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Abstract

The repulsive Keller-Segel-Navier-Stokes system











nt + u · ∇n = ∆n+∇ · (n∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,

(⋆)

is considered in smoothly bounded planar domains, where Φ ∈W 2,∞(Ω) is given.

It is well-known that the corresponding fluid-free analogue, when posed under homogeneous no-flux
boundary conditions, admits global classical solutions for arbitrarily large initial data, thus substan-
tially differing from the classical two-dimensional Keller-Segel system featuring chemoattraction-
driven finite-time blow-up for some initial data. The literature on such chemorepulsion systems,
however, strongly relies on the presence of an associated energy structure which is apparently de-
stroyed by the fluid interaction mechanism in (⋆).

By making use of appropriate functional inequalities involving certain logarithmic expressions aris-
ing due to the planarity of the considered setting, it is shown that nevertheless an initial-boundary
value problem for (⋆) admits globally defined classical solutions for all reasonably regular initial
data.
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1 Introduction

Directional information about chemotactic motion has been playing a key role in essential parts of
the literature concerned with the analysis of Keller-Segel type systems. A well-known example is
constituted by the detection of critical mass phenomena for the spatially two-dimensional version of
the classical Keller-Segel system, as obtained on letting χ = 1 in

{

nt = ∆n−∇ · (nχ∇c),
ct = ∆c− c+ n,

(1.1)

which indeed has been found to enforce genuine dichotomies with regard to the occurrence of blow-up
phenomena: In this prototypical model for self-enhanced and precisely chemoattractive movement,
namely, the nonlinear cross-diffusive interaction can mathematically be captured in a convenient and,
as it turns out, favorably effective manner through the energy inequality

d

dt

{
∫

Ω
n lnn+

1

2

∫

Ω
|∇c|2 + 1

2

∫

Ω
c2 −

∫

Ω
nc

}

= −
∫

Ω
c2t −

∫

Ω

∣

∣

∣

∇n√
n
−
√
n∇c

∣

∣

∣

2
≤ 0, (1.2)

valid for all suitably regular solutions to Neumann-type boundary value problems for (1.1) in smoothly
bounded domains Ω ⊂ R

2 ([33]). In fact, although both the Lyapunov functional and the dissipation
rate appearing herein link the population density n = n(x, t) and the signal concentration c = c(x, t) in
quite an intricate manner, suitable exploitation of this global structural feature revealed that whenever
the corresponding initial data (n0, c0) = (n, c)(·, 0) merely satisfy

∫

Ω n0 < 4π, a global bounded
classical solution exists ([33]), whereas given any m ∈ (4π,∞) \ {4kπ | k ∈ N}, at least in simply
connected planar domains one can find classical solutions (n, c) with

∫

Ω n(·, 0) = m for which n

becomes unbounded either in finite or in infinite time ([19]); under the additional restriction to radially
symmetric settings, even slightly more complete knowledge is available, asserting a corresponding
dichotomy between global boundedness for small-mass data on the one hand, and even genuine finite-
time blow-up at arbitrary supercritical mass levels on the other, with the threshold value increased to
8π in such settings ([33], [17], [29]; cf. also [31], [32], [2] and [35] for partially even deeper findings for
parabolic-elliptic simplifications of (1.1), as well as the surveys [18] and [25]).

Due to an apparent fragility of (1.2) with respect to corresponding model perturbations, however,
much less information seems available in situations in which tactic motion does not occur in a purely
attractive manner in the sense of being governed by cross-diffusive interaction as in (1.1) with χ = 1 or,
more generally, χ > 0. For instance, if in accordance with more recent developments in the modeling
literature the possibility of rotational flux components is included by allowing χ in (1.1) to be a
2× 2 matrix containing off-diagonal entries ([48]), then the apparent lack of any meaningful analogue
of (1.2) seems to go along with significantly reduced knowledge on solution behavior: Findings on
global solvability and boundedness then, besides requiring

∫

Ω n(·, 0) to remain below some threshold,
additionally rely on smallness assumptions on

∫

Ω |∇c(·, 0)|2 ([4]), while yet more drastically, not any
complementing nontrivial blow-up result seems available.

