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Abstract

The Keller-Segel system

{

ut = D∆u−Dχ∇ ·
(

u
v
∇v

)

, x ∈ Ω, t > 0,

vt = D∆v − v + u, x ∈ Ω, t > 0,

is considered in a bounded domain Ω ⊂ R
n, n ≥ 2, with smooth boundary, where χ > 0 and D > 0.

The main results identify a condition on the parameters χ <
√

2

n
and D > 0, essentially re-

ducing to the assumption that χ2

D
be suitably small, under which for all reasonably regular and

positive initial data the corresponding classical solution of an associated Neumann initial-boundary
value problem, known to exist globally according to previous findings, approaches the homogeneous
steady state (u0, u0) at an exponential rate with respect to the norm in (L∞(Ω))2 as t → ∞, where
u0 := 1

|Ω|

∫

Ω
u(·, 0).

As a particular consequence, this entails a convergence statement of the above flavor in the normal-

ized system with D = 1 and fixed χ <
√

2

n
, provided that Ω satisfies a certain smallness condition.
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1 Introduction

Among the rich variety of Keller-Segel-type models discussed in the literature, the problem























Ut = ∆U − χ∇ ·
(

U
V
∇V

)

, y ∈ Ω1, t > 0,

Vt = ∆V − V + U, y ∈ Ω1, t > 0,
∂U
∂ν

= ∂V
∂ν

= 0, y ∈ ∂Ω1, t > 0,

U(y, 0) = U0(y), V (y, 0) = V0(y), y ∈ Ω1,

(1.1)

with χ > 0 and given nonnegative functions U0 and V0 appears to be of particular interest. This on
the one hand reflects that in refinement of the classical minimal Keller-Segel system ([19]) in which
the evolution of the cell density U is governed by Ut = ∆U−∇· (U∇S(V )) with linear S, the choice of
the logarithmic sensitivity S(V ) = χ lnV in (1.1) with regard to the chemical signal concentration V is
well-adapted to situations in which the chemotactic response of cells respects the long-familiar Weber-
Fechner law of stimulus perception ([27], [20]). On the other hand, this modification goes along with
significant mathematical challenges which are inter alia due to an apparent loss of a treasured gradient
structure that has been underlying essential bodies of the analysis in the case of linear sensitivities
(see e.g. [26], [16], [8], [33]).

As a consequence, it seems yet widely unknown to which extent the decay of the derivative S′(V ) = χ
V

at large signal densities may suppress phenomena of blow-up which constitute the probably most
characteristic qualitative feature of original Keller-Segel models with S′ ≡ const. in two- or higher-
dimensional spatial domains([15], [33]). After all, partial results indicate a substantial dampening
effect at least for small values of the factor χ in (1.1), asserting global existence of bounded classical
solutions for widely arbitrary positive initial data, and thus ruling out explosions, when Ω is a bounded
domain in R

n, n ≥ 2, and χ < χ0(n) with some χ0(n) > 0 which is currently known to satisfy

χ0(2) > 1.015 and χ0(n) ≥
√

2
n
for n ≥ 3 ([21], [3], [32], [10]; cf. also [35], [24]). For larger values of

χ, nontrivial global solutions have been constructed only in generalized frameworks so far, thus yet
allowing solutions to become unbounded even within finite time, but at least excluding any collapse into

persistent Dirac-type singularities. For instance, if χ <
√

n+2
3n−4 then (1.1) is solvable already within

quite a natural weak solution concept ([32]), while under the weaker assumption that χ <
√

n
n−2 , in

radially symmetric settings global solutions are known to exist in a slightly more generalized framework
([29]). Only recently, within a yet weaker solution concept this assumption could be further relaxed
in the sense that merely requiring

χ <











∞ if n = 2,√
8 if n = 3,
n

n−2 if n ≥ 4,

(1.2)

is sufficient to allow for corresponding global solvability, even without any symmetry assumption ([22]).
We remark that for parabolic-elliptic simplifications of (1.1) in which the second equation therein is
replaced with 0 = ∆V − V + U , somewhat more comprehensive results are available, but beyond
this furthermore providing inter alia providing some examples of exploding solutions when n ≥ 3 and
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χ > 2n
n−2 ([25]), extending the range of χ in (1.2) for generalized solvability when n = 3 ([4]), and

especially in the two-dimensional case asserting global classical solvability regardless of the size of χ
([12]); a result of the latter flavor could recently even be carried over to the radial version of the fully
parabolic variant of (1.1) with its second equation becoming τVt = ∆V − V + U for suitably small
τ > 0 ([13]).

Beyond these fundamental results on global solvability, however, only little seems known about solu-
tions to (1.1); in particular, their qualitative behavior seems widely unaddressed in the literature, with
available exceptions concentrating on the associated steady state problem. Indeed, a large variety of
highly nontrivial equilibria have been detected since the seminal work [23] in this direction ([6], [1],
[7], [5]), but their role, as actually the role of any stationary solution, in the dynamics of the parabolic
problem (1.1) seems unclear up to now.

Main results. The intention of this paper is to accept the challenge of describing the large time
behavior in systems of the form (1.1) despite lacking knowledge on any meaningful global gradient flow
structure therein. In order to achieve nontrivial progress in this direction going beyond straightfor-
ward perturbation arguments leading no further than to local stability and attractivity results, unlike
the very few precedent energy-independent cases of large-time analysis in chemotaxis problems which
exclusively seem to rely on the availability of comparison arguments (see e.g. [28], [36], [30], [34]),
we shall pursue a strategy heuristically motivated by the trivial observation that both the numerator
and the denominator in the quotient U

V
in (1.1) grow linearly with respect to U and V , respectively.

Therefore, namely, naively assuming that up to parabolic smoothing V will become conveniently large
wherever U attains large values and vice versa, our goal will be to appropriately bound this crucial
quotient, possibly only for suitably large times but widely independent of the particular choice of the
initial data. This will enable us to conclude that for sufficiently small values of χ, in suitably small

domains essentially covering the entire range χ ∈ (0,
√

2
n
), for arbitrary initial data the cross-diffusive

influence becomes conveniently small at least eventually, thereby enforcing essentially diffusion-driven
behavior and thus supporting convergence to constant equilibria.

To make this more precise, instead of addressing (1.1) directly we shall for convenience focus our
attention to the family of problems which for a fixed bounded domain Ω ⊂ R

n, n ≥ 2, are given by






















ut = D∆u−Dχ∇ ·
(

u
v
∇v

)

, x ∈ Ω, t > 0,

vt = D∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.3)

and which are indexed by the parameter D > 0. As the special case obtained on letting D = 1, this
family contains the original problem (1.1), to which (1.3) moreover can be seen to be equivalent by
means of the transformation

u(x, t) := U(y, t), and v(x, t) := V (y, t) with x =
y

R
for t > 0 (1.4)

where u0(x) = U0(Rx) and v0(x) = V0(Rx) as well as

D =
1

R2
and Ω =

1

R
· Ω1. (1.5)
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As for the initial data in (1.3), we shall assume that
{

u0 ∈ C0(Ω) is nonnegative with u0 6≡ 0, and that

v0 ∈ W 1,∞(Ω) is positive in Ω.
(1.6)

By concretizing the above strategy in the context of this problem (1.3), our main results on qualitative
behavior therein assert global asymptotic stability of spatially homogeneous steady states in the case

when in addition to the condition χ <
√

2
n
known to be sufficient for global existence of a bounded

classical solution, a further smallness assumption on the ratio χ2

D
is satisfied. Here and throughout

the sequel, for open bounded G ⊂ R
n and ϕ ∈ L1(G) we abbreviate the spatial mean of the latter by

writing ϕ := 1
|G|

∫

G
ϕ.

