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Abstract

The parabolic-elliptic Keller-Segel system

{
ut = ∆u−∇ · (u∇v),

0 = ∆v − µ+ u, µ := 1

|Ω|

∫
Ω
u,

(⋆)

is considered under homogeneous Neumann boundary conditions in the ball Ω = BR(0) ⊂ R
n.

The main objective is to reveal that in the context of radially symmetric solutions, this problem
exhibits an apparently novel type of critical mass phenomenon: It is shown, namely, that for any
choice of n ≥ 2 and R > 0 there exists a positive number mc = mc(n,R) with the following
properties:

• Whenever m > mc, for any nonconstant nonnegative radial initial data u0 with
∫
Ω
u0 = m

which are, in an appropriately defined sense, more concentrated than the associated spatially
homogeneous equilibrium determined by u ≡ m

|Ω| , the corresponding initial-value problem for

(⋆) admits a solution blowing up in finite time; in particular, this implies that any nonconstant
and radially nonincreasing initial data u0 with

∫
Ω
u0 > mc enforce blow-up in (⋆).

• If m < mc, however, then there exist infinitely many nonnegative radial functions u0 which
satisfy

∫
Ω
u0 = m and which are more concentrated than u ≡ m

|Ω| , but which yet allow for

global bounded solutions to (⋆) emanating from u0.

In consequence, precisely at mass levels above mc the constant steady states of (⋆) possess the
extreme instability property of repelling arbitrary concentration-increasing perturbations in such a
drastic sense that corresponding trajectories collapse in finite time.
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1 Introduction

As already predicted in the 1970s ([23]), a striking feature of Keller-Segel-type chemotaxis systems
consists in their potential to describe spontaneous emergence of cell aggregates in the mathematically
extreme sense of singularity formation. Accordingly, the corresponding analytical activities are to a
considerable extent concerned with the identification of circumstances under which a respective par-
ticular problem of this form is either globally solvable by bounded functions, or admits unbounded
solutions. In fact, with regard to these alternatives the literature has revealed various types of crit-
icality, in many cases referring to constitutive system ingredients such as coefficients measuring the
strength of chemotactic response (see e.g. [29], [8], [9] and [30], but also [18] and [1] for some recent
developments).

Critical mass phenomena in Keller-Segel systems. For models with fixed system parameters,
more subtle findings on criticality typically concentrate on a respective role of the total mass of cells
as a quantity of immediate biological relevance ([25]). In this direction, the seemingly best understood
phenomenon refers to the classical Keller-Segel system ([15]), in its simplified parabolic-elliptic version
([14]) reducing to the initial-boundary value problem,





ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

0 = ∆v − µ+ u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

posed in a bounded domain Ω ⊂ R
n, n ≥ 1, with given nontrivial nonnegative initial data u0 and

µ := 1
|Ω|

∫
Ω u0. The planar and spatially radial version of this problem obtained when Ω = BR(0) ⊂ R

2

with R > 0, namely, is known to exhibit a critical mass phenomenon in the sense that whenever

u0 ∈ C0
rad(Ω) :=

{
ϕ ∈ C0(Ω)

∣∣∣ ϕ is radially symmetric
}

is nonnegative with u0 6≡ 0 (1.2)

satisfies
∫
Ω u0 < 8π, then (1.1) possesses a globally defined classical solution (u, v) for which u is

bounded in Ω× (0,∞), whereas for each m > 8π one can find u0 ∈ C0
rad(Ω) such that

∫
Ω u0 = m but

that (1.1) admits a solution blowing up in finite time with respect to the spatial L∞ norm of u ([14];
cf. also [20], [3], [27] and [28] for further information). That this crucial role of the mass functional
is limited to the case n = 2 is underlined by further observations, explicitly documented for related
systems but readily extensible to (1.1), according to which no unbounded solutions exist at all when
n = 1 ([24]), while whenever n ≥ 3, for arbitrary m > 0 one can fix some u0 ∈ C0

rad which enforces an
explosion within finite time ([20]; cf. also Lemma 3.3 below). In summary, this means that for R > 0,
writing

m̂ ≡ m̂(n,R) := inf

{
m > 0

∣∣∣∣ There exists 0 ≤ u0 ∈ C0
rad(Ω) such that

(1.1) possesses a solution blowing up in finite time

}
(1.3)

is meaningful if and only if n ≥ 2, and that m̂(n,R) is positive, and hence defines a genuine critical
mass level, precisely in the case n = 2 in which actually m̂(2, R) = 8π for all R > 0. Results of a
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similar flavor, though partially less exhaustive due to more involved system structures and accordingly
increased technical challenges, confirm extension of this exclusively two-dimensional critical mass phe-
nomenon to various close relatives of (1.1), either yet with or partly even without assumptions on
radial symmetry, e.g. addressing a slightly more complex parabolic-elliptic system ([20], [21]), an ana-
logue posed in the entire plane Ω = R

2 ([7], [16], [4]), or even the fully parabolic version of the classical
Keller-Segel system ([22], [12], [13], [31]). Accordingly, critical mass phenomena in higher-dimensional
settings have been detected only for modifications of the classical Keller-Segel system, obtained e.g. on
accounting for nonlinear cell diffusion with a particular porous medium exponent ([18]).

The challenge of detecting global large-mass solutions. Going beyond the above, in each
case in which blow-up solutions are known to occur a natural next problem appears to consist in
characterizing the set of all explosion-enforcing initial data as comprehensively as possible. In this
respect, Neumann-type boundary value problems seem to differ substantially from Cauchy problems
posed in Ω = R

n: Unlike in the latter situation, in which homogeneous equilibria with finite mass do
not exist, and in which accordingly blow-up may be observed even for widely arbitrary initial data with
supercritical mass when e.g. n = 2 ([25], [4]), e.g. the boundary value problem (1.1) always possesses
the spatially constant steady states (u, v) ≡ (um, vm) := ( m

|Ω| ,
m
|Ω|) for any choice of the total mass

m > 0. As far as the global existence of further large-mass solutions is concerned, however, only little
seems known; more generally, the detection of bounded solutions at mass levels which are supercritical
e.g. in the flavor of (1.3) seems limited to very few exceptional findings so far (see e.g. [4], [5] and
the discussions therein). Partial results on generic occurrence of blow-up in a fully parabolic variant
of (1.1) in radial frameworks, inter alia revealing considerable instability properties of (um, vm), and
actually of any equilibrium therein ([19]), may even be viewed as supporting the conjecture that global
existence might in fact be quite a rarely preferred alternative, especially for large-mass data.

Main results: A critical mass phenomenon related to concentration-increasing pertur-

bations of homogeneity. The objective of the present work is to address the latter topic in the
context of (1.1), with a particular focus on a certain drastic instability aspect of the homogeneous
equilibrium (um, vm) for m > 0. In this direction, our main results will reveal an apparently novel
type of critical mass phenomenon which at its core is closely linked to the concept of concentration
comparison, in the framework of functions defined on Ω = BR(0) ⊂ R

n based on the following:

Definition 1.1 Let u0 and u0 be nonnegative radially symmetric functions belonging to L1(Ω). We
then say that u0 is (strictly) more concentrated than u0, and that u0 is (strictly) less concentrated
than u0, if ∫

Br(0)
u0

(>)

≥

∫

Br(0)
u0 for all r ∈ (0, R), (1.4)

and then write u0 � u0 or, equivalently, u0 � u0 (resp., u0 ≺ u0 or u0 ≻ u0).

Now the substantial part of our main results asserts that beyond a certain mass level, any arbitrarily
small concentration-increasing perturbation of the associated homogeneous equilibrium enforces a
finite-time collapse of the corresponding solution. Technically based the well-known fact that when
restricted to radially symmetric solutions (u, v) = (u(r, t), v(r, t)) with r = |x| ∈ [0, R], (1.1) reduces to

a scalar parabolic problem for the mass accumulation function w given by w(s, t) :=
∫ s1/n

0 rn−1u(r, t)dr
for s ∈ [0, Rn] and t within a time interval under consideration ([14]; see also (2.3) and (2.6) below),
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at several stages its derivation will rely on a key observation, to be made in the course of an explicit
construction in Lemma 3.1: According to this, namely, for all suitably large values of the mass the
boundary value problem (2.6) for this cumulated density function w possesses a continuous curve
in C1([0, Rn]) of stationary subsolutions, connecting the respective homogeneous equilibrium to a
distribution corresponding to a Dirac-type profile for (1.1). Through a series of steps involving various
types of comparison arguments (cf. Sections 3.4 and 3.5), this will be seen to entail that at such mass
levels, in fact for any nonconstant initial data for (1.1) which are more concentrated than their spatial
average, the respectively transformed quantity w must lie above a suitable particular solution of (2.6)
which is temporally nondecreasing and thus must blow up in finite time, because due to a lack of
suitable equilibria (Lemma 3.5) it cannot approach any regular profile in the large time limit (see
Lemma 3.6). We will thereby arrive at the following.

Theorem 1.1 For any n ≥ 2 and R > 0, there exists m⋆ = m⋆(n,R) > 0 such that if u0 is such that
(1.2) holds and that with m :=

∫
Ω u0 we have m > m⋆ and

u0 �
m

|Ω|
but u0 6≡

m

|Ω|
, (1.5)

then (1.1) admits a solution blowing up in finite time; that is, there exist Tmax < ∞ and a classical
solution (u, v) of (1.1) in Ω× (0, Tmax) such that

lim sup
tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (1.6)

In particular, this conclusion holds whenever beyond satisfying (1.2) and
∫
Ω u0 > m⋆, u0 is nonconstant

and nonincreasing with respect to |x|.

In order to appropriately complement the latter finding, let us first recall a simple and essentially
well-known observation according to which the constant equilibria of (1.1) provide pointwise upper
barriers for w. When combined with a Bernstein-type argument (Lemma 4.1), this namely yields a
result on boundedness of u(r, t) = nws(r

n, t), and thus on global extensibility, whenever u0 is less
concentrated than 1

|Ω|

∫
Ω u0:

Proposition 1.2 Let n ≥ 2, R > 0 and m > 0, and suppose that u0 satisfies (1.2) and is such that∫
Ω u0 = m and

u0 �
m

|Ω|
. (1.7)

Then (1.1) possesses a global classical solution (u, v) for which there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0. (1.8)

But at sufficiently small mass levels, certain global bounded solutions can also be found for initial
data more concentrated than the respective constant states. To see this, let us recall that whenever
n ≥ 3, the corresponding Cauchy problem in Ω = R

n, as formally obtained on letting R→ ∞ in (1.1),

possesses a singular equilibrium determined by the explicit relation uc(x) :=
2(n−2)
|x|2

for x ∈ R
n \ {0}.

In the setting of the boundary value problem (1.1), this so-called Chandrasekhar solution, though
no longer defining an exact solution, after all retains a certain supersolution property with regard
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to the respective parabolic equation for the quantity w. Using that this feature is even inherited
by a certain family of smooth approximations of uc (Lemma 4.2), once more relying on the above
Bernstein-type result we shall, independently of Proposition 1.2, identify the following condition on
mild concentration of u0 as sufficient to ensure global boundedness:

Theorem 1.3 Let n ≥ 3 and R > 0, and suppose that u0 satisfies (1.2) as well as u0 ≺ 2(n−2)
|·|2

, that
is, ∫

Br(0)
u0 < 2ωnr

n−2 for all r ∈ (0, R). (1.9)

Then (1.1) possesses a global classical solution (u, v) which is bounded in the sense that (1.8) holds
with some C > 0.

Now using that unlike that in (1.7) the quantity on the right-hand side of (1.9) does not explicitly
involve the total mass

∫
Ω u0, we will see that in consequence Theorem 1.3 implies that indeed at each

sufficiently small mass level, some – and actually even considerably many – initial data can be found
which are more concentrated than the corresponding homogeneous equilibria, but which yet allow for
global bounded solutions to (1.1):

Corollary 1.4 Let n ≥ 2 and R > 0. Then there exists m⋆ = m⋆(n,R) > 0 with the following
property: For any choice of m ∈ (0,m⋆(n,R)) one can find a relatively open subset B of {0 ≤ ϕ ∈
C0
rad(Ω) |

∫
Ω ϕ = m} consisting of functions more concentrated than Ω ∋ x 7→ m

|Ω| ≡
nm

ωnRn such that

whenever u0 ∈ B, the problem (1.1) admits a global classical solution (u, v) which is bounded in the
sense that there exists C > 0 such that (1.8) is valid.

In summary, Corollary 1.4 and Theorem 1.1 reveal that for each n ≥ 2 and R > 0, the number

mc(n,R) := inf

{
m > 0

∣∣∣∣ For all 0 ≤ u0 ∈ C0
rad(Ω) with u0 �

1

|Ω|

∫

Ω
u0 but u0 6≡ const.,

(1.1) admits a solution blowing up in finite time

}
(1.10)

is well-defined and positive, and by definition it marks a borderline between supercritical mass levels
at which any, even arbitrarily small, concentration-increasing perturbation of the homogeneous steady
state will lead to finite-time blow-up in (1.1), and a corresponding subcritical range of mass values
at which this drastic instability property is absent. In particular, in this sense slightly more subtle
than that of m̂ from (1.3), mc(n,R) plays the role of a critical mass not only in planar settings, but
actually also when n ≥ 3, thus indicating that the total mass of cells does indeed play an important
role with regard to blow-up also in higher-dimensional frameworks.

2 Preliminaries: Local existence and transformation to a scalar
problem

To begin with, let us state an essentially well-known basic result on local existence and extensibilty of
classical solutions to (1.1), referring to a rich literature for details in its derivation (see e.g. [3], [11],
[10]).