When viewed against this background, it may be regarded as remarkable that independently of the
above, (1.1) admits a relevant energy-type inequality also in a second case: Namely, in situations
when chemotactic interaction is of precisely repulsive character in that χ = −1 again is diagonal, thus
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constituting an extreme somewhat opposite to the one determined by the choice χ = 1, an analysis
can be based on the observation that then suitably regular solutions satisfy

d

dt

{
∫

Ω
n lnn+

1

2

∫

Ω
|∇c|2

}

= −
∫

Ω

|∇n|2
n

−
∫

Ω
|∆c|2 −

∫

Ω
|∇c|2 ≤ 0. (1.3)

In fact, corresponding a priori estimates thereby implied could be used to establish an essentially
complete theory on global existence and boundedness of classical solutions, as well as their stabiliza-
tion toward spatially homogeneous equilibria, without any smallness restrictions on the initial data,
in smoothly bounded planar domains ([7]); even in the three-dimensional analogue in which the above
chemoattractive Keller-Segel system with χ = 1 is known to possess exploding solutions at arbitrarily
small mass levels ([42]), suitably utilizing (1.3) has lead to a statement on global existence and stabi-
lization at least within a natural weak solution concept ([7]).

Energy-based analysis of chemotaxis-fluid interaction. Understanding possible effects due
to interplay of chemotaxis systems with liquid environments has been forming a substantial branch of
the recent literature on cross-diffusion models. Findings in the analytical literature from the past few
years indicate that various types of such interaction, being of apparent relevance in several application
contexts ([8], [9], [28], [36], [37]), may indeed exert nontrivial influence on chemotaxis systems at least
in some particular cases in which the fluid flow can be considered externally given ([21], [22], [23],
[15]).

The corresponding knowledge seems much sparser, however, in situations in which the fluid flow itself
is potentially affected by cells through buoyancy, and hence forming an additional system variable
according to the modeling approach in [37] (cf. also the derivation in [1]). In fact, a considerable part
of the literature in this direction is concerned with accordingly obtained chemotaxis-fluid systems in
cases in which, in line with the experimental setting addressed and modeled in [37], a chemoattrac-
tive signal is consumed by cells, rather than produced as in (1.1). Due to an accordingly increased
dissipative character in comparison to (1.1) and associated Keller-Segel-Navier-Stokes counterparts,
it turned out that the considered type of fluid interaction does not entirely destroy certain energy-like
structures that such systems are known to possess in the absence of fluid flows, thus resulting in rather
far-reaching results on global existence, regularity and large time homogenization in two- and even in
three-dimensional domains, without size restrictions on the initial data (see [10], [6], [41], [44], [49],
[20], [43], [45], and also [5]).

As compared to this, buoyancy-induced fluid interaction of Keller-Segel systems accounting for signal
production seems much less understood. The literature in this field seems to concentrate on establish-
ing results on global solvability and boundedness in the purely attractive version of (1.1) and certain
variants thereof, mainly concerned with cases which are conveniently subcritical with respect to pos-
sible explosion-supporting potential, and which thus allow for regularity arguments independent of
vulnerable structural features such as that in (1.2) ([24], [39], [40], [3], [26], [50], [38], [46], [47]).

Main results. The question how far such couplings to fluid flows may affect solution behavior
in chemorepulsion systems of Keller-Segel type, however, seems essentially unaddressed so far; in
particular, it appears to be unknown how far spatially planar versions of such systems retain their
explosion-free and essentially diffusion-dominated character when couplings to the Navier-Stokes equa-
tions are introduced.
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The purpose of the present work is to undertake a first step in this direction by establishing a result
on global classical solvability in a correspondingly obtained two-dimensional chemorepulsion-Navier-
Stokes system without imposing any restriction on the size of the initial data. More precisely, we shall
be concerned with the initial-boundary problem































nt + u · ∇n = ∆n+∇ · (n∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν

= ∂c
∂ν

= 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.4)

in a bounded domain Ω ⊂ R
2 with smooth boundary, where

Φ ∈W 2,∞(Ω), (1.5)