Theorem 1.1 Let n ≥ 2 and Ω ⊂ R
n a bounded domain with smooth boundary, and let χ0 ∈ (0,

√

2
n
)

and D0 > 0. Then there exists δ > 0 with the following property: If χ ∈ (0, χ0], D ≥ D0 and

χ2

D
≤ δ, (1.7)

and if u0 and v0 satisfy (1.6), then the problem (1.3) possesses a uniquely determined global classical
solution (u, v) with

{

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈ ⋂

ϑ>nC
0([0,∞);W 1,ϑ(Ω)) ∩ C2,1(Ω× (0,∞)),

(1.8)

and for this solution one can find κ > 0 and C > 0 such that

‖u(·, t)− u0‖L∞(Ω) ≤ Ce−κt for all t > 0 (1.9)

and
‖v(·, t)− u0‖L∞(Ω) ≤ Ce−κt for all t > 0. (1.10)

When re-interpreted in the context of the normalized problem (1.1), this immediately entails the
following convergence result under assumptions which in suitably small domains actually reduce to

the mere requirement that χ <
√

2
n
:

Proposition 1.2 Let Ω ⊂ R
n, n ≥ 2, be a bounded domain with smooth boundary, and let χ0 ∈

(0,
√

2
n
). Then there exists ε > 0 with the property that if χ > 0 and R > 0 are such that χ ≤ χ0 and

Rχ ≤ ε,

then for Ω1 := RΩ and any choice of 0 6≡ U0 ∈ C0(Ω1) and V0 ∈ W 1,∞(Ω1) with U0 ≥ 0 and V0 > 0
in Ω1, for the corresponding global classical solution of (1.1) we have

‖U(·, t)− U0‖L∞(Ω1) ≤ Ce−κt for all t > 0 (1.11)

and
‖V (·, t)− U0‖L∞(Ω1) ≤ Ce−κt for all t > 0 (1.12)

with some κ > 0 and C > 0.
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When restated with a focus on possible biological implications, the results from both Theorem 1.1 and
Proposition 1.2 in summary identify conditions, merely involving the respective system parameters,
under which spatial homogeneity in (1.3) and (1.1) is prevalent in the sense of attracting any trajectory
emanating from arbitrarily large initial perturbations. This may be viewed as further underlining the
fundamental differences between these logarithmic chemotaxis systems and the minimal Keller-Segel
system, with its known potential to destabilize any large-mass equilibrium, and thus particularly each
homogeneous state at suitably high level, in the drastic flavor involving blow-up.

Plan of the paper. After giving a basic result on global existence and boundedness of classical
solutions to (1.3) in Section 2, we shall derive some asymptotic upper bounds, inter alia with respect
to the norms in L∞(Ω), on u and 1

v
in terms of

∫

Ω u0 in Section 3. This will be achieved by refining

knowledge on a basically well-known quasi-energy property which, under the condition χ <
√

2
n
,

functionals of the form
∫

Ω upv−r have been found to enjoy for some p > n
2 when the parameter r is

chosen appropriately. In contrast to a previous discovery of this feature in [32], however, our focus
will here be on the dependence of correspondingly obtained bounds on the mass functional

∫

Ω u0, and
as the main fruit thereof we shall obtain that indeed u can asymptotically be controlled from above
by a multiple of

∫

Ω u0 (Lemma 3.6). As a consequence, Section 4 will reveal a key feature of (1.3),
expressed in the existence of a universal constant C > 0, in particular independent not only of the
initial data but also widely independent of χ and D, such that

lim sup
t→∞

∥

∥

∥

u(·, t)
v(·, t)

∥

∥

∥

L∞(Ω)
≤ C. (1.13)

Thereby having at hand a convenient control over the cross-diffusive flux in (1.3), in Section 5 we build
our main results on stabilization on the observation that thanks to (1.13), a smallness condition of the
form (1.7) warrants the existence of k > 0 such that

∫

Ω(u− u0)
2 + k

∫

Ω(v − u0)
2 eventually plays the

role of a genuine Lyapunov functional along each fixed trajectory, and thereby implies stabilization.

2 Global existence of bounded solutions for D > 0 when χ <

√

2
n

To begin with, let us briefly recall the following from the literature.

Lemma 2.1 Let n ≥ 2 and Ω ⊂ R
n be a bounded domain with smooth boundary, and suppose that

χ ∈ (0,
√

2
n
) and D > 0. Then for all u0 and v0 fulfilling (1.6), the problem (1.3) admits a global

classical solution (u, v), uniquely determined by the inclusions in (1.8), for which u > 0 in Ω× (0,∞)
and v > 0 in Ω× [0,∞). Moreover, this solution is bounded in the sense that

u ∈ L∞(Ω× (0,∞)) and v ∈ L∞(Ω× (0,∞)),

and moreover
∫

Ω
u(·, t) =

∫

Ω
u0 for all t > 0. (2.1)

Proof. After a reduction to (1.1) via (1.4) and (1.5), the statements on global existence, bound-
edness and positivity are precisely covered by corresponding knowledge on (1.1) within the indicated
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range of χ ([32], [10], [11]). Uniqueness in the class determined by (1.8) can be obtained by following
a standard reasoning ([17]), whereas the mass conservation property (2.1) immediately results from
(1.1). �

3 Asymptotic upper bounds on u and 1
v
in terms of

∫

Ω u0

The principal goal of this section is to prepare the crucial Lemma 4.1 below by providing some
information on how the sizes of u and 1

v
in L∞(Ω), when viewed in the long term, depend on the initial

data. Constituting the main outcome in this direction, it will turn out that both these quantities can
asymptotically be estimated by means of certain expressions only involving

∫

Ω u0, provided that χ

remains suitably below
√

2
n
and D lies significantly above the critical value D = 0.

Whereas the corresponding statement on u will be established in Lemma 3.6, the reciprocal of v can be
dealt with in quite a straightforward manner by means of an argument based on positivity properties
of the Neumann heat semigroup (eτ∆)τ≥0 over Ω.

Lemma 3.1 Let D0 > 0. Then there exists K1 = K1(D0) > 0 such that whenever (u, v) is a global
classical solution of (1.3) for some χ > 0 and D ≥ D0 and some (u0, v0) fulfilling (1.6), the inequality

lim inf
t→∞

inf
x∈Ω

v(x, t) ≥ K1

∫

Ω
u0 (3.1)

holds.