5



Lemma 2.1 Let n ≥ 2 and R > 0, and assume that u0 satisfies (1.2). Then there exist Tmax ∈ (0,∞]
and a pair (u, v) of radially symmetric functions on Ω×[0, Tmax), uniquely determined by the properties

{
u ∈ C0(Ω× [0, Tmax)) ∩ C

2,1(Ω× (0, Tmax)) and

v ∈
⋂

q>n L
∞
loc([0, Tmax);W

1,q(Ω)) ∩ C2,0(Ω× (0, Tmax)),

as well as
∫

Ω
v(·, t) = 0 for all t ∈ (0, Tmax),

which solve (1.1) classically in Ω× (0, Tmax) and are such that u > 0 in Ω× (0, Tmax), that

∫

Ω
u(·, t) =

∫

Ω
u0 for all t ∈ (0, Tmax), (2.1)

and that
if Tmax <∞, then lim sup

tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (2.2)

Throughout the sequel, unless otherwise stated, without further explicit mentioning we shall assume
that (1.2) holds, and that (u, v) denotes the corresponding local solution of (1.1), as obtained in
Lemma 2.1 and extended up to its maximal existence time Tmax ≤ ∞.

For our further study thereof, following [14] we introduce the corresponding accumulated densities
given by

w(s, t) :=

∫ s
1
n

0
ρn−1u(ρ, t)dρ, s ∈ [0, Rn], t ∈ [0, Tmax), (2.3)

and

w0(s) :=

∫ s
1
n

0
ρn−1u0(ρ)dρ, s ∈ [0, Rn]. (2.4)

Then

ws(s, t) =
1

n
u(s

1

n , t) and wss(s, t) =
1

n2
s

1

n
−1ur(s

1

n , t), s ∈ (0, Rn), t ∈ (0, Tmax), (2.5)

which together with (1.1) and Lemma 2.1 implies that ws > 0 in [0, Rn]× [0, Tmax), and that w solves
the Dirichlet problem





wt = n2s2−
2

nwss + nwws − µsws, s ∈ (0, Rn), t ∈ (0, Tmax),

w(0, t) = 0, w(Rn, t) = m
ωn
, t ∈ (0, Tmax),

w(s, 0) = w0(s), s ∈ (0, Rn),

(2.6)

with m :=
∫
Ω u0 and µ := nm

ωnRn .
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3 Blow-up enforced by concentration-increasing perturbations of
large constant states

The purpose of this section is to prove the blow-up result from Theorem 1.1. Our approach toward this
will be launched by an observation to be made already in Lemma 3.1, according to which at suitably
large mass levels m the PDE in (2.6) admits a continuous arc (W (θ))θ∈[0,1) in C

1([0, Rn]) of stationary
subsolutions, connecting the associated homogeneous equilibrium (um, vm) attained at θ = 0 with a
corresponding fully concentrated Dirac-type distribution approached in the limit θ ր 1. As this will
inter alia rule out the existence of regular steady states more concentrated than (um, vm) (Lemma 3.5),
this will imply (Lemma 3.6) that solutions emanating from any such initial data determined by W (θ)

for θ ∈ (0, 1) cannot be global in time, for otherwise they would approach the latter Dirac-type profile
in the large time limit, and hence would eventually gather essentially all their mass in arbitrarily
small balls, which will be seen to be impossible due to appropriate spatially localized blow-up criteria
provided in Section 3.2. Since despite the degeneracy at s = 0 the equation zt = n2s2−

2

n zss, as forming
the principal part in the linearization of (2.6) about (um, vm) with regard to diffusion, possesses a Hopf-
type boundary point property to be derived in Section 3.4, relying on the C1([0, Rn])-valued continuity
at θ = 0 of the above subsolution curve we see in Section 3.5 that in the considered range of mass
values, the latter conclusion on blow-up can in fact be transferred to arbitrary solutions addressed in
Theorem 1.1 by means of a suitable comparison argument.

3.1 A curve in C1([0, Rn]) of stationary subsolutions W (θ) to (2.6)

Let us now focus on our key observation with regard to blow-up in (1.1), relying on an explicit
construction of a continuous family of stationary subsolutions to (2.6) with the following properties.

Lemma 3.1 Let n ≥ 2 and R > 0. Then there exists m⋆ = m⋆(n,R) > 0 with the following property:

For any choice of m > m⋆, one can find families (s
(θ)
0 )θ∈[0,1) ⊂ (0, Rn) and (W (θ))θ∈[0,1) ⊂ C1([0, Rn])

such that for all θ ∈ (0, 1), W (θ) moreover belongs to C2([0, Rn] \ {s
(θ)
0 })∩W 2,∞((0, Rn)) and satisfies

W (θ)(0) = 0, W (θ)(Rn) = m
ωn

and W
(θ)
s ≥ 0 in (0, Rn) as well as

n2s2−
2

nW (θ)
ss (s) + nW (θ)(s)W (θ)

s (s)− µsW (θ)
s (s) > 0 for all s ∈ (0, Rn) \ {s

(θ)
0 }, (3.1)

and such that [0, 1) ∋ θ 7→W (θ) is continuous as a C1([0, Rn])-valued mapping, where

W (0)(s) =
µ

n
s for all s ∈ (0, Rn) (3.2)

and
W (θ)(s) →

m

ωn
for all s ∈ (0, Rn) as θ ր 1. (3.3)

Proof. Given R > 0, we write

c1 :=
Rn−2

21−
2

n

·
(
1 +

4

Rn

)
and c2 := min

{1

2
,

1

2Rn

}
(3.4)

and define
m⋆ ≡ m⋆(n,R) := 4nωn ·

c1

c2
. (3.5)
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For fixed m > m⋆ and θ ∈ [0, 1), we introduce

s0 ≡ s
(θ)
0 := (1− θ) ·

Rn

2
(3.6)

and let

b ≡ b(θ) :=
(2s0
Rn

)3
and d ≡ d(θ) := 1−

2s0
Rn

(3.7)

as well as

a ≡ a(θ) :=
m

ωn
·
(ds0 + b)2

ds20 + bRn
(3.8)

and

A ≡ A(θ) :=
ab

(ds0 + b)2
. (3.9)

Then with these abbreviations, the function W ≡W (θ) obtained on letting

W (s) :=

{
as

ds+b , s ∈ [0, s0],
m
ωn

+A · (s−Rn), s ∈ (s0, R
n],

(3.10)

evidently belongs to C2([0, Rn] \ {s0}) and satisfies W (0) = 0 as well as W (Rn) = m
ωn

, and combining
(3.9) with (3.8) we see that

as0

ds0 + b
−
{m
ωn

+A · (s0 −Rn)
}
=

as0

ds0 + b
−
m

ωn
−
ab(s0 −Rn)

(ds0 + b)2

=
ds20 + bRn

(ds0 + b)2
· a−

m

ωn
= 0

and that hence W is continuous in [0, Rn]. Moreover, computing

W s(s) =

{
ab

(ds+b)2
, s ∈ [0, s0),

A, s ∈ (s0, R
n],

(3.11)

and

W ss(s) =

{
− 2abd

(ds+b)3
, s ∈ [0, s0),

0, s ∈ (s0, R
n],

(3.12)

from (3.9) we immediately obtain that indeedW ∈ C1([0, Rn])∩W 2,∞((0, Rn)) withW s ≥ 0 in (0, Rn),
and that since s0, b, a and A evidently depend continuously on θ ∈ [0, 1), the mapping [0, 1) ∋ θ 7→W (θ)

is continuous with values in C1([0, Rn]).

While (3.2) is evident from (3.6)-(3.10), for the verification of (3.3) we only need to observe that as
θ ր 1, by (3.6) we have s0 ց 0 and therefore

W (s0) =
as0

ds0 + b

=
m

ωn
·
s0(ds0 + b)

ds20 + bRn
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=
m

ωn
·
ds20 + 8R−3ns40
ds20 + 8R−2ns30

=
m

ωn
·
d+ 8R−3ns20
d+ 8R−2ns0

→
m

ωn

according to (3.8) and the definitions of b and d in (3.7).

It thus remains to derive the differential inequality in (3.1) for each fixed θ ∈ (0, 1). Indeed, in the
outer region where s > s0, through (3.12) this is obvious due to the fact that in the identity

n2s2−
2

nW ss(s) + nW (s)W s(s)− µsW s(s) = n ·
(
W (s)−

µ

n
s
)
·W s(s), s ∈ (s0, R

n),

we can estimate

W (s)−
µ

n
s =

m

ωn
+A · (s−Rn)−

µ

n
s =

( m

ωnRn
−A

)
· (Rn − s) > 0 for all s ∈ (s0, R

n)

thanks to the inequality

A =
ab

(ds0 + b)2
=
m

ωn
·

b

ds20 + bRn
<

m

ωnRn

asserted by (3.9) and (3.8).
In the corresponding inner part, using (3.12) and (3.11) we first compute

n2s2−
2

nW ss(s) + nW (s)W s(s)− µsW s(s)

= −n2s2−
2

n ·
2abd

(ds+ b)3
+ n ·

as

ds+ b
·

ab

(ds+ b)2
− µs ·

ab

(ds+ b)2

=
nabs

(ds+ b)3
·
{
a− 2nds1−

2

n −
µ

n
· (ds+ b)

}
, s ∈ (0, s0), (3.13)

where writing

η :=
ds0 · (R

n − s0)

Rn · (ds0 + b)

we clearly have

µ

n
· (ds+ b)− (1− η)a <

µ

n
· (ds0 + b)− (1− η)a

=
m

ωnRn
· (ds0 + b)−

ds20 + bRn

Rn · (ds0 + b)
·
m

ωn
·
(ds0 + b)2

ds20 + bRn

= 0 for all s ∈ (0, s0). (3.14)
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Moreover, since s0 ≤
Rn

2 we can estimate

2nds1−
2

n

ηa
≤

2nds
1− 2

n
0

ηa

= 2nds
1− 2

n
0 ·

Rn · (ds0 + b)

ds0 · (Rn − s0)
·
ωn

m
·
ds20 + bRn

(ds0 + b)2

=
2nωnR

n

m
·

ds20 + bRn

s
2

n
0 · (Rn − s0) · (ds0 + b)

≤
4nωn

m
·
ds20 + bRn

s
2

n
0 · (ds0 + b)

for all s ∈ (0, s0), (3.15)

where by (3.7),

ds20 + bRn

s
2

n
0 · (ds0 + b)

=
s20 − 2R−ns30 + 8R−2ns30

s
2

n
0 · (s0 − 2R−ns20 + 8R−3ns30)

= s
1− 2

n
0 ·

1− 2R−ns0 + 8R−2ns0

1− 2R−ns0 + 8R−3ns20

≤
(Rn

2

)1− 2

n
·

1 + 8R−2n · Rn

2

1− 2R−ns0 + 8R−3ns20

=
c1

1− 2R−ns0 + 8R−3ns20
. (3.16)

Here if even s0 ≤
Rn

4 , then

1− 2R−ns0 + 8R−3ns20 ≥ 1− 2R−n ·
Rn

4
=

1

2
,

whereas in tha case s0 ∈ (R
n

4 ,
Rn

2 ) we have

1− 2R−ns0 + 8R−3ns20 ≥ 1− 2R−n ·
Rn

2
+ 8R−3n ·

(Rn

4

)2
=

1

2Rn
,

so that in view of (3.4), in both these cases from (3.15) and (3.16) we infer that

2nds1−
2

n

ηa
≤

4nωn

m
·
c1

c2
< 1

due to (3.5) and our assumption that m > m⋆.
Together with (3.14) and (3.13) this shows that

n2s2−
2

nW ss(s) + nW (s)W s(s)− µsW s(s)

=
nabs

(ds+ b)3
·

{[
ηa− 2nds1−

2

n

]
+
[
(1− η)a−

µ

n
· (ds+ b)

]}

> 0 for all s ∈ (0, s0)

and thereby completes the proof. �
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3.2 Spatially localized criteria for blow-up

In order to study the time evolution of the solutions to (2.6) corresponding to the initial data W (θ) for
θ ∈ (0, 1), let us prepare some sufficient criteria for finite-time blow-up in (2.6) which are essentially
local in space by referring to the initial mass distribution exclusively within some suitably small ball
around the origin. The first of these criteria addresses the two-dimensional case and may thereby be
viewed as a variant of a similar statement on a related Cauchy problem in the whole plane, as recently
derived in [4].

Lemma 3.2 Let n = 2, R > 0, m0 > 8π and m ≥ m0. Then there exists s0 = s0(m0,m,R) ∈ (0, R2)
with the property that whenever u0 complies with (1.2) and is such that

∫
Ω u0 = m and that the

corresponding solution w of (2.6) satisfies

w(s0, t0) >
m0

2π
(3.17)

for some t0 ∈ [0, Tmax), we necessarily have Tmax <∞.