and where










n0 ∈ C0(Ω) is nonnegative with n0 > 0, and

c0 ∈W 1,∞(Ω) is nonnegative, and where

u0 ∈W 2,2(Ω;R2) ∩W 1,2
0,σ (Ω),

(1.6)

as usual writing ϕ := 1
|Ω|

∫

Ω ϕ for ϕ ∈ L1(Ω), and letting W
1,2
0,σ (Ω) := W

1,2
0 (Ω;R2) ∩ L2

σ(Ω), with

L2
σ(Ω) := {ϕ ∈ L2(Ω;R2) | ∇ · ϕ = 0 in D(Ω)} denoting the space of all divergence-free vector fields

in L2(Ω;R2).

In line with the reminiscence of the fact that in the case u ≡ 0 the subtle structural information
encoded in (1.3) has formed the basis for the discovery of complete blow-up suppression from [7],
a major challenge underlying our analysis will consist in examining how far a comparable property
may persist also in the presence of nontrivial fluid flows. Our key step in this direction, based on a
consequence of the two-dimensional Moser-Trudinger inequality (Lemma 3.3) and a basic interpolation
inequality relating logarithmic entropies to mass functionals up to certain logarithmic corrections
(Lemma 3.6), will rely on the observation that the evolution of a relative of the energy functional from
(1.3), namely of the quantity given by

y(t) :=

∫

Ω
n ln

n

n0
+

1

2

∫

Ω
|∇c|2 + e, (1.7)

can be favorably linked to the standard Navier-Stokes energy functional

z(t) :=

∫

Ω
|u|2. (1.8)

In fact, we shall see that with some b > 0 and C > 0, the inequality

y′(t) +
1

2

∫

Ω
|∆c|2 ≤ Cy(t) ln y(t)− by(t)z′(t) (1.9)

holds throughout the maximal existence interval of a locally existing smooth solution (Lemma 3.7).
Thanks to the weakly superlinear growth of the first expression on the right-hand side herein with
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respect to y, and due to the favorable sign of the rightmost summand, this will enable us to derive
bounds for both y and z, as well as a spatio-temporal L2 estimate for ∆c (Lemma 3.8). As seen
in Section 4, this information will form a starting point sufficient for a bootstrap procedure finally
providing regularity features strong enough so as to allow for global extension of the considered
solution.

As a consequence, we will obtain our main result on global classical solvability which confirms absence
of any finite-time explosion in (1.4) for arbitrarily large initial data. Here and below, we let A =
−P∆ denote the realization of the Stokes operator in L2(Ω;R2), with its domain given by D(A) =
W 2,2(Ω;R2) ∩W 1,2

0,σ (Ω), and with P denoting the Helmholtz projection on L2(Ω;R2), and for α > 0
we let Aα represent the corresponding sectorial fractional powers.

Theorem 1.1 Suppose that Ω ⊂ R
2 is a bounded domain with smooth boundary, that (1.5) holds,

and that n0, c0 and u0 satisfy (1.6). Then there exist functions n, c and u, uniquely determined by the
inclusions











n ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

c ∈ ⋂

q>2C
0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞)) and

u ∈ ⋂

α∈( 1
2
,1)C

0([0,∞);D(Aα)) ∩ C2,1(Ω× (0,∞);R2),

such that n > 0 and c ≥ 0 in Ω × (0,∞), and that (1.4) is satisfied in the classical sense with some
P ∈ C1,0(Ω× (0,∞)).

2 Local existence and extensibility

The following basic result on local existence of mass-preserving solutions, along with a convenient
extensibility criterion, can be obtained by straightforward adaptation of well-established arguments,
as detailed in quite closely related settings e.g. in [41].