Proof. Letting k = k(x, y, τ) denote the heat kernel of the Neumann Laplacian, thanks to the
positivity of k on Ω × Ω × [1,∞) (see e.g., [18, Theorem 10.1]) we can pick c1 > 0 such that for all
nonnegative ϕ ∈ C0(Ω),

(eτ∆ϕ)(x) =

∫

Ω
k(x, y, τ)ϕ(y)dy ≥ c1

∫

Ω
ϕ(y)dy for all x ∈ Ω and any τ ≥ 1

(see e.g. [18, Theorem 10.1]; when Ω is convex, and explicit estimate for c1 can be found in [11, Lemma
2.4]). Since v0 is nonnegative, according to (2.1) and a variation-of-constants representation associated
with the second equation in (1.3) we thus have

v(·, t) = e−tetD∆v0 +

∫ t

0
e−(t−s)e(t−s)D∆u(·, s)ds

≥
∫ t− 1

D0

0
e−(t−s) · c1

{
∫

Ω
u0

}

ds

= c1

{
∫

Ω
u0

}

·
∫ t− 1

D0

0
e−(t−s)ds for all t ≥ 1

D0
, (3.2)

because D ≥ D0 and therefore (t− s)D ≥ (t− s)D0 ≥ 1 for 0 ≤ s ≤ t− 1
D0

. Here, if even t ≥ 2
D0

, then

∫ t− 1
D0

0
e−(t−s)ds = e

− 1
D0 − e−t ≥ c2 := e

− 1
D0 − e

− 2
D0 ,
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so that (3.2) implies the inequality

v(·, t) ≥ c1c2

∫

Ω
u0 in Ω for all t ≥ 2

D0

and thereby establishes (3.1) with K1 := c1c2 being independent of D ≥ D0 and the particular solution
in question. �

In deriving an asymptotic bound for the quantity ‖u‖L∞(Ω), we will inter alia need to appropriately
control the cross-diffusive flux in (1.3). A first basic information on this is contained in the following.

Lemma 3.2 Let D0 ≥ 0, p ≥ 1 and q ≥ 1 be such that q < np
(n−p)+

. Then one can find K2 =

K2(D0, p, q) > 0 such that if (u, v) is a global classical solution of (1.3) for some χ > 0, D ≥ D0 and
(u0, v0) satisfying (1.6), then

lim sup
t→∞

‖v(·, t)‖W 1,q(Ω) ≤ K2 · lim sup
t→∞

‖u(·, t)‖Lp(Ω). (3.3)

Proof. According to a known smoothing property of the Neumann heat semigroup on Ω ([31]),
there exists c1 > 0 such that for all ϕ ∈ C0(Ω),

‖eτ∆ϕ‖W 1,q(Ω) ≤ c1(1 + τ−γ)‖ϕ‖Lp(Ω) for all τ > 0, (3.4)

with γ := 1
2 + n

2 (
1
p
− 1

q
) satisfying γ < 1 due to our assumption that q < np

(n−p)+
. Therefore, c2 :=

∫∞
0 (1 +D

−γ
0 σ−γ)e−σdσ is finite, and we claim that (3.3) holds if we let K2 := 2c1c2.

To see this, given a solution with the indicated properties we can pick t0 > 0 such that

‖u(·, t)‖Lp(Ω) ≤ 2L for all t > t0, (3.5)

where L := lim supt→∞ ‖u(·, t)‖Lp(Ω) is finite and positive due to Lemma 2.1. Now by means of a
Duhamel formula for v, twice using (3.4) we can estimate

‖v(·, t)‖W 1,q(Ω) =

∥

∥

∥

∥

e−tetD∆v0 +

∫ t

0
e−(t−s)e(t−s)D∆u(·, s)ds

∥

∥

∥

∥

W 1,q(Ω)

≤ c1 ·
(

1 + [Dt]−γ
)

· e−t‖v0‖Lp(Ω)

+c1

∫ t

0

(

1 + [D(t− s)]−γ
)

e−(t−s)‖u(·, s)‖Lp(Ω)ds

= c1 · (1 +D−γt−γ)e−t‖v0‖Lp(Ω)

+c1

∫ t

0

(

1 +D−γ(t− s)−γ
)

e−(t−s)‖u(·, s)‖Lp(Ω)ds for all t > 0, (3.6)

where clearly
c1(1 +D−γt−γ)e−t‖v0‖Lp(Ω) → 0 as t → ∞. (3.7)

Moreover, for t ≥ t0 + 1 we have

c1

∫ t0

0

(

1 +D−γ(t− s)−γ
)

e−(t−s)‖u(·, s)‖Lp(Ω)ds ≤ c1(1 +D
−γ
0 )e−t

∫ t0

0
es‖u(·, s)‖Lp(Ω)ds
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and hence also

c1

∫ t0

0

(

1 +D
−γ
0 (t− s)−γ

)

e−(t−s)‖u(·, s)‖Lp(Ω)ds → 0 as t → ∞, (3.8)

while finally the corresponding remaining part of the last summand in (3.6) can be controlled by
recalling (3.5) and the definition of c2 according to

c1

∫ t

t0

(

1 +D−γ(t− s)−γ
)

e−(t−s)‖u(·, s)‖Lp(Ω)ds ≤ 2c1L

∫ t

t0

(

1 +D
−γ
0 (t− s)−γ

)

e−(t−s)ds

= 2c1L

∫ t−t0

0
(1 +D

−γ
0 σ−γ)e−σdσ

≤ 2c1L · c2 for all t > t0.

Together with (3.7), (3.8) and (3.6), this shows that

lim sup
t→∞

‖v(·, t)‖W 1,q(Ω) ≤ 2c1c2L

and hence indeed implies (3.3) with the above choice of K2. �

Now in order to bound the expression appearing on the right-hand side of (3.3), we re-inspect an
essentially well-known energy-like property enjoyed by functionals of the form

∫

Ω upv−r with some p

above the crucial value n
2 whenever χ <

√

2
n
([32]). Additionally relying on the lower bound from

Lemma 3.1, we will thereby achieve an asymptotic upper bound for such functionals which again only
involves the mass functional

∫

Ω u0.

Lemma 3.3 Let χ0 <
√

2
n
and D0 > 0. Then there exist p0 = p0(χ0) ∈ (n2 , n), r0 = r0(χ0) ∈ (0, p0)

and K3 = K3(χ0, D0) > 0 with the property that if for some χ ≤ χ0, D ≥ D0 and (u0, v0) fulfilling
(1.6) we are given a global classical solution (u, v) of (1.3), then

lim sup
t→∞

∫

Ω
up0(·, t)v−r0(·, t) ≤ K3 ·

{
∫

Ω
u0

}p0−r0

. (3.9)

Proof. Since χ0 <
√

2
n
, we can fix p ≡ p0(χ0) ∈ (n2 , n) such that pχ2

0 < 1, which can readily be

seen to ensure that if we let r ≡ r0(χ0) :=
p−1
2 , then r ∈ (0, p) and

[2pr + p(p− 1)χ]2

4p(p− 1)
< prχ+ r(r + 1) for all χ ≤ χ0.