Proof. In order to prepare our argument, given m0 > 8π and m > m0 let us first fix m0 > m0

sufficiently close to m0 such that m0 ≤ m and m2
0 > 8πm0. The latter inequality then enables us to

successively pick β ≥ 2 large such that

m2
0 > 8πm0 ·

(β + 1)2

β(β + 2)
,

then η ∈ (0, 1) small enough fulfilling

m2
0 > 8πm0 ·

(β + 1)2

(1− η)β(β + 2)

and κ ∈ (0, 1) small satisfying

m2
0 > 8πm0 ·

(β + 1)2

(1− η)β(β + 2)
·
( 1

1− κ

)2β+2
,

and thereupon we can finally select some small s1 ∈ (0, R2) such that with µ := m
πR2 we still have

c1 := m2
0 − 8πm0 ·

(β + 1)2

(1− η)β(β + 2)
·
( 1

1− κ

)2β+2
−

π2µ2(β + 1)2

η(1− η)β(β + 2)
·
( 1

1− κ

)2β+2
· s21 > 0, (3.18)

and define
s0 ≡ s0(m0,m,R) := κs1. (3.19)

Then assuming that u0 satisfies (1.2) as well as
∫
Ω u0 = m and is such that (3.17) holds for some t0 ∈

[0, Tmax) but that Tmax = ∞, we construct a minorant of w by introducing an arbitrary nondecreasing
w0 ∈ C1([0, R2]) such that

w0(0) = 0, w0(R
2) =

m0

2π
and w0(s) ≤ w(s, t0) for all s ∈ (0, R2), (3.20)
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but that still
w0(s0) ≥

m0

2π
. (3.21)

Then e.g. the family (w0ε)ε∈(0,R2) ⊂ C1([0, R2]) with w0ε(s) := w0(
R2(s−ε)
R2−ε

), s ∈ [ε,R2], ε ∈ (0, R2),

satisfies w0ε(ε) = 0, w0ε(R
2) =

m0

2π , w0εs ≥ 0 in (ε,R2) and w0ε ≤ w0 in [ε,R2] as well as w0ε ր w0 in
(0, R2] and w0ε → w0 in C1

loc((0, R
2]) as εց 0, and for each ε ∈ (0, R2), the non-degenerate problem





wεt = 4swεss + 2wεwεs − µswεs, s ∈ (ε,R2), t > t0,

wε(ε, t) = 0, wε(R
2, t) =

m0

2π , t > t0,

wε(s, t0) = w0ε(s), s ∈ (ε,R2),

(3.22)

can readily be seen to admit a global classical solution wε ∈ C0([ε,R2]×[t0,∞))∩C2,1([ε,R2]×(t0,∞)).
Thanks to the ordering property of (w0ε)ε∈(0,R2), these solutions satisfy wε ր w in (0, R2] × [t0,∞)
as ε ց 0 with some limit function w fulfilling 0 ≤ w ≤

m0

2π , because 0 ≤ wε ≤
m0

2π in [ε,R2] × [t0,∞)
due to (3.20) and two evident comparison arguments. Moreover, since wεs solves a homogeneous
linear parabolic equation with continuous coefficients, another application of the classical comparison
principle asserts that wεs ≥ 0 in (ε,R2) × (t0,∞), because w0εs ≥ 0, and because clearly wεs ≥ 0
both on {ε} × (t0,∞) and on {R2} × (t0,∞). From interior parabolic Schauder estimates ([17]) and
the Arzelà-Ascoli theorem, we furthermore obtain that in fact wε → w in C0

loc((0, R
2]× [0,∞)) and in

C
2,1
loc ((0, R

2]× (t0,∞)) as εց 0, and since wε ≤ w in (ε,R2)× (t0,∞) by another obvious comparison
argument, it can readily be verified that actually w belongs to C0([0, Rn] × [t0,∞)) and solves the
problem 




wt = 4swss + 2wws − µsws, s ∈ (0, R2), t > t0,

w(0, t) = 0, w(R2, t) =
m0

2π , t > t0,

w(s, t0) = w0(s), s ∈ (0, R2),

(3.23)

classically.

Now for δ ∈ (0, s1), on the basis of (3.23) and four integrations by parts we compute

d

dt

∫ s1

δ
(s1 − s)βw(s, t)ds = 4

∫ s1

δ
(s1 − s)βswssds+

∫ s1

δ
(s1 − s)β(w2)sds− µ

∫ s1

δ
(s1 − s)βswsds

= −8β

∫ s1

δ
(s1 − s)β−2 ·

{
s1 −

β + 1

2
s
}
· wds+ β

∫ s1

δ
(s1 − s)β−1w2ds

−µ

∫ s1

δ

{
β(s1 − s)β−1s− (s1 − s)β

}
· wds

−4(s1 − δ)βδws(δ, t) + 4
{
(s1 − δ)β − β(s1 − δ)β−1δ

}
· w(δ, t)

−(s1 − δ)βw2(δ, t) + µ(s1 − δ)βδw(δ, t) for all t > t0,

which on dropping three nonnegative terms and integrating in time shows that
∫ s1

δ
(s1 − s)βw(s, t)ds ≥

∫ s1

δ
(s1 − s)βw(s, t0)ds+ β

∫ t

t0

∫ s1

δ
(s1 − s)β−1w2(s, τ)dsdτ

−8β

∫ t

t0

∫ s1

δ
(s1 − s)β−2 ·

{
s1 −

β + 1

2
s
}
· w(s, τ)dsdτ
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−µβ

∫ t

t0

∫ s1

δ
(s1 − s)β−1sw(s, τ)dsdτ

−4(s1 − δ)βδ

∫ t

t0

ws(δ, τ)dτ − 4β(s1 − δ)β−1δ

∫ t

t0

w(δ, τ)dτ

−(s1 − δ)β
∫ t

t0

w2(δ, τ)dτ for all t > t0. (3.24)

Here for fixed t > t0, by continuity of w at s = 0 it readily follows from (3.23) that ϕ(s) :=
∫ t
t0
w(s, τ)dτ ,

s ∈ (0, R2), satisfies ϕ(s) → 0 as sց 0 and necessarily also lim infsց0 sϕs(s) = 0, for otherwise there
would exist s2 ∈ (0, R2) and c2 > 0 such that ϕs(s) ≥ c2

s for all s ∈ (0, s2), implying the absurd
conclusion that ϕ would be unbounded on (0, s2). Hence fixing any (δj)j∈N ⊂ (0, s1) such that δj ց 0
and δjϕs(δj) → 0 as j → ∞, taking δ = δj we obtain that in (3.24),

4(s1 − δj)
βδj

∫ t

t0

ws(δj , τ)dτ ≤ 4sβ1δjϕs(δj) → 0

as well as

4β(s1 − δj)
β−1δj

∫ t

t0

w(δj , τ)dτ ≤ 4βsβ−1
1 δjϕ(δj) → 0

and

(s1 − δj)
β

∫ t

t0

w2(δj , τ)dτ ≤ s
β
1 ·

m0

2π
· ϕ(δj) → 0

as j → ∞, whence again due to the continuity of w it follows from (3.24) that y(t) :=
∫ s1
0 (s1 −

s)βw(s, t)ds, t ≥ t0, satisfies

y(t) ≥

∫ s1

0
(s1 − s)βw0(s)ds+ β

∫ t

t0

∫ s1

0
(s1 − s)β−1w2(s, τ)dsdτ

−8β

∫ t

t0

∫ s1

0
(s1 − s)β−2 ·

{
s1 −

β + 1

2
s
}
· w(s, τ)dsdτ

−µβ

∫ t

t0

∫ s1

0
(s1 − s)β−1sw(s, τ)dsdτ for all t > t0. (3.25)

Here since ws ≥ 0 and s1 −
β+1
2 s is positive if and only if s ≤ 2s1

β+1 , we can estimate

8β

∫ t

t0

∫ s1

0
(s1 − s)β−2 ·

{
s1 −

β + 1

2
s
}
· w(s, τ)dsdτ

= 8β

∫ t

t0

{∫ 2s1
β+1

0
(s1 − s)β−2 ·

{
s1 −

β + 1

2
s
}
· w(s, τ)dτ

−

∫ s1

2s1
β+1

(s1 − s)β−2 ·
{β + 1

2
s− s1

}
· w(s, τ)ds

}
dτ
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≤ 8β

∫ t

t0

w
( 2s1
β + 1

, τ
)
·

{∫ 2s1
β+1

0
(s1 − s)β−2 ·

{
s1 −

β + 1

2
s
}
ds

−

∫ s1

2s1
β+1

(s1 − s)β−2 ·
{β + 1

2
s− s1

}
ds

}
dτ

= 8β ·

{∫ s1

0
(s1 − s)β−2 ·

{
s1 −

β + 1

2
s
}
ds

}
·

∫ t

t0

w
( 2s1
β + 1

, τ
)
dτ

= 4sβ1

∫ t

t0

w
( 2s1
β + 1

, τ
)
dτ

≤
2

π
m0s

β
1 · (t− t0) for all t > t0,

and the rightmost summand in (3.25) can be controlled using Young’s inequality according to

µβ

∫ t

t0

∫ s1

0
(s1 − s)β−1sw(s, τ)dsdτ

≤ ηβ

∫ t

t0

∫ s1

0
(s1 − s)β−1w2(s, τ)dsdτ +

µ2β

4η

∫ t

t0

∫ s1

0
(s1 − s)β−1s2dsdτ

≤ ηβ

∫ t

t0

∫ s1

0
(s1 − s)β−1w2(s, τ)dsdτ +

µ2βs21
4η

∫ t

t0

∫ s1

0
(s1 − s)β−1dsdτ

= ηβ

∫ t

t0

∫ s1

0
(s1 − s)β−1w2(s, τ)dsdτ +

µ2s
β+2
1

4η
· (t− t0) for all t > t0.

As furthermore

y(t) ≤

{∫ s1

0
(s1 − s)β−1w2(s, τ)ds

} 1

2

·

{∫ s1

0
(s1 − s)β+1ds

} 1

2

=

{∫ s1

0
(s1 − s)β−1w2(s, τ)ds

} 1

2

·
{ s

β+2
1

β + 2

} 1

2

for all t > t0

by the Cauchy-Schwarz inequality, (3.25) entails that

y(t) ≥ y0 + c3

∫ t

t0

y2(τ)dτ − c4 · (t− t0) for all t > t0

with

y0 :=

∫ s1

0
(s1 − s)βw0(s)ds, c3 := (1− η)β(β + 2)s−β−2

1 and c4 :=
2

π
m0s

β
1 +

µ2s
β+2
1

4η
.

Now from a straightforward comparison argument it follows that therefore y(t) ≥ y(t) for all t ∈ (t0, T ),
where y ∈ C1([t0, T )) denotes the solution of the initial-value problem

{
y′(t) = c3y

2(t)− c4, t ∈ (t0, T ),

y(t0) = y0,
(3.26)
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extended up to its maximal existence time T ∈ (t0,∞]. In view of the fact that by (3.21),

y0 ≥

∫ s1

s0

(s1 − s)β ·
m0

2π
ds =

m0

2π
·
(s1 − s0)

β+1

β + 1

and that hence

c3y
2
0 − c4 ≥ (1− η)β(β + 2)s−β−2

1 ·
m2

0

4π2
(s1 − s0)

2β+2

(β + 1)2
−

{
2

π
m0s

β
1 +

µ2s
β+2
1

4η

}

=
(1− η)β(β + 2)

4π2(β + 1)2
·
(s1 − s0)

2β+2

s
β+2
1

·

{
m2

0 − 8πm0 ·
(β + 1)2

(1− η)β(β + 2)
·
( s1

s1 − s0

)2β+2

−
π2µ2(β + 1)2

η(1− η)β(β + 2)
·
( s1

s1 − s0

)2β+2
s21

}

=
(1− η)β(β + 2)

4π2(β + 1)2
·
(s1 − s0)

2β+2

s
β+2
1

· c1

> 0

by (3.19) and (3.18), however, an elementary ODE argument shows that in (3.26) we actually must
have T < ∞ and y(t) ր +∞ as t ր T , in particular meaning that y(T ) = +∞ and hence clearly
contradicting our hypothesis that w be global. �

The next lemma provides an analogue in higher-dimensional cases, in contrast to the above now no
longer involving any restriction on the size of the level m0 of mass concentration.

Lemma 3.3 Let n ≥ 3, R > 0, m0 > 0 and m ≥ m0. Then there exists s0 = s0(m0,m,R) ∈ (0, Rn)
such that if u0 is such that (1.2) holds, that

∫
Ω u0 = m, and that for the function w defined in (2.3)

we have
w(s0, t0) >

m0

ωn
for some t0 ∈ [0, Tmax), (3.27)

then Tmax <∞.

Proof. We abbreviate

c1 :=
4n2

n− 1
, c2 :=

n2

(n+ 1)ω2
n

and c3 :=
n

2(n+ 2)ωn
·
(
n−

n+ 1

2
2

n

)
, (3.28)

observing that c3 is positive because n · 2
2

n = n · e
2

n
ln 2 ≥ n · (1 + 2

n ln 2) = n + 2 ln 2 > n + 1 by
convexity of R ∋ ξ 7→ eξ.
Then given R > 0, m0 > 0 and m > 0 we can fix s0 = s0(m0,m,R) ∈ (0, R

n

2 ) such that s1 := 2s0
satisfies

s
2− 4

n
1 ≤

c23
8c1

m2
0 (3.29)

and

s21 ≤
c23
8c2

·
m2

0R
2n

m2
, (3.30)
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and henceforth we assume (1.2) with
∫
Ω u0 = m, that (3.27) is valid for some t0 ∈ [0, Tmax), but that

Tmax = ∞. For δ ∈ (0, s12 ), we then use (2.6) to compute

d

dt

∫ s1

δ
s−1+ 2

n (s1 − s)w(s, t)ds

= n2
∫ s1

δ
s(s1 − s)wss(s, t)ds+

n

2

∫ s1

δ
s−1+ 2

n (s1 − s)(w2)s(s, t)ds− µ

∫ s1

δ
s

2

n (s1 − s)ws(s, t)ds

= −2n2
∫ s1

δ
w(s, t)ds+

n− 2

2

∫ s1

δ
s−2+ 2

n (s1 − s)w2(s, t)ds+
n

2

∫ s1

δ
s−1+ 2

nw2(s, t)ds

+
2µ

n

∫ s1

δ
s−1+ 2

n (s1 − s)w(s, t)ds− µ

∫ s1

δ
s

2

nw(s, t)ds

−n2δ(s1 − δ)ws(δ, t) + n2s1w(s1, t)− n2(s1 − 2δ)w(δ, t)

−
n

2
δ−1+ 2

n (s1 − δ)w2(δ, t) + µδ
2

n (s1 − δ)w(δ, t) for all t > t0

with µ = nm
ωnRn , which after neglecting some nonnegative summands and integrating in time shows

that
∫ s1

δ
s−1+ 2

n (s1 − s)w(s, t)ds ≥

∫ s1

δ
s−1+ 2

n (s1 − s)w(s, t0)ds

−2n2
∫ t

t0

∫ s1

δ
w(s, τ)dsdτ +

n

2

∫ t

t0

∫ s1

δ
s−1+ 2

nw2(s, τ)dsdτ

−µ

∫ t

t0

∫ s1

δ
s

2

nw(s, τ)dsdτ

−n2δ(s1 − δ)

∫ t

t0

ws(δ, τ)dτ − n2(s1 − 2δ)

∫ t

t0

w(s, τ)dτ

−
n

2
δ−1+ 2

n (s1 − δ)

∫ t

t0

w2(δ, τ)dτ for all t > t0. (3.31)

Here since the boundedness of ws in (0, Rn)× (t0, t) warrants that sup(s,τ)∈(0,Rn)×(t0,t)
w(s,τ)

s is finite,
we readily infer that

n2δ(s1 − δ)

∫ t

t0

ws(δ, τ)dτ + n2(s1 − 2δ)

∫ t

t0

w(s, τ)dτ +
n

2
δ−1+ 2

n (s1 − δ)

∫ t

t0

w2(δ, τ)dτ → 0 as δ ց 0,

whence on several applications of the monotone convergence theorem we infer from (3.31) that y(t) :=∫ s1
0 s−1+ 2

n (s1 − s)w(s, t)ds, t ≥ t0, satisfies

y(t) ≥ y(t0)− 2n2
∫ t

t0

∫ s1

0
w(s, τ)dsdτ +

n

2

∫ t

t0

s−1+ 2

nw2(s, τ)dsdτ

−µ

∫ t

t0

∫ s1

0
s

2

nw(s, τ)dsdτ for all t > t0.

Since by Young’s inequality and the Cauchy-Schwarz inequality,

2n2
∫ s1

0
w(s, τ)ds ≤

n

8

∫ s1

0
s−1+ 2

nw2(s, τ)ds+ 8n3
∫ s1

0
s1−

2

nds
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=
n

8

∫ s1

0
s−1+ 2

nw2(s, τ)ds+ c1s
2− 2

n
1 for all τ > t0

and

µ

∫ s1

0
s

2

nw(s, τ)ds ≤
n

8

∫ s1

0
s−1+ 2

nw2(s, τ)ds+
2µ2

n

∫ s1

0
s1+

2

nds

=
n

8

∫ s1

0
s−1+ 2

nw2(s, τ)ds+ c2
m2

R2n
s
2+ 2

n
1 for all τ > t0

as well as

y(τ) ≤

{∫ s1

0
s−1+ 2

nw2(s, τ)ds

} 1

2

·

{∫ s1

0
s−1+ 2

n (s1 − s)2ds

} 1

2

≤

{∫ s1

0
s−1+ 2

nw2(s, τ)ds

} 1

2

·

{
s21

∫ s1

0
s−1+ 2

nds

} 1

2

=

{∫ s1

0
s−1+ 2

nw2(s, τ)ds

} 1

2

·
{n
2
s
2+ 2

n
1

} 1

2

for all τ > t0,

this entails that

y(t) ≥ y(t0) +
1

2
s
−2− 2

n
1

∫ t

t0

y2(τ)dτ −
{
c1s

2− 2

n
1 + c2

m2

R2n
s
2+ 2

n
1

}
· (t− t0) for all t > t0. (3.32)

Now since (3.27) along with our selections of s0 and c3 guarantees that

y(t0) ≥
m0

ωn
·

∫ s1

s1
2

s−1+ 2

n (s1 − s)ds = c3m0s
1+ 2

n
1

and that hence, by (3.29) and (3.30),

c1s
2− 2

n
1 + c2

m2

R2n s
2+ 2

n
1

1
4s

−2− 2

n
1 y2(t0)

≤
4c1
c23m

2
0

s
2− 4

n
1 +

4c2m
2

c23m
2
0R

2n
s21 ≤

1

2
+

1

2
= 1,

it follows that there exists T > t0 such that the problem

{
y′(t) = 1

2s
2− 2

n
1 y2(t)−

{
c1s

2− 2

n
1 + c2

m2

R2n s
2+ 2

n
1

}
, t ∈ (t0, T ),

y(t0) = y(t0),

admits a solution y ∈ C1([t0, T )) fulfilling y(t) ր +∞ as t ր T . But a comparison argument based
on (3.32) ensures that y(t) ≥ y(t) for all t ∈ (t0, T ), which is incompatible with our hypothesis that
(u, v) be global. �
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3.3 Finite-time collapse into singular profiles for solutions emanating from W (θ)

Our analysis of the solutions to (2.6) evolving fromW (θ) will, secondly, be prepared by the observation
that as a consequence of Lemma 3.1 an associated steady state problem, formulated here as the one-
point boundary value problem

{
n2s2−

2

nWss + nWWs − µsWs = 0, s ∈ (0, Rn),

W (Rn) = m
ωn
,

(3.33)

does not admit any solution above s 7→ µ
ns, other than the trivial solution s 7→ m

ωn
. This will be seen

in Lemma 3.5 on the basis of the following auxiliary statement on a certain strong maximum principle
property of the degenerate elliptic equation therein.

Lemma 3.4 Let n ≥ 2, R > 0 and m > 0, and let W and W be two functions from W
2,∞
loc ((0, Rn])

such that W s ≥ 0 and W s ≥ 0 on (0, Rn), that W (Rn) =W (Rn), and that

n2s2−
2

nW ss + nWW s − µsW s ≤ n2s2−
2

nW ss + nWW s − µsW s a.e. in (0, Rn). (3.34)

Then if moreover
W (s) ≥W (s) for all s ∈ (0, Rn), but W 6≡W, (3.35)

there exists C > 0 such that

W (s) ≥W (s) + Cs(Rn − s) for all s ∈ (0, Rn). (3.36)

Proof. We let z :=W −W ∈W
2,∞
loc ((0, Rn]) and first observe that z ≥ 0 by (3.35), whence (3.34)

implies that

n2s2−
2

n zss ≤
{
− nWW s + µsW s

}
+
{
nWW s − µsW s

}

= −nzW s − nWzs + µszs

≤ −(nW − µs) · zs a.e. in (0, Rn),

because W s ≥ 0 according to our hypotheses. On integration, this yields

zs(s2) ≤ zs(s1) · e
− 1

n2

∫ s2
s1

s−2+ 2
n (nW (s)−µs)

ds for all s1 ∈ (0, Rn) and any s2 ∈ (s1, R
n], (3.37)

which as a first consequence immediately implies that

z(s) > 0 for all s ∈ (0, Rn). (3.38)

Indeed, if this was false then by nonnegativity of z we could find s0 ∈ (0, Rn) such that z(s0) =
zs(s0) = 0, due to (3.37) implying that both zs(s) ≤ 0 for all s ∈ (s0, R

n) and zs(s) ≥ 0 for all
s ∈ (0, s0). Again since z ≥ 0, these two properties would entail that necessarily z ≡ 0 which is
incompatible with (3.35).
Now (3.38) ensures the existence of s1 ∈ (0, Rn) such that zs(s1) < 0, for otherwise we would have
zs ≥ 0 in (0, Rn) and hence z(Rn) > 0 by (3.38), contrary to our assumption that W (Rn) = W (Rn).
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As a second implication of (3.37), from this we could infer that in fact zs(s) < 0 for all s ∈ [s1, R
n]

and that hence
z(s) ≥ c1(R

n − s) for all s ∈ (s1, R
n) (3.39)

with c1 := −maxs∈[s1,Rn] zs(s) being positive by continuity of zs in (0, Rn].
Near the point s = 0 of degeneracy where our hypotheses essentially reduce to the mere nonnegativity
of z, we may argue similarly when lim infsց0 z(s) = 0. Then, namely, once more using (3.38) we
obtain s2 ∈ (0, s1) such that c2 := zs(s2) > 0, due to (3.37) meaning that

zs(s) ≥ c2 e
1

n2

∫ s2
s σ−2+ 2

n (nW (σ)−µσ)
dσ ≥ c3 for all s ∈

(
0,
s2

2

)

if we let c3 := c2 · exp { 1
n2

∫ s2
s2/2

σ−2+ 2

n (nW (σ) − µσ)dσ} > 0. When supplemented by an evident

reasoning in the opposite situation when lim infsց0 z(s) > 0, in any case we infer the existence of
s3 ∈ (0, s1) and c4 > 0 such that

z(s) ≥ c4s for all s ∈ (0, s3).

Along with (3.39) and (3.38), this readily yields (3.36) with C := min { c1
Rn ,

c4
Rn ,mins∈[s2,s3]

z(s)
s(Rn−s)}.

�

As announced, thanks to the latter we may infer from Lemma 3.1 the following nonexistence result.

Lemma 3.5 Let n ≥ 2, R > 0 and m > m⋆ with m⋆ taken from Lemma 3.1, and suppose that
W ∈ C2((0, Rn]) is a nonnegative solution of (3.33) such that Ws ≥ 0 in (0, Rn), and that moreover

W (s) ≥
µ

n
s for all s ∈ (0, Rn) (3.40)

but
W 6≡

µ

n
(·). (3.41)

Then
W (s) =

m

ωn
for all s ∈ (0, Rn). (3.42)

Proof. With (W (θ))θ∈[0,1) taken from Lemma 3.1, we let

S :=
{
θ ∈ [0, 1)

∣∣∣ W (s) ≥W (θ)(s) for all s ∈ (0, Rn)
}

and then note that S is not empty, because 0 ∈ S according to (3.40) and the fact that W (0)(s) = µ
ns

for all s ∈ (0, Rn) by Lemma 3.1. Moreover, from the continuity of [0, 1) ∋ θ 7→ W (θ)(s) for all
s ∈ (0, Rn), as forming a by-product of Lemma 3.1, we immediately obtain that S is closed in the
relative topology of [0, 1). In order to make sure that S is also relatively open in [0, 1), we fix θ0 ∈ S

and then observe that in both cases θ0 = 0 and θ0 ∈ (0, 1) we have

W 6≡W (θ0) in (0, Rn), (3.43)

which, indeed, when θ0 = 0 is directly implied by our hypothesis (3.41), and which when θ ∈ (0, 1)
results from the strictness of the differential inequality in (3.1), namely ruling out thatW (θ0) coincides
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with a solution of (3.33). Now thanks to (3.43), we may invoke Lemma 3.4 to infer that in fact there
exists c1 > 0 such that

W (s) ≥W (θ0)(s) + c1s(R
n − s) for all s ∈ (0, Rn), (3.44)

and using that [0, 1) ∋ θ 7→ W (θ) is continuous with values in C1([0, Rn]) by Lemma 3.1, we can
thereupon find ε > 0 such that whenever θ ∈ (θ0 − ε, θ0 + ε) ∩ [0, 1), we have

∣∣∣W (θ)
s (s)−W (θ0)

s (s)
∣∣∣ ≤ c1R

n

2
for all s ∈ (0, Rn). (3.45)

Since W (θ)(0) = 0 and W (θ)(Rn) = m
ωn

for all θ ∈ [0, 1) by Lemma 3.1, this guarantees that for all
θ ∈ (θ0 − ε, θ0 + ε) ∩ [0, 1),

W (θ)(s)−W (θ0)(s) =

∫ s

0

{
W (θ)

s (σ)−W (θ0)
s (σ)

}
dσ

≤
c1R

n

2
· s

≤ c1s(R
n − s) for all s ∈

(
0,
Rn

2

]
,

and that, similarly,

W (θ)(s)−W (θ0)(s) = −

∫ Rn

s

{
W (θ)

s (σ)−W (θ0)
s (σ)

}
dσ

≤
c1R

n

2
· (Rn − s)

≤ c1s(R
n − s) for all s ∈

(Rn

2
, Rn

)
.

Together with (3.44), these inequalities show that indeed (θ0 − ε, θ0 + ε) ∩ [0, 1) ⊂ S and that conse-
quently, S as a nonempty relatively closed and relatively open subset of [0, 1) must actually coincide
with [0, 1). Thus, W ≥W (θ) in (0, Rn) for all θ ∈ [0, 1), which implies (3.42) due to the fact that from
Lemma 3.1 we moreover know that W (θ)(s) → m

ωn
for all s ∈ (0, Rn) as θ ր 1. �

We are now in the position to make sure that as a consequence of Lemma 3.5, the global nonexistence
criteria from Section 3.2 warrant finite-time collapse of any solution to (2.6) corresponding to initial
dataW (θ) with θ ∈ (0, 1). Our verification thereof will make essential use of a comparison principle for
problems of the form (2.6); as the latter will independently be applied in several subsequent arguments
(cf. the proofs of Lemmata 3.12, 4.1 and 4.3 as well as Proposition 1.2 and Theorem 1.1), for convenient
reference we postpone its formulation so as to become Lemma 5.1 from the appendix below.