Lemma 2.1 If (1.5) and (1.6) hold, then there exist Tmax ∈ (0,∞] and a unique triple (n, c, u) of
functions











n ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

c ∈ ⋂

q>2C
0([0, Tmax);W

1,q(Ω)) ∩ C2,1(Ω× (0, Tmax)) and

u ∈ ⋂

α∈( 1
2
,1)C

0([0, Tmax);D(Aα)) ∩ C2,1(Ω× (0, Tmax);R
2),

such that n > 0 and c ≥ 0 in Ω × (0, Tmax), that (1.4) holds in Ω × (0, Tmax) with some P ∈
C1,0(Ω× (0, Tmax)), and that

if Tmax <∞, then

lim sup
tրTmax

{

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,q(Ω) + ‖Aαu(·, t)‖L2(Ω)

}

= ∞ for all q > 2 and α ∈ (12 , 1). (2.1)

Moreover,
∫

Ω
n(·, t) =

∫

Ω
n0 for all t ∈ (0, Tmax). (2.2)
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3 Linking the evolution of logarithmic entropies to the Navier-Stokes

energy inequality

Constituting a basic step toward an analysis of the functions y and z from (1.7) and (1.8), let us state
two results of standard testing procedures applied to the first two equations from (1.4). In fact, by
incompressibility of the considered fluid flow the evolution of the logarithmic entropy appearing in
(1.3) is essentially unaffected by the fluid velocity field:

Lemma 3.1 We have

d

dt

∫

Ω
n ln

n

n0
+

∫

Ω

|∇n|2
n

= −
∫

Ω
∇n · ∇c for all t ∈ (0, Tmax). (3.1)

Proof. This follows by straightforward computation using the first equation in (1.4) together with
the solenoidality of u. �

A compensation of the interaction term on the right-hand side of (3.1) can be achieved by adding
the following identity which now, however, involves nontrivial contributions due to interplay with the
fluid flow.

Lemma 3.2 We have

1

2

d

dt

∫

Ω
|∇c|2 +

∫

Ω
|∆c|2 +

∫

Ω
|∇c|2 =

∫

Ω
∇n · ∇c−

∫

Ω
∇c · (∇u · ∇c) for all t ∈ (0, Tmax). (3.2)

Proof. According to the second equation in (1.4),

1

2

d

dt

∫

Ω
|∇c|2 +

∫

Ω
|∆c|2 +

∫

Ω
|∇c|2 =

∫

Ω
∇n · ∇c+

∫

Ω
(u · ∇c)∆c for all t ∈ (0, Tmax),

where two further integrations by parts show that
∫

Ω
(u · ∇c)∆c = −

∫

Ω
∇c · (∇u · ∇c)−

∫

Ω
u(D2c · ∇c)

= −
∫

Ω
∇c · (∇u · ∇c)− 1

2

∫

Ω
u · ∇|∇c|2

= −
∫

Ω
∇c · (∇u · ∇c) for all t ∈ (0, Tmax),

because ∇ · u = 0 and u|∂Ω×(0,Tmax) = 0. �

To prepare an appropriate treatment of the rightmost summand in (3.2) by means of a suitable analysis
of the Navier-Stokes subsystem of (1.4), let us recall from [47, Lemma 2.2] the following functional
inequality (cf. also [33]).

Lemma 3.3 For all ε > 0 there exists M = M(ε,Ω) > 0 such that if 0 6≡ φ ∈ C0(Ω) is nonnegative
and ψ ∈W 1,2(Ω), then for each a > 0,

∫

Ω
φ|ψ| ≤ 1

a

∫

Ω
φ ln

φ

φ̄
+

(1 + ε)a

8π
·
{
∫

Ω
φ

}

·
∫

Ω
|∇ψ|2 +Ma ·

{
∫

Ω
φ

}

·
{
∫

Ω
|ψ|

}2

+
M

a

∫

Ω
φ. (3.3)
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The latter indeed enables us to to relate the evolution of the standard Navier-Stokes energy to the
logarithmic entropy of the population distribution as follows.