It is therefore possible to find c1 > 0 such that c1 < 4p(p− 1) but such that still

c2 := inf
χ≤χ0

{

prχ+ r(r + 1)− [2pr + p(p− 1)χ]2

4p(p− 1)− c1

}

(3.10)

is positive. We next write

c3 := min

{

c1D0

2p2
,
2c2D0

r2

}

8



and combine the Gagliardo–Nirenberg inequality with Young’s inequality in a standard manner so as
to find c4 > 0 fulfilling

(r + 1)‖ϕ‖2L2(Ω) ≤ c3‖∇ϕ‖2L2(Ω) + c4‖ϕ‖2
L

2
p (Ω)

for all ϕ ∈ W 1,2(Ω). (3.11)

Now assuming (u, v) to be a global classical solution under the indicated circumstances, following [32]
we compute

d

dt

∫

Ω
upv−r = −p(p− 1)D

∫

Ω
up−2v−r|∇u|2 + [2pr + p(p− 1)χ]D

∫

Ω
up−1v−r−1∇u · ∇v

−[prχ+ r(r + 1)]D

∫

Ω
upv−r−2|∇v|2

+r

∫

Ω
upv−r − r

∫

Ω
up+1v−r−1 for all t > 0, (3.12)

where by Young’s inequality and our choice of c1,

[2pr + p(p− 1)χ]D

∫

Ω
up−1v−r−1∇u · ∇v ≤ 1

4
[4p(p− 1)− c1]D

∫

Ω
up−2v−r|∇u|2

+
[2pr + p(p− 1)χ]2

4p(p− 1)− c1
D

∫

Ω
upv−r−2|∇v|2 for all t > 0.

In view of (3.10) and the nonnegativity of the rightmost summand in (3.12), in view of our definition
of c2 we thus obtain that

d

dt

∫

Ω
upv−r +

∫

Ω
upv−r ≤ −c1D0

4

∫

Ω
up−2v−r|∇u|2 − c2D0

∫

Ω
upv−r−2|∇v|2

+(r + 1)

∫

Ω
upv−r for all t > 0, (3.13)

because χ ≤ χ0 and D ≥ D0. Here thanks to (3.11),

(r + 1)

∫

Ω
upv−r ≤ c3

∫

Ω

∣

∣

∣
∇(u

p

2 v−
r
2 )
∣

∣

∣

2
+ c4 ·

{
∫

Ω
uv

− r
p

}p

for all t > 0, (3.14)

where again by Young’s inequality, the definition of c3 warrants that

c3

∫

Ω

∣

∣

∣
∇(u

p

2 v−
r
2 )
∣

∣

∣

2
= c3

∫

Ω

∣

∣

∣

p

2
u

p−2
2 v−

r
2∇u− r

2
u

p

2 v−
r+2
2 ∇v

∣

∣

∣

2

≤ c3p
2

2

∫

Ω
up−2v−r|∇u|2 + c3r

2

2

∫

Ω
upv−r−2|∇v|2

≤ c1D0

4

∫

Ω
up−2v−r|∇u|2 + c2D0

∫

Ω
upv−r−2|∇v|2 for all t > 0, (3.15)

and where due to (2.1),

c4 ·
{
∫

Ω
uv

− r
p

}p

≤ c4

{
∫

Ω
u

}p∥
∥

∥

1

v

∥

∥

∥

r

L∞(Ω)

= c4

{
∫

Ω
u0

}p∥
∥

∥

1

v

∥

∥

∥

r

L∞(Ω)
for all t > 0. (3.16)
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To further estimate this, we recall from Lemma 3.1 that there exists t0 > 0 such that with K1 =
K1(D0) > 0 taken from (3.1) we have

∥

∥

∥

1

v

∥

∥

∥

L∞(Ω)
≤ 2

K1

∫

Ω u0
for all t > t0,

whence combining (3.13)-(3.16) shows that y(t) :=
∫

Ω up(·, t)v−r(·, t), t ≥ t0, satisfies

y′(t) + y(t) ≤ 2rc4
Kr

1

·
{
∫

Ω
u0

}p−r

for all t > t0

and thus, by integration,

y(t) ≤ y(t0)e
−(t−t0) +

2rc4
Kr

1

·
{
∫

Ω
u0

}p−r

·
∫ t

t0

e−(t−s)ds for all t > t0.

Since
∫ t

t0
e−(t−s)ds ≤ 1 for all t > t0, this entails that

lim sup
t→∞

y(t) ≤ 2rc4
Kr

1

·
{
∫

Ω
u0

}p−r

and thereby completes the proof, because both c4 and K1 are independent of the particular choices of
χ ≤ χ0, D ≥ D0 and the solution (u, v). �

By means of a simple argument based on the Hölder inequality and Lemma 3.2, the latter entails the
following.

Lemma 3.4 For all χ0 <
√

2
n
and D0 > 0 one can find p = p(χ0) ∈ (n2 , n) and K4 = K4(χ0, D0) > 0

such that whenever (u, v) is a global classical solution of (1.3) with some χ ≤ χ0, D ≥ D0 and (u0, v0)
compatible with (1.6), we have

lim sup
t→∞

‖u(·, t)‖Lp(Ω) ≤ K4

∫

Ω
u0. (3.17)

Proof. Using that χ0 <
√

2
n
, in accordance with Lemma 3.3 we first fix p0 = p0(χ0) ∈ (n2 , n),

r0 = r0(χ0) ∈ (0, p0) and K3 = K3(χ0, D0) with the properties listed there, and next pick any
p ≡ p(χ0) ∈ (n2 , n) such that p < p0. We then observe that for q := npr0

pr0+n(p0−p) we have W 1,q(Ω) →֒
L

pr0
p0−p (Ω), so that there exists c1 > 0 such that

‖ϕ‖
L

pr0
p0−p (Ω)

≤ c1‖ϕ‖W 1,q(Ω) for all ϕ ∈ W 1,q(Ω). (3.18)

Moreover, noting that

(n− p)q

np
=

(n− p)r0
pr0 + n(p0 − p)

<
(n− n

2 )r0
n
2 r0 + n(p0 − p)

< 1

and hence q < np
(n−p)+

, we may fix K2 = K2(D0, p, q) > 0 as provided by Lemma 3.2.
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We now let χ ≤ χ0, D ≥ D0 and (u0, v0) be given such that (1.6) holds, and note that then due to

Lemma 2.1, again by our assumption that χ0 <
√

2
n
, the associated solution (u, v) is bounded and

hence L := lim supt→∞ ‖u(·, t)‖Lp(Ω) finite. In order to quantitatively control the size of L, we use the
Hölder inequality in estimating

∫

Ω
up =

∫

Ω

(

up0v−r0
)

p

p0 · v
pr0
p0

≤
{
∫

Ω
up0v−r0

}
p

p0 ·
{
∫

Ω
v

pr0
p0−p

}

p0−p

p0

for all t > 0,

so that according to Lemma 3.3 and Lemma 3.2,

L ≤ lim sup
t→∞

{
∫

Ω
up0v−r0

}
1
p0 · lim sup

t→∞
‖v‖

r0
p0

L
pr0

p0−p (Ω)

≤ K
1
p0
3 ·

{
∫

Ω
u0

}

p0−r0
p0 · c

r0
p0
1 · lim sup

t→∞
‖v‖

r0
p0

W 1,q(Ω)

≤ K
1
p0
3 ·

{
∫

Ω
u0

}

p0−r0
p0 · c

r0
p0
1 ·K

r0
p0
2 L

r0
p0 .

Therefore,

L
1−

r0
p0 ≤ (cr01 Kr0

2 K3)
1
p0 ·

{
∫

Ω
u0

}

p0−r0
p0

,

whence relying on the inequality r0 < p0 we readily end up with (3.17) if we letK4 := (cr01 Kr0
2 K3)

1
p0−r0 ,

for instance. �

In turning this into an estimate for u with respect to a norm even somewhat stronger than that in
L∞(Ω), we shall make use of an auxiliary statement on an integral which in a natural manner arises
in the analysis of a Duhamel formula associated with (1.3).

Lemma 3.5 Let β ∈ (0, 1), γ ∈ (0, 1), λ > 0 and a ∈ [0, 1]. Then there exists L(β, γ, λ, a) > 0 such
that for all D > 0,

D

∫ t

t0

[D(t−s)]−γe−Dλ(t−s)
(

1+[D(s−t0)]
−β

)a

ds ≤ L(β, γ, λ, a)·
(

1+D−β(t−t0)
−β

)

for all t > t0.

(3.19)

Proof. We first use the evident fact that (1 + ξ)a ≤ 1 + ξa for all ξ ≥ 0 to see that for all t > t0,

D

∫ t

t0

[D(t− s)]−γe−Dλ(t−s)
(

1 + [D(s− t0)]
−β

)a

ds ≤ D1−γ

∫ t

t0

(t− s)−γe−Dλ(t−s)ds

+D1−γ−aβ

∫ t

t0

(t− s)−γe−Dλ(t−s)(s− t0)
−aβds (3.20)
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where clearly

D1−γ

∫ t

t0

(t− s)−γe−Dλ(t−s)ds =

∫ D(t−t0)

0
σ−γe−λσdσ ≤ c1 :=

∫ ∞

0
σ−γe−λσdσ, (3.21)

and where in the case t ≥ t0 +
2
D
,

D1−γ−aβ

∫ t

t0

(t− s)−γe−Dλ(t−s)(s− t0)
−aβds

= D1−γ−aβ

∫ t0+
1
D

t0

(t− s)−γe−Dλ(t−s)(s− t0)
−aβds

+D1−γ−aβ

∫ t

t0+
1
D

(t− s)−γe−Dλ(t−s)(s− t0)
−aβds

≤ D1−aβ

∫ t0+
1
D

t0

(s− t0)
−aβds+D1−γ

∫ t

t0+
1
D

(t− s)−γe−Dλ(t−s)ds

=
1

1− aβ
+

∫ D(t−t0)−1

0
σ−γe−λσdσ

≤ c2 :=
1

1− aβ
+ c1. (3.22)

Moreover, for t ∈ (t0, t0 +
2
D
) we have

D1−γ−aβ

∫ t

t0

(t− s)−γe−Dλ(t−s)(s− t0)
−aβds ≤ D1−γ−aβ

∫ t

t0

(t− s)−γ(s− t0)
−aβds

= c3D
1−γ−aβ(t− t0)

1−γ−aβ (3.23)

with c3 :=
∫ 1
0 (1− σ)−γσ−aβdσ, where

c3D
1−γ−aβ(t− t0)

1−γ−aβ

D−β(t− t0)−β
= c3D

1−γ+(1−a)β(t− t0)
1−γ+(1−a)β

≤ c4 := c3·21−γ+(1−a)β for all t ∈
(

t0, t0 +
2

D

)

due to the fact that 1 − γ + (1 − a)β is nonnegative. In consequence of (3.20)-(3.23), we therefore
obtain that

D

∫ t

t0

[D(t− s)]−γe−Dλ(t−s)
(

1 + [D(s− t0)]
−β

)a

ds ≤ c1 + c2 + c4D
−β(t− t0)

−β for all t > t0,

from which (3.19) directly results upon an evident choice of L(β, γ, λ, a). �

We are now in the position to establish an asymptotic estimate for u in L∞(Ω) and thereby complete
our provisions for a universal bound on u

v
to be formulated in Lemma 4.1 below. In order to simul-

taneously prepare an interpolation argument pursued in the course of our final convergence proof in
Section 5.1, we shall derive a corresponding estimate even a space yet slightly smaller than L∞(Ω).
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Lemma 3.6 Let µ ∈ (0, λ1), where λ1 > 0 denotes the first nonzero eigenvalue of the Neumann

Laplacian in Ω. Then for all χ0 <
√

2
n
and D0 > 0 there exist r = r(χ0) > n, α = α(χ0) ∈ ( n

2r , 1) and

K5 = K5(χ0, D0) > 0 such that if χ ≤ χ0, D ≥ D0 and (u0, v0) satisfies (1.6), then the global classical
solution (u, v) of (1.3) satisfies

lim sup
t→∞

‖Aαu(·, t)‖Lr(Ω) ≤ K5

∫

Ω
u0, (3.24)

where A denotes the sectorial realization of −∆+µ in Lr(Ω) under homogeneous Neumann boundary
conditions.

Proof. Given χ0 <
√

2
n
and D0 > 0, we take K1 = K1(D0) from Lemma 3.1 and let p = p(χ0) ∈

(n2 , n) and K4 = K4(χ0, D0) > 0 be as provided by Lemma 3.4, and using that p > n
2 we can fix q > n

such that q < np
(n−p)+

. In particular, the latter inequality enables us to take K2 = K2(D0, p, q) as

given by Lemma 3.2, whereas due to the former we can pick r ≡ r(χ0) > n fulfilling r < q. As thus
n
2r < min{1 − n

2 (
1
p
− 1

r
) , 1

2} due to the fact that p > n
2 , we can find a number α ≡ α(χ0) such that

α > n
2r and α < 1− n

2 (
1
p
− 1

r
) as well as α < 1

2 . Therefore, the corresponding fractional power Aα of
the operator A introduced above has the property that its domain satisfies D(Aα) →֒ L∞(Ω) ([14]),
whence we can fix c1 > 0 such that

‖ϕ‖L∞(Ω) ≤ c1‖Aαϕ‖Lr(Ω) for all ϕ ∈ D(Aα). (3.25)

From known smoothing properties of the Neumann heat semigroup (eτ∆)τ≥0 ≡ (e−τ(A−µ))τ≥0 and our
choice of µ ([31]) we moreover obtain positive constants λ, c2 and c3 such that

‖Aαeτ∆ϕ‖Lr(Ω) ≤ c2(1 + τ−β)‖ϕ‖Lp(Ω) for all τ > 0 and any ϕ ∈ Lp(Ω) (3.26)

as well as

‖Aαeτ∆∇·ϕ‖Lr(Ω) ≤ c3τ
−γe−λτ‖ϕ‖Lr(Ω) for all τ > 0 and each ϕ ∈ C1(Ω) fulfilling ϕ · ν = 0 on ∂Ω,

(3.27)
with β := α + n

2 (
1
p
− 1

r
) and γ := 1

2 + α satisfying β < 1 and γ < 1 due to the restrictions that

α < 1− n
2 (

1
p
− 1

r
) and α < 1

2 .

Upon these selections, we now suppose that (u, v) is a global classical solution of (1.3) for some
χ ≤ χ0, D ≥ D0 and (u0, v0) fulfilling (1.6) and then infer from Lemma 3.1 that

lim sup
t→∞

∥

∥

∥

1

v(·, t)
∥

∥

∥

L∞(Ω)
≤ 1

K1

∫

Ω u0
,

whereas combining Lemma 3.2 with Lemma 3.4 asserts that

lim sup
t→∞

‖u(·, t)‖Lp(Ω) ≤ K4

∫

Ω
u0

and hence

lim sup
t→∞

‖v(·, t)‖W 1,q(Ω) ≤ K2K4

∫

Ω
u0.
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In particular, these inequalities guarantee the existence of t0 > 0 such that
∥

∥

∥

1

v(·, t)
∥

∥

∥

L∞(Ω)
≤ 2

K1

∫

Ω u0
for all t > t0 (3.28)

and

‖v(·, t)‖W 1,q(Ω) ≤ 2K2K4

∫

Ω
u0 for all t > t0 (3.29)

as well as

‖u(·, t0)‖Lp(Ω) ≤ 2K4

∫

Ω
u0, (3.30)

and keeping this value of t0 fixed henceforth, for arbitrary T > t0 we estimate the finite number

M(T ) := sup
t∈(t0,T ]

(

1 +D−β(t− t0)
−β

)−1
‖Aαu(·, t)‖Lr(Ω)

as follows: By means of a variation-of-constants representation of u, we see that thanks to (3.26),
(3.27) and (3.30),

‖Aαu(·, t)‖Lr(Ω) =

∥

∥

∥

∥

Aαe(t−t0)D∆u(·, t0)−Dχ

∫ t

t0

Aαe(t−s)D∆∇ ·
(u(·, s)
v(·, s)∇v(·, s)

)

ds

∥

∥

∥

∥

Lr(Ω)

≤ ‖Aαe(t−t0)D∆u(·, t0)‖Lr(Ω) +Dχ

∫ t

t0

∥

∥

∥

∥

Aαe(t−s)D∆∇ ·
(u(·, s)
v(·, s)∇v(·, s)

)

∥

∥

∥

∥

Lr(Ω)

ds

≤ c2 ·
(

1 + [D(t− t0)]
−β

)

‖u(·, t0)‖Lp(Ω)

+c3Dχ

∫ t

t0

[D(t− s)]−γe−λD(t−s)
∥

∥

∥

u(·, s)
v(·, s)∇v(·, s)

∥

∥

∥

Lr(Ω)
ds

≤ 2c2K4 ·
(

1 +D−β(t− t0)
−β

)

·
∫

Ω
u0

+c3χ0D

∫ t

t0

[D(t− s)]−γe−λD(t−s)
∥

∥

∥

u(·, s)
v(·, s)∇v(·, s)

∥

∥

∥

Lr(Ω)
ds for all t > t0, (3.31)

because χ ≤ χ0. Here in the rightmost integral we employ the Hölder inequality and make use of (3.25),
(3.28) and (3.29) as well as the definition of M(T ) and (2.1) to see that writing a := 1− q−r

qr
∈ (0, 1)

we have
∥

∥

∥

u(·, s)
v(·, s)∇v(·, s)

∥

∥

∥

Lr(Ω)
≤

∥

∥

∥

1

v(·, s)
∥

∥

∥

L∞(Ω)
‖∇v(·, s)‖Lq(Ω)‖u(·, s)‖

L
qr
q−r (Ω)

≤
∥

∥

∥

1

v(·, s)
∥

∥

∥

L∞(Ω)
‖∇v(·, s)‖Lq(Ω)‖u(·, s)‖1−a

L1(Ω)
‖u(·, s)‖aL∞(Ω)

≤ ca1

∥

∥

∥

1

v(·, s)
∥

∥

∥

L∞(Ω)
‖∇v(·, s)‖Lq(Ω)‖u(·, s)‖1−a

L1(Ω)
‖Aαu(·, s)‖aLr(Ω)

≤ ca1 ·
2

K1

∫

Ω u0
· 2K2K4

∫

Ω
u0 ·

{
∫

Ω
u0

}1−a

·
(

1 +D−β(s− t0)
−β

)a

Ma(T )

=
4ca1K2K4

K1
·
{
∫

Ω
u0

}1−a

Ma(T ) ·
(

1 +D−β(s− t0)
−β

)a

for all s ∈ (t0, T ).
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Invoking Lemma 3.5, we hence infer that with L(·, ·, ·, ·) as introduced there and c4 :=
4ca1c3K2K4χ0L(β,γ,λ,a)

K1
,

c3χ0D

∫ t

t0

[D(t− s)]−γe−λD(t−s)
∥

∥

∥

u(·, s)
v(·, s)∇v(·, s)

∥

∥

∥

Lr(Ω)
ds

≤ 4ca1c3K2K4χ0

K1
·
{
∫

Ω
u0

}1−a

Ma(T ) ·D
∫ t

t0

[D(t− s)]−γe−λD(t−s)
(

1 +D−β(s− t0)
−β

)a

ds

≤ c4

{
∫

Ω
u0

}1−a

Ma(T ) ·
(

1 +D−β(t− t0)
−β

)

for all t ∈ (t0, T ).

Now since the fact that a < 1 warrants that by Young’s inequality,

ξη ≤ 1

2
ξ

1
a + c5η

1
1−a for all ξ ≥ 0 and η ≥ 0

with c5 := (1− a) · (2a)
a

1−a , together with (3.31) this shows that

(

1 +D−β(t− t0)
−β

)−1
‖Aαu(·, t)‖Lr(Ω) ≤ 2c2K4

∫

Ω
u0 + c4

{
∫

Ω
u0

}1−a

Ma(T )

≤ 2c2K4

∫

Ω
u0 +

1

2
M(T ) + c5 · c

1
1−a

4

∫

Ω
u0

for all t ∈ (t0, T ), and thus

M(T ) ≤ c6

∫

Ω
u0 for all T > t0,

where c6 := 2(2c2K4+c
1

1−a

4 c5) depends on χ0 and D0 but neither on χ ≤ χ0 nor on D ≥ D0 nor (u, v).
As this entails that

‖Aαu(·, t)‖Lr(Ω) ≤
(

1 +D−β(t− t0)
−β

)

M(t)

≤ 2c6

∫

Ω
u0 for all t ≥ t0 +

1

D
,

the proof becomes complete if we let K5 := 2c6. �

4 An asymptotic universal estimate for u
v

Thanks to the rather precise knowledge on quantitative dependence of the expressions addressed in
Lemma 3.1 and Lemma 3.6 on the initial data, the following conclusion of the latter two lemmata is
quite straightforward but of fundamental importance for the subsequent arguments.