Lemma 3.6 Given n ≥ 2 and R > 0, let m⋆ > 0 and, for m > m⋆, the family (W (θ))θ∈[0,1) ⊂

C1([0, Rn])∩W 2,∞((0, Rn)) be as in Lemma 3.1. For θ ∈ [0, 1), let w(θ) ∈ C0([0, T
(θ)
max);C1([0, Rn]))∩

C2,1((0, Rn]× (0, T
(θ)
max)) denote the local solution of (2.6), as obtained through Lemma 2.1 and (2.3)

when applied to the initial data given by u0(r) := nW
(θ)
s (rn), r ∈ [0, R], and extended up to its maximal
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existence time T
(θ)
max ∈ (0,∞]. Then actually T

(θ)
max < ∞ for all θ ∈ (0, 1), and for any such θ there

exists a nondecreasing W (θ) : (0, Rn] → (0, m
ωn

] such that

w(θ)(s, t) →W (θ)(s) for all s ∈ (0, Rn) as tր T (θ)
max, (3.46)

and that

lim sup
sց0

W (θ)(s)

s
= +∞. (3.47)

Proof. Let us first make sure that for w := w(θ) we have

wt ≥ 0 in (0, Rn)× (0, T (θ)
max). (3.48)

Indeed, this can be seen by adaptation of a standard argument ([26, Section 52.6]) to the present

setting: Given T ∈ (0, T
(θ)
max) and h ∈ (0, T ) we let κ := n‖ws‖L∞((0,Rn)×(0,T ))+1 and z(s, t) := w(s, t+

h)−w(s, t)+ εeκt for s ∈ [0, Rn], t ∈ [0, T −h) and ε > 0, and observe that then z(s, 0) ≥ ε > 0 for all
s ∈ (0, Rn), because w(s, h) ≥ w(s, 0) = W (θ)(s) due to the subsolution property of W (θ) expressed
in (3.1) and the comparison principle from Lemma 5.1. Moreover, z(0, t) = z(Rn, t) = εeκt > 0 for all
t ∈ (0, T − h), and using (2.6) we compute

zt(s, t) = n2s2−
2

n zss(s, t)+nw(s, t+h)zs(s, t)+nws(s, t)z(s, t)−µszs(s, t)−nεws(s, t)e
κt+κεeκt (3.49)

for s ∈ (0, Rn) and t ∈ (0, T − h). Therefore,

t0 := sup
{
t̂ ∈ (0, T − h)

∣∣∣ z(s, t) > 0 for all s ∈ [0, Rn] and t ∈ [0, t̂]
}

is well-defined with t0 ∈ (0, T −h], and if t0 < T −h then necessarily z(s0, t0) = 0 for some s0 ∈ [0, Rn]
which in fact clearly must satisfy s0 ∈ (0, Rn), whence we actually know that zs(s0, t0) = 0 and
zss(s0, t0) ≥ 0 as well as zt(s0, t0) ≤ 0. From (3.49) we thus infer that in this case

0 ≥ zt(s0, t0) ≥ −nεws(s0, t0)e
κt0 + κεeκt0

≥
{
κ− n‖ws‖L∞((0,Rn)×(0,T ))

}
· εeκt0

> 0,

which is absurd and hence proves that actually t0 = T −h, implying that z > 0 in (0, Rn)× (0, T −h).

On taking εց 0, then hց 0 and finally T ր T
(θ)
max, from this we readily obtain (3.48).

As a first consequence thereof, we can now verify that w cannot exist globally: In fact, assuming

for contradiction that T
(θ)
max = ∞, using (3.48) we could find a nondecreasing function W defined on

(0, Rn], fulfilling 0 ≤W ≤ m
ωn

, such that

W (θ)(s) ≤ w(s, t) րW (s) for all s ∈ (0, Rn) as t→ ∞. (3.50)

Here due to the boundedness of w on (0, Rn)×(0,∞), interior parabolic Schauder theory ([17]) ensures
that (w(·, t))t>1 is bounded in C3

loc((0, R
n]) and that thus, by the Arzelà-Ascoli theorem, W actually

21



belongs to C2((0, Rn]) with Ws ≥ 0 in (0, Rn) and W (Rn) = m
ωn

. As clearly
∫∞
0

∫ Rn

0 |wt(s, t)|dsdt ≤
mRn

ωn
< ∞ and thus lim inft→∞ ‖wt(·, t)‖L1((0,Rn)) = 0, from (3.50) and (2.6) we moreover infer that

n2s2−
2

nWss + nWWs − µsWs = 0 in (0, Rn), so that Lemma 3.5 applies so as to assert that in fact
W ≡ m

ωn
throughout (0, Rn), by (3.50) meaning that

w(s, t) →
m

ωn
for all s ∈ (0, Rn) as t→ ∞. (3.51)

Relying on the mere positivity of m when n ≥ 3, and on the fact that m > m⋆ ≥ 8π if n = 2, in view

of Lemma 3.2 and Lemma 3.3 we see that in both cases (3.51) is impossible and that thus indeed T
(θ)
max

must be finite.
Therefore, again by means of (3.48) we infer the existence of W (θ) : (0, Rn] → (0, m

ωn
] such that

W (θ)(s) ≤ w(s, t) րW (θ)(s) for all s ∈ (0, Rn) as tր T (θ)
max, (3.52)

which directly establishes (3.46) and can be seen to furthermore entail (3.47) as follows: If (3.47) was
false and thus

W (θ)(s) ≤ c1s for all s ∈ (0, Rn)

with some c1 > 0, then clearly

w(s, t) ≤ c1s for all s ∈ (0, Rn) and t ∈ (0, T (θ)
max) (3.53)

by (3.52). Once more using (3.48), now rewritten through (2.6) in the form

n2s2−
2

nwss(s, t) + nw(s, t)ws(s, t)− µsws(s, t) ≥ 0 for all s ∈ (0, Rn) and t ∈ (0, T (θ)
max),

from (3.53) we would obtain that

n2s2−
2

nwss(s, t) ≥ −nc1sws(s, t) + µsws(s, t)

≥ −nc1sws(s, t) for all s ∈ (0, Rn) and t ∈ (0, T (θ)
max)

and hence, after integration,

ws(R
n, t) ≥ ws(s, t) · e

−
c1
n

∫Rn

s σ−1+ 2
n dσ

= ws(s, t) · e
−

c1
2
·(R2−s

2
n ) for all s ∈ (0, Rn) and t ∈ (0, T (θ)

max).

This, however, would imply that

ws(s, t) ≤ e
c1R

2

2 · ws(R
n, t) for all s ∈ (0, Rn) and t ∈ (0, T (θ)

max),

and that thus, since

ws(R
n, t) = lim

sրRn

m
ωn

− w(s, t)

Rn − s
≤ lim

sրRn

m
ωn

−W (θ)(s)

Rn − s
= c2 :=W (θ)

s (Rn) for all t ∈ (0, T (θ)
max)

by (3.52), we would have

‖ws(·, t)‖L∞((0,Rn)) ≤ c2e
c1R

2

2 for all t ∈ (0, T (θ)
max),

which is incompatible with the blow-up criterion (2.2) and thereby shows that in fact (3.47) must be
valid. �
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3.4 Positivity and boundary behavior in an auxiliary degenerate problem

The goal of this section is to prepare a comparison argument, to be performed in Lemma 3.12 below,
according to which it will be possible to relate the latter findings to solutions evolving from arbitrary
initial data merely fulfilling the requirements from Theorem 1.1. For this purpose, we shall briefly
consider a pure degenerate diffusion problem which arises as the principal part in the linearization
of (2.6) about the steady state s 7→ µ

ns (see (3.76)), and which is specified in the following basic
observation.

Lemma 3.7 Let n ≥ 2, R > 0, z0 ∈ C∞
0 ((0, Rn)) be nonnegative and δ0 ∈ (0, Rn) be such that z0 ≡ 0

in [0, δ0]. Then for each δ ∈ (0, δ0), the problem





z
(δ)
t = n2s2−

2

n z
(δ)
ss , s ∈ (δ,Rn), t > 0,

z(δ)(δ, t) = z(δ)(Rn, t) = 0, t > 0,

z(δ)(s, 0) = z0(s), s ∈ (δ,Rn),

(3.54)

admits a unique classical solution z(δ) ∈ C∞([δ,Rn]× [0,∞)).

Proof. Since each of the parabolic problems (3.54) is non-degenerate, and since our assumption
on z0 along with our choice of δ0 warrants that the associated compatibility conditions of arbitrary
order are fulfilled, this directly follows from standard parabolic theory ([17]). �

A first comparison argument asserts temporal decay of this solution, along with some temporally
uniform smallness property near the origin, in the following sense.

Lemma 3.8 Let n ≥ 2, R > 0, 0 ≤ z0 ∈ C∞
0 ((0, Rn)) and δ0 ∈ (0, Rn) be as in Lemma 3.7. Then for

any γ ∈ (0, 1) one can find κ > 0 and C > 0 such that for all δ ∈ (0, δ0), the solution z(δ) of (3.54)
satisfies

z(δ)(s, t) ≤ Csγe−κt for all s ∈ (δ,Rn) and t > 0. (3.55)

Proof. Given γ ∈ (0, 1), we can pick κ > 0 such that

κ ≤
n2γ(1− γ)

R2
, (3.56)

and since z0 ∈ C∞
0 ((0, Rn)) we can moreover fix y0 > 0 in such a way that

y0 ≥ s−γz0(s) for all s ∈ (0, Rn). (3.57)

Then writing
y(t) := y0 e

−κt, t ≥ 0, (3.58)

and

ẑ(s, t) := y(t)sγ , s ∈ [0, Rn], t ≥ 0,

from (3.57) we obtain that

ẑ(s, 0) = y0s
γ ≥ z0(s) for all s ∈ (0, Rn),
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whereas (3.56) warrants that

ẑt − n2s2−
2

n ẑss = y′sγ + n2γ(1− γ)sγ−
2

n y

≥ sγ ·
{
y′ +

n2γ(1− γ)

R2
· y

}

= 0 in (0, Rn)× (0,∞),

because y′ = −κy by (3.58). As for δ ∈ (0, δ0) we clearly have ẑ ≥ 0 = z(δ) on {δ,Rn}×(0,∞), we may
thus invoke a standard comparison principle to see that for any such δ, ẑ ≥ z(δ) in (δ,Rn) × (0,∞),
which precisely yields (3.55) if we let C := y0. �

Apart from that, a second comparison argument enables us to conveniently control some derivatives
of this solution in a pointwise sense.

Lemma 3.9 Let n ≥ 2, R > 0, 0 ≤ z0 ∈ C∞
0 ((0, Rn)) and δ0 ∈ (0, Rn) be as in Lemma 3.7. Then

there exists C > 0 such that for any δ ∈ (0, δ0),

|z(δ)ss (s, t)| ≤ Cs−1+ 2

n for all s ∈ (δ,Rn) and each t > 0 (3.59)

as well as
|z

(δ)
t (s, t)| ≤ C for all s ∈ (δ,Rn) and t > 0. (3.60)

Proof. Using that z0 belongs to C2([0, Rn]), we can find c1 > 0 such that

s1−
2

n |z0ss(s)| ≤ c1 for all s ∈ (0, Rn), (3.61)

and let
ψ(s, t) := c1s

−1+ 2

n , s ∈ (0, Rn], t ≥ 0. (3.62)

Then for each δ ∈ (0, δ0),

ψt − n2 · (s2−
2

nψ)ss = −n2∂2ss = 0 in (δ,Rn)× (0,∞)

and ψ > 0 on {δ,Rn} × (0,∞), while by (3.54), for any such δ the function ψ(δ) := z
(δ)
ss satisfies

ψ
(δ)
t − n2 · (s2−

2

nψ(δ))ss = 0 in (δ,Rn)× (0,∞)

with ψ(δ)(δ, t) = ψ(δ)(Rn, t) = 0 for all t > 0, because z
(δ)
t (δ, t) = z

(δ)
t (Rn, t) = 0 for all t > 0 due to

the constant Dirichlet data in (3.54). Since (3.61) guarantees that furthermore

ψ(δ)(s, 0) ≤ c1s
−1+ 2

n = ψ(s, 0) for all s ∈ (δ,Rn),

by comparison we thus infer that ψ(δ) ≤ ψ in (δ,Rn)× (0,∞), and in quite a similar manner one can
derive the lower estimate ψ(δ) ≥ −ψ in (δ,Rn)× (0,∞) for all δ ∈ (0, δ0). In view of (3.62), this hence
establishes (3.59), from which in turn (3.60) immediately results in view of (3.54). �

Combining the latter two lemmata with parabolic Schauder theory, we can readily pass to the limit
δ ց 0 along a suitable subsequence so as to obtain a solution to the corresponding limit problem in
the following sense.
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Lemma 3.10 Let n ≥ 2, R > 0, 0 ≤ z0 ∈ C∞
0 ((0, Rn)) and δ0 ∈ (0, Rn) be as in Lemma 3.7. Then

there exist (δj)j∈N ⊂ (0, δ0) and a nonnegative function z ∈ C0([0, Rn]× [0,∞))∩C2,1((0, Rn]× [0,∞))
such that zs ∈ C0([0,Rn]× [0,∞)), that δj ց 0 as j → ∞, that

z(δ) → z in C0
loc([0, R

n]× [0,∞)) ∩ C2,1
loc ((0, R

n]× [0,∞)) as δ = δj ց 0, (3.63)

and that z is a classical solution of





zt = n2s2−
2

n zss, s ∈ (0, Rn), t > 0,

z(0, t) = z(Rn, t) = 0, t > 0,

z(s, 0) = z0(s), s ∈ (0, Rn).

(3.64)

Proof. Since for each δ⋆ ∈ (0, δ0) we know from Lemma 3.8 that (z(δ))δ∈(0,δ⋆) is bounded in
C0
loc([δ⋆, R

n] × [0,∞)), parabolic Schauder theory ([17]) combined with the Arzelà-Ascoli theorem
asserts that for any such δ⋆,

(z(δ))δ∈(0,δ⋆) is relatively compact in C2,1
loc ([δ⋆, R

n]× [0,∞)). (3.65)

Hence, along an appropriate sequence (δj)j∈N ⊂ (0, δ0) fulfilling δj ց 0 as j → ∞, for some nonnegative
z ∈ C2,1((0, Rn]× [0,∞)) we have

z(δ) → z in C2,1
loc ((0, R

n]× [0,∞)) as δ = δj ց 0, (3.66)

which due to (3.54) also implies that zt = n2s2−
2

n zss in (0, Rn) × (0,∞) with z(Rn, t) = 0 for all
t > 0 and z(s, 0) = z0(s) for each s ∈ (0, Rn). In order to show that furthermore z and zs belong to
C0([0, Rn]×[0,∞)) with z(0, t) = 0 for all t > 0, we note that for each δ ∈ (0, δ0), φδ(σ) := δ+ Rn−δ

Rn ·σ,
σ ∈ [0, Rn], defines an affine bijection of [0, Rn] onto [δ,Rn], and letting

ψ(δ)(σ, t) := z(δ)(φδ(σ), t), σ ∈ [0, Rn], t ≥ 0,

we readily infer from Lemma 3.9 and evident properties of (φδ)δ∈(0,δ0) that there exist c1 > 0 and
c2 > 0 such that for any choice of δ ∈ (0, δ0) we have

|ψ(δ)
σσ (σ, t)| ≤ c1σ

−1+ 2

n for all σ ∈ (0, Rn) and t > 0 (3.67)

as well as
|ψ

(δ)
t σ, t)| ≤ c2 for all σ ∈ (0, Rn) and t > 0. (3.68)

In particular, (3.67) warrants that if δ ∈ (0, δ0), t > 0 and 0 < σ1 < σ2 < Rn, then

∣∣∣ψ(δ)
σ (σ2, t)− ψ(δ)

σ (σ1, t)
∣∣∣ =

∣∣∣∣
∫ σ2

σ1

ψ(δ)
σσ (σ, t)dσ

∣∣∣∣

≤ c1

∫ σ2

σ1

σ−1+ 2

ndσ

=
nc1

2
· (σ

2

n
2 − σ

2

n
1 )

≤
nc1

2
· |σ2 − σ1|

2

n ,
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together with e.g. (3.65) implying the existence of c3 > 0 such that

‖ψ(δ)(·, t)‖
C1+ 2

n ([0,Rn])
≤ c3 for all t > 0 and each δ ∈ (0, δ0). (3.69)

Now due to an Ehrling-type inequality associated with the the embeddings C1+ 2

n ([0, Rn]) →֒→֒
C1([0, Rn]) →֒ C0([0, Rn]), given ε > 0 we can find c4(ε) > 0 such that

‖ϕ‖C1([0,Rn]) ≤
ε

4c3
‖ϕ‖

C1+ 2
n ([0,Rn])

+ c4(ε)‖ϕ‖C0([0,Rn]) for all ϕ ∈ C1+ 2

n ([0, Rn]).

Therefore, if we let η = η(ε) := ε
2c2c4

, then for arbitrary δ ∈ (0, δ0) and any t1 > 0 and t2 ∈ (t1, t1 + η)
we can combine (3.69) with (3.68) to estimate

∥∥∥ψ(δ)(·, t2)− ψ(δ)(·, t1)
∥∥∥
C1([0,Rn])

≤
ε

2c3

∥∥∥ψ(δ)(·, t2)− ψ(δ)(·, t1)
∥∥∥
C1+ 2

n ([0,Rn])

+c4

∥∥∥ψ(δ)(·, t2)− ψ(δ)(·, t1)
∥∥∥
C0([0,Rn])

≤
ε

2c3
·
{
‖ψ(δ)(·, t2)‖

C1+ 2
n ([0,Rn])

+ ‖ψ(δ)(·, t1)‖
C1+ 2

n ([0,Rn])

}

+c4

∫ t2

t1

‖ψ
(δ)
t (·, t)‖C0([0,Rn])dt

≤
ε

2c3
· (c3 + c3) + c4 · c2(t2 − t1)

≤
ε

2
+
ε

2
= ε,

and to thereby obtain precompactness of both (ψ(δ))δ∈(0,δ0) and (ψ
(δ)
σ )δ∈(0,δ0) in C

0
loc([0, R

n]× [0,∞))
as a consequence of the Arzelà-Ascoli theorem. Since again due to the properties of (φδ)δ∈(0,δ0) it

follows from (3.66) that for each fixed σ ∈ (0, Rn) and t > 0 we have ψ(δ)(σ, t) → z(σ, t) as δ = δj ց 0,
this readily implies that both z and zs must indeed be continuous on [0, Rn]× [0,∞), and that since
ψ(δ)(0, t) = 0 for all t > 0 we thus also have z(0, t) = 0 for any such t. �

Now the main outcome of this section states that not only this limit solution but also essentially all its
approximates enjoy a Hopf-type boundary point property near the degeneracy point s = 0 of (3.64)
in the following temporally averaged form.

Lemma 3.11 Let n ≥ 2, R > 0, 0 ≤ z0 ∈ C∞
0 ((0, Rn)) and δ0 ∈ (0, Rn) be as in Lemma 3.7. Then

there exist t⋆ > 0, s⋆ ∈ (0, δ0) and C > 0 such that whenever δ ∈ (0, s⋆), for the solution z(δ) of (3.54)
we have ∫ t⋆

0
z(δ)s (s, t)dt ≥ C for all s ∈ (δ, s⋆). (3.70)

Proof. We first fix γ ∈ (0, 1) sufficiently close to 1 such that γ > 1 − 2
n , and then obtain from

Lemma 3.8 that there exist κ > 0 and c1 > 0 such that for all δ ∈ (0, δ0),

z(δ)(s, t) ≤ c1s
γe−κt for all s ∈ (δ,Rn) and t > 0. (3.71)
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Moreover abbreviating c2 :=
Rnγ+2

γ−1+ 2

n

c1 and c3 :=
∫ Rn

0 s−2+ 2

n (Rn − s)z0(s)ds, from our assumptions on

z0 we know that c3 is positive and that hence we can pick t⋆ > 0 such that

t⋆ ≥ −
1

κ
ln

c3

4c2
. (3.72)

Finally choosing s⋆ ∈ (0, δ0) small enough fulfilling

s⋆ ≤
(κc3
4c1

) 1

γ
, (3.73)

for δ ∈ (0, δ0) and s0 ∈ (δ, s⋆) we integrate by parts in (3.54) to compute

d

dt

∫ Rn

s0

s−2+ 2

n (Rn − s)z(δ)(s, t)ds =

∫ Rn

s0

(Rn − s)z(δ)ss (s, t)ds

=

∫ Rn

s0

z(δ)s (s, t)ds− (Rn − s0)z
(δ)
s (s0, t)

= −z(δ)(s0, t)− (Rn − s0)z
(δ)
s (s0, t) for all t > 0,

which on further integration yields

Rn

∫ t⋆

0
z(δ)s (s0, t)dt ≥ (Rn − s0)

∫ t⋆

0
z(δ)s (s0, t)dt

≥

∫ Rn

s0

s−2+ 2

n (Rn − s)z0(s)ds−

∫ Rn

s0

s−2+ 2

n (Rn − s)z(δ)(s, t⋆)ds

−

∫ t⋆

0
z(δ)(s0, t)dt. (3.74)

Here we observe that thanks to (3.71) and (3.72),
∫ Rn

s0

s−2+ 2

n (Rn − s)z(δ)(s, t⋆)ds ≤ c1R
ne−κt⋆

∫ Rn

s0

sγ−2+ 2

nds

= c1R
ne−κt⋆ ·

Rnγ−n+2 − s
γ−1+ 2

n
0

γ − 1 + 2
n

≤ c2e
−κt⋆

≤
c3

4

and that by (3.71) and (3.73),
∫ t⋆

0
z(δ)(s0, t)dt ≤ c1s

γ
0

∫ t⋆

0
e−κtdt = c1s

γ
0 ·

1− e−κt⋆

κ
≤
c1

κ
s
γ
0 ≤

c3

4
.

As supp z0 ⊂ (δ0, R
n), in view of our definition of c3 the inequality (3.74) therefore entails that for

any δ ∈ (0, δ0),

Rn

∫ t⋆

0
z(δ)s (s0, t)dt ≥ c3 −

c3

4
−
c3

4
=
c3

2
for all s ∈ (δ, s⋆),

which evidently implies (3.70). �
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3.5 Proof of Theorem 1.1

In order to show that in the situation of Theorem 1.1 the corresponding solution w cannot be global
in time, in view of the results from Section 3.3 it thus remains to make sure that possibly after
some waiting time we may assume that any such solution, trivially remaining above the equilibrium
(s, t) 7→ µ

ns by comparison, actually deviates from the latter by such a substantial amount that it can

actually compared from below by one of the particular solutions w(θ) addressed in Lemma 3.6. This
will be achieved on the basis of the boundary point property from Lemma 3.11 in the course of the
following argument.

Lemma 3.12 Let n ≥ 2 and R > 0, and suppose that u0 satisfies (1.2) as well as (1.5) with m :=∫
Ω u0, but that the corresponding solution (u, v) of (1.1) from Lemma 2.1 is global in time. Then one
can find t0 > 0 and C > 0 such that for w as in (2.3) we have

w(s, t0) ≥
µ

n
s+ Cs(Rn − s) for all s ∈ (0, Rn). (3.75)

Proof. We let z(s, t) := w(s, t)− µ
ns for s ∈ [0, Rn] and t ≥ 0, and then from (1.5), (2.6) and the

comparison principle in Lemma 5.1 we obtain that z ∈ C0([0, Rn]× [0,∞)) ∩C2,1((0, Rn]× (0,∞)) is
a nonnegative function fulfilling z(Rn, t) = 0 for all t > 0 as well as

zt = n2s2−
2

nwss + (nw − µs)ws

= n2s2−
2

n zss + nzws

≥ n2s2−
2

n zss in (0, Rn)× (0,∞), (3.76)

because ws ≥ 0. Since our hypothesis (1.5) moreover says with w0 as defined in (2.4) we have w0 6≡
µ
n(·),

we can find a nontrivial z0 ∈ C∞
0 ((0, Rn)) such that 0 ≤ z0(s) ≤ w0(s)−

µ
ns for all s ∈ (0, Rn), whence

Lemma 3.7 and Lemma 3.10 apply so as to yield δ0 ∈ (0, Rn) as well as solutions z(δ), δ ∈ (0, δ0),
and z of (3.54) and (3.64), respectively. About these solutions, Lemma 3.11 says that there exist
t⋆ > 0, s⋆ ∈ (0, δ0) and c1 > 0 such that

∫ t⋆

0
z(δ)s (s, t)dt ≥ c1 whenever 0 < δ < s < s⋆,

which on taking δ = δj ց 0 with (δj)j∈N ⊂ (0, δ0) as provided by Lemma 3.10 shows that

∫ t⋆

0
zs(s, t)dt ≥ c1 for all s ∈ (0, s⋆)

and hence
∫ t⋆

0
zs(0, t)dt ≥ c1.

We can therefore find t0 ∈ (0, t⋆) such that zs(0, t0) ≥ c2 :=
c1
t⋆
, which means that

z(s, t0)

s
=
z(s, t0)− z(0, t0)

s
→ c2 as sց 0
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and that hence we can fix s1 ∈ (0, Rn) such that

z(s, t0) ≥
c2

2
s for all s ∈ (0, s1). (3.77)

As clearly c3 := −zs(R
n, t0) is positive due to the Hopf boundary point lemma applied to the point

s = Rn near which (3.64) is uniformly parabolic, we can similarly fix s2 ∈ (s1, R
n) fulfilling

z(s, t0) ≥
c3

2
(Rn − s) for all s ∈ (s2, R

n). (3.78)

Since finally, by uniform parabolicity of (3.64) in an appropriate open neighborhood of [s1, s2]× {t0},
the classical strong maximum principle applies so as to assert positivity of c4 := mins∈[s1,s2] z(s, t0),
on combining this with (3.77) and (3.78) we obtain that

z(s, t0) ≥ c5s(R
n − s) for all s ∈ (0, Rn)

with c5 := min { c2
2Rn ,

c3
2Rn ,

4c4
R2n }. Therefore, (3.75) is a consequence of the observation that for all

δ ∈ (0, δ0), the classical comparison principle ensures that z ≥ z(δ) in (δ,Rn)× (0,∞), by Lemma 3.10
namely implying that z(s, t0) ≥ z(s, t0) for all s ∈ (0, Rn). �

As a last preparation for our verification of Theorem 1.1, without proof let us state the following
elementary observation.

Lemma 3.13 Let n ≥ 1 and R > 0, and let (ϕj)j∈N ⊂ C1([0, Rn]) be such that ϕj(0) = ϕj(R
n) = 0

for all j ∈ N, and that ϕj → 0 in C1([0, Rn]) as j → ∞. Then for all ε > 0 there exists j0 ∈ N such
that

|ϕj(s)| ≤ εs(Rn − s) for all s ∈ (0, Rn) and any j ≥ j0.

Now again making substantial use of the continuity property of (W (θ))θ∈[0,1) asserted by Lemma 3.1,
we can finally establish our main result on blow-up in (1.1) for arbitrary large-mass initial data more
concentrated than the respective constant equilibria:

Proof of Theorem 1.1. We let m⋆ = m⋆(n,R) > 0 be as provided by Lemma 3.1, and given any
u0 complying with (1.2) and satisfying (1.5) let us assume that the corresponding solution (u, v) of
(1.1) from Lemma 2.1 be global, and that hence Tmax = ∞ and that for w taken from (2.3) we have
ws ∈ L∞

loc([0, R
n] × [0,∞)). We then first invoke Lemma 3.12 to make sure that as a consequence of

(1.5), we can find t0 > 0 and c1 > 0 such that

w(s, t0) ≥
µ

n
s+ c1s(R

n − s) for all s ∈ (0, Rn). (3.79)

Once more relying on the C1([0, Rn])-valued continuity of W (θ) as a function of θ ∈ [0, 1), we parti-

cularly obtain that W
(θ)
s → µ

n in C0([0, Rn]) as θ ց 0, so that from (3.79) and Lemma 3.13 we readily
infer the existence of θ ∈ (0, 1) fulfilling

w(s, t0) ≥W (θ)(s) for all s ∈ (0, Rn). (3.80)

Keeping this value of θ fixed henceforth, with T
(θ)
max ∈ (0,∞) and w(θ) ∈ C0([0, T

(θ)
max);C1([0, Rn])) ∩

C2,1((0, Rn)× (0, T
(θ)
max)) taken from Lemma 3.6 we let T := t0+T

(θ)
max and w(s, t) := w(θ)(s, t− t0) for
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s ∈ [0, Rn] and t ∈ [t0, T ). Then thanks to (3.80), the comparison priciple from Lemma 5.1 warrants
that with the function W (θ) introduced there we have

w(s, T ) ≥W (θ)(s) for all s ∈ (0, Rn).

As a consequence of (3.47), we thus obtain that

lim sup
sց0

w(s, T )− w(0, T )

s
= lim sup

sց0

w(s, T )

s
≥ lim sup

sց0

W (θ)(s)

s
= ∞

and that hence w(·, T ) cannot belong to C1([0, Rn]). This contradiction to Lemma 2.1 completes the
proof. �

4 Boundedness for mildly concentrated initial data

The goal of this section is to complement the outcome of Theorem 1.1 by deriving the boundedness
results claimed in Proposition 1.2, Theorem 1.3 and Corollary 1.4. Our arguments in this direction will
rely on comparison of the mass accumulation function w from above by certain explicitly constructed
barriers vanishing at s = 0 and having their spatial derivatives globally bounded. That this is already
sufficient for global extensibility and boundedness of the derivative ws, as determining u through (2.5),
is asserted by a general statement which we prepend for repeated use in the sequel.

4.1 How mass accumulation can control densities: A Bernstein-type argument

In fact, all our boundedness arguments below will at their final stage rely on the following outcome of a
Bernstein-type regularity procedure following well-known precedents in the analysis of scalar parabolic
equations ([26]).

Lemma 4.1 Let n ≥ 2 and R > 0, and suppose that u0 satisfies (1.2) and is such that the function
w defined in (2.3) has the property that

sup
(s,t)∈(0,Rn)×(0,Tmax)

w(s, t)

s
<∞. (4.1)

Then there exists C > 0 such that

ws(s, t) ≤ C for all s ∈ (0, Rn) and t ∈ (0, Tmax). (4.2)

Proof. According to (4.1), let us fix c1 > 0 such that

w(s, t) ≤ c1s for all s ∈ (0, Rn) and t ∈ (0, Tmax), (4.3)

which clearly entails that
ws(0, t) ≤ c1 for all t ∈ (0, Tmax). (4.4)
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Moreover, picking τ := min{1, 12Tmax} and going back to the original variables, from Lemma 2.1 we
infer that u is bounded in Ω × [0, τ ] and that u(·, τ) is positive in Ω, through (2.3) implying the
existence of c2 > 0 and c3 > 0 such that

‖ws(·, t)‖L∞((0,Rn)) ≤ c2 for all t ∈ (0, τ ] (4.5)

and
ws(s, τ) ≥ c3 for all s ∈ [0, Rn], (4.6)

where the latter, upon integration, clearly entails that

w(s, τ) ≥ c3s for all s ∈ [0, Rn].

Now if we fix any c4 >
µ
2n and then take c5 > 0 small such that c5 ≤ c3e

−c4R2

, then

w(s, t) := c5

∫ s

0
ec4σ

2
n
dσ, s ∈ [0, Rn], t ≥ τ,

satisfies

w(s, t) ≤ c5e
c4R2

· s ≤ c3s for all s ∈ [0, Rn] and t ≥ τ,

whence (4.6) implies that both w(s, τ) ≤ w(s, τ) for all s ∈ (0, Rn) and w(Rn, t) ≤ c3R
n ≤ w(Rn, τ) =

w(Rn, t) for all t ∈ (τ, Tmax). As for all s ∈ (0, Rn) and t > τ we have

ws(s, t) = c5e
c4s

2
n ≥ 0 and wss(s, t) =

2c4c5
n

s−1+ 2

n ec4s
2
n
,

it furthermore follows that

wt − n2s2−
2

nwss − nwws + µsws ≤ wt − n2s2−
2

nwss + µsws

= −2nc5 ·
(
c4 −

µ

2n

)
· sec4s

2
n

< 0 for all s ∈ (0, Rn) and t > τ

according to our choice of c4. Therefore, the comparison principle from Lemma 5.1 below asserts that
w(s, t) ≥ w(s, t) for all s ∈ (0, Rn) and t ∈ [τ, Tmax), so that in particular, by nonnegativity of c4,

w(s, t) ≥ c5s for all s ∈ (0, Rn) and t ∈ [τ, Tmax). (4.7)

Apart from that, as w is bounded in (0, Rn)× (0, Tmax) and (2.6) is non-degenerate e.g. in the region
(R

n

2 , R
n)×(0, Tmax), from standard parabolic Schauder theory ([17]) we readily obtain c6 > 0 fulfilling

ws(R
n, t) ≤ c6 for all t ∈ (τ, Tmax). (4.8)

According to this, (4.5) and (4.7), for each ε ∈ (0, 1) the function zε defined on (0, Rn]× [τ, Tmax) by
letting

zε(s, t) := s1+ε ·
w2
s(s, t)

w(s, t)
, s ∈ (0, Rn], t ∈ [τ, Tmax), (4.9)
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actually belongs to C0([0, Rn]× [τ, Tmax)) with

zε(0, t) = 0 for all t ∈ (τ, Tmax) (4.10)

and

zε(s, τ) ≤
c22
c5
sε ≤ c7 :=

c22
c5

·max{Rn, 1} for all s ∈ (0, Rn) (4.11)

as well as

zε(R
n, t) ≤

c26
c5
Rnε ≤ c8 :=

c26
c5

·max{Rn, 1} for all t ∈ (τ, Tmax). (4.12)

In order to derive and upper bound for zε inside (0, Rn)× (τ, Tmax), we compute

zεs = 2s1+εwswss

w
− s1+εw

3
s

w2
+ (1 + ε)sε

w2
s

w
(4.13)

and

zεss = 2s1+εwswsss

w
+ 2s1+εw

2
ss

w
− 5s1+εw

2
swss

w2

+4(1 + ε)sε
wswss

w
+ 2s1+εw

4
s

w3
− 2(1 + ε)sε

w3
s

w2
+ ε(1 + ε)sε−1w

2
s

w
(4.14)

as well as

zεt = 2s1+εws

w
·
{
n2s2−

2

nwsss + (2n2 − 2n)s1−
2

nwss + nwwss + nw2
s − µswss − µws

}

−s1+εw
2
s

w2
·
{
n2s2−

2

nwss + nwws − µsws

}

= 2n2s3−
2

n
+εwswsss

w
+ (4n2 − 4n)s2−

2

n
+εwswss

w
+ 2ns1+εwswss + ns1+εw

3
s

w

−2µs2+εwswss

w
− 2µs1+εw

2
s

w

−n2s3−
2

n
+εw

2
swss

w2
+ µs2+εw

3
s

w2
(4.15)

for s ∈ (0, Rn) and t ∈ (τ, Tmax).

Now if for some T ∈ (τ, Tmax) we have max(s,t)∈[0,Rn]×[τ,T ] zε(s, t) > max{c7, c8}, then according to
(4.10), (4.11) and (4.12) we can find s0 ∈ (0, Rn) and t0 ∈ (τ, T ] such that zεs(s0, t0) = 0, zεss(s0, t0) ≤
0 and zεt(s0, t0) ≥ 0. As thus necessarily ws(s0, t0) > 0, (4.13) and (4.14) warrant that at this point
(s0, t0),

wss =
w2
s

2w
−

(1 + ε)ws

2s
(4.16)

and, as a consequence thereof,

2n2s3−
2

n
+εwswsss

w
≤ −2n2s3−

2

n
+εw

2
ss

w
+ 5n2s3−

2

n
+εw

2
swss

w2
− 4n2(1 + ε)s2−

2

n
+εwswss

w
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−2n2s3−
2

n
+εw

4
s

w3
+ 2n2(1 + ε)s2−

2

n
+εw

3
s

w2
− n2ε(1 + ε)s1−

2

n
+εw

2
s

w

= −2n2s3−
2

n
+ε ·

1

w
·

{
w4
s

4w2
−

(1 + ε)w3
s

2sw
+

(1 + ε)2w2
s

4s2

}

+5n2s3−
2

n
+ε ·

w2
s

w2
·

{
w2
s

2w
−

(1 + ε)ws

2s

}

−4n2(1 + ε)s2−
2

n
+ε ·

ws

w
·

{
w2
s

2w
−

(1 + ε)ws

2s

}

−2n2s3−
2

n
+εw

4
s

w3
+ 2n2(1 + ε)s2−

2

n
+εw

3
s

w2
− n2ε(1 + ε)s1−

2

n
+εw

2
s

w

= −
1

2
n2s3−

2

n
+εw

4
s

w3
+ n2(1 + ε)s2−

2

n
+εw

3
s

w2
−

1

2
n2(1 + ε)2s1−

2

n
+εw

2
s

w

+
5

2
n2s3−

2

n
+εw

4
s

w3
−

5

2
n2(1 + ε)s2−

2

n
+εw

3
s

w2

−2n2(1 + ε)s2−
2

n
+εw

3
s

w2
+ 2n2(1 + ε)2s1−

2

n
+εw

2
s

w

−2n2s3−
2

n
+εw

4
s

w3
+ 2n2(1 + ε)s2−

2

n
+εw

3
s

w2
− n2ε(1 + ε)s1−

2

n
+εw

2
s

w

= −
3

2
n2(1 + ε)s2−

2

n
+εw

3
s

w2
+

1

2
n2(1 + ε)(3 + ε)s1−

2

n
+εw

2
s

w
.

Therefore, (4.15) shows that at (s0, t0), once more due to (4.16) we must have

0 ≤ −
3

2
n2(1 + ε)s2−

2

n
+εw

3
s

w2
+

1

2
n2(1 + ε)(3 + ε)s1−

2

n
+εw

2
s

w

+(4n2 − 4n)s2−
2

n
+εws

w
·

{
w2
s

2w
−

(1 + ε)ws

2s

}

+2ns1+εws ·

{
w2
s

2w
−

(1 + ε)ws

2s

}
+ ns1+εw

3
s

w

−2µs2+εws

w
·

{
w2
s

2w
−

(1 + ε)ws

2s

}
− 2µs1+εw

2
s

w

−n2s3−
2

n
+εw

2
s

w2
·

{
w2
s

2w
−

(1 + ε)ws

2s

}
+ µs2+εw

3
s

w2

= −
3

2
n2(1 + ε)s2−

2

n
+εw

3
s

w2
+

1

2
n2(1 + ε)(3 + ε)s1−

2

n
+εw

2
s

w

+(2n2 − 2n)s2−
2

n
+εw

3
s

w2
− (2n2 − 2n)(1 + ε)s1−

2

n
+εw

2
s

w

+ns1+εw
3
s

w
− n(1 + ε)sεw2

s + ns1+εw
3
s

w

−µs2+εw
3
s

w2
+ µ(1 + ε)s1+εw

2
s

w
− 2µs1+εw

2
s

w

−
1

2
n2s3−

2

n
+εw

4
s

w3
+

1

2
n2(1 + ε)s2−

2

n
+εw

3
s

w2
+ µs2+εw

3
s

w2
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= −
1

2
n2s3−

2

n
+εw

4
s

w3
+ [(1− ε)n2 − 2n]s2−

2

n
+εw

3
s

w2

+2ns1+εw
3
s

w

+
{ε− 1

2
n2 + 2n

}
· (1 + ε)s1−

2

n
+εw

2
s

w

−n(1 + ε)sεw2
s

−µ(1− ε)s1+εw
2
s

w
. (4.17)

Here the rightmost two summands are nonpositive, whereas by Young’s inequality and (4.3),

[(1− ε)n2 − 2n]s2−
2

n
+εw

3
s

w2
≤

1

8
n2s3−

2

n
+εw

4
s

w3
+ c9s

1− 2

n
+εw

2
s

w

and

2ns1+εw
3
s

w
≤

1

8
n2s3−

2

n
+εw

4
s

w3
+ 8s−1+ 2

n
+εww2

s

≤
1

8
n2s3−

2

n
+εw

4
s

w3
+ 8c1s

2

n
+εw2

s

with c9 :=
2
n2 [(1− ε)n2 − 2n]2. As furthermore our restriction ε ∈ (0, 1) ensures that

{ε− 1

2
n2 + 2n

}
· (1 + ε)s1−

2

n
+εw

2
s

w
≤ 4ns1−

2

n
+εw

2
s

w
,

from (4.17) we infer that at this maximum point,

zε =
{ 4

n2
s−2+ 2

n
w2

w2
s

}
·
1

4
n2s3−

2

n
+εw

4
s

w3

≤
{4c9
n2

+
16

n

}
·
w

s
+

32c1
n2

s−2+ 2

n
+εw2.