Lemma 3.4 There exists C > 0 such that

d

dt

∫

Ω
|u|2 +

∫

Ω
|∇u|2 ≤ C

∫

Ω
n ln

n

n0
+ C for all t ∈ (0, Tmax). (3.4)

Proof. Testing the third equation in (1.4) shows that

1

2

d

dt

∫

Ω
|u|2 +

∫

Ω
|∇u|2 =

∫

Ω
n(u · ∇Φ)

≤ C1

∫

Ω
n|u|

≤ C1

∫

Ω
n · (|u1|+ |u2|) for all t ∈ (0, Tmax), (3.5)

where C1 := ‖∇Φ‖L∞(Ω), and where u = (u1, u2). Here taking C2 > 0 such that in accordance with a
Poincaré inequality we have

∫

Ω
|u|2 ≤ C2

∫

Ω
|∇u|2 for all t ∈ (0, Tmax),

we apply Lemma 3.3 to ε := 1 and to

a :=
1

( 1
2π + 2C2M |Ω|) · C1m

,

with M := M(1,Ω) as correspondingly obtained there, and with m :=
∫

Ω n0. Due to (2.2) and the
Cauchy-Schwarz inequality, this shows that thanks to this choice of a,

C1

∫

Ω
n(|u1|+ |u2|)

≤ 2C1

a

∫

Ω
n ln

n

n0
+
C1ma

4π

∫

Ω
|∇u|2 + C1mMa ·

{

{
∫

Ω
|u1|

}2

+

{
∫

Ω
|u2|

}2
}

+
2mM

a

≤ 2C1

a

∫

Ω
n ln

n

n0
+
C1ma

4π

∫

Ω
|∇u|2 + C1mMa ·

{

|Ω|
∫

Ω
|u|2

}

+
2mM

a

≤ 2C1

a

∫

Ω
n ln

n

n0
+
{C1ma

4π
+ C1C2mMa|Ω|

}

·
∫

Ω
|∇u|2 + 2mM

a

=
2C1

a

∫

Ω
n ln

n

n0
+

1

2

∫

Ω
|∇u|2 + 2mM

a
for all t ∈ (0, Tmax),

and that hence (3.4) results from (3.5). �

Now bearing in mind that the expression z′ ≡ d
dt

∫

Ω |u|2 from (1.8) enters the desired inequality (1.9)
in a way nonlinearly coupled to y, in order to finally establish (1.9) we need to estimate the right-hand
side in (3.4) against a logarithm-type function of y, instead of e.g. a multiple of y itself.

This will be achieved on the basis of the following elementary inequality.
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Lemma 3.5 Let a > 0. Then

ln ξ ≤ aξ + ln
1

a
for all ξ > 0. (3.6)

Proof. We only need to observe that Ψ(ξ) := ln ξ − aξ, ξ > 0, attains its maximum at ξ = 1
a
with

Ψ( 1
a
) = ln 1

a
− 1 < ln 1

a
. �

The latter, namely, will entail the following interpolation inequality, valid for nonnegative functions
from L2(Ω), actually on domains Ω of arbitrary dimension.

Lemma 3.6 Let ϕ ∈ L2(Ω) be such that ϕ ≥ 0 a.e. in Ω. Then

∫

Ω
ϕ lnϕ ≤

{
∫

Ω
ϕ+ 1

}

· ln
{
∫

Ω
ϕ2 + e

}

. (3.7)

Proof. For ε > 0, an application of Lemma 3.5 to

a :=
ln
{

∫

Ω(ϕ+ ε)2 + e
}

∫

Ω(ϕ+ ε)2 + e
> 0

shows that
∫

Ω
ϕ ln(ϕ+ ε) ≤ a

∫

Ω
ϕ(ϕ+ ε) +

(

ln
1

a

)

·
∫

Ω
ϕ

≤ a ·
{
∫

Ω
(ϕ+ ε)2 + e

}

+
(

ln
1

a

)

·
∫

Ω
ϕ

= ln

{
∫

Ω
(ϕ+ ε)2 + e

}

+ ln

{
∫

Ω
(ϕ+ ε)2 + e

}

·
∫

Ω
ϕ

− ln ln

{
∫

Ω
(ϕ+ ε)2 + e

}

·
∫

Ω
ϕ.