Lemma 4.1 Let χ0 <
√

2
n
and D0 > 0. Then there exists K6 = K6(χ0, D0) > 0 such that whenever

(u, v) is a global classical solution of (1.3) for some χ ≤ χ0, D ≥ D0 and (u0, v0) satisfying (1.6), we
have

lim sup
t→∞

∥

∥

∥

u(·, t)
v(·, t)

∥

∥

∥

L∞(Ω)
≤ K6. (4.1)
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Proof. We let r > n, A and α ∈ ( n
2r , 1) be as in Lemma 3.6 and recall that then D(Aα) →֒ L∞(Ω),

and that hence there exists c1 > 0 such that ‖ϕ‖L∞(Ω) ≤ c1‖Aαϕ‖Lr(Ω) for all ϕ ∈ D(Aα). Therefore,

∥

∥

∥

u(·, t)
v(·, t)

∥

∥

∥

L∞(Ω)
≤

∥

∥

∥

1

v(·, t)
∥

∥

∥

L∞(Ω)
‖u(·, t)‖L∞(Ω)

≤ c1

∥

∥

∥

1

v(·, t)
∥

∥

∥

L∞(Ω)
‖Aαu(·, t)‖Lr(Ω) for all t > 0,

so that the claimed inequality (4.1) immediately results from Lemma 3.1 and Lemma 3.6 if we let

K6(χ0, D0) :=
c1K5(χ0,D0)

K1(D0)
with K5(·, ·) and K1(·) as provided there. �

5 An asymptotic Lyapunov functional. Proof of the main results

Thanks to the pointwise estimate from Lemma 4.1, a simple linear combination of the expressions
∫

Ω(u − u0)
2 and

∫

Ω(v − u0)
2 can be seen to play the role of a Lyapunov functional at least after a

certain trajectory-dependent waiting time. Indeed, in view of (4.1) the evolution of the first ingredient
thereof can be described as follows.

Lemma 5.1 Let χ0 <
√

2
n
and D0 > 0. Then whenever χ ≤ χ0, D ≥ D0 and (u0, v0) satisfies (1.6),

for the corresponding global classical solution (u, v) one can find t0 > 0 such that

d

dt

∫

Ω
(u− u0)

2 +D

∫

Ω
|∇u|2 ≤ 4K2

6Dχ2

∫

Ω
|∇v|2 for all t > t0, (5.1)

where K6 = K6(χ0, D0) > 0 is as in Lemma 4.1.

Proof. According to Lemma 4.1, we can find t0 > 0 such that

u(x, t)

v(x, t)
≤ 2K6 for all x ∈ Ω and any t > t0.

Therefore, if we test the first equation in (1.3) by u− u0, then in the resulting identity

1

2

d

dt

∫

Ω
(u− u0)

2 =

∫

Ω
(u− u0) ·

{

D∆u−Dχ∇ ·
(u

v
∇v

)}

= −D

∫

Ω
|∇u|2 +Dχ

∫

Ω

u

v
∇u · ∇v, t > 0,

by means of Young’s inequality we can estimate

Dχ

∫

Ω

u

v
∇u · ∇v ≤ D

2

∫

Ω
|∇u|2 + Dχ2

2

∫

Ω

u2

v2
|∇v|2

≤ D

2

∫

Ω
|∇u|2 + 2K2

6Dχ2

∫

Ω
|∇v|2 for all t > t0

and conclude. �

Here the integral on the right-hand side precisely appears as part of the dissipation rate in a corre-
sponding evolutionary inequality for

∫

Ω(v − u0).
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Lemma 5.2 Assume that χ <
√

2
n
, that D > 0 and that (1.6) holds. Then the global classical solution

(u, v) of (1.3) satisfies

d

dt

∫

Ω
(v − u0)

2 + 2D

∫

Ω
|∇v|2 +

∫

Ω
(v − u0)

2 ≤
∫

Ω
(u− u0)

2 for all t > 0. (5.2)

Proof. We multiply the second equation in (1.3) by v − u0 and integrate by parts to see that

1

2

d

dt

∫

Ω
(v − u0)

2 =

∫

Ω
(v − u0) ·

{

D∆v − (v − u0) + (u− u0)
}

= −D

∫

Ω
|∇v|2 −

∫

Ω
(v − u0)

2 +

∫

Ω
(u− u0)(v − u0) for all t > 0.

As by Young’s inequality,
∫

Ω
(u− u0)(v − u0) ≤

1

2

∫

Ω
(v − u0)

2 +
1

2

∫

Ω
(u− u0)

2 for all t > 0,

this implies (5.2). �

5.1 Proof of Theorem 1.1 and Proposition 1.2

Based on an appropriate combination of Lemma 5.1 and Lemma 5.2 as well as two interpolation
arguments, we can now establish our main results on stabilization in (1.3).

Proof of Theorem 1.1. By means of the Poincaré inequality, we fix c1 > 0 such that
∫

Ω
(ϕ− ϕ)2 ≤ c1

∫

Ω
|∇ϕ|2 for all ϕ ∈ W 1,2(Ω), (5.3)

and given χ0 <
√

2
n
and D0 > 0 we thereupon let

δ :=
1

4c1K2
6

(5.4)

with K6 := K6(χ0, D0) > 0 taken from Lemma 4.1. Then assuming that χ ≤ χ0 and D ≥ D0 are
such that (1.7) holds, and that (u0, v0) complies with (1.6), then from Lemma 2.1 we know that (1.3)
possesses a global classical solution (u, v) which is such that (1.8) holds, and for which due to Lemma
5.1 and Lemma 5.2 there exists t0 > 0 satisfying

d

dt

{
∫

Ω
(u− u0)

2 +
D

2c1

∫

Ω
(v − u0)

2

}

+D

∫

Ω
|∇u|2 + D2

c1

∫

Ω
|∇v|2 + D

2c1

∫

Ω
(v − u0)

2

≤ 4K2
6Dχ2

∫

Ω
|∇v|2 + D

2c1

∫

Ω
(u− u0)

2 for all t > t0.

Since herein

D

∫

Ω
|∇u|2 ≥ D

c1

∫

Ω
(u− u0)

2 for all t > 0
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by (5.3) and (2.1), and since moreover

4K2
6Dχ2

∫

Ω
|∇v|2 ≤ 4δK2

6D
2

∫

Ω
|∇v|2 = D2

c1

∫

Ω
|∇v|2 for all t > 0

according to (1.7) and (5.4), this implies that

d

dt

{
∫

Ω
(u− u0)

2 +
D

2c1

∫

Ω
(v − u0)

2

}

+
D

2c1

∫

Ω
(u− u0)

2 +
D

2c1

∫

Ω
(v − u0)

2 ≤ 0 for all t > t0.

Therefore, y(t) :=
∫

Ω(u(·, t)− u0)
2 + D

2c1

∫

Ω(v(·, t)− u0)
2, t ≥ t0, satisfies

y′(t) + c2y(t) ≤ 0 for all t > t0

with c2 := min{ D
2c1

, 1}, on integration showing that

y(t) ≤ c3e
c1t for all t ≥ t0

and hence
‖u(·, t)− u0‖L2(Ω) ≤ c4e

−
c2
2
t for all t ≥ t0 (5.5)

as well as
‖v(·, t)− u0‖L2(Ω) ≤ c5e

−
c2
2
t for all t ≥ t0 (5.6)

if we let c3 := y(t0)e
c2t0 , c4 :=

√
c3 and c5 :=

√

2c1c3
D

, for instance. In order to derive (1.9) and

(1.10) from this, we proceed by straightforward interpolation relying on Lemma 3.6 and once again
on Lemma 3.2 and Lemma 3.4:

Firstly, letting p = p(χ0) ∈ (n2 , n) be as in Lemma 3.4 and choosing any q > n such that q < np
n−p

