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Abstract

PDE systems describing chemotaxis, the directed motion of organisms in response to a chemical sig-
nal, contain a cross-diffusive term which in many cases causes the unavailability of strong regularity
information. An important part of their mathematical analysis is thus concerned with their behav-
ior in situations where solutions are known to blow-up or where singularities cannot be excluded
a priori. In this note we review some results, as well as some underlying fundamental analytical
ideas, from the context of rigorous blow-up detection, and discuss some approaches addressing the
design of solution theories which are able to adequately cope with the possible destabilizing effects
of chemotactic cross-diffusion.
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1 Introduction

Chemotaxis systems have been fascinating mathematicians for decades. This is, on the one hand, due
to their outstanding relevance in biomathematical modeling at various levels of complexity. Indeed,
experimental findings have provided a considerable fund of scenarios in which the ability of individuals
to orient their motion in response to chemical gradients goes along with quite colorful collective behavior
of the respective population as a whole, with some typical examples ranging from the paradigmatic
processes of slime mold formation in Dictyostelium discoideum ([75]) and of pattern generation in
colonies of e.g. Salmonella typhimurium or also Bacillus subtilis ([153], [53, 95]), over invasion of tumor
cells into healthy tissue ([31]), to the emergence of plume-like aggregates in populations of Bacillus
subtilis suspended to sessile water drops ([44]), and to self-organization during embryonic development
([111]). The pursuit of understanding corresponding causal nexus, as in most biological contexts not
as unquestionably clear as in many situations e.g. in physics, has motivated substantial efforts not only
in the modeling literature, but in close connection to this also in associated analytical research.

On the other hand, however, significant part of the interest in chemotaxis models apparently originates
from various remarkable mathematical features that some of such systems either have rigorously been
proved to possess, or at least, e.g. by means of formal asymptotic analysis or also simulations, have
been conjectured to exhibit ([33], [25], [61], [134]). Maintaining evident links to aspects concerning
the structure-supporting potential of the respective particular model, representative findings in this
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direction report on taxis-driven instability of spatial homogeneity, partially even in the extreme sense
of spontaneous singularity formation, and on threshold effects relating the occurrence of such blow-up
phenomena to various system ingredients such as total population sizes or also model parameters, but
also on solution behavior near and even beyond singularities.

On this note, it seems worth remarking that the comprehension of explosion-generating features has
been forming essential parts in the analysis of further important evolution systems, such as the Navier—
Stokes, the Ginzburg-Landau or also nonlinear wave or Schrodinger equations (see e.g. [126], [30], [98],
[96] and the references therein).

The classical Keller-Segel system (|75]), widely accepted as a prototypical macroscopic model for self-
enhanced chemotaxis, in its fully parabolic version is given by

(1.1)

up = Au— V- (uVv),

vy = Av — v+ u.
Here, the population density of some chemotactically active species is denoted by w, and by v the
concentration of a signal substance towards higher concentrations of which the former directs its motion.
In close neighbourhoods of this system, a noticeable knowledge was available already in the early 2000s,
as exhaustively documented in the comprehensive surveys [65] and [66]. More recent advances in the
modeling literature, however, have been embedding taxis-type cross-diffusive interaction of the above
flavor, as forming the most characteristic ingredient in (1.1), into more involved evolution equations
capable of adequately describing more complex biological systems (|64], [110]). Partially in parallel
with this, considerable efforts in the field of corresponding analytical research have led to further
substantial enrichments with regard to methodological aspects, and thereby especially augmented the
knowledge on mathematical features of chemotactic cross-diffusion, both in more complex systems and
also in (1.1) itself.

The purpose of the present note consists in retracing some selected among these developments, where
in view of a meanwhile abundant literature concerned with the analysis of chemotaxis systems, we
concentrate on aspects related to the behavior of such systems in the mathematically most delicate
situation in which singularities are either known to arise, or at least cannot be a priori excluded. Even
in this reduced scope far from making any claim to be complete, we thereby intend to create some
basic impression about mathematical challenges linked to, but also about possible approaches toward
the understanding of chemotactic cross-diffusion, with one focus on describing some methods which
potentially allow for bridging gaps between an analysis of prototypical systems such as (1.1), and that
of models for taxis in more complex frameworks.

2 Taxis-driven singularity formation

The mathematically probably most striking implication of the particular interplay between nonlinear
cross-diffusion and chemoattractant production in systems of type (1.1) appears to consist in a resulting
ability to describe spontaneous generation of structures in the utmost sense of finite-time blow-up of
some solutions in two- and higher-dimensional settings. Results in this direction on the one hand
underline the appropriateness of Keller-Segel systems as models for taxis-driven aggregation (|1]); on
the other hand, they serve as a perpetual caveat inter alia indicating that cross-diffusion mechanisms
of the considered class may not simply destabilize spatial homogeneity in a sense frequently strived for



in attempts to model pattern formation ([101]), but that in fact they may do so to quite an extreme
extent not suitable for each application context (|64], [119]).

All the more, it thus seems favorable to create an adequately rich set of tools capable of deciding
whether or not blow-up may occur in chemotaxis systems, where we note that a huge majority of the
existing analytical literature is concerned with the development of techniques for asserting the absence
of such explosions under appropriate assumptions on the model ingredients such as the respective
system parameters or initial data. This may be viewed as reflecting the circumstance that while
classical and mainly functional analysis-based methods can well be applied in many cases in which the
cross-diffusive action is overbalanced by dissipative mechanisms and especially diffusion, the detection
of blow-up seems to require more subtle approaches due to the fact that in sharp contrast to classical
examples of explosion-enforcing reaction-diffusion interplay such as in the scalar equation u; = Au+u?,
p > 1, no explicit directional effect of the driving nonlinearity seems obvious in chemotaxis systems.

We thus refrain from attempting to report on the numerous relevant contributions addressing issues
of global classical solvability, boundedness and large time behavior in various types of chemotaxis
systems here (cf. [106], [49], as well as the survey [5] and references therein), and rather concentrate
on reviewing some techniques for rigorous blow-up detection.