As

ln ln

{
∫

Ω
(ϕ+ ε)2 + e

}

·
∫

Ω
ϕ ≥ ln ln e = 0,

this implies that

∫

Ω
ϕ ln(ϕ+ ε) ≤

{
∫

Ω
ϕ+ 1

}

· ln
{
∫

Ω
(ϕ+ ε)2 + e

}

for all ε > 0,

from which (3.7) follows upon taking εց 0 and twice using Beppo Levi’s theorem. �

Combining this with the observations from Lemma 3.1 and Lemma 3.2 and the outcome of Lemma
3.4, we can indeed establish an inequality of the form in (1.9):
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Lemma 3.7 Let

y(t) :=

∫

Ω
n(·, t) ln n(·, t)

n0
+

1

2

∫

Ω
|∇c(·, t)|2 + e, t ∈ [0, Tmax), (3.8)

and

z(t) :=

∫

Ω
|u(·, t)|2, t ∈ [0, Tmax). (3.9)

Then there exist b > 0 and C > 0 such that

y′(t) +
1

2

∫

Ω
|∆c(·, t)|2 ≤ Cy(t) ln y(t)− by(t)z′(t) for all t ∈ (0, Tmax). (3.10)

Proof. According to the Gagliardo-Nirenberg inequality and standard elliptic regularity theory
([14]), we can fix C1 > 0 such that

‖ϕ‖2L4(Ω) ≤ C1‖∆ϕ‖L2(Ω)‖∇ϕ‖L2(Ω) for all ϕ ∈W 2,2(Ω),

whence applying the Cauchy-Schwarz inequality and Young’s inequality to (3.2) we see that for all
t ∈ (0, Tmax),

1

2

d

dt

∫

Ω
|∇c|2 +

∫

Ω
|∆c|2 +

∫

Ω
|∇c|2 ≤

∫

Ω
∇n · ∇c+ ‖∇u‖L2(Ω)‖∇c‖2L4(Ω)

≤
∫

Ω
∇n · ∇c+ C1‖∇u‖L2(Ω)‖∆c‖L2(Ω)‖∇c‖L2(Ω)

≤
∫

Ω
∇n · ∇c+ 1

2

∫

Ω
|∆c|2 + C2

1

2
·
{
∫

Ω
|∇u|2

}

·
∫

Ω
|∇c|2

≤
∫

Ω
∇n · ∇c+ 1

2

∫

Ω
|∆c|2 + C2

1 ·
{
∫

Ω
|∇u|2

}

· y(t),

and that thus

1

2

d

dt

∫

Ω
|∇c|2 + 1

2

∫

Ω
|∆c|2 ≤

∫

Ω
∇n · ∇c+ C2

1 ·
{
∫

Ω
|∇u|2

}

· y(t) for all t ∈ (0, Tmax). (3.11)

To further estimate the rightmost summand herein, we invoke Lemma 3.4 to pick C2 > 0 such that
due to (2.2), writing m :=

∫

Ω n0 we have

d

dt

∫

Ω
|u|2 +

∫

Ω
|∇u|2 ≤ C2

∫

Ω
n ln

n

n0
+ C2

= C2

∫

Ω
n lnn+ C2 − C2m lnn0 for all t ∈ (0, Tmax),

where by Lemma 3.6, and again by (2.2),

C2

∫

Ω
n lnn ≤ C3 ln

{
∫

Ω
n2 + e

}

for all t ∈ (0, Tmax)

9



with C3 := C2 ·
{

∫

Ω n0 + 1
}

, so that

∫

Ω
|∇u|2 ≤ C3 ln

{
∫

Ω
n2 + e

}

+ C2 − z′(t)

≤ C4 ln

{
∫

Ω
n2 + e

}

− z′(t) for all t ∈ (0, Tmax) (3.12)

if we let C4 := C3 + max{0 , C2 − C2m lnn0}. Now to appropriately estimate the first summand
on the right-hand side herein in terms of the dissipated quantity in (3.1), we once more employ the
Gagliardo-Nirenberg inequality to find C5 > 0 such that

‖ϕ‖4L4(Ω) ≤ C5‖∇ϕ‖2L2(Ω)‖ϕ‖2L2(Ω) + C5‖ϕ‖4L2(Ω) for all ