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Abstract

This work is concerned with a prototypical model for the spatio-temporal evolution of a forager-
exploiter system, consisting of two species which simultaneously consume a common nutrient, and
which interact through a taxis-type mechanism according to which individuals from the the exploiter
subpopulation move upward density gradients of the forager subgroup.

Specifically, the model





ut = ∆u− χ1∇ · (u∇w),
vt = ∆v − χ2∇ · (v∇u),
wt = d∆v − λ(u+ v)w − µw + r(x, t),

(⋆)

for the population densities u and v of foragers and exploiters, as well as the nutrient concentration
w, is considered in smoothly bounded domains Ω ⊂ R

n, n ≥ 1.

It is firstly shown that under an explicit condition linking the sizes of the resource production
rate r and of the initial nutrient concentration, an associated Neumann-type initial-boundary value
problem admits a global solution within an appropriate generalized concept. The second of the
main results asserts stabilization of these solutions toward spatially homogeneous equilibria in the
large time limit, provided that r satisfies a mild assumption on temporal decay.

To the best of our knowledge, these are the first rigorous analytical results addressing taxis-type
cross-diffusion mechanisms coupled in a cascade-like manner as in (⋆).
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1 Introduction

Social interactions have been known to play an essential role in the dynamics of complex systems in
various experimental contexts, with typical application areas in biology such as in flocking, swarming
or aggregation processes, but also touching a variety of other fields such as economy or crime evolu-
tion ([6], [11], [13], [15], [17], [24]). Here in order to understand fundamental principles and strategies
at a theoretical level, besides relying on simulations of individual-based models ([15]) the theoretical
analysis is more and more built on density-based models using partial differential equations ([10],
[23]). Indeed, as paradigmatically illustrated by the celebrated Keller-Segel model for chemotactic
aggregation, the latter type of approach brings about the advantage of potentially making questions
of collective behavior accessible to methods from qualitative PDE analysis ([18], [30], see also [3]).

Specifically, the interacting dynamics of swarms, when exhibiting collective behavior to search food,
have been the objective of [15] and [17], where following the seminal paper [8] the focus is mainly on
microscopic scales at which both mechanical and social influences are modeled by taking advantage of
general principles of social foraging theory ([13]); beyond this, recent approaches have developed mod-
eling approaches at mesoscopic scales ([6], cf. also [5]), and have shown how the derivation of kinetic
models can be obtained as mean field limits from individual based models ([16]). An example involving
a fully macroscopic final outcome is constituted in [24] which addresses the evolution of criminality
in the search of preys, in a given and usual urban territory; here, namely, the decisive interaction is
eventually modeled at macroscopic scales and hence leads to a parabolic system including an attractive
cross-diffusive term. A more general survey on Fokker-Planck type methods to model social dynamics
can be found in [11], where in accordance with usual features of kinetic theory approaches, the lower
scale is that of individual based interactions. Apart from that, some recent developments in the math-
ematical description of crowd dynamics have taken into account social interactions in the evolution of
crowds by modeling consensus towards a commonly shared emotional state ([28]), or accounting for
stress onset and propagation in crisis situations ([4]).

The particular objective of the present work is a model for resource consumption in populations
consisting of two fractions, where the first of these consists of individuals that directly orient their
movement toward increasing food concentrations, and where in contrast to this, the members of the
second group arrange their search for food by rather moving upward density gradients of the first
subpopulation. In fact, numerical experiments as well as some considerations based on formal analysis
([25]) indicate that the interplay even of such simple mechanisms of ”foraging” and ”scrounging”,
conjectured as relevant e.g. for the formation of certain shearwater flocks through attraction to kit-
tiwake foragers observed in Alaska ([17]), may already lead to considerably more complex dynamical
behavior than the corresponding single-species taxis-consumption model for which rigorous results
have asserted eventual dominance of spatial homogeneity ([26]; cf. also the discussion around (1.2)
below).

Specifically, we shall be concerned with a parabolic problem proposed in [25] for the spatio-temporal
evolution in such forager-scrounger systems, which after non-dimensionalization amounts to studying
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the initial-boundary value problem




ut = ∆u− χ1∇ · (u∇w), x ∈ Ω, t > 0,

vt = ∆v − χ2∇ · (v∇u), x ∈ Ω, t > 0,

wt = d∆v − λ(u+ v)w − µw + r(x, t), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

in a smoothly bounded domain Ω ⊂ R
n, n ≥ 1, for the unknown population densities u = u(x, t) and

v = v(x, t) of foragers and scroungers, respectively, and the resource concentration w = w(x, t). Here
in line with the above, the standing assumptions that χ1, χ2 and λ be positive reflect the modeling
hypotheses that foragers are attracted by food, whereas scroungers follow foragers, with both groups
moreover diffusing randomly and consuming the nutrient upon contact. Apart from that, the food
resources, supposed to be diffusible by the requirement that d > 0, are allowed to spontaneously
decay through the assumption that µ ≥ 0, and to be renewed from an external repository at a rate
r = r(x, t) ≥ 0.

In accordance with the numerical experiments from [25], but also from a purely mathematical-technical
perspective, a substantial increase of complexity seems likely to be expected when passing to (1.1)
from the corresponding exploiter-free problem associated with the one-species chemotaxis-consumption
system ([22]) {

ut = ∆u− χ1∇ · (u∇w), x ∈ Ω, t > 0,

wt = d∆v − λuw − µw + r(x, t), x ∈ Ω, t > 0 :
(1.2)

While in (1.2) the attractant within the single taxis mechanism is subject to the significantly dissi-
pative process of consumption through individuals, no such relaxation-enhancing effect influences the
evolution of the scrounger population in (1.1). In fact, this partially becomes manifest in some rigorous
analytical findings, according to which the prototypical version of (1.2), as obtained on letting µ = 0
and r ≡ 0, for all reasonably regular initial data (u0, w0) admits global smooth solutions when n ≤ 2
and global weak solutions when n = 3, with all these solutions at least eventually becoming smooth
and and approaching the homogeneous equilibrium ( 1

|Ω|
∫
Ω u0, 0) in the large time limit ([26]); in quite

drastic contrast to this, systems which such as (1.1) involve sequential taxis mechanisms seem to lack
any rigorous theory yet already at the basic level of questions from mere existence theory.

Main results: Global existence and a qualitative description. Accordingly, the goal of
the present work consists in providing an apparently first step toward a theoretical understanding of
cascade-type taxis interplay in general, and in particular of the specific coupling in the forager-exploiter
model from [25]. Here in order to at least partially exceed the scope of fundamental existence theory,
our objectives as well include the ambition to yield information on qualitative aspects in some cases
of apparent relevance for applications.

In fact, we will firstly derive a result on global existence of certain generalized solutions under an
explicit smallness assumption linking the initial nutrient distribution to the food reproduction rate;
secondly, we shall thereafter see that similar to the behavior in (1.2), the absence of substantially
persistent resource renewal enforces asymptotic homogenization of these solutions. In particular, this
will imply that in the latter case of suitably fast nutrient decay, any phenomena related to pattern
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formation must necessarily be restricted to intermediate time scales; after all, in view of the poor
regularity information gathered below for our solutions, it is well conceivable, and thus forming an
interesting open topic for further analysis, that such transient structure formation may occur in the
extreme sense of finite-time blow-up of some solutions.

Thus subsequently concentrating on (1.1), our standing assumptions on the ingredients therein will
be that

r ∈ C1(Ω× [0,∞)) is nonnegative, (1.3)

and that 



u0 ∈W 1,∞(Ω) is nonnegative with u0 6≡ 0,

v0 ∈W 1,∞(Ω) is nonnegative with v0 6≡ 0 and

w0 ∈W 1,∞(Ω) is nonnegative.

(1.4)

In this setting, the first of our main results indeed asserts global solvability, within a generalized
concept extending that introduced in [32] for a single-species chemotaxis system, provided that w0

and r comply with a fully explicit smallness hypothesis.

Theorem 1.1 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, let d > 0, χ1 >

0, χ2 > 0, λ > 0 and µ ≥ 0, and let (u0, v0, w0) as well as r be such that apart from (1.3) and (1.4) we
have

sup
t>0

{
‖w0‖L∞(Ω)e

−µt +

∫ t

0
e−µ(t−s)‖r(·, s)‖L∞(Ω)ds

}
< w⋆, (1.5)

where the positive constant w⋆ is defined by

w⋆ :=
1

χ1
·





d−1+
√
d2−d+1
2 if d ≤ 7+

√
13

6 ,

2d(d−1)
d2−d+1

if 7+
√
13

6 < d ≤ 3+
√
5

2 ,
√
d if d > 3+

√
5

2 .

(1.6)

Then there exist nonnegative functions





u ∈ L∞((0,∞);L4(Ω)) ∩ L2
loc([0,∞);W 1,2(Ω)),

v ∈ L∞((0,∞);L1(Ω)) and

w ∈ L∞(Ω× (0,∞)) ∩ L2
loc([0,∞);W 1,2(Ω))

(1.7)

such that ∫

Ω
u(·, t) =

∫

Ω
u0 and

∫

Ω
v(·, t) ≤

∫

Ω
v0 for a.e. t > 0, (1.8)

and that (u, v, w) forms a global generalized solution of (1.1) in the sense of Definition 2.1 below.

Here the hypotheses (1.5) is formulated in such a way that in both cases µ = 0 and µ > 0, some
conveniently verifiable criteria on w0 and r can be identified as sufficient for the above conclusion:

Proposition 1.2 i) In the case µ = 0, (1.5) holds if and only if

‖w0‖L∞(Ω) +

∫ ∞

0
‖r(·, t)‖L∞(Ω)dt < w⋆. (1.9)
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ii) If µ > 0, then (1.5) is valid whenever

‖w0‖L∞(Ω) < w⋆ and
1

µ
· sup
t>0

‖r(·, t)‖L∞(Ω) < w⋆. (1.10)

Proof. While the statement in i) is obvious, the claim in ii) can be seen by observing that if µ > 0
and (1.10) holds, then taking c1 ∈ (0, w⋆) such that ‖w0‖L∞(Ω) < c1 and 1

µ
‖r(·, t)‖L∞(Ω) ≤ c1 for all

t > 0, we can estimate

‖w0‖L∞(Ω)e
−µt +

∫ t

0
e−µ(t−s)‖r(·, s)‖L∞(Ω)ds ≤ c1e

−µt + c1µ

∫ t

0
e−µ(t−s)ds = c1 for all t > 0

and conclude as intended. �

Now if r decays suitably fast in time, then all of these solutions approach spatially homogeneous
profiles in the large time limit, where in view of the low regularity information on v asserted by
Theorem 1.1 it is may not be too surprising that stabilization of this crucial solution component will
be asserted only with regard to some quite coarse topology. Here and below, we use the abbreviation
ϕ := 1

|Ω|
∫
Ω ϕ for ϕ ∈ L1(Ω).

Theorem 1.3 Suppose that beyond the hypotheses from Theorem 1.1,

∫ ∞

0
‖r(·, t)‖L∞(Ω)dt <∞. (1.11)

Then there exist a null set N ⊂ (0,∞) and a positive constant v∞ such that

‖u(·, t)− u0‖L4(Ω) → 0 as (0,∞) \N ∋ t→ ∞ (1.12)

as well as
‖w(·, t)‖L∞(Ω) → 0 as (0,∞) \N ∋ t→ ∞, (1.13)

and that for each p ∈ (0, 1),

∫ t+1

t

∫

Ω
|v(x, s)− v∞|pdxds→ 0 as t→ ∞. (1.14)

An interesting question that has to be left open here is whether the number v∞ in (1.14), beyond
merely known to be positive, can actually be identified with the average 1

|Ω|
∫
Ω v0; indeed, due to lacking

information on respective L1 compactness of corresponding solution components to the regularized
systems (2.7) below, our analysis will be unable to exclude the case that for some of the obtained
solutions the inequality in (1.8) is strict within a significantly large set of times.

2 Specifying the solution concept and regularizing (1.1)

To begin with, let us specify the solution concept that we plan to pursue throughout the sequel. By
requiring v to simultaneously possess a certain weak supersolution property (see (2.5)) as well as an
upper limitation of its mass functional formally campatible with (1.1) (see (2.6)), with regard to this
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crucial second component our concept on the one hand becomes modest enough so as to favorably
cooperate with the poor regularity information to be collected therefor below, but on the other hand
yet remains consistent with that of classical solvability. In moreover involving the strictly monotone
function ln(v + 1) instead of v itself, our notion can be viewed as a far relative of the concept of
renormalized solutions coined by Di Perna and Lions ([9]), and precedents in the literature of simpler
taxis-type systems can be found in [32], [33] and also in [35], for instance.