2.1 Methods of detecting blow-up

2.1.1 Analysis via transformation of parabolic-elliptic chemotaxis systems to scalar parabolic
equations

Only more than two decades after the introduction of the model (1.1) by Keller and Segel in 1970, a
substantial breakthrough with regard to blow-up detection could be achieved in [72]| in the spatially
two- and later on in [102]| for the three-dimensional case, at least for the simplified parabolic-elliptic
variant given by

ur = Au— V- (uVv),

0=Av—p+u, (2.1)

u(+,0) = uo,

in a ball Q := Br(0) C R", R > 0, n > 2, where p := %‘ with m = fQ ug denotes the conserved
spatial average of the population density function u = u(z,t), and where both u and the concentration
v = v(z,t) of the attractive signal are supposed to satisfy homogeneous Neumann boundary conditions
on 99Q. For radially symmetric solutions (u,v) = (u(r,t),v(r,t)) in Q x (0,T"), namely, the substitution

3=

w(s,t) = /05 P tu(p, t)dp, s€[0,R"], te€0,T), (2.2)

can easily be seen to transform (2.1) into the scalar parabolic Dirichlet problem given by

{ wy = TIQSQ_%U)SS + nwwg — USws, se€ (0,R"), te (0,7, (2.3)

w(0,t) =0, w(R"t)=m t € (0,7).

wp,?

In this reformulation, the advective character of the cross-diffusion term from (2.1) is reflected in
the Burgers-type nonlinearity wws which, now carrying a comparatively clear directional information,
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counteracts the linear second-order contribution s*~ »wss which is diffusive in its nature, but degenerate

at s = 0.

Now a first and quite evident option to analyze the resulting interplay consists in applying methods
based on parabolic comparison. In fact, in the case n = 2 it was shown in [72] by means of an explicit
construction that for suitably large values of p one can find nonnegative initial data wg and Ty > 0
in such a way that (2.3) does not admit any classical solution w in (0, R?) x (0, T) with w(-,0) = wo
for which wy is bounded, hence implying nonexistence of a classical solution to the associated initial-
boundary value problem for (2.1) in © x (0,7}).

Alternatively, a contradictory argument can be designed by tracing the time evolution of suitably
chosen, possibly weighted, linear functionals of w. In said planar setting, for instance, the quantity

O(t) = /OR w(s,tyds,  tel0,T), (2.4)

satisfies ([13], [9])

R? Rao R?
P'(t) = 4/ sw55+2/ wws—u/ SWg
0 0 0

R2
= —4w(R% t) + 4R*w,(R?,t) + w?(R?,t) + u/ w — puR*w(R?,t)
0

R2
> —4w(R?%,t) + w?(R%,t) + u/ w — pR*w(R?, 1)
0

m 2m m?

= TRZ()—7—E fOI'aHtG(O,T),

because ws > 0 by nonnegativity of u. Here we note that

m R? m 2m m? 2m m
= . (— - 1) >0
8

—_— _— S =
TR? J, 27 T 42 T

whenever m > 8,

so that if, conversely, m > 87 is any prescribed number and ug = u(+,0) is such that fQ ug = m and
that its mass is sufficiently concentrated near the origin in the sense that

m 2m m?

AUl R

then assuming that (u,v) be global leads to the conclusion that ® should grow to 4+o0o exponentially
mR?
2r

fast as t — oo, which is impossible since ® <

This second way of exploiting (2.3) does not only sharpen the result from |72] so as to detect blow-up
at all mass levels m belonging to the range (8m,00) known to be optimal in this respect ([102]); it
moreover allows for various extensions, e.g. to higher-dimensional versions of (2.1) ([13]). Along with
corresponding knowledge on local existence and extensibility (|102]), this implies the following result
which has counterparts also in the limit case when € coincides e.g. with the whole plane R? ([10]).

Theorem 2.1 (/72], [102], [9]) Let R >0 and = Bgr C R", n > 2.
i) Ifn =2, then for any choice of m > 8w one can find radially symmetric ug € C°(Q) with Jouo =m
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and T > 0 such that (2.1) possesses a classical solution (u,v) in Q x (0,T) with (u(-,t),v(-,t)) being
radially symmetric for each t € (0,T), and with

lim sup |lu(-, )| oo () = oo (2.5)
t AT

it) If n >3, then for each m > 0 there exist radial initial data enforcing blow-up in the sense specified
in ).

Even though the results of Theorem 2.1 have later on not only been re-discovered but actually even
been considerably extended by means of the method to be described below, a substantial merit of the
above approach is due to its potential to allow for addressing yet more subtle questions e.g. related
to the question which initial data enforce blow-up, and apart from that due to its applicability to
a considerable variety of models in which chemotactic cross-diffusion interacts with diffusion, and
possibly even further mechanisms, in a possibly more intricate manner.

For instance, a refined analysis of the blow-up enforcing potential in (2.1) on the basis of (2.3) can be
found in [149], where the occurrence of blow-up in (2.1) was related to the extent to which the initial
data are concentrated near the origin, where for nonnegative radial functions g and wu from L!(£2)
we say that up is more concentrated than wy if

/ uy > / U for all r € (0, R), (2.6)
Br(0) r(0)

and then write %y > uy. Then the following result reveals the existence of a critical mass level, unlike
the number 87 in Theorem 2.1 also present in higher-dimensional cases, that distinguishes between
regions of stability of spatially homogeneous steady states in (2.1) on the one hand, and regions within
which these equilibria exhibit quite a drastic instability feature:

Theorem 2.2 (/149/) Letn>2, R> 0 and Q = Br(0). Then

— 1
me(n, R) := inf {m >0 ' For all radial 0 < ug € C°(Q) with ug = \Q]/ ug = % but ug # const.,
Q

(2.1) admits a solution blowing up in finite time}

is well-defined and positive.

By its mere definition, this critical mass thus marks a genuine borderline between supercritical mass
levels at which any, even arbitrarily small, concentration-increasing perturbation of the homogeneous
steady state will lead to finite-time blow-up in (2.1), and a corresponding subcritical range of mass
values at which this extreme instability property is absent.

Apart from that, detections of singularity formation through equivalent scalar reformulations based
on (2.2) have been achieved in several chemotaxis systems more complex than (2.1). Examples in this
direction include the occurrence of finite-time blow-up in variants of (2.1) involving growth restric-
tions of logistic type ([51], [142], [89], [147]), the possibility of attaining infinite or also certain finite
but singular population density values in quasilinear modifications of (2.1) accounting for nonlinear
diffusion and cross-diffusion ([36], [42], [152], [139]), and also the discovery of infinite-time blow-up in



a three-component extension of (2.1) in which signal production occurs according to a certain more
indirect mechanism than in (2.1) ([132]).

To illustrate a possible flavor of increase in mathematical complexity arising in the course of such
generalizations of (2.1), let us briefly recall a recent development concerning the so-called flux-limited
Keller-Segel system (|[3])

=V (N ) _ S uVe
ur =V (s/u2+|Vu\2) XV (\/1+\V1}|2>’ zef t>0, (27)
0=Av — pu+u,

once more with p = ﬁ Jou(-,0), and with x > 0. When again considered together with no-flux

boundary conditions in balls = Br(0) C R™, n > 1, along radial trajectories this system transforms
to a Dirichlet problem, in the flavor of (2.3), for the scalar equation

2_2
nWeWgsg +nyx- (w—

w
s ©
wt:nQ. n -
2 2.2—2 9 2_
\/ws+n3 " Wgs \/1+8n 2<’U)—HS>

s) - ws

) (2.8)

n

which now contains a diffusion operator that is multiply degenerate, namely not only at s = 0, but
also near zeroes of w, and large values of wgss. Despite this, the corresponding parabolic operator
can be shown to firstly admit a comparison principle, and to secondly possess suitably rich families
of exploding subsolutions within appropriate ranges. Thereby quite a complete picture with regard to
the occurrence of blow-up can be drawn:

Theorem 2.3 ([6/, [7]) Let Q := Bgr(0) C R"™ with some R > 0.
i) Assume that 0 2 ug € C°(Q) is radial, and that either

n>2 and x < 1, or n=1 x>0 and / uy < Me, (2.9)
Q

where in the case n = 1 we have set

L if x > 1,
me = Xt (2.10)
—+00 if x < 1.

Then the no-flux initial-boundary value problem for (2.7) with u|i—o = wo possesses a unique global
bounded classical solution.

i1) Suppose that x > 1, and that

{ m > me ifn=1, (2.11)

m > 0 is arbitrary ifn>2,

where m, is as in (2.10). Then there exists a radial nonnegative function ug € C°(Q) such that the
corresponding solution blows up in finite time in the sense that (2.5) holds.



2.1.2 Moment-based blow-up detection

With regard to blow-up detection in parabolic-elliptic chemotaxis systems, significant progress could be
achieved through a second technique, due to [16] and [102], which for radial solutions can be regarded as
a relative of the approach sketched above in the context of (2.4), but which has the striking advantage
that within certain classes of systems, including (2.1) and also its variant given by

{ w = Au—V - (uVv), (2.12)

0=Av— kv + u,

for k > 0, also nonradial solutions can be dealt with ([103]). The underlying idea can most plainly be
seen in the Cauchy problem for (2.12) with £ = 0 when posed in all of R? as the spatial domain, where
for uniqueness purposes we define v, in dependence on u, through convolution with the Newtonian
kernel according to

1

v(x,t) = "o | In|z — ylu(y, t)dy, xeR%te(0,T), (2.13)

within the maximal time interval (0,T") of existence. Then

1 r—y

Vo(z,t) = — u(y, t)dy, reR?te(0,T),

2 R2 |$*?/|2

and hence testing the first equation in (2.12) by |z|?, and assuming suitable spatial decay properties
of u, formally leads to the identity

d

o7 |;E|2udx—/ uA|$|2da:+/ uVv - V|z|*dz
2

= 4/ udx — / / 2 (:c,t)u(y,t)dyd$ for t € (0, 7). (2.14)
R2 R2 JR? |~’C—3/|

Here a simple but essential observation confirms that due to an evident symmetry property in the
rightmost integral we have

/R2 /R2 iz — y|2 (x,t)u(y,t)dydx = % . {/}1@2 u(x,t)dx}2 for t € (0,7), (2.15)

whence abbreviating m := fR2 u(x,0)dx, due to mass conservation we obtain that

2
(jt/R2 |z|?udz = 4m — Z%r for t € (0,7),

and thus, by nonnegativity of u, assuming finiteness of the second moment fR2 |z|?u(z, 0)dz we conclude
that (u,v) cannot exist globally whenever m > 8x. In fact, this argument is at the core of corresponding
statements on unboundedness, thereby leading to quite a comprehensive picture on the dichotomy
between global solvability and blow-up in this simplified Keller-Segel system on the entire plane (|23,
[22]), and on R" with n > 3 (|27]), and also in (2.12) with x > 0 on R? ([76]).

When (2.12) is posed along with e.g. homogeneous Neumann boundary conditions for both v and v



in smoothly bounded domains, and hence necessarily with x > 0, (2.13) needs to be replaced with a
respectively modified representation formula involving Green’s function for the associated Helmholtz
operator. Together with further adaptations due to suitable localization procedures, this implies the
appearance of correction terms in (2.14) which, however, in the seminal work [103] could adequately be
coped with; together with a complementing statement on global solvability implicitly obtained in [106]
as a by-product of the analysis of the fully parabolic analogue (1.1), this provides essentially complete
knowledge also in this case:

Theorem 2.4 ([103], [106], [9], [124]) Let Q C R? be a bounded domain with smooth boundary,
and let k = 1.

i) For any choice of m > 4w there exists some nonnegative ug € C°(Q) such that Jo uo =m and that
the Neumann problem for (2.12) admits a classical solution (u,v) in Q x (0,T) with u|;—o = ug which
blows up at T € (0,00) in the sense that (2.5) holds.

it) If up € COQ) is nonnegative and such that [quo < 4, then the Neumann problem for (2.12)
possesses a global bounded classical solution with u|—o = uy.

In view of the central role of the symmetry argument around (2.15) in the above reasoning, it is
not surprising that the potential for extensions of this method to further, and especially to more
complex, chemotaxis systems appears to be much more limited than that of the approaches in Section
2.1.1. Nevertheless, not only versions of (2.12) either posed in higher-dimensional domains, or together
with different types of boundary conditions are accessible to techniques of this flavor ([123], [8]), but
also extensions of (2.12) either involving two species attracted by a jointly produced chemoattractant
([12], [48], [159]), or a second chemical that repels cells (|77], [128], [47], [87]), or also some systems
accounting for two-species chemotactic interaction with two chemicals ([157], [90]), as well as even
some parabolic-elliptic chemotaxis systems containing variants in their cross-diffusion terms, such as
the Keller-Segel system with logarithmic sensitivity in which —V-(uVv) is replaced with —xV-(uV Inv)
for suitably large x > 0 in three- or higher-dimensional domains ([104]). As shown in [15] and [17], for
the simple version of (2.12) with @ = R"™, n > 2, and k = 0, even some more general functionals of
the form [ (z,t)u(z,t)dz can be used to derive sufficient criteria, in particular involving only local
concentration properties of the initial data, for blow-up.

2.1.3 Energy-based blow-up arguments for parabolic systems I: Detecting unbounded-
ness

Fully parabolic chemotaxis systems substantially differ from their parabolic-elliptic variants due to the
circumstance that the cross-diffusive interaction therein involves a certain memory, that is, a temporally
nonlocal influence of v on v in addition to spatially nonlocal mechanisms such as that expressed through
(2.13); already in the prototypical system (1.1) with its comparatively simple structure of cross-diffusion
and signal evolution, representing v in terms of v via Duhamel formulae for the heat equation leads to
a considerably complex and hence doubly nonlocal parabolic equation for u which, to the best of our
knowledge, has nowhere successfully been made accessible to methods in the flavor of those discussed
in the previous two sections.

It can thus be viewed as a fortunate circumstance that independently from the above, (1.1) and
some of its close relatives possess a certain global dissipative structure in that they enjoy meaningful



Lyapunov-type properties. In the context of (1.1), this becomes manifest in the energy inequality

d
ﬁ}"(u,v) = —D(u,v) <0, (2.16)
with
1 o 1 2
Flu,v) =z [ [Vl + - [ v = [ wv+ [ ulnu (2.17)
2 Ja 2 Ja 0 Q
and

Vu 2
D(u, v ::/1)2+/ ‘——\/EVU‘ , 2.18
wo):= [ i+ | |2 (218)
in which the nonincreasing functional F may potentially be unbounded from below due to the ap-

pearance of the negative contribution — fQ uv therein. In fact, this observation can be viewed as a
motivation to pursue the following basic strategy for discovering unboundedness phenomena:

Step 1. Show that bounded solutions approach equilibria in the sense that whenever (u,v) is a global
solution which is bounded, there exist (¢;);en C (0,00) and a solution (ueo,Vs) of the associated
steady-state system such that ¢; = oo and (u(-,¢;),v(:,tj)) = (Uoo, Vo) in some appropriate topology
as j — 00.

Step 2. Derive a lower bound for all conceivable steady-state energies by finding K > 0 with the
property that every steady state (uoo, Vo) compatible with Step 1 satisfies F (oo, Vs0) > — K.

Step 8. Verify the existence of low-energy initial data by constructing functions ug and vy admissible
for the argument in Step 1 such that F(ugp,v9) < —K. Then due to (2.16), the solution emanating
from (ug,vg) cannot be global and bounded.

Here it should be noted that if (1.1) is considered along with no-flux boundary conditions for v and v in
bounded domains in R”, then already the the presence of the family ((a,a))q,>0 of constant equilibria
implies that the constant K in Step 2 cannot be chosen in a way completely independent of the initial
data. Fortunately, however, in various important cases one can at least achieve a dependence of K on
the initial data which, e.g. by involving u(-,0) only through it total mass [, u(-,0), is mild enough so
as to indeed allow a consistent application of all three of the above steps.

For instance, a reasoning of this type indeed reveals the occurrence of unbounded solutions to the two-
dimensional version of (1.1) under an essentially optimal condition on the level of the total population
mass:

Theorem 2.5 ([67], [106]) i) Suppose that Q C R? is simply connected and m € (4w, 00) \ {4k |
k € N}. Then there exist initial data 0 < ug € C®(Q) and 0 < vg € C°(Q) with [, uo = m, such
that for some T € (0, 00], the no-flux initial-boundary value problem for (1.1) with (u,v)|i=0 = (uo, vo)
possesses a classical solution on Q x (0,T) whose component u is unbounded.

i) Whenever Q C R? is a bounded domain with smooth boundary and (ug,ve) € (W>(Q))? is such
that [uo < 4w, the Neumann problem for (1.1) admits a global classical solution with (u,v)|i—o =
(ug,vg) for which both w and v are bounded in Q x (0, 00).



A further refinement of this approach can be employed to reveal unboundedness phenomena also in
the quasilinear extension of (1.1) given by

ur =V - (D(uw)Vu) = V- (S(u)Vo) in Q x (0,7),

vw=Av—v+u in Q x (0,7), (2.19)
%207%:0 on 00 x (0,7T), '
’LL(,O) = Uo, ’U(-,O) = Vo in (),

which for various particular choices of the diffusion and cross-diffusion rates appears in refined models
for chemotactic migration, e.g. in the presence of saturation effects due to the finite volume of cells
(64], [4], [125]).

Indeed, (2.19) shares with (1.1) an energy-type property similar to that in (2.16), (2.17) and (2.18), and
it turns out that the above overall strategy can successfully be pursued in essentially all cases in which
the corresponding energy functional F is unbounded from below. This becomes most transparent in
the particular framework determined by the prototypical choices

D(s):=(s+ 1)’ and S(s):=s(s+ 1)1, s> 0, (2.20)

in which a corresponding analysis leads to a picture that with regard to the occurrence of unbounded-
ness phenomena, in dependence on the parameters p € R and ¢ € R therein, is already quite complete
at least in spatially radial settings:

Theorem 2.6 (/68/, [141], [129]) i) IfQ = Bgr(0) C R™ withn > 2 and R > 0, and if (2.20) holds
with some p € R and g € R such that p < g+1— %, then for each m > 0 there exist radially symmetric

inatial data 0 < ug € C°(Q) with [uo = m and 0 < vg € C°(Q) such that with some T € (0, 0],
(2.19)-(2.20) has a classical solution (u,v) which satisfies (2.5).

it) Let n > 2 and Q@ C R™ be a bounded domain with smooth boundary, and assume (2.20) with
p € R and q € R fulfillingp > g+ 1 — % Then for any choice of nonnegative ug € WH(Q) and
vg € WH(Q), the problem (2.19)-(2.20) with T = oo admits aclassical solution for which u and v are
bounded.

While through its nature this approach is not capable of allowing for a decision whether the respective
blow-up time is finite or infinite, a particular strength becomes salient in cases in which global solutions
are known to exist, and thus unboundedness, if at all, can only occur in the sense of infinite-time blow-

up.

Theorem 2.7 (/39/, [41], [151]) Let Q@ = Bgr(0) C R™ with n > 2 and R > 0, and suppose that
(2.20) holds with some p € R and ¢ <0 such thatp < g+ 1 — % Then there exist radially symmetric
nonnegative initial data (ug,vo) € (W1 (Q))? such that (2.19)-(2.20) admits a global classical solution
(u,v) on Q x (0,00) for which u is unbounded.

On the basis of this strategy, unbounded solutions have actually been found under much more general
assumptions on D and S in (2.19), in particular including diffusion rates which decay exponentially
or even more rapidly at large population densities ([141]); in [146], this led to the detection of global
unbounded solutions in the flavor of Theorem 2.7 for (2.19) with D(s) = e™#* and S(s) = se™*, s > 0,
with arbitrary 5 > 0 and suitably chosen o > 0. Extensions e.g. address Keller-Segel systems involving
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two chemical stimuli ([52], [73]) or degenerate diffusion operators of porous medium type ([70]), and
also the occurrence of infinite-time blow-up in a parabolic-elliptic analogue of (2.19)-(2.20) in which
Step 3 from the above list is considerably complicated due to the lack of freedom in the choice of the
second component of low-energy initial data ([82]).

2.1.4 Energy-based blow-up arguments for parabolic systems II: Finite-time blow-up

A second option to make use of (2.16), in frameworks of energy functionals F which are unbounded
from below, consists in relating F to the dissipation rate D via appropriate functional inequalities which
are such that their application to (2.16) leads to superlinearly forced ordinary differential inequalities
for —F. In the simplest case of (1.1), this would, for instance, be accomplished if the negative part of
F could be estimated in terms of an essentially sublinear function of D, e.g. in that

/qugc- {HAU—U—I—U‘ iQ(Q)—i—l} (2.21)

with some 6 € (0,1), and with some C' > 0 only depending on v and v through quantities which are
well controllable through the initial conditions, such as fQ u(+,0), for instance.

178
2@  1yu

Vv‘

In the particular context of radial solutions to (1.1) and, more generally, for suitable supercritical
versions of (2.19)-(2.20), in three- and higher-dimensional cases the corresponding and quite evident
challenges, mainly due to the coupling of u and v in both expressions on the right of (2.21), this
strategy can indeed be pursued successfully. In fact, at their core relying on (2.21) and an accordingly
modified variant adapted to the nonlinearities in (2.19)-(2.20), three findings from the past few years
in summary revealed the following.

Theorem 2.8 (/143/, [39], [41], [40]) Let Q@ = Br(0) C R™ with n > 2 and R > 0, and suppose
that (2.20) holds with some p € R and q > 1 such that p < ¢+ 1 — % Then there exist T > 0
and nonnegative initial data ug € WH°(Q) and vg € WH°(Q) with the property that (2.19)-(2.20)
possesses a classical solution (u,v) which blows up at t =T in the sense that (2.5) holds.

This approach even extends to the critical case of n = 2, p = ¢ = 1, i.e. (1.1), although the necessary
refinement of (2.21) becomes more technical ([99]). Furthermore, applications of methods of this type
to systems involving degenerate diffusion operators can be found in [84] and in [58], and even extensions
to some two-species chemotaxis systems ([86]) and to certain systems systems simultaneously involving
an attractive and repulsive taxis mechanisms ([88]) are possible. In the particular one-dimensional case
in which favorable Sobolev embedding inequalities can be relied on, certain versions of (2.19), with
S = id and diffusion rates decaying suitably fast at large population densities, are accessible to even
slightly more direct arguments revealing finite-time blow-up under essentially optimal assumptions
(371, [26]).

An interesting problem, apparently left open by all precedents in this direction, consists in determining
how far methods of this flavor can be applied to — and, in particular, how far functional inequalities of
the form in (2.21) can continue to hold for — nonradial solutions of chemotaxis systems.

2.2 Qualitative analysis near blow-up

As, according to the above discussions, already the mere detection of exploding solutions goes along

with significant challenges that could so far be overcome only in a moderate number of cases, it may
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not be too surprising that knowledge beyond this, and especially on qualitative aspects of blow-up
mechanisms, is yet limited to few particular situations. A fortiori, it is remarkable that quite a precise
description of a possible blow-up mechanism in a fully parabolic system of the form (1.1) could be
achieved in [63] at least for one particular solution that could be constructed by means of a method
based on matching asymptotic expansions through a topological argument; an analogue for (2.1) can
be found in [62].

A certain stability property of this mechanism has been asserted in [113] (cf. also [54] for a related
result) the outcome of which we state here in a form slightly weaker than the one actually proved there,
in order to avoid abundant notation. We also remark that similar to this, also a certain mechanism
of infinite-time concentration in a the mass-critical version of (2.1) in R? with ;= 0 can be shown to
enjoy some stability property of a comparable flavor ([54]).

Theorem 2.9 Lete > 0. Then there exists an uncountable family S C (C°(R?)N LY (R?)) x (CH(R?)N
WL2(R?)) with the property that each (ug,vo) € S is such that ug > 0 and vg < 0 in R2, that
fR2 ug < 8w + ¢, and that with some T > 0, the problem

ur = Au—V - (uVo) in R? x (0,T),
v = Av+u in R? x (0,7T), (2.22)
U($,0) = U(](x), U(LI},O) = ’U(](ﬂl’), T e Rza

possesses a classical solution (u,v) which blows up at time T in the sense that

1
(1)

u(z,t) = (Q+9) (i,t) for allx € R? and t € (0,T)

A(t)
with some function 6 € L*>((0,T); X) fulfilling ||0(-,t)||x — 0 ast T, where

8
Q(z) == RESFRE

ZERQ,

and
[In(T—1)|
At) = VT —te V2 O e 0,7,
with some ¢ € L>((0,T)). Here, X denotes the space of measurable functions ¢ on R? with finite
1
norm lgllx = { faa L+ 210G + fon(L+ (&)Wl + fpa?} .

Results on spatial blow-up asymptotics for more general classes of initial data, and actually addressing
the genuinely original system (1.1) in bounded planar domains, can be found in [105] and in [57], where
regardless of the question of their existence, certain classes of solutions blowing up in finite time are
analyzed, inter alia leading to the conclusion that such solutions approach finite linear combinations
of Dirac distributions near their explosion times (cf. also [117]). A more comprehensive picture was
obtained in [116] for the parabolic-elliptic variant (2.12), where a similar result on Dirac mass formation,
as well as on finiteness of blow-up points, was derived without substantial restrictions. Even in the
mass critical case, in which solutions to a parabolic-elliptic relative of (2.22) exist globally but blow
up in infinite time either in the context of an associated Cauchy problem in R?, or also in the radially
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symmetric framework of a no-flux-Dirichlet problem in a disk, it is known that the spatial profile near
the corresponding blow-up time 7" = oo is essentially dictated by Dirac distributions ([14], [108], [74],
[22]).

In sharp contrast to this, in higher-dimensional domains the spatial behavior near blow-up rather

seems determined by integrable profiles, as the following result concerned with radial solutions to (2.1)
indicates:

Theorem 2.10 ([118]) Letn >3, R > 0 and Q = Br(0) C R", and suppose that 0 < ug € C°(2)
is radially symmetric and such that the solution (u,v) of the Neumann problem for (2.1) blows up at
T € (0,00) in the sense that (2.5) holds. Then there exist C > 0 and U € L*(Q) such that

C
u(z,t) < EE forallx € Q and t € (0,T), (2.23)

and that
u(-,t) = U in LY(Q) ast S T.
If, furthermore, ug = ug(r) belongs to C*(Q) with r™ tug,(r) +uo(r) [y (uo(s) — p)s" ds > 0 for all
r € (0,R), then there exist ¢ > 0 and n € (0, R) such that
U) > —  forallz € B,\{0}.

||

Apart from asserting integrability of blow-up profiles, this substantiates a noticeable influence of the
convective term —Vu - Vv marking the apparently essential difference between (2.1), when rewritten
in the form

up = Au+u® — Vu- Vo — pu (2.24)

together with the second equation therein, and the corresponding semilinear heat equation
up = Au + u?. (2.25)

Indeed, it is known from [60], [133] and [97] that if n < 6, then for any radial and radially decreasing
solution of (2.25) the associated blowup profile satisfies

|log |||

U(x) ~ 16
(:U) ’.’E’Q )

z — 0,

and that some radial decreasing solutions with this behavior even exist for all n > 1 (2], [92]). Theorem
2.10 thus quantitatively confirms a mathematically somewhat subtle spreading effect of said convective
term in (2.24) in the sense of enforcing blow-up profiles less singular than those for (2.25). For the
fully parabolic problem (1.1), the respective knowledge seems yet much less developed, apparently
reducing to the availability of an upper estimate of the form in (2.23) for radial solutions in three- and
higher-dimensional balls, but with a significantly more singular expression on the corresponding right
hand side ([150]), and to a statement on the lack of certain uniform integrability properties of general
unbounded trajectories (|28]; cf. also [50] for a related result on the quasilinear system (2.19)).

Beyond the understanding of spatial behavior, also aspects related to the speed at which blow-up
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occurs have aroused interest among mathematicians. For instance, the Cauchy problem in R™ n > 3,
for (2.1) is known to possess exploding solutions which are self-similar (in contrast to the solutions in
n = 2 from [62]) and hence their blow-up is of "type I" in that it occurs at a rate essentially determined
by that arising in the ordinary differential equation y/(t) = y?(t) associated with (2.24) ([59], [114],
[56], [107], [122], [55]). When n > 11, however, also blow-up at faster rates, and hence of "type II", is
possible ([115]). For a variant of (1.1) involving porous medium-type diffusion in bounded domains, it
is known that finite-time blow-up must be of type II (|71]).

3 Analysis of taxis systems in situations of low regularity information

In light of the previous sections, the analysis of any chemotaxis system apparently needs to adequately
cope with potentially substantial destabilizing effects of chemotactic cross-diffusion. In particular, this
implies restrictions to solution theories especially in frameworks more complex than those particular
ones that allow for approaches of the above types. The purpose of this section is to report on some
recent developments in this direction.

3.1 Natural weak solution frameworks

In several application-relevant chemotaxis systems some basic a priori regularity information can be
obtained as consequences of certain global, and in many cases quite elementary, dissipative properties.
For example, passing over from (1.1) to the Neumann problem in bounded domains 2 C R™ for the
logistic Keller-Segel system given by

3.1
v = Av — v+ u, (3:1)

{ ur = Au— V- (uVv) + ku — Au?,
with k € R and A > 0, on the one hand destroys the gradient-like feature of (1.1) expressed through
(2.16), but on the other hand, through a simple integration of the first equation in (3.1), this model
modification brings about a spatio-temporal L? estimate for u. Unlike in favorable situations, how-
ever, such fundamental properties may be insufficient to launch appropriate bootstrap procedures
finally leading to estimates in suitable spaces of, say, classical solutions. In the particular problem
(3.1), for instance, such improvements of regularity information seem possible only when either n < 2,
or n > 3 and A > 0 is adequately large; accordingly, available results on global solvability, and hence
of blow-up suppression, have so far been restricted to such constellations ([109], [154], [140]).

In order to establish some theory also in less favorable settings not covered by such approaches, an
increasing number of studies resorts to certain generalized solution concepts involving regularity re-
quirements below those needed for classical solvability, which are mild enough so as to be satisfied due
to the respectively available basic solution properties. In fortunate cases, a subsequent analysis may
reveal further properties of accordingly obtained generalized solutions, e.g. in the sense of statements
on dominance of dissipation at least in their large time behavior.

In the particular framework of (3.1) with arbitrarily small A > 0, applying said basic L? information
to globally existing solutions of suitably regularized approximate systems, along with an implication
thereof for the regularity of the respective second solution components, allows for corresponding con-
clusions already in quite a natural framework of weak solvability:
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Theorem 3.1 ([79]) Let n > 3 and Q C R™ be a bounded domain with smooth boundary, and let
k € R and A\ > 0. Then for any choice of 0 < ug € C°(Q) and 0 < vy € WH*(Q) one can find
nonnegative functions

u € L((0,00); L1 (Q2)) N L, (2 x [0,00))  and

v e 12,10, 00 WH2(0)

such that for all ¢ € C§°(Q x [0,00)) fulfilling ('D =0 on 02 x (0,00),

—/OOO/QU%—/QUOSO / /uAgo—l—/ /UVU Vap—&-/ /f@u—)\u (3.2)

and that for each p € C§ (2 x [0, 00)),

—/Ooo/gvsot—évow(wo)Z—/OOO/QVU-VsO—/OOO/Qer/OOO/Quw (3.3)

Furthermore, if n = 3 and Q is convex, then for every A > 0 there exists kg > 0 such that if k < ko,
then for some T > 0, u and v belong to C*1(Q x (T, 0)) and solve the Neumann problem for (3.1) in
Q x (T,00) in the classical sense.

In some relatives of (1.1), even nontrivial Lyapunov functionals are available. Simple examples for such
situations are given by the Neumann problems in bounded domains €2 C R™ for the chemorepulsion
system

{ up = Au+ V- (uVv), (3.4)

=Av—v+u,
describing populations of individuals driven off by a substance secreted by themselves, and for the

nutrient taxis system

{ ur = Au— V- (uVv), (3.5)

v = Av — uw,
forming a prototypical model for attractive chemotactic motion toward a chemical signal which, unlike

in all previously considered systems, is consumed, rather than produced, by individuals.