Once more using (4.3), we obtain that at (s0, t0),

zε ≤ c10 :=
{4c9
n2

+
16

n

}
· c1 +

32c31
n2

·max
{
R

2

n
+1 , 1

}
,

in light of our premises meaning that

zε ≤ c11 := max{c7, c8, c10} in (0, Rn)× (τ, T ) for all ε ∈ (0, 1).

Taking εց 0 and then T ր Tmax, upon a final application of (4.3) we conclude that

w2
s(s, t) ≤ c11 ·

w(s, t)

s
≤ c1c11 for all s ∈ (0, Rn) and any t ∈ (τ, Tmax),

which together with (4.5) establishes (4.2). �
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4.2 Boundedness for data less concentrated than constants. Proof of Proposition
1.2

In light of the latter, the boundedness statement from Proposition 1.2 becomes evident immediately:

Proof of Proposition 1.2. Rephrased in terms of the function w0 introduced in (2.4), (1.7) says
that

w0(s) ≤
µ

n
s for all s ∈ (0, Rn)

with µ := nm
ωnRn . Since [0, Rn]×[0,∞) ∋ (s, t) 7→ w(s, t) := µ

ns forms a classical solution of the parabolic
equation in (2.6) which, clearly, moreover satisfies w(0, t) = 0 = w(s, t) and w(Rn, t) = m

ωn
= w(Rn, t)

for all t ∈ (0, Tmax) with Tmax ∈ (0,∞] and w taken from Lemma 2.1 and (2.3), respectively, the
comparison principle in Lemma 5.1 states that

w(s, t) ≤
µ

n
s for all s ∈ (0, Rn) and t ∈ (0, Tmax).

Therefore, Lemma 4.1 applies to ensure that ws is bounded in (0, Rn)×(0, Tmax), via (2.5) and Lemma
2.1 meaning that in fact Tmax = ∞ and that (1.8) holds with some C > 0. �

4.3 Boundedness for data below a singular steady state. Proofs of Theorem 1.3
and Corollary 1.4

For initial mass distributions possibly exceeding those determined by constant densities, we will instead
attempt to bound w from above by certain members of the family of regular stationary supersolutions
to (2.6) which in a slightly more general form were already utilized in [6], and which are described in
the following.

Lemma 4.2 Let n ≥ 2 and b > 0. Then the function w defined by

w(s) :=
2s

s
2

n + b
, s ≥ 0, (4.18)

belongs to C1([0,∞)) ∩ C2((0,∞)) and satisfies ws(s) ≥ 0 for all s > 0 as well as

n2s2−
2

nwss(s) + nw(s)ws(s)− µsws(s) < 0 for all s > 0 (4.19)

whenever µ ≥ 0.

Proof. It is evident that w ∈ C2((0,∞)), and computing

ws(s) =
(2− 4

n)s
2

n + 2b

(s
2

n + b)2
, s > 0,

and

wss(s) =
−( 4n − 8

n2 )s
4

n
−1 − ( 4n + 8

n2 )bs
2

n
−1

(s
2

n + b)3
, s > 0,
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we see that ws actually belongs to C0([0,∞)) and is nonnegative, and that

n2s2−
2

nwss(s) + nw(s)ws(s)

=
1

(s
2

n + b)3
·

{
n2s2−

2

n ·
[
−
( 4

n
−

8

n2

)
s

4

n
−1 −

( 4

n
+

8

n2

)
bs

2

n
−1

]
+ n · 2s ·

[(
2−

4

n

)
s

2

n + 2b
]}

=
1

(s
2

n + b)3
·

{
− (4n− 8)s1+

2

n − (4n+ 8)bs+ (4n− 8)s1+
2

n + 4nbs

}

= −
8bs

(s
2

n + b)3
for all s > 0.

As b was assumed to be positive, this implies (4.19) for any choice of µ ≥ 0, again because ws ≥ 0. �

Indeed, using that the above functions w conveniently approximate the singular supersolution 0 ≤
s 7→ 2s1−

2

n of the first equation in (2.6), by means of a comparison argument applied to (2.6), and
again Lemma 4.1, we can achieve the following main step toward Theorem 1.3.

Lemma 4.3 Let n ≥ 2 and R > 0, and let u0 be such that (1.2) holds, and that the function w0 from
(2.4) satisfies

w0(s) < 2s1−
2

n for all s ∈ (0, Rn]. (4.20)

Then there exists C > 0 such that for w as in (2.3) we have

‖ws(·, t)‖L∞((0,Rn)) ≤ C for all t ∈ (0, Tmax). (4.21)

Proof. Due to (1.2), there exists c1 > 0 such that beyond (4.20) w0 satisfies

w0(s) ≤ c1s for all s ∈ (0, Rn), (4.22)

and fixing this value of c1 we let s0 ∈ (0, Rn) be suitably small such that

s0 ≤
( 1

c1

)n
2

. (4.23)

Thereupon, (4.20) warrants that

a := max
s∈[s0,Rn]

{
s−1+ 2

nw0(s)
}
< 2, (4.24)

which enables us to pick b > 0 small enough fulfilling

b ≤
1

c1
and b ≤

2− a

a
s

2

n
0 . (4.25)

Then (4.22), (4.23) and the first inequality in (4.25) guarantee that for small s,

s
2

n + b

2s
· w0(s) ≤

c1

2
s

2

n +
c1

2
b ≤

c1

2
s

2

n
0 +

c1

2
b ≤

c1

2
·
1

c1
+
c1

2
·
1

c1
= 1 for all s ∈ (0, s0),
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whereas for larger s, (4.24) and the second inequality in (4.25) ensure that

s
2

n + b

2s
· w0(s) ≤

s
2

n + b

2s
· as1−

2

n

=
a

2
+
ab

2
s−

2

n

≤
a

2
+
ab

2
s
− 2

n
0

≤
a

2
+
a

2
·
2− a

a
= 1 for all s ∈ [s0, R

n].

Therefore,

w0(s) ≤
2s

s
2

n + b
for all s ∈ [0, Rn],

so that an application of Lemma 4.2 to µ := nm
ωnRn shows that due to the comparison principle from

Lemma 5.1,

w(s, t) ≤
2s

s
2

n + b
for all s ∈ (0, Rn) and t ∈ (0, Tmax).

As this implies that

w(s, t)

s
≤

2

b
for all s ∈ (0, Rn) and t ∈ (0, Tmax),

we may in turn invoke Lemma 4.1 to verify (4.21) for some appropriately large C > 0. �

In fact, this immediately implies the following.

Proof of Theorem 1.3. In view of (1.9), the function w0 defined in (2.4) satisfies w0(s) < 2s1−
2

n

for all s ∈ (0, Rn). Therefore, Lemma 4.3 in conjunction with (2.5) and Lemma 2.1 readily implies
both the statement on global solvability and the claimed boundedness feature. �

At suitably small mass levels, through quite an elementary argument the latter entails that global
bounded solutions exist for all initial data even within some considerably large set of functions more
concentrated than the respective homogeneous equilibrium:

Proof of Corollary 1.4. As for the case n = 2, we only need to recall the well-known fact that
whenever u0 satisfies (1.2) as well as

∫
Ω u0 < 8π, the problem (1.1) is globally classically solvable by

a pair (u, v) for which u is bounded ([20]), so that in this planar setting the claim is obvious if we let
m⋆(2, R) := 8π for any R > 0.

When n ≥ 3, we let m⋆(n,R) := 2ωnR
n−2 for R > 0, and given m ∈ (0,m⋆(n,R)) we define

B :=

{
u0 ∈ C0

rad(Ω)

∣∣∣∣
∫

Ω
u0 = m,

mrn

Rn
<

∫

Br(0)
u0 < 2ωnr

n−2 for all r ∈ (0, R)

and u0(0) >
nm

ωnRn
> u0|∂Ω

}
.
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Then given u0 ∈ B we have
∫

Br(0)
u0 −

∫

Br(0)

nm

ωnRn
≥
mrn

Rn
− |Br(0)| ·

nm

ωnRn
= 0 for all r ∈ (0, R],

so that indeed u0 � m
|Ω| . Moreover, combining the inequality

∫
Br(0)

u0 < 2ωnr
n−2 for r ∈ (0, R) with

the fact that
∫
Ω u0 = m < m⋆(n,R) = 2ωnR

n shows that (1.9) is satisfied, whence Theorem 1.3
warrants global existence of a bounded classical solution for any such u0. To finally verify that B is
relatively open in {0 ≤ ϕ ∈ C0

rad(Ω) |
∫
Ω ϕ = m}, for fixed u0 ∈ B we may pick r1 ∈ (0, R) and

r2 ∈ (r1, R) such that with c1 := u0(0) and µ := nm
ωnRn we have c1 + 1 ≥ u0 > µ in Br1(0) and u0 < µ

in Ω \Br2(0), and that moreover

r1 ≤

√
2n

c1 + 2
and 2ωnr

n−2
2 > m, (4.26)

where the latter can indeed be achieved due to the fact that m < 2ωnR
n−2.

Thereafter, we may choose δ ∈ (0, 1) such that still u0 ≥ µ+ δ in Br1(0) and u0 ≤ µ− δ in Ω \Br2(0),
and that furthermore

(m+ δωn)r
n

n
≤

∫

Br(0)
u0 ≤ 2ωnr

n−2 −
δωnr

n

n
for all r ∈ [r1, r2], (4.27)

which is clearly possible by continuity of [0, R] ∋ r 7→
∫
Br(0)

u0.

Then whenever ũ0 ∈ C0
rad(Ω) is nonnegative and such that

∫
Ω ũ0 = m and ‖ũ0 − u0‖L∞(Ω) < δ, we

have ũ0 > u0 − δ ≥ (µ+ δ)− δ = µ in Br1(0) and ũ0 < u0 + δ ≤ (µ− δ) + δ = µ in Ω \Br2(0), whence
in particular also ũ0(0) > µ > ũ0|∂Ω as well as

∫

Br(0)
ũ0 > µ|Br(0)| =

mrn

Rn
for all r ∈ (0, r1) (4.28)

and
∫

Br(0)
ũ0 =

∫

Ω
ũ0 −

∫

Ω\Br(0)
ũ0 = m−

∫

Ω\Br(0)
ũ0 > m− µ · |Ω \Br(0)| =

mrn

Rn
for all r ∈ (r2, R].

(4.29)
Apart from that, (4.26) warrants that for all r ∈ (0, r1),

∫
Br(0)

ũ0

2ωnrn−2
<

∫
Br(0)

(u0 + δ)

2ωnrn−2
≤

(c1 + 2)|Br(0)|

2ωnrn−2
=

(c1 + 2)r2

2n
≤

(c1 + 2)r21
2n

≤ 1, (4.30)

and that ∫
Br(0)

ũ0

2ωnrn−2
≤

∫
Ω ũ0

2ωnrn−2
=

m

2ωnrn−2
< 1 for all r ∈ (r2, R]. (4.31)

For intermediate values of r, we use (4.27) to see that
∫

Br(0)
ũ0 >

∫

Br(0)
(u0 − δ)
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=

∫

Br(0)
u0 − δ|Br(0)|

≥
(m+ δωn)r

n

n
− δ|Br(0)|

=
mrn

n
for all r ∈ [r1, r2]

and
∫

Br(0)
ũ0 <

∫

Br(0)
(u0 + δ)

=

∫

Br(0)
u0 + δ|Br(0)|

≤ 2ωnr
n−2 −

δωnr
n

n
+ δ|Br(0)|

= 2ωnr
n−2 for all r ∈ [r1, r2],

which together with (4.28)-(4.31) shows that indeed any such ũ0 belongs to B, as intended. �

5 Appendix: A comparison principle for (2.6)

Lemma 5.1 Let L > 0 and T > 0, and suppose that w and w are two functions which belong to
C1([0, L]× [0, T )) and satisfy

ws(s, t) > 0 and w(s, t) > 0 for all s ∈ (0, L) and t ∈ (0, T )

as well as

w(·, t) ∈W
2,∞
loc ((0, L)) and w(·, t) ∈W

2,∞
loc ((0, L)) for all t ∈ (0, T ).

If for some constants a ≥ 0, α ∈ R, b ∈ R and c ∈ R we have

wt ≤ asαwss + bwws + cws and wt ≥ asαwss + bwws + cws for all t ∈ (0, T ) and a.e. s ∈ (0, L),

and if moreover

w(s, 0) ≤ w(s, 0) for all s ∈ (0, L)

as well as

w(0, t) ≤ w(0, t) and w(L, t) ≤ w(L, t) for all t ∈ (0, T ),

then

w(s, t) ≤ w(s, t) for all s ∈ [0, L] and t ∈ [0, T ).
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Proof. This directly follows upon application of [1, Lemma 5.1]. �
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Steady States. Birkhäuser, Basel/Boston/Berlin, 2007

[27] Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic-elliptic system of mathematical
biology. Adv. Differential Eq. 6, 21-50 (2001)

[28] Senba, T., Suzuki, T.: Weak solutions to a parabolic-elliptic system of chemotaxis.
J. Funct. Anal. 191, 17-51 (2002)

41



[29] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system
with subcritical sensitivity. J. Differential Eq. 252 (1), 692-715 (2012)

[30] Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse?
Math. Meth. Appl. Sci. 33, 12-24 (2010)

[31] Winkler, M: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel sys-
tem. J. Math. Pures Appl. 100, 748-767 (2013), arXiv:1112.4156v1

42