,
we infer on combining Lemma 3.2 with Lemma 3.4 that with K4 = K4(χ0, D0) > 0 and K2 =
K2(D0, p, q) > 0 as introduced there we have

lim sup
t→∞

‖v(·, t)‖W 1,q(Ω) ≤ K2 lim sup
t→∞

‖u(·, t)‖Lp(Ω) ≤ K2K4

∫

Ω
u0

and hence

‖v(·, t)‖W 1,q(Ω) ≤ c6 := 2K2K4

∫

Ω
u0 for all t ≥ t1

with some appropriately large t1 ≥ t0. Since in view of the restriction q > n the Gagliardo–Nirenberg
inequality provides c7 > 0 such that writing a := nq

2q+nq−2n ∈ (0, 1) we have

‖v(·, t)− u0‖L∞(Ω) ≤ c7‖v(·, t)− u0‖aW 1,q(Ω)‖v(·, t)− u0‖1−a
L2(Ω)

for all t > 0,

estimating

‖v(·, t)− u0‖W 1,q(Ω) ≤ ‖v(·, t)‖W 1,q(Ω) + ‖u0‖W 1,q(Ω) ≤ c8 := c6 + ‖u0‖W 1,q(Ω) for all t ≥ t1
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we obtain that

‖v(·, t)− u0‖l∞(Ω) ≤ c7c
a
8‖v(·, t)− u0‖1−a

L2(Ω)

≤ c7c
a
8c

1−a
5 e−

(1−a)c2
2

t for all t ≥ t1 (5.7)

according to (5.6).

To prepare a similar argument for the first solution component, we first recall from Lemma 3.6 that
there exist r > n and α ∈ ( n

2r , 1) such that with K5(χ0, D0) and the operator A defined there we can
find t2 ≥ t0 such that

‖Aαu(·, t)‖Lr(Ω) ≤ c9 := 2K5

∫

Ω
u0 for all t ≥ t2. (5.8)

Using that α > n
2r , we may fix α0 ∈ (0, α) such that still α0 >

n
2r , which in view of a known embedding

result ([14]) implies that D(Aα0) →֒ L∞(Ω) and hence

‖ϕ‖L∞(Ω) ≤ c10‖Aα0ϕ‖Lr(Ω) for all ϕ ∈ D(Aα0) (5.9)

with some c10 > 0. Now a standard interpolation inequality ([9]) yields c11 > 0 fulfilling

‖Aα0ϕ‖Lr(Ω) ≤ c11‖Aαϕ‖bLr(Ω)‖ϕ‖1−b
Lr(Ω) for all ϕ ∈ D(Aα)

with b := α0
α

∈ (0, 1), whence by the Hölder inequality and (5.9),

‖ϕ‖1−b
Lr(Ω) ≤ ‖ϕ‖

(r−2)(1−b)
r

L∞(Ω) ‖ϕ‖
2(1−b)

r

L2(Ω)
≤ c

(r−2)(1−b)
r

10 ‖Aα0ϕ‖
(r−2)(1−b)

r

Lr(Ω) ‖ϕ‖
2(1−b)

r

L2(Ω)
for all ϕ ∈ D(Aα0)

and thus, altogether,

‖Aα0ϕ‖1−
(r−2)(1−b)

r

Lr(Ω) ≤ c
(r−2)(1−b)

r

10 c11‖Aαϕ‖bLr(Ω)‖ϕ‖
2(1−b)

r

L2(Ω)
for all ϕ ∈ D(Aα),

that is,

‖Aα0ϕ‖Lr(Ω) ≤ c12‖Aαϕ‖dLr(Ω)‖ϕ‖1−d
L2(Ω)

for all ϕ ∈ D(Aα)

with d := br
br+2(1−b) ∈ (0, 1) and c12 :=

(

c
(r−2)(1−b)

r

10 c11

)
r

br+2(1−b)
> 0. When applied to ϕ := u(·, t)− u0

for t ≥ t2, since
∥

∥

∥
Aα(u(·, t)− u0)

∥

∥

∥

Lr(Ω)
≤ ‖Aαu(·, t)‖Lr(Ω) + ‖Aαu0‖Lr(Ω)

≤ c13 := c9 + ‖Aαu0‖Lr(Ω) for all t ≥ t2

by (5.8), this entails that
∥

∥

∥
Aα0(u(·, t)− u0)

∥

∥

∥

Lr(Ω)
≤ c12c

d
13‖u(·, t)− u0‖1−d

L2(Ω)

≤ c1−d
4 c12c

d
13e

−
(1−d)c2

2
t for all t ≥ t2
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according to (5.5). Once more employing (5.9), from this we obtain (1.9), whereas (1.10) has been
established in (5.7). �

The second of our main results can thereafter be obtained by means of a simple reformulation.

Proof of Proposition 1.2. In view of (1.4) and (1.5), both (1.11) and (1.12) are evident consequences
of Theorem 1.1. �
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[18] Itô, S.: Diffusion Equations, Translated from the 1979 Japanese original by the author. Transla-
tions of Mathematical Monographs, 114. American Mathematical Society, Providence, RI, 1992.

[19] Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J.
Theor. Biol. 26, 399-415 (1970)

[20] Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: A theoretical analysis. J.
Theor. Biol. 30, 235-248 (1971)

[21] Lankeit, J.: A new approach toward boundedness in a two-dimensional parabolic chemotaxis
system with singular sensitivity. Math. Methods Appl. Sci. 39, 394-404 (2016)

[22] Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with
logarithmic sensitivity: global solvability for large nonradial data. Nonlinear Differential Eq. Appl.
24, Art. 49 (2017)

[23] Lin, C.-S., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis
system. J. Differential Eq. 72, 1-27 (1988)

[24] Mizukami, M., Yokota, T.: A unified method for boundedness in fully parabolic chemotaxis
systems with signal-dependent sensitivity. Math. Nachr. 290, 2648-2660 (2017)

[25] Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic
system of chemotaxis. Adv. Math. Sci. Appl. 8, 145-156 (1998)

[26] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a
parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40, 411-433 (1997)

[27] Rosen, G.: Steady-state distribution of bacteria chemotactic toward oxygen. Bull. Math. Biol.
40, 671-674 (1978)

[28] Salako, R., Shen, W.: Global existence and asymptotic behavior of classical solutions to a
parabolic-elliptic chemotaxis system with logistic source on R

N . J. Differential Eq. 262, 5635-
5690 (2017)

21



[29] Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular
sensitivity. Nonlin. Anal. Real World Appl. 12, 3727-3740 (2011)

[30] Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Comm. Part. Differential
Eq. 32 (6), 849-877 (2007)

[31] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel
model. J. Differential Equations 248, 2889-2905 (2010)

[32] Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity.
Math. Methods Appl. Sci. 34, 176-190 (2011)

[33] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel
system. J. Math. Pures Appl. 100, 748-767 (2013)

[34] Winkler, M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis
system with strong logistic dampening. J. Differential Eq. 257, 1056-1077 (2014)

[35] Zhao, X., Zheng, S.: Global boundedness of solutions in a parabolic-parabolic chemotaxis system
with singular sensitivity. J. Math. Anal. Appl. 443, 445–452 (2016)

[36] Zheng, J.: Boundedness and global asymptotic stability of constant equilibria in a fully parabolic
chemotaxis system with nonlinear logistic source. J. Math. Anal. Appl. 450, 1047-1061 (2017)

22