The system (3.4) formally allows for an energy inequality of the form

jt{/ulnu—i— /\V 2} /NU‘Q /]A 2 /|Vv\2<0 (3.6)

whereas for suitably smooth solutions of (3.5) one can similarly derive the identity

d 1 [ |Vv|? |Vul? 9 o 1L fu_ o 1 10|Vo|?
— 1 = D?1 | - =— | = 3.7
dt{/ﬁunu—i-2/Q ” }—FQ ” +/Qv] nv[+2/QU|Vv\ 2/{9{)@ 5 (3.7)

in which the integral on the right-hand side can be seen to be nonpositive when 2 is convex. In parallel
to the situation in (3.1), in both these problems correspondingly obtained basic a priori estimates can
indeed be used as a starting point for iterative regularity arguments in the case n = 2, thus leading
to statements on global existence of bounded solutions for all reasonably regular initial data in planar
domains, at least if additionally € is assumed to be convex when (3.5) is considered ([38], [130]). In
three-dimensional cases, however, resorting to weak solution concepts seems in order:
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Theorem 3.2 (/38], [130]) Let Q C R? be a bounded domain with smooth boundary, and let 0 <
ug € WH®(Q) and 0 < vg € WH2(Q).

i) There exist nonnegative functions

([0, 00); L2(2)) and

{ u € L®((0, 00); L'(2)) N L} (3.8)

loc
v € L>([0,00); WH2(Q))

such that (u,v) forms a weak solution of the Neumann problem for (3.4) with (u,v)|i=o = (uo,v0) in

the sense that (3.3) and
/ /wpt /uocp / /Vu'Vgo—/ /qu-ch
0 Q 0 Q

hold for each ¢ € C§°(Q x [0,00)).

i) If Q is convex and vo > 0 in Q, then one can find nonnegative functions fulfilling (3.8) as well as
v € L(Q2 x (0,00)), which are such that (u,v) solves the corresponding no-fluz initial-boundary value
problem for (3.5) in the sense that for every ¢ € C§°(Q2 x [0,00)) we have

—/Ooo/ﬂugot—/guw(.,()):—/Ooo/gzvu-vw/ooo/guw.w
—/Ooo/ﬂvnpt—/ﬂvogo(-,O) / /Vv Vo — / /uvgo (3.9)

Moreover, one can find T > 0 such that (u,v) € (C*Y(Qx (T,0)))? and that (u,v) solves the respective
boundary value problem for (3.5) classically in Q x (T, 00).

and

Approaches of this flavor have successfully been applied in the derivation of results on global weak
solvability, and partially even on eventual smoothness, also for certain classes of considerably more
complex models in which chemotaxis systems, both of type (1.1) and of the form in (3.5), are coupled
to the Stokes or the Navier-Stokes system from fluid mechanics in order to account for interplay with
liquid environments (e.g. [93]), or also to further mechanisms such as haptotactic interaction (e.g.
[127]); some recent results on such chemotaxis-fluid or chemotaxis-haptotaxis systems can be found in
[18], [80], [100], [20], [160], [24], [91], [120], [5].

Apart from that, weak solution concepts form natural analytical frameworks in contexts in which
regularity properties of solutions are limited due to degeneracies such as present in systems involving
porous medium type cell diffusion ([81], [69], [46], [158], [29], [35], [34], [138], [131], [121], [85], [112],

[32])-

3.2 Solution concepts based on renormalization. Analysis beyond singularities

It can broadly be observed that especially when further developing (1.1) and its relatives toward
more complex models, situations in which energy-like structures such as those expressed in (2.16),
(3.6) or also (3.7) are present should actually be viewed as fortunate exceptions. In fact, in most
among the more realistic macroscopic models for tactic migration, beyond evident mass identities
further fundamental global properties, witnessing some conservation or dissipation in a nontrivial sense
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comparable to those in said examples, seem to be lacking. In order to nevertheless open perspectives
for the advancement of appropriate solution theories in such cases of particularly poor regularity
information, some part of the more recent literature considers solutions within frameworks yet weaker
than those natural ones underlying the studies mentioned in the previous section.

In order to substantiate the basic ideas forming the core of some approaches toward such further
generalizations, let us consider the variant of the nutrient taxis system (3.5) given by

{ up = Au =V - (ux(z, u,v) - Vo), (3.10)

v = Av — uw,

in which according to refined modeling approaches, the sensitivity function y is allowed to be matrix-
valued, and to hence possibly include rotational flux components which, in line with experimental
observations, seems to significantly influence bacterial motion near boundaries of their, usually liquid,
environment ([155]). Now the fragility of energy structures becomes manifest through the observation
that even when y is assumed to be constant, as soon as this matrix contains off-diagonal entries it
seems that neither (3.7) nor any no meaningful analogue continues to be available. In consequence,
any analysis of (3.10) apparently needs to be based on the very poor remaining a priori information
that at a formal level is expressed in the three inequalities

o0 1 Vu|?
v < Jvol| Lo () /0 /Q]Vv]2 < 2/91)3 and / / 1|L+‘1 5 < (3.11)

with C' := 2 [, up + % Jo v3, (ug,v0) = (u,v)|t=0, which with regard to u, in particular, does not
go substantially beyond the L' boundedness features already known from mass conservation.

One conceivable strategy for a possible way out consists in resorting to a concept involving suitable
renormalization of solutions in the style of classical precedents, e.g. from the context of Boltzmann
equations ([43]), but augmented by an additional idea to overcome possibly lacking compactness fea-
tures. To make this more precise, let us observe that the crucial first component of a supposedly existing
smooth solution to (3.10), when posed e.g. along with no-flux boundary conditions in a bounded domain
Q C R, satisfies

[T [~ [t = [T [owap- [ [ srware
+/OOO/QU¢”(U,)VU- (X(x,u,v) . Vv)go
+/OOO/Qu<Z>'(U) (X(w,u,v)-Vv) Ve (3.12)

for any ¢ € C%([0,)) and each p € C§°(Q x [0,00)) fulfilling %‘aQX(O7OO) = 0. Under appropriate
assumptions on the decay of ¢/(s) and ¢”(s) as s — oo, here satisfied if ¢(s) = In(s+ 1), s > 0, still
assuming x to be bounded one can verify that at least the existence of each of the appearing integrals
is asserted by (3.11) together with mass conservation. If genuine equality was ultimately strived for
n (3.12), however, the need to construct (u,v) e.g. through approximation by solutions of suitably
regularized variants of (3.10) would apparently give rise to the further requirement that each of the
corresponding expressions should approach its expected limit. Thus particularly demanding a certain
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strong, though possibly weighted, spatio-temporal L? compactness property of Vu, this seems to go
beyond the information available on the basis of (3.11), and hence suggests to resort to a concept
requiring —¢” and ¢ to be nonnegative, and demanding u to merely require the inequality obtained
from (3.12) upon replacing "=" with ">". According to lower semicontinuity of L? norms with respect
to weak convergence, this supersolution property of w can now in fact be seen to be achievable by
using the compactness properties implied by (3.11). Fortunately, it turns out that as a complementing
subsolution feature, an essentially trivial consequence of Fatou’s lemma and mass conservation in
suitable approximate systems, is already sufficient to complete the design of a generalized solvability
concept consistent with that of classical solutions:

Theorem 3.3 ([144]) Letn > 2 and Q@ C R" be a bounded domain with smooth boundary, and let
X € C%(Q x [0,00) x [0,00); R™"™) be bounded. Then for any choice of nonnegative ug € C°(Q) and
vp € WH(Q), one can find nonnegative functions

u € L*®((0,00); LY(Q)) and
v € L>®(Q x (0,00)) N L2((0, 00); WH2(2))

such that In(u + 1) € L2 ([0,00); W12(Q)), and that (u,v) forms a generalized solution of the no-fluz

loc
initial-boundary value problem for (3.10) with (u,v)|i=o = (uo,vo) in the sense that

/ u(-,t) < / uo for a.e. t >0, (3.13)
Q Q

_/OOO/an(uH)got—/an(uw1)s0(»0)
Z/OOO/QIn(u—i—1)A<,0+/OOO/Q|V111(U+1)‘280
_/OOO/QULV1n(u+1)-(X(x,u,v)-w)go
+/Ooo/9uil(x(:c,u,v)-Vv) Ve (3.14)

holds for each mnonnegative ¢ € C§°(Q x [0, 00)) with g—f =0 on 00 x (0,00), and that (3.9) holds for
each ¢ € C§°(Q x [0, 0)).

that

That even fruit beyond statements on mere existence can be harvested in the aftermath of such efforts,
at least in some particular cases, is witnessed by the observation that in two-dimensional domains,
(3.11) actually implies eventual smoothness of the obtained solution, as well as its stabilization toward
the spatially homogeneous equilibrium determined by the mass level of the initial data ([148]).

Approaches of this form have been applied to further and partially even more complex situations,
e.g. involving singular chemotactic sensitivities or also couplings to Stokes and Navier-Stokes equations;
some examples can be found in [156], [45], [136], [145], [19] and [137], and also in [135]. Also when
the presence of logistic source terms threatens the validity of (3.13), a related solution concept can be
employed; then (3.13) is replaced by (3.2) with “<” instead of “=" (|78]). A yet further generalization,
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addressing a chemotaxis system with logarithmic sensitivity, instead of relying on the corresponding
analogue of (3.14) rests on the weak formulation of a parabolic inequality that simultaneously involves
the equations for both solution components, and thereby achieves a result on global solvability under
quite mild assumptions on the system ingredients (|83]; for an extension involving a fluid-coupling see
also [21]).

An interesting feature of such generalizations seems to be that in some cases a further development
thereof can be undertaken in such a manner that the construction of global solutions becomes possible
also in some situations in which finite-time blow-up is known to occur. While precedent approaches
toward establishing existence of solutions beyond blow-up, based on certain concepts of measure-
valued solutions, required substantial efforts and have apparently been limited to the Cauchy problem
in R? for the simple system (2.1) with p = 0 ([94]), a recent refinement of the idea to combine
subsolution properties with mass conservation features, as reported in [162] and thereby extending a
method developed in [161], allows to get along without any substantial restriction of this type. The
essential difference between the notion of solution pursued there on the one hand, and that underlying
Theorem 3.3 and the study [83] on the other, consists in the introduction of a measure-valued part to
the contribution of the first solution component to the second equation, which inter alia entails the
necessity to furthermore include additional requirements concerning the attainment of boundary data;
for details in the precise formulation of this concept, for reasons of compactness in presentation we
may refer the reader to [162, Definition 3.1].

Theorem 3.4 (/162/) Letn > 2 and Q@ C R"™ be a bounded domain with smooth boundary, and
suppose that x € C°([0,00)?), and that ug € L*(Q) and vo € L1(Q) are nonnegative. Then there exist
nonnegative functions

u € L>®((0,00); LY(2)) and
v e L1000 W ()

loc

such that (u,v) solves the no-flux initial-boundary value problem with (u,v)|t=0 = (ug, vo) for

3.15
v = Av — v+ u, ( )

{ up = Au — V- (ux(u,v) - Vv),

in the generalized sense specified in [162, Definition 3.1].

Thereby especially having at hand some globally defined solution in any of the cases in which finite-time
blow-up is known to occur in (3.15), one may wonder how far the behavior of such exploding solutions
can be described past their blow-up time. Whereas the results from [94] rather precisely describe an
unfavorable nonuniqueness property in this regard for general nonradial solutions (2.1) with p = 0
on R?, for the fully parabolic Keller-Segel system (1.1) only very limited knowledge seems available,
referring to certain global renormalized radial solutions in bounded balls in R™, n > 2, and asserting
their smoothness outside the spatial original as well as a singular pointwise upper bound ([150]).

In contrast to this, quite a comprehensive result concerning radial solutions of (2.1) with g = 0 on the
whole plane, in particular stating persistence of Dirac-type singularities and asymptotically complete
mass concentration at the origin, could be derived by appropriately analyzing the respective variant of
(2.3):
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Theorem 3.5 ([11])  Suppose that ug € C*(R?)NLY(R?) is nonnegative and radially symmetric with
respect to x = 0, with m := fRQ ug > 8mw. Then there exist T' > 0 and a uniquely determined function

w e C°([0,00); L2 .([0,00)) N C%L((0,00) x (0,00))

loc

such that

0§w(s,t)§2ﬁ and ws(s,t) >0  foralls>0 andt >0,
™

that w solves the Dirichlet problem

wy = 4swgs + 2wwy, s>0,t>0,
w(s,t) = 3= as s — 0o, t>0, (3.16)
w(s,0) = [/* puo(p)dp, s> 0,

and that, additionally,

w(0,1) := li\rjré w(s,t), t>0,

S

has the properties that 0 < t — w(0,t) is nondecreasing with
w(0,t) =0 for allt € (0,7)
and
w(0,t) >4 forallt>T
as well as
m
w(O,t)%% as t — oo.

And with this observation let us finish the journey of this article that has led us from blow-up detection
to weak solutions and to their behavior after blow-up. There is no question that, especially in complex
settings, much more remains to be discovered and while in light of the rich literature it is unavoidable
that even a note with limited scope such as this one has to remain incomplete, we nevertheless hope
to have given an impression about chemotactic cross-diffusion, and some mathematical challenges and
possible approaches toward their solution.
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