,∞) as

ε = εk ց 0, so that using (2.9) and Fatou’s lemma we infer that

∫ T

0

∫

Ω

|∇v|2
v2

≤ lim inf
ε=εkց0

∫ T

0

∫

Ω
|∇wε|2 ≤

∫

Ω
w0 +

(

∫

Ω
u0

)

· T for all T > 0, (4.12)

and that hence ∇v
v

belongs to L2
loc(Ω̄× [0,∞)).

Finally, given T > 0 we may invoke (2.10) which, again by Fatou’s lemma, guarantees that there exists
c1 = c1(T ) > 0 such that

∫ T

0

∫

Ω

|∇u|2
(u+ 1)2

≤ c1(T ).
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In conjunction with (4.12) this establishes (1.4), and for arbitrary M > 0 we can moreover estimate

∫ T

0

∫

Ω

∣

∣

∣
χ{u<M}∇u

∣

∣

∣

2
=

∫ T

0

∫

Ω
χ{u<M}(u+ 1)2 · |∇u|2

(u+ 1)2

≤ (M + 1)2
∫ T

0

∫

Ω
χ{u<M}

|∇u|2
(u+ 1)2

≤ (M + 1)2c1(T ),

and hence conclude that also χ{u<M}∇u ∈ L2
loc(Ω̄ × [0,∞)) for any such M , thereby completing the

verification of (4.9).

Next, in order to derive (4.10) and (4.11) we let ϕ ∈ C∞
0 (Ω̄ × [0,∞)) and φ ∈ C∞([0,∞)) with

φ′ ∈ C∞
0 ([0,∞)) be arbitrary, and for δ ∈ (0, R) we define ξδ(x) := ζδ(|x|), x ∈ Ω̄, and

ϕδ(x) := ξδ(x)ϕ(x, t), x ∈ Ω̄, t ≥ 0, (4.13)

with ζδ as introduced in (3.3). Then since ϕδ ≡ 0 in B δ
2
(0) × [0,∞), and since (u, v) is a classical

solution of (1.1) in (Ω̄ \ {0}) × [0,∞) according to Lemma 4.1, it follows from testing the respective
sub-problems of (1.1) against ϕδ that

∫ ∞

0

∫

Ω
vϕδt +

∫

Ω
v0ϕδ(·, 0) =

∫ ∞

0

∫

Ω
∇v · ∇ϕδ +

∫ ∞

0

∫

Ω
uvϕδ (4.14)

and

−
∫ ∞

0

∫

Ω
φ(u)ϕδt −

∫

Ω
φ(u0)ϕδ(·, 0) = −

∫ ∞

0

∫

Ω
φ′′(u)|∇u|2ϕδ −

∫ ∞

0

∫

Ω
φ′(u)∇u · ∇ϕδ

+

∫ ∞

0

∫

Ω
uφ′′(u)

(

∇u · ∇v

v

)

ϕδ

+

∫ ∞

0

∫

Ω
uφ′(u)

∇v

v
· ∇ϕδ (4.15)

for all δ ∈ (0, R). Here, fixing T > 0 large such that ϕ ≡ 0 in Ω× (T,∞) we note that thanks to (4.8)
and (4.9) we in particular know that

∇v ∈ L2(Ω× (0, T )), (4.16)

so that in
∫ ∞

0

∫

Ω
∇v · ∇ϕδ =

∫ ∞

0

∫

Ω
ξδ∇v · ∇ϕ+

∫ ∞

0

∫

Ω
ϕ∇v · ∇ξδ

we have
∫ ∞

0

∫

Ω
ξδ∇v · ∇ϕ →

∫ ∞

0

∫

Ω
∇v · ∇ϕ as δ ց 0 (4.17)
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according to the dominated convergence theorem. As |∇ξδ| ≤ 4
δ
in Ω and supp∇ξδ ⊂ B̄δ(0) by (3.1)

and (3.2), we can moreover use the Cauchy-Schwarz inequality to estimate

∣

∣

∣

∣

∫ ∞

0

∫

Ω
ϕ∇v · ∇ξδ

∣

∣

∣

∣

≤ ‖ϕ‖L∞(Ω×(0,∞))

{
∫ T

0

∫

Bδ(0)
|∇v|2

}
1
2

·
{
∫ T

0

∫

Bδ(0)
|∇ξδ|2

}
1
2

≤ ‖ϕ‖L∞(Ω×(0,∞))

{
∫ T

0

∫

Bδ(0)
|∇v|2

}
1
2

· 4
δ
T

1
2 |Bδ(0)|

1
2

for all δ ∈ (0, R), so that since supδ∈(0,R)
|Bδ(0)|

1
2

δ
is finite thanks to our overall assumption that n ≥ 2,

we obtain
∫ ∞

0

∫

Ω
ϕ∇v · ∇ξδ → 0 as δ ց 0, (4.18)

because
∫ T

0

∫

Bδ(0)
|∇v|2 → 0 as δ ց 0 by (4.16) and e.g. again the dominated convergence theorem.