Definition 2.1 A triple of functions





u ∈ L2
loc([0,∞);W 1,2(Ω)),

v ∈ L1
loc(Ω× [0,∞)) and

w ∈ L∞
loc(Ω× [0,∞)) ∩ L2

loc([0,∞);W 1,2(Ω))

(2.1)

such that
∇ ln(v + 1) and u∇w belong to L2

loc(Ω× [0,∞);Rn) (2.2)

will be called a global generalized solution of (1.1) if for all ϕ ∈ C∞
0 (Ω× [0,∞)) the identities

−
∫ ∞

0

∫

Ω
uϕt −

∫

Ω
u0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇u · ∇ϕ+ χ1

∫ ∞

0

∫

Ω
u∇w · ∇ϕ (2.3)

and

−
∫ ∞

0

∫

Ω
wϕt −

∫

Ω
w0ϕ(·, 0) = −d

∫ ∞

0

∫

Ω
∇w · ∇ϕ− λ

∫ ∞

0

∫

Ω
(u+ v)wϕ

−µ
∫ ∞

0

∫

Ω
wϕ+

∫ ∞

0

∫

Ω
rϕ (2.4)

hold, if for each nonnegative ϕ ∈ C∞
0 (Ω× [0,∞)) the inequality

−
∫ ∞

0

∫

Ω
ln(v + 1)ϕt −

∫

Ω
ln(v0 + 1)ϕ(·, 0)

≥
∫ ∞

0

∫

Ω
|∇ ln(v + 1)|2ϕ−

∫ ∞

0

∫

Ω
∇ ln(v + 1) · ∇ϕ

−χ2

∫ ∞

0

∫

Ω

v

v + 1

(
∇u · ∇ ln(v + 1)

)
ϕ+ χ2

∫ ∞

0

∫

Ω

v

v + 1
∇u · ∇ϕ (2.5)

is valid, and if finally ∫

Ω
v(·, t) ≤

∫

Ω
v0 for a.e. t > 0. (2.6)

Remark. It can be verified by straightforward adaptation of the reasoning in [33] that the above
notion is consistent with that of classical solvability in the sense that if (u, v, w) is a global generalized
solution in the above sense which additionally satisfies (u, v, w) ∈ (C0(Ω× [0,∞))∩C2,1(Ω×(0,∞)))3,
then (u, v, w) already solves (1.1) classically in Ω× (0,∞).
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In order to construct such a solution by means of a suitable approximation procedure, let us conve-
niently regularize (1.1) by considering the problems





uεt = ∆uε − χ1∇ · (uε∇wε), x ∈ Ω, t > 0,

vεt = ∆vε − χ2∇ · (vε∇uε), x ∈ Ω, t > 0,

wεt = d∆wε − λ
(uε+vε)wε

1+ε(uε+vε)wε
− µwε + r(x, t), x ∈ Ω, t > 0,

∂uε

∂ν
= ∂vε

∂ν
= ∂wε

∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), wε(x, 0) = w0(x), x ∈ Ω,

(2.7)

for ε ∈ (0, 1). These are all globally solvable in the classical sense:

Lemma 2.1 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, let d > 0, χ1 >

0, χ2 > 0, λ > 0 and µ ≥ 0, and suppose that (1.4) and (1.3) hold. Then for each ε ∈ (0, 1) there exist
functions 




uε ∈
⋂

q>nC
0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞)),

vε ∈
⋂

q>nC
0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞)) and

wε ∈
⋂

q>nC
0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞))

(2.8)

which are such that uε > 0, vε > 0 and wε > 0 in Ω× (0,∞), and that (uε, vε, wε) solves (2.7) in the
classical sense. Moreover,

∫

Ω
uε(·, t) =

∫

Ω
u0 and

∫

Ω
vε(·, t) =

∫

Ω
v0 for all t > 0. (2.9)

Proof. Straightforward adaptation of Amann’s theory ([1]) yields local existence of a classical
solution within a regularity class corresponding to that in (2.8), maximally extensible up to some
Tmax,ε ∈ (0,∞] which is such that if Tmax,ε <∞, then

lim sup
tրTmax,ε

{
‖uε(·, t)‖W 1,q(Ω) + ‖vε(·, t)‖W 1,q(Ω) + ‖wε(·, t)‖W 1,q(Ω)

}
= ∞ for all q > n. (2.10)

Moreover, successive applications of the strong maximum principle ensure positivity of all solution
components in Ω× (0, Tmax,ε), and integrating the first two equations from (2.7) shows that d

dt

∫
Ω uε =

d
dt

∫
Ω vε = 0 for all t ∈ (0, Tmax,ε), hence implying the identities in (2.9) throughout (0, Tmax,ε).

Now if Tmax,ε was finite, then thanks to the boundedness of r in Ω× (0, Tmax,ε) and of [0,∞) ∋ ξ 7→
λ ξ
1+εξ

we could apply a well-known parabolic gradient estimate ([19]) as well as standard maximal
Sobolev regularity theory ([12]) to the third equation in (2.7) to see that wε would belong to Xp :=
L∞((0, Tmax,ε);W

1,∞(Ω)) ∩ Lp((0, Tmax,ε);W
2,p(Ω)) for all p ∈ (1,∞). By the same token, we could

conclude from the regularity properties of the coefficient functions a(x, t) := −χ1∇wε and b(x, t) :=
−χ1∆wε in the equation uεt = ∆uε + a(x, t) · ∇uε + b(x, t)uε, as thereby implied, that also uε ∈ Xp

for each p ∈ (1,∞). This enables us to repeat this argument in the second equation from (2.7) so
as to conclude that also vε ∈ Xp for any such p, thus contradicting (2.10) and hence showing that
(uε, vε, wε) actually must be global. �
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3 Bounds for uε,∇uε, uε∇uε and uε∇wε implied by smallness of wε

The goal of this section is to reveal some favorable implications of our overall assumption (1.5)-(1.6)
on regularity properties of uε and wε. This will be achieved in Lemma 3.3 and Lemma 3.4 on the
basis of the following essentially immediate consequence of a comparison argument.

Lemma 3.1 Assume (1.5) with some w⋆ > 0. Then

sup
ε∈(0,1)

sup
t>0

‖wε(·, t)‖L∞(Ω) < w⋆. (3.1)

Proof. We let w(x, t) := y(t) for x ∈ Ω and t ≥ 0, where

y(t) := ‖w0‖L∞(Ω)e
−µt +

∫ t

0
e−µ(t−s)‖r(·, s)‖L∞(Ω)ds, t ≥ 0.

Then for all ε ∈ (0, 1),

wt − d∆w + λ · (uε + vε)wε

1 + ε(uε + vε)wε
+ µw − r(x, t) = y′(t) + µy(t)− r(x, t)

≥ y′(t) + µy(t)− ‖r(·, t)‖L∞(Ω)

= 0 in Ω× (0,∞),

so that since clearly ∂w
∂ν

|∂Ω×(0,∞) = 0, an application of the comparison principle asserts that w ≥ wε

in Ω× (0,∞). In particular,

‖wε(·, t)‖L∞(Ω) ≤ y(t) ≤ c1 := sup
t̃>0

y(t̃) for all t > 0 and ε ∈ (0, 1),

with c1 satisfying c1 < w⋆ according to (1.5). �

As can be seen by relying on a series of preparatory elementary arguments detailed in the appendix,
namely, the latter entails a pointwise estimate that will play a crucial role in our derivation of Lemma
3.3:

Lemma 3.2 Suppose that (1.5) holds with w⋆ > 0 determined through (1.6). Then there exists p0 > 4
such that for each p ∈ [2, p0] one can find κ > 0, δ > w⋆, η ∈ (0, 1) and C > 0 such that for all ε ∈ (0, 1),

κ(κ+ 1)d− pκχ1(δ − wε)−

{
− pκ(d+ 1) + p(p− 1)χ1(δ − wε)

}2

4p(p− 1)η
≥ C in Ω× (0,∞). (3.2)

In fact, the above parameter selections enable us to conclude from (1.5)-(1.6) that for any p ∈ [2, p0]
a certain expression of the form

∫
Ω u

p
ε(δ − wε)

−κ, as already utilized in various related studies ([21],
[26], [31], [34]), plays the role of a quasi-energy functional also in the present and somewhat more
complex context. Here we state the essence of this observation in such a manner that besides implying
bounds useful for our existence theory through Lemma 3.4, it can later on once more be recalled so as
to provide some basic information on decay of the associated dissipation rate under the assumptions
from Theorem 1.3 (see Lemma 6.2).
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Lemma 3.3 Assume (1.5) with w⋆ > 0 as given by (1.6). Then there exists p0 > 4 such that for all
p ∈ [2, p0] it is possible to find κ > 0, δ > w⋆ and C > 0 such that whenever ε ∈ (0, 1),

d

dt

∫

Ω
upε(δ−wε)

−κ+
1

C

∫

Ω
up−2
ε |∇uε|2+

1

C

∫

Ω
u2ε|∇wε|2 ≤ C‖r‖L∞(Ω)

∫

Ω
upε(δ−wε)

−κ for all t > 0.

(3.3)

Proof. In accordance with Lemma 3.2, we fix p0 > 4 with the property that for all p ∈ [2, p0] we
can choose κ > 0, δ > w⋆, η ∈ (0, 1) and c1 > 0 fulfilling

κ(κ+1)d−pκχ1(δ−wε)−

{
− pκ(d+ 1) + p(p− 1)χ1(δ − wε)

}2

4p(p− 1)η
≥ c1 in Ω×(0,∞) for all ε ∈ (0, 1).

(3.4)
Now given p ∈ [2, p0], we take κ, δ and η as above and use the first and third equations in (2.7) to see
that since κ, λ and µ are nonnegative,

d

dt

∫

Ω
upε(δ − wε)

−κ = p

∫

Ω
up−1
ε (δ − wε)

−κ∇ ·
{
∇uε − χ1uε∇wε

}

+κ

∫

Ω
upε(δ − wε)

−κ−1 ·
{
d∆wε − λ · (uε + vε)wε

1 + ε(uε + vε)wε
− µwε + r

}

≤ −p(p− 1)

∫

Ω
up−2
ε (δ − wε)

−κ|∇uε|2 − pκ

∫

Ω
up−1
ε (δ − wε)

−κ−1∇uε · ∇wε

+p(p− 1)χ1

∫

Ω
up−1
ε (δ − wε)

−κ∇uε · ∇wε + pκχ1

∫

Ω
upε(δ − wε)

−κ−1|∇wε|2

−pκd
∫

Ω
up−1
ε ∇uε · ∇wε − κ(κ+ 1)d

∫

Ω
upε(δ − wε)

−κ−2|∇wε|2

+κ

∫

Ω
upε(δ − wε)

−κ−1r

= −p(p− 1)

∫

Ω
up−2
ε (δ − wε)

−κ|∇uε|2

−
∫

Ω

{
κ(κ+ 1)d− pκχ1(δ − wε)

}
upε(δ − wε)

−κ−2|∇wε|2

+

∫

Ω

{
− pκ(d+ 1) + p(p− 1)χ1(δ − wε)

}
up−1
ε (δ − wε)

−κ−1∇uε · ∇wε

+κ

∫

Ω
upε(δ − wε)

−κ−1r for all t > 0. (3.5)

Here employing Young’s inequality we find that
∫

Ω

{
− pκ(d+ 1) + p(p− 1)χ1(δ − wε)

}
up−1
ε (δ − wε)

−κ−1∇uε · ∇wε

≤ p(p− 1)η

∫

Ω
up−2
ε (δ − wε)

−κ|∇uε|2

+

∫

Ω

{
− pκ(d+ 1) + p(p− 1)χ1(δ − wε)

}2

4p(p− 1)η
upε(δ − wε)

−κ−2|∇wε|2 for all t > 0,

9



whence due to (3.4) we infer from (3.5) that

d

dt

∫

Ω
upε(δ − wε)

−κ + (1− η)p(p− 1)

∫

Ω
up−2
ε (δ − wε)

−κ|∇uε|2 + c1

∫

Ω
upε(δ − wε)

−κ−2|∇wε|2

≤ κ

∫

Ω
upε(δ − wε)

−κ−1r for all t > 0.

We therefore directly obtain (3.3) upon observing that

(1− η)p(p− 1)

∫

Ω
up−2
ε (δ − wε)

−κ|∇uε|2 ≥ (1− η)p(p− 1)δ−κ

∫

Ω
up−2
ε |∇uε|2 for all t > 0

and

c1

∫

Ω
upε(δ − wε)

−κ−2|∇wε|2 ≥ c1δ
−κ−2

∫

Ω
upε|∇wε|2 for all t > 0,

and that

κ

∫

Ω
upε(δ − wε)

−κ−1r ≤ κ

δ − w⋆
‖r‖L∞(Ω)

∫

Ω
upε(δ − wε)

−κ for all t > 0,

because η < 1 and δ > w⋆. �

Among all possible implications achievable through appropriate integration of the inequality in (3.3),
those of interest for us in the construction of global solutions will be the following.

Lemma 3.4 Assume (1.5) with w⋆ > 0 as given by (1.6). Then there exists p0 > 4 with the property
that for all T > 0 one can find C(T ) > 0 fulfilling

∫

Ω
up0ε (·, t) ≤ C(T ) for all t > 0 and ε ∈ (0, 1) (3.6)

and ∫ T

0

∫

Ω
|∇uε|2 ≤ C(T ) for all ε ∈ (0, 1) (3.7)

as well as ∫ T

0

∫

Ω
u2ε|∇uε|2 ≤ C(T ) for all ε ∈ (0, 1) (3.8)

and ∫ T

0

∫

Ω
u2ε|∇wε|2 ≤ C(T ) for all ε ∈ (0, 1). (3.9)

Proof. We take p0 > 4 as provided by Lemma 3.3 and then infer from the latter that for each
p ∈ [2, p0] we can pick κ = κ(p) > 0, δ = δ(p) > w⋆, c1(p) > 0 and c2(p) > 0 such that whenever
ε ∈ (0, 1),

d

dt

∫

Ω
upε(δ − wε)

−κ + c1(p)

∫

Ω
up−2
ε |∇uε|2 + c1(p)

∫

Ω
upε|∇wε|2

≤ c2(p)‖r‖L∞(Ω)

∫

Ω
upε(δ − wε)

−κ for all t > 0. (3.10)

10



Since for fixed T > 0 we may rely on (1.3) in choosing c3(p, T ) > 0 fulfilling

c2(p)‖r(·, t)‖L∞(Ω) ≤ c3(p, T ) for all t ∈ (0, T ),

integrating (3.10) firstly shows that
∫

Ω
upε(δ−wε)

−κ ≤ c4(p, T ) :=

{∫

Ω
u
p
0(δ−w0)

−κ

}
·ec3(p,T )T for all t ∈ (0, T ) and ε ∈ (0, 1), (3.11)

and, as a consequence thereof, secondly implies that

c1(p)

∫ T

0

∫

Ω
up−2
ε |∇uε|2 + c1(p)

∫ T

0

∫

Ω
upε|∇wε|2 ≤ c3(p, T )

∫ T

0

∫

Ω
upε(δ − wε)

−κ

≤ c3(p, T )c4(p, T ) · T for all ε ∈ (0, 1). (3.12)

When restricted to p = p0, (3.11) yields (3.6) due to the fact that (δ − wε)
−κ ≥ δ−κ in Ω × (0,∞),

whereas evaluating (3.12) for p = 2 and p = 4, respectively, shows that (3.7) as well as (3.8) and (3.9)
are valid. �

4 Further integrability properties. Construction of a limit (u, v, w)

4.1 Estimates for ∇wε

The following observation, though rather straightforward, will be of importance both in our existence
theory and in our asymptotic analysis later on (see Lemma 6.1).

Lemma 4.1 Assume (1.5) with some w⋆ > 0. Then

∫ T

0

∫

Ω
|∇wε|2 ≤

1

2d

∫

Ω
w2
0 +

|Ω|w⋆

d

∫ T

0
‖r(·, t)‖L∞(Ω)dt for all T > 0 and ε ∈ (0, 1). (4.1)

Proof. We test the third equation in (2.7) by wε and use the nonnegativity of λ and µ as well as
Lemma 3.1 to estimate

1

2

d

dt

∫

Ω
w2
ε + d

∫

Ω
|∇wε|2 = −λ

∫

Ω

(uε + vε)wε

1 + ε(uε + vε)wε
− µ

∫

Ω
w2
ε +

∫

Ω
rwε

≤ |Ω| · ‖wε‖L∞(Ω)‖r‖L∞(Ω)

≤ |Ω|w⋆‖r‖L∞(Ω) for all t > 0,

from which (4.1) readily follows by integration. �

Of immediate relevance for the limit procedure in (2.7) will be the following direct implication of the
latter.

Corollary 4.2 Assume (1.5) with some w⋆ > 0. Then for all T > 0 there exists C(T ) > 0 such that

∫ T

0

∫

Ω
|∇wε|2 ≤ C(T ) for all ε ∈ (0, 1). (4.2)

Proof. Since r is bounded in Ω× (0, T ) by (1.3), this is obvious from Lemma 4.1. �
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4.2 Bounds for ∇vε

In comparison to this, for the crucial second solution component much less regularity information seems
available. Precisely reflecting the additional complexification due to the presence of cascade-type taxis
coupling, namely, the regularity of vε is apparently linked in quite a close manner to that of ∇uε, about
which, in turn, our knowledge is limited to the outcome of Lemma 3.4. As in any multi-dimensional
setting the spatio-temporal L2 bound therefor provided by the latter seems far from sufficient to
ensure e.g. any time-independent Lp bounds for vε through standard testing procedures, however, our
considerations in this direction will essentially be restricted to drawing appropriate conclusions from
the following basic observation. The parameter therein will be specified by setting a = 1 throughout
our existence analysis, whereas further application in the course of our convergence argument will,
inter alia, involve the choice a = 0 (Lemma 6.11).

Lemma 4.3 Assume (1.5) with some w⋆ > 0. Then for any choice of a ≥ 0,

d

dt

∫

Ω
ln(vε + a) ≥ 1

2

∫

Ω

|∇vε|2
(vε + a)2

− χ2
2

2

∫

Ω
|∇uε|2 for all t > 0 and ε ∈ (0, 1). (4.3)

Proof. Using the second equation in (2.7) along with Young’s inequality, we see that indeed

d

dt

∫

Ω
ln(vε + a) =

∫

Ω

|∇vε|2
(vε + a)2

− χ2

∫

Ω

vε

(vε + a)2
∇uε · ∇vε

≥ 1

2

∫

Ω

|∇vε|2
(vε + a)2

− χ2
2

2

∫

Ω

v2ε
(vε + a)2

|∇uε|2

≥ 1

2

∫

Ω

|∇vε|2
(vε + a)2

− χ2
2

2

∫

Ω
|∇uε|2 for all t > 0 and ε ∈ (0, 1),

as claimed. �

When integrated upon letting a = 1, due to (2.9) the latter implies the following inequality which,
beyond preparing a bound favorable for our limit procedure, will also be used in Lemma 6.9 to assert
some spatial homogenization property of the second solution component.

Lemma 4.4 Assume (1.5) with some w⋆ > 0. Then
∫ T

0

∫

Ω

|∇vε|2
(vε + 1)2

≤ 2

∫

Ω
v0 + 2|Ω|+ χ2

2

∫ T

0

∫

Ω
|∇uε|2 for all T > 0 and ε ∈ (0, 1). (4.4)

Proof. We apply Lemma 4.3 to a = 1 and integrate the corresponding version of (4.3) to obtain
that for arbitrary T > 0,

1

2

∫ T

0

∫

Ω

|∇vε|2
(vε + 1)2

≤
∫

Ω
ln
(
vε(·, T ) + 1

)
−
∫

Ω
ln(v0 + 1) +

χ2
2

2

∫ T

0

∫

Ω
|∇uε|2 for all ε ∈ (0, 1).

Since 0 ≤ ln(z + 1) ≤ z for all z ≥ 0, and since thus
∫

Ω
ln
(
vε(·, T ) + 1

)
−
∫

Ω
ln(v0 + 1) ≤

∫

Ω

(
vε(·, T ) + 1

)
=

∫

Ω
v0 + |Ω| for all ε ∈ (0, 1)

according to (2.9), this clearly yields (4.4). �

Through Lemma 3.4, this especially entails the following quite directly.
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Lemma 4.5 Assume (1.5) with w⋆ > 0 as given by (1.6). Then for all T > 0 there exists C(T ) > 0
such that ∫ T

0

∫

Ω

|∇vε|2
(vε + 1)2

≤ C(T ) for all ε ∈ (0, 1). (4.5)

Proof. In view of (3.7), this is an immediate consequence of Lemma 4.4. �

4.3 Uniform integrability of the nonlinear absorption in (2.7)

A next crucial step toward our solution construction consists in asserting appropriate compactness
properties of the nonlinear absorption term in the third equation from (2.7). This will be achieved on
the basis of a further testing procedure, examining the time evolution of

∫
Ωwε ln(vε + 1) and thereby

following an idea apparently going back to [33], which thanks to the estimates provided by Lemma
3.4, Lemma 4.4 and Corollary 4.2 will yield the following.

Lemma 4.6 Assume (1.5) with w⋆ > 0 as given by (1.6). Then for all T > 0 there exists C(T ) > 0
such that ∫ T

0

∫

Ω

(uε + vε)wε ln(vε + 1)

1 + ε(uε + vε)wε
≤ C(T ) for all ε ∈ (0, 1). (4.6)

Proof. By means of the second and third equations from (2.7), we compute

d

dt

∫

Ω
wε ln(vε + 1) =

∫

Ω

{
d∆wε − λ · (uε + vε)wε

1 + ε(uε + vε)wε
− µwε + r

}
· ln(vε + 1)

+

∫

Ω

wε

vε + 1
∇ ·

{
∇vε − χ2vε∇uε

}

= −d
∫

Ω

∇vε
vε + 1

· ∇wε − λ

∫

Ω

(uε + vε)wε) ln(vε + 1)

1 + ε(uε + vε)wε

−µ
∫

Ω
wε ln(vε + 1) +

∫

Ω
r ln(vε + 1)

−
∫

Ω

∇vε
vε + 1

· ∇wε +

∫

Ω
wε

|∇vε
(vε + 1)2

+χ2

∫

Ω

vε

vε + 1
∇uε · ∇wε − χ2

∫

Ω

vεwε

vε + 1
∇uε ·

∇vε
vε + 1

for all t > 0. (4.7)

Here by Young’s inequality,

−d
∫

Ω

∇vε
vε + 1

· ∇wε −
∫

Ω

∇vε
vε + 1

· ∇wε ≤
∫

Ω

|∇vε|2
(vε + 1)2

+
(d+ 1)2

4

∫

Ω
|∇wε|2 for all t > 0 (4.8)

and

χ2

∫

Ω

vε

vε + 1
∇uε · ∇wε ≤ χ2

∫

Ω
|∇uε| · |∇wε|

≤
∫

Ω
|∇uε|2 +

χ2
2

4

∫

Ω
|∇wε|2 for all t > 0 (4.9)
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as well as

−χ2

∫

Ω

vεwε

vε + 1
∇uε ·

∇vε
vε + 1

≤ χ2w
⋆

∫

Ω
|∇uε| ·

|∇vε|
vε + 1

≤
∫

Ω
|∇uε|2 +

χ2
2(w

⋆)2

4

∫

Ω

|∇vε|2
(vε + 1)2

for all t > 0, (4.10)

because wε ≤ w⋆ in Ω× (0,∞) by Lemma 3.1. For the same reason,

∫

Ω
wε

|∇vε|2
(vε + 1)2

≤ w⋆

∫

Ω

|∇vε|2
(vε + 1)2

for all t > 0, (4.11)

and clearly

−µ
∫

Ω
wε ln(vε + 1) ≤ 0 for all t > 0, (4.12)

while moreover
∫

Ω
r ln(vε + 1) ≤ ‖r‖L∞(Ω)

∫

Ω
ln(vε + 1)

≤ ‖r‖L∞(Ω)

∫

Ω
(vε + 1)

≤ ‖r‖L∞(Ω) ·
{∫

Ω
v0 + |Ω|

}
for all t > 0 (4.13)

due to (2.9) and, again, the validity of ln(z + 1) ≤ z for all z ≥ 0.
From (4.7)-(4.13) we therefore obtain after an integration that

λ

∫ T

0

∫

Ω

(uε + vε)wε ln(vε + 1)

1 + ε(uε + vε)wε
≤

∫

Ω
w0 ln(v0 + 1)

+2

∫ T

0

∫

Ω
|∇uε|2

+
{
1 +

χ2
2(w

⋆)2

4
+ w⋆

}
·
∫ T

0

∫

Ω

|∇vε|2
(vε + 1)2

+
{(d+ 1)2

4
+
χ2
2

4

}
·
∫ T

0

∫

Ω
|∇wε|2

+

{∫

Ω
v0 + |Ω|

}
·
∫ T

0
‖r(·, t)‖L∞(Ω)dt for all T > 0,

which by Lemma 3.4, Lemma 4.4 and Corollary 4.2, and once more by boundedness of r in Ω× (0, T ),
results in (4.6). �

Now a careful analysis reveals that the above estimate, together with some the superlinear integrability
properties of uε implied Lemma 3.4, is sufficient to ensure equi-integrability of the expressions in
question.
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Lemma 4.7 Assume (1.5) with w⋆ > 0 as given by (1.6), and let T > 0. Then
(

(uεvε)wε

1 + ε(uε + vε)wε

)

ε∈(0,1)
is uniformly integrable over Ω× (0, T ). (4.14)

Proof. For fixed T > 0, according to Lemma 4.6 and Lemma 3.4 let us pick c1 > 0 and c2 > 0
such that ∫ T

0

∫

Ω

(uε + vε)wε ln(vε + 1)

1 + ε(uε + vε)wε
≤ c1 for all ε ∈ (0, 1), (4.15)

and that ∫ T

0

∫

Ω
u2ε ≤ c2 for all ε ∈ (0, 1). (4.16)

Given η > 0, we then take M > 0 large enough satisfying

c1

ln(M + 1)
≤ η

3
, (4.17)

and thereafter we choose δ > 0 suitably small such that

w⋆Mδ ≤ η

3
(4.18)

as well as

c
1
2
2w

⋆δ
1
2 ≤ η

3
. (4.19)

Now if E ⊂ Ω× (0, T ) is an arbitrary measurable set fulfilling |E| ≤ δ, we split
∫ ∫

E

(uε + vε)wε

1 + ε(uε + vε)wε
=

∫ ∫

E∩{vε≥M}

(uε + vε)wε

1 + ε(uε + vε)wε

+

∫ ∫

E∩{vε<M}

vεwε

1 + ε(uε + vε)wε

+

∫ ∫

E∩{vε<M}

uεwε

1 + ε(uε + vε)wε
for ε ∈ (0, 1), (4.20)

where using the monotonicity of 0 ≤ z 7→ ln(z + 1) along with (4.15) and (4.17) we may estimate
∫ ∫

E∩{vε≥M}

(uε + vε)wε

1 + ε(uε + vε)wε
≤ 1

ln(M + 1)

∫ ∫

E∩{vε≥M}

(uε + vε)wε ln(vε + 1)

1 + ε(uε + vε)wε

≤ 1

ln(M + 1)
· c1

≤ η

3
for all ε ∈ (0, 1). (4.21)

In the second summand on the right of (4.20), we rather rely on (4.18) to see that thanks to Lemma
3.1 and the trivial inequality 1 + ε(uε + vε)wε ≥ 1,

∫ ∫

E∩{vε>M}

vεwε

1 + ε(uε + vε)wε
≤ Mw⋆ ·

∣∣∣E ∩ {vε < M}
∣∣∣

≤ Mw⋆δ

≤ η

3
for all ε ∈ (0, 1), (4.22)
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while, finally, combining Lemma 3.1 with (4.16) and (4.19) shows that due to the Cauchy-Schwarz
inequality,

∫ ∫

E∩{vε<M}

uεwε

1 + ε(uε + vε)wε
≤ w⋆

∫ ∫

E

uε

≤ w⋆ ·
{∫ T

0

∫

Ω
u2ε

} 1
2

· |E| 12

≤ w⋆c
1
2
2 δ

1
2

≤ η

3
for all ε ∈ (0, 1). (4.23)

Inserting (4.21)-(4.23) into (4.20) shows that for any such set E we have
∫ ∫

E

(uε + vε)wε

1 + ε(uε + vε)wε
≤ η

3
+
η

3
+
η

3
= η for all ε ∈ (0, 1),

and that thus (4.14) follows from the fact that η > 0 was arbitrary. �

4.4 Regularity of time derivatives

The following implications of our above estimates on regularity of time derivatives in (2.7) can be
obtained in a rather straightforward manner.

Lemma 4.8 Suppose that (1.5) holds with w⋆ > 0 as in (1.6), and let m ∈ N be such that m > n
2 .

Then for all T > 0 there exists C(T ) > 0 such that

∫ T

0
‖uεt(·, t)‖2(W 1,2(Ω))⋆dt ≤ C(T ) for all ε ∈ (0, 1) (4.24)

and ∫ T

0

∥∥∥∂t ln
(
vε(·, t) + 1

)∥∥∥
(Wm,2(Ω))⋆

dt ≤ C(T ) for all ε ∈ (0, 1) (4.25)

as well as ∫ T

0
‖wεt(·, t)‖(Wm,2(Ω))⋆dt ≤ C(T ) for all ε ∈ (0, 1). (4.26)

Proof. For fixed t > 0 and ψ ∈ C∞(Ω) we obtain from (2.7) and the Cauchy-Schwarz inequality
that

∣∣∣∣
∫

Ω
uεt(·, t) · ψ

∣∣∣∣ =

∣∣∣∣−
∫

Ω
∇uε · ∇ψ + χ1

∫

Ω
uε∇wε · ∇ψ

∣∣∣∣

≤
{{∫

Ω
|∇uε|2

} 1
2

+ χ1

{∫

Ω
u2ε|∇wε|2

} 1
2

}
· ‖∇ψ‖L2(Ω) for all ε ∈ (0, 1),

which by Young’s inequality shows that

‖uεt(·, t)‖2(W 1,2(Ω))⋆ ≤ 2

∫

Ω
|∇uε|2 + 2χ2

1

∫

Ω
u2ε|∇wε|2 for all ε ∈ (0, 1)
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and thereby implies (4.24) upon integrating and using Lemma 3.4.

Similarly, by means of the second equation in (2.7) an Young’s inequality we see that for t > 0 and
ψ ∈ C∞(Ω),

∣∣∣∣
∫

Ω
∂t ln

(
vε(·, t) + 1

)
· ψ

∣∣∣∣ =

∣∣∣∣
∫

Ω

ψ

vε + 1
∇ ·

{
∇vε − χ2vε∇uε

}∣∣∣∣

=

∣∣∣∣
∫

Ω

|∇vε|2
(vε + 1)2

ψ −
∫

Ω

∇vε
vε + 1

· ∇ψ

−χ2

∫

Ω

vε

vε + 1

(
∇uε ·

∇vε
vε + 1

)
ψ + χ2

∫

Ω

vε

vε + 1
∇uε · ∇ψ

∣∣∣∣

≤
{∫

Ω

|∇vε|2
(vε + 1)2

}
· ‖ψ‖L∞(Ω)

+

{∫

Ω

|∇vε|2
(vε + 1)2

+
1

4

}
· ‖∇ψ‖L2(Ω)

+χ2 ·
{∫

Ω
|∇uε|2 +

1

4

∫

Ω

|∇vε|2
(vε + 1)2

}
· ‖ψ‖L∞(Ω)

+χ2 ·
{∫

Ω
|∇uε|2 +

1

4

}
· ‖∇ψ‖L2(Ω) for all ε ∈ (0, 1).

Since our assumption m > n
2 ensures that Wm,2(Ω) →֒ L∞(Ω), this entails the existence of c1 > 0

such that

∥∥∥∂t ln
(
vε(·, t) + 1

)
‖(Wm,2(Ω))⋆ ≤ c1 ·

{∫

Ω
|∇uε|2 +

∫

Ω

|∇vε|2
(vε + 1)2

+ 1

}
for all t > 0 and ε ∈ (0, 1),

so that (4.24) becomes a consequence of Lemma 3.4 and Lemma 4.5.

Finally, combining the third equation in (2.7) with Lemma 3.1, (2.9) and Young’s inequality we find
that for t > 0 and ψ ∈ C∞(Ω),

∣∣∣∣
∫

Ω
wεt(·, t) · ψ

∣∣∣∣ =

∣∣∣∣− d

∫

Ω
∇wε · ∇ψ − λ

∫

Ω

(uε + vε)wε

1 + ε(uε + vε)wε
ψ − µ

∫

Ω
wεψ +

∫

Ω
rψ

∣∣∣∣

≤ d ·
{∫

Ω
|∇wε|2 +

1

4

}
· ‖∇ψ‖L2(Ω) + λw⋆ ·

{∫

Ω
u0 +

∫

Ω
v0

}
· ‖ψ‖L∞(Ω)

+µ|Ω|w⋆ · ‖ψ‖L∞(Ω) + |Ω| · ‖r‖L∞(Ω) · ‖ψ‖L∞(Ω) for all ε ∈ (0, 1),

whence again by continuity of the embedding Wm,2(Ω) →֒ L∞(Ω) we infer that with some c2 > 0 we
have

‖wεt(·, t)‖(Wm,2(Ω))⋆ ≤ c2 ·
{∫

Ω
|∇wε|2 + ‖r‖L∞(Ω) + 1

}
for all t > 0 and any ε ∈ (0, 1),

and that thus (4.26) results from Corollary 4.2 and the local boundedness of r in Ω× [0,∞). �
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4.5 Constructing (u, v, w) by passing to the limit. Solution properties of u and w

An essentially straightforward exploitation of the integrability featues collected so far enables us to
extract appropriately convergent subsequences and a corresponding limit triple (u, v, w) which in its
first and third component can already at this stage be seen to comply with the requirements from
Definition 2.1.

Lemma 4.9 Let (1.5) be satisfied with w⋆ > 0 as given by (1.6). Then there exist (εj)j∈N ⊂ (0, 1)
and nonnegative functions u, v and w defined a.e. in Ω× (0,∞) such that εj ց 0 as j → ∞, that with
some p0 > 0 we have





u ∈ L∞((0,∞);Lp0(Ω)) ∩ L2
loc([0,∞);W 1,2(Ω)),

v ∈ L∞((0,∞);L1(Ω)) and

w ∈ L∞(Ω× (0,∞)) ∩ L2
loc([0,∞);W 1,2(Ω)),

(4.27)

that
∇ ln(v + 1) and u∇w belong to L2

loc([0,∞);W 1,2(Ω)), (4.28)

and that

uε → u in L2
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (4.29)

uε(·, t) → u(·, t) in L2(Ω) for a.e. t > 0, (4.30)

∇uε ⇀ ∇u in L2
loc(Ω× [0,∞)), (4.31)

uε∇uε ⇀ u∇u in L2
loc(Ω× [0,∞)), (4.32)

vε → v a.e. in Ω× (0,∞), (4.33)

ln(vε + 1)⇀ ln(v + 1) in L2
loc([0,∞);W 1,2(Ω)), (4.34)

wε → w in L2
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (4.35)

wε(·, t) → w(·, t) in L2(Ω) for a.e. t > 0, (4.36)

wε
⋆
⇀ w in L∞(Ω× (0,∞)), (4.37)

∇wε ⇀ ∇w in L2
loc(Ω× [0,∞)), (4.38)

(uε + vε)wε

1 + ε(uε + vε)wε
→ (u+ v)w in L1

loc(Ω× [0,∞)) and (4.39)

uε∇wε ⇀ u∇w in L2
loc(Ω× [0,∞)) (4.40)

as ε = εj ց 0. Moreover, (2.6) holds as well as

∫

Ω
u(·, t) =

∫

Ω
u0 for a.e. t > 0, (4.41)

and the identities (2.3) and (2.4) in Definition 2.1 are satisfied for all ϕ ∈ C∞
0 (Ω× [0,∞)).

Proof. According to Lemma 3.4 and Lemma 4.8,

(uε)ε∈(0,1) is bounded in L2(0, T );W 1,2(Ω)) and (uεt)ε∈(0,1) is bounded in L2((0, T ); (W 1,2(Ω))⋆)
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for all T > 0, whence employing an Aubin-Lions lemma ([27]) we obtain (εj)j∈N ⊂ (0, 1) and a
nonnegative function u ∈ L2

loc([0,∞);W 1,2(Ω)) such that εj ց 0 as j → ∞ and that (4.29), (4.30) and
(4.31) hold. Apart from that, for all T > 0 it follows from Lemma 3.4 that (uε∇uε)ε∈(0,1) is bounded
in L2(Ω× (0, T )), so that (4.32) results upon observing that uε∇uε ⇀ u∇u in L1(Ω× (0, T )) by (4.29)
and (4.31). Due to (3.6) and Fatou’s lemma, it moreover follows that with p0 > 4 taken from Lemma
3.4 we have u ∈ L∞((0,∞);Lp0(Ω)), and (4.41) is an abvious consequence of (2.9) when combined
with (4.29).

Likewise, choosing any integer m > n
2 we obtain from Lemma 4.5 together with (2.9) and Lemma 4.8

that
(
ln(vε + 1)

)
ε∈(0,1)

is bounded in L2(0, T );W 1,2(Ω)) and

(
∂t ln(vε + 1)

)
ε∈(0,1)

is bounded in L2((0, T ); (Wm,2(Ω))⋆) for all T > 0,

so that again an appropriate Aubin-Lions lemma ([27]) applies so as to assert that along a suitable
subsequence we can furthermore achieve (4.33) and (4.34), in particular implying (2.6) through (2.9)
and Fatou’s lemma, and validity of the first claim in (4.28).

Next, Corollary 4.2 in conjunction with Lemma 3.1 and Lemma 4.8 says that

(wε)ε∈(0,1) is bounded in L2(0, T );W 1,2(Ω)) and (wεt)ε∈(0,1) is bounded in L2((0, T ); (Wm,2(Ω))⋆)

for all T > 0, and that thus another application of an Aubin-Lions lemma enables us to establish,
possibly after passing to a further subsequence, (4.35), (4.36) and (4.38), whereupon in view of (3.1),
the Banach-Alaoglu theorem facilitates (4.37).

According to the pointwise convergence features asserted in (4.29), (4.33) and (4.35), thanks to the
Vitali convergence theorem the claim in (4.39) thereafter results from the uniform integrability prop-
erty derived in Lemma 4.7, and (4.40) as well as the second inclusion claimed in (4.28) can be seen
by making use of (3.8), which for all T > 0 namely warrants relative compactness of (uε∇wε)ε∈(0,1) in
L2(Ω× (0, T );Rn) with respect to the weak topology therein, and thus shows that as ε = εj ց 0 we
indeed must have uε∇wε ⇀ u∇w in L2(Ω× (0, T )), for from (4.29) and (4.38) we already know that
uε∇wε ⇀ u∇w in L1(Ω× (0, T )).

Finally, a verification of (2.3) and (2.4) can be performed on the basis of (4.31), (4.35), (4.38), (4.39)
and (4.40) in a straightforward manner, so that we may omit giving details on this here. �

5 Strong L2 convergence of ∇wεj and ∇uεj . Solution properties of v

Now for a verification of the weak inequality in (2.5), the weak convergence features in (4.31) and (4.34)
are apparently insufficient for an appropriate limit procedure targeting at the second last summand
therein. Of essential importance for our approach in this direction will thus be a corresponding strong
convergence property of ∇uεj our derivation of which will, in turn, rely on an associated statement
on strong L2 convergence of the signal gradient. Both these results, to be successively achieved in
Lemma 5.1 and Lemma 5.2, will later play useful roles in our asymptotic analysis as well (see Lemma
6.3).
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As a preparation for both Lemma 5.1 and Lemma 5.2, given t0 > 0 and δ ∈ (0, 1) let us set

ζδ(t) ≡ ζ
(t0)
δ (t) :=





1 if t ∈ [0, t0],

1− t−t0
δ

if t ∈ (t0, t0 + δ),

0 if t ≥ t0 + δ,

(5.1)

and recall the well-known fact that for T > 0, p ∈ [1,∞], N ≥ 1 and ψ ∈ L
p
loc(Ω×R;RN ), the Steklov

averages Shψ ∈ Lp(Ω× (0, T );RN ), h ∈ (0, 1), given by

(Shψ)(x, t) :=
1

h

∫ t

t−h

ψ(x, s)ds, x ∈ Ω, t ∈ (0, T ), h ∈ (0, 1), (5.2)

have the properties that as h ց 0, Shψ → ψ in Lp(Ω × (0, T )) if p ∈ [1,∞) and Shψ
⋆
⇀ ψ in

L∞(Ω× (0, T )) if p = ∞.

Now using these ingredients in constructing appropriate test functions for the weak identity satisfied
by w, inspired by a related procedure performed in [33] we can indeed achieve the following.

Lemma 5.1 Assume (1.5) with w⋆ > 0 taken from (1.6), and let (εj)j∈N and w be as in Lemma 4.9.
Then for all T > 0,

∇wε → ∇w in L2(Ω× (0, T )) as ε = εj ց 0. (5.3)

Proof. Following [33, Section 8], given T > 0 we rely on Lemma 4.9 in choosing t0 > T such that
t0 is a Lebesgue point of 0 < t 7→

∫
Ωw

2(·, t), and that moreover

∫

Ω
w2
ε(·, t0) →

∫

Ω
w2(·, t0) as ε = εj ց 0. (5.4)

Apart from that, we take any sequence (w0k)k∈N ⊂ C1(Ω) such that w0k → w0 in L2(Ω) as k → ∞,
and for δ ∈ (0, 1), k ∈ N and h ∈ (0, 1) we let

ϕ(x, t) := ζδ(t) · (Shŵk)(x, t), x ∈ Ω, t > 0,

where ζδ and Sh are as in (5.1) and (5.2), and where

ŵk(x, t) :=

{
w(x, t) if x ∈ Ω and t > 0,

w0k(x) if x ∈ Ω and t ≤ 0.

Then ϕ ∈ L∞(Ω×(0,∞))∩L2((0,∞);W 1,2(Ω)) with ϕt ∈ L∞(Ω×(0,∞)) and ϕ ≡ 0 in Ω×(t0+1,∞),
whence a standard completion argument shows that (2.4) extends so as to remain valid for this
particular choice of ϕ, hence resulting in the identity

−
∫ ∞

0

∫

Ω
ζ ′δ(t)w(x, t)(Shŵk)(x, t)dxdt

−
∫ ∞

0

∫

Ω
ζδ(t)w(x, t) ·

ŵk(x, t)− ŵk(x, t− h)

h
dxdt−

∫

Ω
w0(x)w0k(x)dx
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= −d
∫ ∞

0

∫

Ω
ζδ(t)∇w(x, t) · ∇(Shŵk)(x, t)dxdt

−λ
∫ ∞

0

∫

Ω
ζδ(t)

(
u(x, t) + v(x, t)

)
w(x, t)(Shŵk)(x, t)dxdt

−µ
∫ ∞

0

∫

Ω
ζδ(t)w(x, t)(Shŵk)(x, t)dxdt

+

∫ ∞

0

∫

Ω
ζδ(t)r(x, t)(Shŵk)(x, t)dxdt

for all δ ∈ (0, 1), k ∈ N and h ∈ (0, 1). (5.5)

Here the first summand on the left as well as each of the integrals on the right-hand side approach
their expected limits as h ց 0, because the inclusions ∇ŵk ∈ L2(Ω × (0, t0 + 1);Rn) and ŵk ∈
L∞(Ω × (0, t0 + 1)) ensure that ∇(Shŵk) = Sh(∇ŵk) ⇀ ∇ŵk = ∇w in L2(Ω × (0, t0 + 1)) and

Shŵk
⋆
⇀ ŵk = w in L∞(Ω× (0, t0 + 1)) as hց 0.

Moreover, by Young’s inequality and a linear substitution we obtain that

−
∫ ∞

0

∫

Ω
ζδ(t)w(x, t) ·

ŵk(x, t)− ŵk(x, t− h)

h
dxdt

= −1

h

∫ ∞

0

∫

Ω
ζδ(t)ŵ

2
k(x, t)dxdt+

1

h
ζδ(t)ŵk(x, t)ŵk(x, t− h)dxdt

≤ − 1

2h

∫ ∞

0

∫

Ω
ζδ(t)ŵ

2
k(x, t)dxdt+

1

2h

∫ ∞

0

∫

Ω
ζδ(t)ŵ

2
k(x, t− h)dxdt

=
1

2

∫ ∞

0

∫

Ω

ζδ(s+ h)− ζδ(s)

h
w2(x, s)dxds+

1

2

∫

Ω
w2
0k(x)dx for all δ ∈ (0, 1), k ∈ N and h ∈ (0, 1),

where by the dominated convergence theorem,

1

2

∫ ∞

0

∫

Ω

ζδ(s+ h)− ζδ(s)

h
w2(x, s)dxds→ 1

2
ζ ′δ(s)w

2(x, s)dxds as hց 0.

Since ζ ′δ ≡ −1
δ
in (t0, t0 + δ) and ζ ′δ ≡ 0 in (0, t0) ∪ (t0 + δ,∞), in the limit h ց 0 from (5.5) we

therefore obtain the inequality

1

2δ

∫ t0+δ

t0

∫

Ω
w2(x, t)dxdt+

1

2

∫

Ω
w2
0k(xdx−

∫

Ω
w0(x)w0k(x)dx

≥ −d
∫ ∞

0

∫

Ω
ζδ(t)|∇w(x, t)|2dxdt− λ

∫ ∞

0

∫

Ω
ζδ(t)

(
u(x, t) + v(x, t)

)
w2(x, t)dxdt

−µ
∫ ∞

0

∫

Ω
ζδ(t)w

2(x, t)dxdt+

∫ ∞

0

∫

Ω
ζδ(t)r(x, t)w(x, t)dxdt for all δ ∈ (0, 1) and k ∈ N,

which on taking k → ∞ implies that since w0k → w0 in L2(Ω),

d

∫ ∞

0

∫

Ω
ζδ(t)|∇w(x, t)|2dxdt ≥ − 1

2δ

∫ t0+δ

t0

∫

Ω
w2(x, t)dxdt+

1

2

∫

Ω
w2
0(x)dx
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−λ
∫ ∞

0

∫

Ω
ζδ(t)

(
u(x, t) + v(x, t)

)
w2(x, t)dxdt

−µ
∫ ∞

0

∫

Ω
ζδ(t)w

2(x, t)dxdt

+

∫ ∞

0

∫

Ω
ζδ(t)r(x, t)w(x, t)dxdt for all δ ∈ (0, 1).

Here the Lebesgue point property of t0 enters so as to warrant, when combined with several applications
of the dominated convergence theorem, that

d

∫ t0

0

∫

Ω
|∇w|2 ≥ −1

2

∫

Ω
w2(·, t0) +

1

2

∫

Ω
w2
0

−λ
∫ t0

0

∫

Ω
(u+ v)w2 − µ

∫ t0

0

∫

Ω
w2 +

∫ t0

0

∫

Ω
rw. (5.6)

Now since (5.4) along with (4.39), (4.37) and (4.35) implies that

−1

2

∫

Ω
w2(·, t0) +

1

2

∫

Ω
w2
0 − λ

∫ t0

0

∫

Ω
(u+ v)w2 − µ

∫ t0

0

∫

Ω
w2 +

∫ t0

0

∫

Ω
rw

= lim
ε=εjց0

{
− 1

2

∫

Ω
w2
ε(·, t0) +

1

2

∫

Ω
w2
0 − λ

∫ t0

0

∫

Ω

(uε + vε)wε

1 + ε(uε + vε)wε
· wε − µ

∫ t0

0

∫

Ω
w2
ε +

∫ t0

0

∫

Ω
rwε

}

= lim
ε=εjց0

{
d

∫ t0

0

∫

Ω
|∇wε|2

}

according to (2.7), from (5.6) we infer that
∫ t0
0

∫
Ω |∇w|2 ≥ lim infε=εjց0

∫ t0
0

∫
Ω |∇wε|2 and that thus,

by (4.38), ∇wε → ∇w in L2(Ω× (0, t0)) as ε = εj ց 0, which entails (5.3) due to our restriction that
t0 > T . �

Building on the latter, through a procedure of a similar flavor we can moreover assert the desired
strong convergence property of the forager gradient.

Lemma 5.2 Suppose that (1.5) holds with w⋆ > 0 as given by (1.6), and let (εj)j∈N and u be as
provided by Lemma 4.9. Then for all T > 0,

∇uε → ∇u in L2(Ω× (0, T )) as ε = εj ց 0. (5.7)

Proof. In order to prepare a procedure similar to that from Lemma 5.1, according to Lemma 4.9
let us fix, given T > 0, a number t0 > T such that t0 is a Lebesgue point of 0 < t 7→

∫
Ω u

2(·, t), and
that furthermore ∫

Ω
u2ε(·, t0) →

∫

Ω
u2(·, t0) as ε = εj ց 0. (5.8)

Then choosing (u0k)k∈N ⊂ C1(Ω) such that u0k → u0 as k → ∞, for δ ∈ (0, 1), k ∈ N and h ∈ (0, 1)
we apply (2.3) to

ϕ(x, t) := ζδ(t) · (Shûk)(x, t), (x, t) ∈ Ω× (0,∞),
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where

ûk(x, t) :=

{
u(x, t) if (x, t) ∈ Ω× (0,∞),

u0k(x) if (x, t) ∈ Ω× (−∞, 0),

which can readily be seen to be admissible by a completion argument based on the observation that
ϕ ∈ L∞((0,∞);W 1,2(Ω)) with ϕt ∈ L2(Ω× (0,∞)). We thereby see that

−
∫ ∞

0

∫

Ω
ζ ′δ(t)u(x, t)(Shûk)(x, t)dxdt

−
∫ ∞

0

∫

Ω
ζδ(t)u(x, t) ·

ûk(x, t)− ûk(x, t− h)

h
dxdt−

∫

Ω
u0(x)u0k(x)dx

= −
∫ ∞

0

∫

Ω
ζδ(t)∇u(x, t) · ∇(Shûk)(x, t)dxdt

+χ1

∫ ∞

0

∫

Ω
ζδ(t)u(x, t)∇w(x, t) · ∇(Shûk)(x, t)dxdt

for all δ ∈ (0, 1), each k ∈ N and any h ∈ (0, 1),

where based on the fact that both ∇u and u∇w belong to L2(Ω× (0, t0 + 1);Rn) by Lemma 4.9, and
again on an argument relying on Young’s inequality to estimate the second summand on the left, we
may conclude on letting hց 0 and then k → ∞ that

∫ ∞

0

∫

Ω
ζδ(t)|∇u(x, t)|2dxdt ≥ − 1

2δ

∫ t0+δ

t0

u2(x, t)dxdt+
1

2

∫

Ω
u20(x)dx

+χ1

∫ ∞

0

∫

Ω
ζδ(t)u(x, t)∇u(x, t) · ∇w(x, t)dxdt for all δ ∈ (0, 1).

Here as δ ց 0, using that |∇u|2 and u∇u · ∇w lie in L1(Ω × (0, t0 + 1)) due to Lemma 4.9 we can
employ the dominated convergence theorem to infer that

∫ t0

0

∫

Ω
|∇u|2 ≥ −1

2

∫

Ω
u2(·, t0) +

1

2

∫

Ω
u20 + χ1

∫ t0

0

∫

Ω
u∇u · ∇w (5.9)

thanks to the Lebesgue point feature of t0.
In order to derive (5.7) from this, we now make substantial use of the strong convergence property
asserted by Lemma 5.1, which together with (4.32), namely, ensures that

χ1

∫ t0

0

∫

Ω
uε∇uε · ∇wε → χ1

∫ t0

0

∫

Ω
u∇u · ∇w as ε = εj ց 0.

Therefore, relying on (5.8) as well as on (2.7) we can turn (5.9) into the inequality

∫ t0

0

∫

Ω
|∇u|2 ≥ lim

ε=εjց0

{
− 1

2

∫

Ω
u2ε(·, t0) +

1

2

∫

Ω
u20 + χ1

∫ t0

0
uε∇uε · ∇wε

}

= lim
ε=εjց0

∫ t0

0

∫

Ω
|∇uε|2
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and hence conclude as intended, because ∇uε ⇀ ∇u in L2(Ω× (0, t0)) as ε = εj ց 0 by Lemma 4.9,
and because t0 > T . �

With this preparation at hand, we can finalize our verification of the requirements from Definition
2.1).

Lemma 5.3 Assume (1.5) with w⋆ > 0 taken from (1.6), and let u and v be as in Lemma 4.9. Then
(2.5) holds for all nonnegative ϕ ∈ C∞

0 (Ω× [0,∞)).

Proof. For fixed nonnegative ϕ ∈ C∞
0 (Ω × [0,∞)), integrating by parts in the second equation

from (2.7) shows that
∫ ∞

0

∫

Ω
|∇ ln(vε + 1)|2ϕ = −

∫ ∞

0

∫

Ω
ln(vε + 1)ϕt −

∫

Ω
ln(v0 + 1)ϕ(·, 0)

+

∫ ∞

0

∫

Ω
∇ ln(vε + 1) · ∇ϕ

+χ2

∫ ∞

0

∫

Ω

vε

vε + 1

(
∇uε · ∇ ln(vε + 1)

)
ϕ

−χ2

∫ ∞

0

∫

Ω

vε

vε + 1
∇uε · ∇ϕ for all ε ∈ (0, 1), (5.10)

where by (4.34), taking (εj)j∈N ⊂ (0, 1) from Lemma 4.9 we have

−
∫ ∞

0

∫

Ω
ln(vε + 1)ϕt → −

∫ ∞

0

∫

Ω
ln(v + 1)ϕt as ε = εj ց 0 (5.11)

and ∫ ∞

0

∫

Ω
∇ ln(vε + 1) · ∇ϕ→

∫ ∞

0

∫

Ω
∇ ln(v + 1) · ∇ϕ as ε = εj ց 0, (5.12)

and where since vε
vε+1 → v

v+1 in L2
loc(Ω × [0,∞)) as ε = εj ց 0 by e.g. (4.33) and the dominated

convergence theorem, the weak convergence property in (4.31) is sufficient to ensure that

−χ2

∫ ∞

0

∫

Ω

vε

vε + 1
∇uε · ∇ϕ→ −χ2

∫ ∞

0

∫

Ω

v

v + 1
∇u · ∇ϕ as ε = εj ց 0. (5.13)

Now in the second last summand in (5.10) we rather rely on the statement on strong L2 convergence
from Lemma 5.2, which, along with the two-sided inequality 0 ≤ vε

vε+1 ≤ 1 and the fact that vε
vε+1 → v

v+1

a.e. in Ω× (0,∞) as ε = εj ց 0, guarantees that vε
vε+1∇uε → v

v+1∇u in L2
loc(Ω× [0,∞)) as ε = εj ց 0

([33, Lemma 10.4]) and hence

χ2

∫ ∞

0

∫

Ω

vε

vε + 1

(
∇uε·∇ ln(vε+1)

)
ϕ→ χ2

∫ ∞

0

∫

Ω

v

v + 1

(
∇u·∇ ln(v+1)

)
ϕ as ε = εj ց 0 (5.14)

due to (4.34). By lower semicontinuity of the norm in L2(Ω × (0,∞);Rn) with respect to weak
convergence, in view of (4.31) we readily infer the validity of (2.5) from (5.10)-(5.14). �

Our main existence result thereby becomes complete.

Proof of Theorem 1.1. All statements have already been verified in Lemma 4.9 and Lemma 5.3.
�
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6 Stabilization. Proof of Theorem 1.3

6.1 Two basic homogenization features

Let us launch our qualitative analysis by stating two quite straightforward consequences of the decay
assumption (1.11) when combined with our previously gained estimates. The first of these concludes
the following from Lemma 4.1.

Lemma 6.1 In addition to the assumptions from Theorem 1.1, suppose that (1.11) holds. Then there
exists C > 0 such that ∫ ∞

0

∫

Ω
|∇wε|2 ≤ C for all ε ∈ (0, 1). (6.1)

In particular,
∫ ∞

0

∫

Ω
|∇w|2 <∞.

Proof. Since from Lemma 4.1 we know that
∫ T

0

∫

Ω
|∇wε|2 ≤

1

2d

∫

Ω
w2
0 +

|Ω|w⋆

d

∫ ∞

0
‖r(·, t)‖L∞(Ω)dt for all ε ∈ (0, 1) and T > 0,

in view of Lemma 4.9 both claims immediately follow. �

By going back to Lemma 3.3, we can derive a similar property of the first solution components.

Lemma 6.2 Suppose that the assumptions from Theorem 1.1 as well as (1.11) hold. Then there exists
C > 0 such that ∫ ∞

0

∫

Ω
|∇uε|2 ≤ C for all ε ∈ (0, 1), (6.2)

whence in particular
∫ ∞

0

∫

Ω
|∇u|2 <∞.

Proof. An application of Lemma 3.3 to p := 2 provides δ > w⋆, κ > 0, c1 > 0 and c2 > 0 such that
for all ε ∈ (0, 1),

d

dt

∫

Ω
u2ε(δ − wε)

−κ + c1

∫

Ω
|∇uε|2 ≤ c2‖r‖L∞(Ω)

∫

Ω
u2ε(δ − wε)

−κ for all t > 0, (6.3)

which upon a comparison argument firstly implies that
∫

Ω
u2ε(δ − wε)

−κ ≤
{∫

Ω
u20(δ − w0)

−κ

}
· ec2

∫ t

0 ‖r(·,s)‖L∞(Ω)ds

≤ c3 :=

{∫

Ω
u20(δ − w0)

−κ

}
· ec2

∫

∞

0 ‖r(·,s)‖L∞(Ω)ds for all t > 0

with c3 being finite according to (1.11). Direct integration of (6.3) thereafter shows that

c1

∫ t

0

∫

Ω
|∇uε|2 ≤ c2c3

∫ t

0
‖r(·, s)‖L∞(Ω)ds for all t > 0,

which by again using (1.11) implies (6.2) on taking t ր ∞ and then relying on Lemma 4.9 in letting
ε = εj ց 0. �
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6.2 Stabilization of u

Along with the strong convergence features asserted by Lemma 5.1 and Lemma 5.2, the previous
two lemmata entail sufficient decay of the nutrient taxis mechanism so as to allow for the following
conclusion on stabilization of u, though yet in a sense weaker than that claimed in Theorem 1.3.

Lemma 6.3 Beyond assuming the hypotheses from Theorem 1.1, assume (1.11). Then there exists a
null set N ⊂ (0,∞) such that

∫

Ω
u(·, t) ln u(·, t)

u0
→ 0 as (0,∞) \N ∋ t→ ∞. (6.4)

Proof. Thanks to (2.9), on testing the first equation in (2.7) by the smooth function lnuε we see
that due to Young’s inequality,

d

dt

∫

Ω
uε ln

uε

u0
+

∫

Ω

|∇uε|2
uε

= χ1

∫

Ω
∇uε · ∇wε

≤ hε(t) :=

∫

Ω
|∇uε|2 +

χ2
1

4

∫

Ω
|∇wε|2 for all t > 0,

where according to a logarithmic Sobolev inequality ([2], [14]) we can find c1 > 0 such that for all
ε ∈ (0, 1) we have

∫

Ω

|∇uε|2
uε

≥ c1

∫

Ω
uε ln

uε

u0
for all t > 0.

Therefore,

d

dt

∫

Ω
uε ln

uε

u0
+ c1

∫

Ω
uε ln

uε

u0
≤ hε(t) for all t > 0 and ε ∈ (0, 1),

which after an integration shows that

∫

Ω
uε(·, t) ln

uε(·, t)
u0

≤ c2e
−c1t +

∫ t

0
e−c1(t−s)hε(s)ds for all t > 0 and ε ∈ (0, 1) (6.5)

with c2 :=
∫
Ω u0 ln

u0
u0
> 0 by (1.4).

We now go back to Lemma 4.9 and use that |z ln z| ≤ 2
e
z

3
2 + 1

e
for all z > 0 to infer that there exist

a null set N ⊂ (0,∞), as well as a subsequence (εjk)k∈N of the sequence (εj)j∈N provided by Lemma
4.9, such that

∫

Ω
uε(·, t) ln

uε(·, t)
u0

→
∫

Ω
u(·, t) ln u(·, t)

u0
for all t ∈ (0,∞) \N as ε = εjk ց 0. (6.6)

Since furthermore Lemma 5.1 together with Lemma 5.2 asserts that

hε → h :=

∫

Ω
|∇u|2 + χ2

1

4

∫

Ω
|∇w|2 in L1

loc([0,∞)) as ε = εj ց 0,
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on letting ε = εjk ց 0 we infer from (6.5) that

∫

Ω
u(·, t) ln u(·, t)

u0
≤ c2e

−c1t +

∫ t

0
e−c1(t−s)h(s)ds for all t ∈ (0,∞) \N. (6.7)

But as a combination of Lemma 6.1 with Lemma 6.2 shows that c3 :=
∫∞
0 h(s)ds is finite, given η > 0

we can fix t0 > 0 large enough fulfilling

c2e
c1t ≤ η

3
, c3e

− c1t
2 ≤ η

3
and

∫ ∞

t
2

h(s)ds ≤ η

3
for all t > t0,

whence for any t > t0 fulfilling t0 6∈ N we infer from (6.7) that

∫

Ω
u(·, t) ln u(·, t)

u0
≤ c2e

−c1t +

∫ t
2

0
e−

c1t
2 h(s)ds+

∫ t

t
2

h(s)ds

≤ η

3
+
η

3
+
η

3
= η.

Since from (4.41) and (6.6) we know that
∫
Ω u(·, t) ln

u(·,t)
u0

≥ 0 for all t ∈ (0,∞) \N , this entails (6.4)
due to the fact that η > 0 was arbitrary. �

By means of a Csiszár-Kullback inequality and appropriate interpolation, however, the above can
readily be turned into a convergence statement of the intended flavor.

Lemma 6.4 In addition to the assumptions from Theorem 1.1, suppose that (1.11) holds. Then one
can find a null set N ⊂ (0,∞) with the property that

‖u(·, t)− u0‖L4(Ω) → 0 as (0,∞) \N ∋ t→ ∞. (6.8)

Proof. According to (4.41) and a Csiszár-Kullback inequality ([7]), there exists c1 > 0 such that

‖u(·, t)− u0‖2L1(Ω) ≤ c1

∫

Ω
u(·, t) ln u(·, t)

u0
for a.e. t > 0,

so that Lemma 6.3 entails the existence of a null set N1 ⊂ (0,∞) such that

‖u(·, t)− u0‖L1(Ω) → 0 as (0,∞) \N1 ∋ t→ ∞. (6.9)

As furthermore with p0 > 4 taken from Lemma 4.9 we can use the Hölder inequality to interpolate

‖u(·, t)− u0‖L4(Ω) ≤ ‖u(·, t)− u0‖aLp0 (Ω)‖u(·, t)− u0‖1−a
L1(Ω)

≤
{
‖u(·, t)‖Lp0 (Ω) + u0|Ω|

1
p0

}a

· ‖u(·, t)− u0‖1−a
L1(Ω)

for all t > 0

with a := 3p0
4(p0−1) ∈ (0, 1), the claim therefore results upon combining (6.8) with the inclusion u ∈

L∞((0,∞);Lp0(Ω)) asserted by Lemma 4.9. �
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6.3 Decay of w

Next addressing the claimed temporal asymptotics of w, we again build our argument in this direction
on a first fundamental though yet quite weak decay information:

Lemma 6.5 Assume the hypotheses from Theorem 1.1, and suppose that (1.11) holds. Then
∫ t+1

t

∫

Ω
uw → 0 as t→ ∞. (6.10)

Proof. By integrating the third equation in (2.7), we see that since µ is nonnegative,

d

dt

∫

Ω
wε + λ

∫

Ω

(uε + vε)wε

1 + ε(uε + vε)wε
= −µ

∫

Ω
wε +

∫

Ω
r ≤ |Ω| · ‖r‖L∞(Ω) for all t > 0 and ε ∈ (0, 1),

so that
∫ t

0

∫

Ω

(uε + vε)wε

1 + ε(uε + vε)wε
≤ c1 :=

|Ω|
λ

∫ ∞

0
‖r(·, s)‖L∞(Ω)ds for all t > 0 and ε ∈ (0, 1),

where c1 <∞ by (1.11). Thanks to Lemma 4.9 and Fatou’s lemma, this implies that with (εj)j∈N as
in Lemma 4.9 we have

∫ t

0

∫

Ω
(u+ v)w ≤ lim inf

ε=εjց0

∫ t

0

∫

Ω

(uε + vε)wε

1 + ε(uε + vε)wε
≤ c1 for all t > 0,

which in particular shows that
∫∞
0

∫
Ω uw <∞ and hence entails (6.10). �

Already knowing that u stabilizes at the nontrivial constant level u0, we can indeed turn the latter
into a statement on decay of w itself.

Lemma 6.6 Suppose that apart from the assumptions from Theorem 1.1, the condition (1.11) is
satisfied. Then ∫ t+1

t

∫

Ω
w → 0 as t→ ∞. (6.11)

Proof. We fix η > 0 and then can employ Lemma 6.4 to readily find t1 > 0 such that
∫ t+1

t

∫

Ω
|u(·, s)− u0| ≤

u0η

2w⋆
for all t > t1. (6.12)

Since, apart from that, Lemma 6.5 provides t2 > 0 fulfilling
∫ t+1

t

∫

Ω
uw ≤ u0η

2
for all t > t2,

by combining this with (6.12) and relying on Lemma 3.1 we can estimate
∫ t+1

t

∫

Ω
w =

1

u0

∫ t+1

t

∫

Ω
uw − 1

u0

∫ t+1

t

∫

Ω
(u− u0)w

≤ 1

u0

∫ t+1

t

∫

Ω
uw +

w⋆

u0

∫ t+1

t

∫

Ω
|u− u0|

≤ η

2
+
η

2
= η for all t > max{t1, t2},
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so that (6.11) follows. �

Finally, the topological setup herein can be adjusted in the desired manner by applying appropriate
parabolic smoothing arguments to the third equation in (2.7).

Lemma 6.7 In addition to the requirements from Theorem 1.1, assume that (1.11) holds. Then there
exists a null set N ⊂ (0,∞) satisfying

‖w(·, t)‖L∞(Ω) → 0 as (0,∞) \N ∋ t→ ∞. (6.13)

Proof. Due to well-known smoothing properties of the Neumann heat semigroup (eσ∆)σ≥0 on Ω
([29, Lemma 1.4]), we can choose c1 > 0 such that

‖edσ∆ϕ‖L∞(Ω) ≤ c1σ
−n

2 ‖ϕ‖L1(Ω) for all σ ∈ (0, 1) and each ϕ ∈ C0(Ω). (6.14)

With this value of c1 fixed, given η > 0 we employ Lemma 6.6 to pick t1 > 1 large enough satisfying

2
n
2 c1

∫ t− 1
2

t−1
‖w(·, s)‖L1(Ω)ds ≤

η

8
for all t > t1, (6.15)

while according to (1.11) we may take t2 > 1 suitably large such that

∫ t

t−1
‖r(·, s)‖L∞(Ω)ds ≤

η

2
for all t > t2. (6.16)

Furthermore relying on Lemma 4.9 in selecting a null set N ⊂ (0,∞) such that with (εj)j∈N ⊂ (0,∞)
as introduced there we have

wε(·, t) → w(·, t) a.e. in Ω for all t ∈ (0,∞) \N as ε = εj ց 0, (6.17)

for arbitrary t > t0 := max{t1, t2} filfilling tnot ∈ N we may once more invoke Lemma 4.9 to see that
in light of (6.15) we can find ε⋆ = ε⋆(t) ∈ (0, 1) such that

2
n
2 c1

∫ t− 1
2

t−1
‖wε(·, s)‖L1(Ω)ds ≤

η

4
for all ε ∈ (εj)j∈N such that ε < ε⋆,

which for any such ε entails the existence of t⋆ = t⋆(t, ε) ∈ (t− 1, t− 1
2) fulfilling

2
n
2 c1‖wε(·, t⋆)‖L1(Ω) ≤

η

2
. (6.18)

Now since due to the comparison principle we have

wε(·, t) = ed(t−t⋆)∆wε(·, t⋆)−
∫ t

t⋆

ed(t−s)∆

{
λ

(uε(·, s) + vε(·, s))wε(·, s)
1 + ε(uε(·, s) + vε(·, s))wε(·, s)

+ µwε(·, s)
}
ds

+

∫ t

t⋆

ed(t−s)∆r(·, s)ds

≤ ed(t−t⋆)∆wε(·, t⋆) +
∫ t

t⋆

‖r(·, s)‖L∞(Ω)ds in Ω,
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by combining (6.14) with (6.18) and using (6.16) we infer that

‖wε(·, t)‖L∞(Ω) ≤ c1(t− t⋆)
−n

2 ‖wε(·, t⋆)‖L1(Ω) +

∫ t

t⋆

‖r(·, s)‖L∞(Ω)ds

≤ 2
n
2 c1‖wε(·, t⋆)‖L1(Ω) +

∫ t

t⋆

‖r(·, s)‖L∞(Ω)ds

≤ η

2
+
η

2
= η for all ε ∈ (εj)j∈N fulfilling ε < ε⋆,

which in view of (6.17) and Fatou’s lemma implies that

‖w(·, t)‖L∞(Ω) ≤ η for all t ∈ (t0,∞) \N

and thus establishes (6.13). �

6.4 Stabilization of v

In view of the poor regularity information available for v, it may seem not very suprising that our
argument toward convergence in this component requires somewhat more subtle efforts; in fact, as we
particularly only know (2.6) instead of a genuine mass conservation property, already identifying an
appropriate limit for the corresponding total mass functional appears to be nontrivial. After all, once
more resorting to Lemma 4.3 enables us to identify a certain stabilization property of the functional∫
Ω ln(v + 1) that can, in a later step, be favorably related to spatio-temporal L2 norms of ∇v

v+1 , as
having formed the core of virtually all our previous access to regularity of v.

Lemma 6.8 Let the conditions from Theorem 1.1 be fulfilled, and assume (1.11). Then there exist a
null set N ⊂ (0,∞) and b ≥ 0 such that

1

|Ω|

∫

Ω
ln
(
v(·, t) + 1

)
→ b as (0,∞) \N ∋ t→ ∞. (6.19)

Proof. For ε ∈ (0, 1), we let

yε(t) :=

∫

Ω
ln
(
vε(x, t) + 1

)
dx+

χ2
2

2

∫ t

0

∫

Ω
|∇uε(x, s)|2dxds, t ≥ 0,

and first observe that thanks to (2.6), Lemma 4.9 and Lemma 5.2 we can fix a null set N ⊂ (0,∞)
such that ∫

Ω
v(·, t) ≤

∫

Ω
v0 for all t ∈ (0,∞) \N, (6.20)

that
vε(·, t) → v(·, t) a.e. in Ω for all t ∈ (0,∞) \N as ε = εj ց 0, (6.21)

and that

yε(t) → y(t) :=

∫

Ω
ln
(
v(x, t)+1

)
dx+

χ2
1

2

∫ t

0

∫

Ω
|∇u(x, s)|2dxds for all t ∈ (0,∞)\N as ε = εj ց 0,

(6.22)
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where (εj)j∈N is as given by Lemma 4.9.
Now when applied to a := 1, Lemma 4.3 in particular says that for each ε ∈ (0, 1) we have

y′ε(t) =
d

dt

∫

Ω
ln(vε + 1) +

χ2
2

2

∫

Ω
|∇uε|2 ≥

1

2

∫

Ω

|∇vε|2
(vε + 1)2

≥ 0 for all t > 0,

and that thus

yε(t) ≥ yε(t0) for all t0 ≥ 0 and any t > t0.

In view of (6.22), on letting ε = εj ց 0 this implies that

y(t) ≥ y(t0) for all t0 ∈ (0,∞) \N and each t ∈ (t0,∞) \N, (6.23)

and that, correspondingly, y is nondecreasing on (0,∞) \ N . Since, on the other hand, c1 :=
χ2
2
2

∫∞
0

∫
Ω |∇u|2 is finite by Lemma 6.2, and since thus

y(t) ≤
∫

Ω

(
v(·, t) + 1

)
+ c1 ≤

∫

Ω
v0 + |Ω|+ c1 for all t ∈ (0,∞) \N,

from (6.23) we infer the existence of a finite number c2 ≥ 0 such that

y(t) ր c2 as (0,∞) \N ∋ t→ ∞.

But by definition of y, this means that

∫

Ω
ln
(
v(x, t) + 1

)
dx = y(t)− χ2

2

2

∫ t

0

∫

Ω
|∇u(x, s)|2dxds→ c2 − c1 as (0,∞) \N ∋ t→ ∞,

which directly yields (6.19) with b := c2−c1
|Ω| necessarily being nonnegative due to the fact that ln(v(·, t)+

1) ≥ 0 a.e. in Ω for each t ∈ (0,∞) \N by (6.21). �

Indeed, through the logarithmic gradient estimate from Lemma 4.4 the latter entails the following,
still quite weak, spatial homogenization feature of ln(v + 1).

Lemma 6.9 In addition to the hypotheses from Theorem 1.1, assume that (1.11) holds. Then taking
b ≥ 0 as in Lemma 6.8, we have

∫ t+1

t

∫

Ω

∣∣∣ ln
(
v(x, s) + 1

)
− b

∣∣∣dxds→ 0 as t→ ∞. (6.24)

Proof. Going back to Lemma 4.4, we recall that for each T > 0,

∫ T

0

∫

Ω
|∇ ln(vε + 1)|2 ≤ 2

∫

Ω
v0 + 2|Ω|+ χ2

2

∫ T

0

∫

Ω
|∇uε|2 for all ε ∈ (0, 1),

which in light of Lemma 4.9 and the strong convergence statement from Lemma 5.2 implies that

∫ T

0

∫

Ω
|∇ ln(v + 1)|2 ≤ 2

∫

Ω
v0 + 2|Ω|+ χ2

2

∫ T

0

∫

Ω
|∇u|2.
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Thanks to Lemma 6.2, we therefore know that

∫ ∞

0

∥∥∥∇ ln
(
v(·, s) + 1

)∥∥∥
2

L2(Ω)
ds <∞,

whence choosing c1 > 0 such that in accordance with a Poincaré inequality we have

‖ϕ− ϕ‖2L1(Ω) ≤ c1‖∇ϕ‖2L2(Ω) for all ϕ ∈W 1,2(Ω),

by means of a Cauchy-Schwarz inequality we see that

∫ t+1

t

∥∥∥∥ ln
(
v(·, s) + 1

)
− ln

(
v(·, s) + 1

)∥∥∥∥
L1(Ω)

ds

≤
{∫ t+1

t

∥∥∥∥ ln
(
v(·, s) + 1

)
− ln

(
v(·, s) + 1

)∥∥∥∥
2

L1(Ω)

ds

} 1
2

≤ c
1
2
1 ·

{∫ t+1

t

∥∥∥∇ ln
(
v(·, s) + 1

)∥∥∥
2

L2(Ω)
ds

} 1
2

→ 0 as t→ ∞. (6.25)

But Lemma 6.8 provides a null set N ⊂ (0,∞) such that

ln
(
v(·, s) + 1

)
→ b as (0,∞) \N ∋ s→ ∞,

which clearly implies that

∫ t+1

t

∥∥∥∥ln
(
v(·, s) + 1

)
− b

∥∥∥∥
L1(Ω)

ds→ 0 as t→ ∞.

In conjunction with (6.25), this establishes (6.24). �

By means of a contradictory argument, this can be turned into a statement on convergence of v itself,
which with regard to its topological framework is already precisely of the form claimed in Theorem
1.3.

Lemma 6.10 Suppose that the requirements from Theorem 1.1 are met, and that (1.11) is valid.
Then with b ≥ 0 taken from Lemma 6.8, for any choice of p ∈ (0, 1) we have

∫ t+1

t

∫

Ω
|v(x, s)− (eb − 1)|pdxds→ 0 as t→ ∞. (6.26)

Proof. Assuming (6.26) to be false for some p ∈ (0, 1), we could find (tk)k∈N ⊂ (0,∞) and c1 > 0
such that tk → ∞ as k → ∞ and

∫ tk+1

tk

|v(x, s)− (eb − 1)|pdxds ≥ c1 for all k ∈ N. (6.27)
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On the other hand, from Lemma 6.8 we know that

∫ tk+1

tk

∫

Ω

∣∣∣ ln
(
v(x, s) + 1

)
− b

∣∣∣dxds→ 0 as k → ∞,

which, on letting zk(x, s) := v(x, tk + s) for x ∈ Ω s ∈ (0, 1) and k ∈ N, becomes equivalent to saying
that

∫ 1

0

∫

Ω

∣∣∣ ln
(
zk(x, s) + 1

)
− b

∣∣∣dxds→ 0 as k → ∞.

We could therefore extract a suitable subsequence (zkl)l∈N along which

ln(zkl + 1)− b→ 0 a.e. in Ω× (0, 1) as l → ∞,

that is, for which we would have

∣∣∣zkl − (eb − 1)
∣∣∣
p

→ 0 a.e. in Ω× (0, 1) as l → ∞. (6.28)

Now as a consequence of (2.6), using the Hölder inequality we can estimate

∫ 1

0

∫

Ω

∣∣∣∣
∣∣∣zk − (eb − 1)

∣∣∣
p
∣∣∣∣
1
p

≤ 2
1
p

∫ 1

0

∫

Ω
|zk|+ 2

1
p (eb − 1)|Ω|

≤ 2
1
p

∫

Ω
v0 + 2

1
p (eb − 1)|Ω| for all k ∈ N,

which thanks to the fact that 1
p
> 1 warrants uniform integrability of (|zk−(eb−1)|p)k∈N over Ω×(0, 1).

When combined with (6.28), through an application of the Vitali convergence theorem this implies
that we would have

∫ 1

0

∫

Ω

∣∣∣zkl − (eb − 1)
∣∣∣
p

→ 0 as l → ∞,

which is incompatible with (6.27) and thus proves that actually (6.26) must have been true. �

Thus left with the verification that the constant eb − 1 in (6.26), and hence b itself, is positive, one
last time we go back to Lemma 4.3. In fact, on applying the latter to a = 0 now we can make sure
that the singular value v = 0 thus appearing therein cannot be attained, nor be approximated, within
sets of positive measure, as resulting from the following estimate.

Lemma 6.11 In addition to the assumptions from Theorem 1.1, suppose that (1.11) holds. Then
there exist a null set N ⊂ (0,∞) and C > 0 such that

∫

Ω
ln+

1

v(x, t)
dx ≤ C for all t ∈ (0,∞) \N. (6.29)
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Proof. We once more apply Lemma 4.3, but this time to a := 0, to see that for all ε ∈ (0, 1),

d

dt

∫

Ω
ln

1

vε
≤ −1

2

∫

Ω

|∇vε|2
v2ε

+
χ2
2

2

∫

Ω
|∇uε|2 ≤

χ2
2

2

∫

Ω
|∇uε|2 for all t > 0,

so that

∫

Ω
ln

1

vε(·, t)
≤

∫

Ω
ln

1

v0
+
χ2
2

2

∫ t

0

∫

Ω
|∇uε|2 for all t > 0.

Since due to the fact that ln z ≤ z for all z > 0 we can again use (2.9) to see that

∫

Ω
ln+

1

vε(·, t)
=

∫

Ω
ln

1

vε(·, t)
+

∫

{vε(·,t)>1}
ln vε(·, t)

≤
∫

Ω
ln

1

vε(·, t)
+

∫

Ω
vε(·, t)

=

∫

Ω
ln

1

vε(·, t)
+

∫

Ω
v0 for all t > 0,

this shows that

∫

Ω
ln+

1

vε(·, t)
≤ hε(t) := c1 +

χ2
2

2

∫ t

0

∫

Ω
|∇uε|2 for all t > 0, (6.30)

where c1 :=
∫
Ω ln 1

v0
+
∫
Ω v0.

We now return to Lemma 4.9 to pick a null set N ⊂ (0,∞) such that with (εj)j∈N as given there we
have vε(·, t) → v(·, t) a.e. in Ω for all t ∈ (0,∞) \ N as ε = εj ց 0. Since furthermore Lemma 5.2
implies that for all t > 0,

hε(t) → h(t) := c1 +
χ2
2

2

∫ t

0

∫

Ω
|∇u|2 as ε = εj ց 0,

we readily infer from Fatou’s lemma that (6.30) entails the inequality

∫

Ω
ln+

1

v(·, t) ≤ h(t) for all t ∈ (0,∞) \N.

As Lemma 6.2 warrants boundedness of h throughout (0,∞), this already yields (6.29). �

Indeed, the latter entails positivity of the constant approached by v in the large time limit:

Lemma 6.12 Let the hypotheses from Theorem 1.1 be satisfied, and assume (1.11). Then the number
b from Lemma 6.8 satisfies b > 0.

Proof. In line with Lemma 6.11, we fix a null set N ⊂ (0,∞) and a positive constant c1 such that

∫

Ω
ln+

1

v(·, t) ≤ c1 for all t ∈ (0,∞) \N. (6.31)
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Then since Lemma 6.10 inter alia says that

ηk :=

∫ k+1

k

∫

Ω

∣∣∣v(x, t)− (eb − 1)
∣∣∣
1
2
dxdt, k ∈ N,

satisfies ηk → 0 as k → ∞, we can find (tk)k∈N ⊂ (0,∞) \N such that tk ∈ (k, k+ 1) and
∫
Ω |v(·, tk −

(eb − 1)| 12 ≤ ηk for all k ∈ N, whence in particular |v(·, tk)− (eb − 1)| 12 to0 in L1(Ω) as k → ∞. For a
suitably chosen subsequence (tkl)l∈N of (tk)k∈N, we can thus achieve that v(·, tkl − (eb − 1) → 0 a.e. in
Ω and hence, by [0,∞]-valued continuity of 0 ≤ z 7→ ln+

1
z
, that ln+

1
v(·,tkl )

→ ln+
1

eb−1
∈ [0,∞] a.e. in

Ω as l → ∞. In light of (6.31), however, due to Fatou’s lemma this implies that

∫

Ω
ln+

1

eb − 1
≤ lim inf

l→∞

∫

Ω
ln+

1

v(·, tkl)
≤ c1

and thereby shows that indeed eb − 1 must be positive. �

6.5 Proof of Theorem 1.3

Summarizing the above, we obtain the claimed results on stabilization in all three solution components:

Proof of Theorem 1.3. The statements on convergence of u and w have precisely been established
in Lemma 6.4 and Lemma 6.7. To verify the coresponding stabilization property of v, we take the
constant b as provided by Lemma 6.8, and let v∞ := eb − 1 to indeed obtain (1.14) as a direct
consequence of Lemma 6.10, whereas positivity of b, and hence of v∞, is asserted by Lemma 6.12. �

7 Appendix: Details in preparing Lemma 3.2

Mainly in order to enlighten the origin of our assumption (1.5)-(1.6), and especially the particular
value of w⋆ appearing therein, let us finally provide some technical but exclusively elementary details
necessary for our derivation of the fundamental Lemma 3.3, as having become manifest in Lemma
3.2. Our first three observations in this direction are concerned with expressions resembling that from
(3.2), but in place of the yet free parameter κ involving a number θ ∈ [0, 1] which will be subject to
an optimization procedure below.

Lemma 7.1 For d > 0 and p > 1, let

ξ± ≡ ξ±d,p(θ) := (d− 1)θ ± 2

√
dθ(1− θ)

p
, θ ∈ [0, 1]. (7.1)

Then for fixed d > 0, p > 1 and θ ∈ (0, 1),

Id,p,θ(ξ) := pξ2 − 2p(d− 1)θξ + [p(d− 1)2 + 4d]θ2 − 4dθ, θ ∈ R, (7.2)

satisfies
Id,p,θ(ξ) < 0 if and only if ξ ∈ (ξ−, ξ+). (7.3)
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Proof. As simple computation shows that ξ− and ξ+ precisely coincide with the two zeros of Id,p,θ,
this is evident from (7.2). �

Lemma 7.2 Let d > 0, p > 1 and θ ∈ [0, 1]. Then the number ξ−d,p(θ) from (7.1) satisfies

ξ−d,p(θ) ≤ 0 if and only if

{
d ≤ 1, p > 1 and θ ∈ [0, 1], or

d > 1, p > 1 and θ ∈ [0, θ⋆p,d],
(7.4)

where for d > 1,

θ⋆p,d :=
4d

p(d− 1)2 + 4d
∈ (0, 1). (7.5)

Proof. This can be verified by elementary calculation. �

Lemma 7.3 Let χ1 > 0, d > 0, p > 1 and θ ∈ [0, 1], and suppose that s⋆ > 0 and δ > s⋆. Then

Jd,p,θ(s) := pχ2
1(δ − s)2 − 2p(d− 1)θχ1(δ − s) + [p(d− 1)2 + 4d]θ2 − 4dθ, s ∈ [0, s⋆], (7.6)

defines a function which is negative throughout [0, s⋆] if and only if with ξ±d,p taken from (7.1) we have

s⋆ +
ξ−d,p(θ)

χ1
< δ <

ξ+d,p(θ)

χ1
. (7.7)

Proof. For s ∈ [0, s⋆] abbreviating ξ ≡ ξ(s) := χ1 · (δ − s), we see that the inequality Jd,p,θ(s) < 0
is precisely equivalent to saying that the expression defined in (7.2) satisfies Id,p,θ(ξ) < 0. Therefore,
(7.7) implies negativity of Jd,p,θ throughout [0, s⋆], because the right inequality therein warrants that
ξ = χ1 · (δ − s) ≤ ξ1δ < ξ+d,p(θ), and because according to the first condition implied by (7.7) we then

know that ξ ≥ χ1 · (δ − s⋆) > ξ−d,p(θ). The necessity of (7.7) for negativity of max[s∈[0,s⋆] Jd,p,θ(s) can
be seen similarly. �

Indeed, the need for a maximization process is indicated by the following.

Lemma 7.4 For d > 0 an p > 1, let

ρ
(1)
d,p(θ) := (d− 1)θ + 2

√
dθ(1− θ)

p
, θ ∈ [0, 1], (7.8)

and

ρ
(2)
d,p(θ) := 4

√
dθ(1− θ)

p
, θ ∈ [0, 1], (7.9)

as well as

ρd,p(θ) :=





ρ
(1)
d,p(θ) if either d ≤ 1 and θ ∈ [0, 1],

or d > 1 and θ ∈ [0, θ⋆d,p],

ρ
(2)
d,p(θ) if d > 1 and θ ∈ (θ⋆d,p, 1],

(7.10)

with θ⋆d,p taken from (7.5). Then given s⋆ > 0, one can find δ > s⋆ and θ ∈ [0, 1] fulfilling (7.7) if and
only if

s⋆ <
1

χ1
· max
θ̃∈[0,1]

ρd,p(θ̃). (7.11)
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Proof. Since by (7.1) we have

ρ
(1)
d,p(θ) = ξ+d,p(θ) and ρ

(2)
d,p(θ) = ξ+d,p(θ)− ξ−d,p(θ) for d > 1, p > 1 and θ ∈ [0, 1],

we only need to observe that if ξ−d,p(θ) > 0, and hence equivalently d > 1 and θ > θ⋆p,d by Lemma 7.2,
then in (7.7) we have

ξ+d,p(θ)

χ1
−
{
s⋆ +

ξ−d,p(θ)

χ1

}
=
ξ+d,p(θ)− ξ−d,p(θ)

χ1
− s⋆ =

ρ
(2)
d,p(θ)

χ1
− s⋆ =

ρd,p(θ)

χ1
− s⋆

by (7.10), whereas in ξ−d,p(θ) ≤ 0, then, similarly,

ξ+d,p(θ)

χ1
− s⋆ =

ρ
(1)
d,p(θ)

χ1
− s⋆ =

ρd,p(θ)

χ1
− s⋆

according to Lemma 7.2 and (7.10). In both these cases, namely, choosing δ > s⋆ such that (7.7) holds

with some θ ∈ [0, 1] is thus equivalent to finding θ ∈ [0, 1] such that
ρd,p(θ)

χ1
− s⋆ > 0, as claimed. �

We next separately address the corresponding maximization problems for ρ
(1)
d,p and ρ

(2)
d,p.

Lemma 7.5 Let d > 0 and p > 1. Then with

θ+d,p :=
1

2
+

d− 1

2
√
(d− 1)2 + 4d

p

∈ (0, 1), (7.12)

ρ
(1)
d,p is increasing on (0, θ+d,p) and decreasing on (θ+d,p, 1), and

max
θ∈[0,1]

ρ
(1)
d,p(θ) = ρ

(1)
d,p(θ

+
d,p) =

d− 1 +
√
(d− 1)2 + 4d

p

2
. (7.13)

Proof. By differentiation in (7.8), we see that

d

dθ
ρ
(1)
d,p(θ) = d− 1 +

√
d

pθ(1− θ)
· (1− 2θ), θ ∈ (0, 1),

vanishes precisely for θ = θ+d,p. Computing

ρ
(1)
d,p(θ

+
d,p) =

d− 1 +
√
(d− 1)2 + 4d

p

2

we thereby obtain (7.13), whereupon the claimed monotonicity properties become evident. �

Lemma 7.6 Let d > 0 and p > 1, and let θ⋆d,p ∈ (0, 1) and ρ
(1)
d,p be as in (7.5) and (7.8). Then

max
θ∈[0,θ⋆

d,p
]
ρ
(1)
d,p(θ) =





d−1+
√

(d−1)2+ 4d
p

2 if p(d− 1)2 ≤ 4d
3 ,

8d(d−1)
p(d−1)2+4d

if p(d− 1)2 > 4d
3 .

(7.14)
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Proof. With θ+d,p taken from (7.12), we note that

2(θ+d,p − θ⋆d,p) =
p(d− 1)

√
(d− 1)2 + 4d

p
− 4d+ p(d− 1)2

p(d− 1)2 + 4d

is nonpositive if and only if z := p(d − 1)2 satisfies z < 4d and pz · {(d − 1)2 + 4d
p
} ≤ (4d − z)2, that

is, if and only if

z2 + 4dz ≤ 16d2 − 8dz + z2,

which is precisely equivalent to the inequality p(d − 1)2 ≤ 4d
3 . For any such d and p, we thus have

θ+d,p ≤ θ⋆d,p, so that (7.14) then results from Lemma 7.5.

If, conversely, p(d− 1)2 > 4d
3 , then θ

+
d,p > θ⋆d,p and hence the upward monotonicity of ρ

(1)
d,p on (0, θ+d,p),

as asserted by Lemma 7.5, upon a straightforward computation implies that

max
θ∈[0,θ⋆

d,p
]
ρ
(1)
d,p(θ) = ρ

(1)
d,p(θ

⋆
d,p) =

8d(d− 1)

p(d− 1)2 + 4d

in this case. �

Lemma 7.7 Let d > 0 and p > 1, and let θ⋆d,p ∈ (0, 1) and ρ
(2)
d,p be as defined in (7.5) and (7.9). Then

max
θ∈[θ⋆

d,p
,1]
ρ
(2)
d,p(θ) =





8d(d−1)
p(d−1)2+4d

if p(d− 1)2 ≤ 4d,

2
√

d
p

if p(d− 1)2 > 4d.
(7.15)

Proof. It can readily be verified that ρ
(2)
d,p is increasing on (0, 12) and decreasing on (12 , 1) with

max
θ∈[0,1]

ρ
(2)
d,p(θ) = ρ

(2)
d,p

(1
2

)
= 2

√
d

p
.

Since θ⋆d,p <
1
2 if and only if again writing z := p(d − 1)2 we have 4d

z+4d <
1
2 , that is, if and only if

z > 4d, by computing ρ
(2)
d,p(θ

⋆
d,p) =

8d(d−1)
p(d−1)2+4d

we immediately obtain (7.15). �

In summary, we can precisely identify the maximum of ρd,p as follows.

Lemma 7.8 Let d > 0 and p > 1. Then

max
θ∈[0,1]

ρd,p(θ) = P (d, p) :=





d−1+
√

(d−1)2+ 4d
p

2 if p(d− 1)2+ ≤ 4d
3 ,

8d(d−1)
p(d−1)2+4d

if 4d
3 < p(d− 1)2+ ≤ 4d,

2
√

d
p

if 4d < p(d− 1)2+ > .

(7.16)
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Proof. In view of (7.10), this directly results on combining Lemma 7.5 with Lemma 7.6) and
Lemma 7.7. �

In order to allow for a definition of w⋆ which is independent of our particular choice of p ∈ [2, p0]
in Lemma 3.3, let us finally state a rather immediate monotonicity property of the above maximizer
with respect to p.

Lemma 7.9 The function P defined through (7.16) belongs to W 1,∞
loc ((0,∞) × (1,∞)) and satisfies

∂P
∂p

≤ 0 a.e. in (0,∞)× (1,∞).

Proof. By direct computation on the basis of (7.16), it can easily be verified that P is continuous
in (0,∞) × (1,∞) and hence, according to its evident smoothness properties outside the regions
{p(d − 1)2+ = 4d

3 } and {p(d − 1)2 = 4d}, indeed is locally Lipschitz continuous in (0,∞) × (1,∞).

Nonpositivity of ∂P
∂p

thereafter immediately follows from (7.16). �

We can thereby verify the main outcome of this appendix, as already referred to in the main body of
our above analysis:

Proof of Lemma 3.2. According to (1.5) and Lemma 3.1, we can find s⋆ ∈ (0, w⋆) such that

wε(x, t) ≤ s⋆ for all x ∈ Ω, t > 0 and ε ∈ (0, 1), (7.17)

and using that with P as in (7.16) we have w⋆ = P (d,4)
χ1

, by continuity of P (d, ·) we can fix p0 > 4 such
that still

P (d, p0)

χ1
> s⋆.

Then given any p ∈ [2, p0], according to the monotonicity property of P from Lemma 7.9 we know
that

P (d, p)

χ1
≥ P (d, p0)

χ1
> s⋆,

whence by definition (7.16) of P (d, p) we can find θ ∈ [0, 1] such that ρd,p defined in (7.10) satisfies

ρd,p(θ)

χ1
=
P (d, p)

χ1
> s⋆.

Now as a consequence of Lemma 7.4 and Lemma 7.3, this in turn enables us to pick δ > s⋆ and c1 > 0
such that

pχ2
1(δ − s)2 − 2p(d− 1)θχ1(δ − s) + [p(d− 1)2 + 4d]θ2 − 4dθ ≤ −c1 for all [0, s⋆].

By means of a simple argument based on continuous dependence, this guarantees that with some
η ∈ (0, 1) suitably close to 1 we have

pχ2
1(δ − s)2 − 2p(d+ 1− 2η)θχ1(δ − s) + [p(d+ 1)2 − 4(p− 1)dη]θ2 − 4dηθ ≤ −c1

2
for all [0, s⋆].
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Upon multiplication by (p− 1)2, due to (7.17) this shows if we let

κ := (p− 1)θ,

then for all ε ∈ (0, 1),

p(p− 1)2χ2
1(δ − wε)

2 − 2p(p− 1)(d+ 1− 2η)θχ1(δ − wε) + [p(d+ 1)2 − 4(p− 1)dη]κ2 − 4(p− 1)dηκ

≤ −c1(p− 1)2

2
in Ω× (0,∞),

which can readily be seen to be equivalent to (3.2) with some suitably some C > 0. �
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