Since (4.8) entails the inclusions v ∈ L1(Ω × (0, T )) and uv ∈ L1(Ω × (0, T )), and since v0 ∈ L1(Ω),
on three further applications of the dominated convergence theorem we moreover infer that

∫ ∞

0

∫

Ω
vϕδt →

∫ ∞

0

∫

Ω
vϕt

and

∫ T

0

∫

Ω
uvϕδ →

∫ ∞

0

∫

Ω
uvϕ

as well as
∫

Ω
v0ϕδ(·, 0) →

∫

Ω
v0ϕ(·, 0)

as δ ց 0. Combining this with (4.17) and (4.18) we thus conclude from (4.14) that indeed (4.11) is
valid.

Similarly, for the derivation of (4.10) we first observe that by (4.9) and the boundedness of suppφ′ we
know that

φ′(u)∇u ∈ L2(Ω× (0, T )) and uφ′(u)
∇v

v
∈ L2(Ω× (0, T )), (4.19)

and that

φ(u) ∈ L1(Ω× (0, T )), φ′′(u)|∇u|2 ∈ L1(Ω× (0, T )) and uφ′′(u)∇u · ∇v

v
∈ L1(Ω× (0, T )).

(4.20)
Hence, arguing as in (4.17) and (4.18) we obtain from (4.19) that

−
∫ ∞

0

∫

Ω
φ′(u)∇u · ∇ϕδ = −

∫ ∞

0

∫

Ω
ξδφ

′(u)∇u · ∇ϕ−
∫ ∞

0

∫

Ω
ϕφ′(u)∇u · ∇ξδ

→ −
∫ ∞

0

∫

Ω
φ′(u)∇u · ∇ϕ
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and
∫ ∞

0

∫

Ω
uφ′(u)

∇v

v
· ∇ϕδ =

∫ ∞

0

∫

Ω
ξδuφ

′(u)
∇v

v
· ∇ϕ+

∫ ∞

0

∫

Ω
ϕuφ′(u)

∇v

v
· ∇ξδ

→
∫ ∞

0

∫

Ω
uφ(u)

∇v

v
· ∇ϕ

as δ ց 0, whereas (4.20) in conjunction with the dominated convergence theorem guarantees that

−
∫ ∞

0

∫

Ω
φ(u)ϕδt → −

∫ ∞

0

∫

Ω
φ(u)ϕt

and

−
∫

Ω
φ(u0)ϕδ(·, 0) → −

∫

Ω
φ(u0)ϕ(·, 0)

as well as

−
∫ ∞

0

∫

Ω
φ′′(u)|∇u|2ϕδ → −

∫ ∞

0

∫

Ω
φ′′(u)|∇u|2ϕ

and
∫ ∞

0

∫

Ω
uφ′′(u)

(

∇u · ∇v

v

)

ϕδ →
∫ ∞

0

∫

Ω
uφ′′(u)

(

∇u · ∇v

v

)

ϕ

as δ ց 0. In consequence, (4.15) thus implies (4.10). �

Finally, our main result thereby becomes an immediate consequnce.

Proof of Theorem 1.1. All claimed statements are covered by the results from Lemma 4.1 and
Lemma 4.3. �

4.3 Concluding remarks

This study provides a first step into the analysis of (1.1) in presence of large initial data in higher-
dimensional settings. It has been seen that despite the enhanced destabilizing potential therein,
originating from nutrient-oriented chemotactic attraction with sensitivity singular at vanishing signal
densities, a basic solution theory can be established at least in spatially radial frameworks.

The presented approach, yielding solutions smooth outside the origin but resorting to a strongly
generalized solution concept at a spatially global level, seems to rely on both diffusion mechanisms
in (1.1) through appropriate regularizing actions of the respective heat semigroups; in particular, an
interesting question left open for future research is how far similar results can be derived in the case
when the second equation in (1.1) is replaced with the diffusion-free ODE vt = −uv.

Apart from that, the challenging topic of describing qualitative aspects, and especially the large time
behavior such as partially addressed in [36] and [37] for two-dimensional versions of (1.1), of the
obtained solutions, has not yet been addressed in the course of the present analysis which seems to be
restricted to providing estimates essentially local in time only.
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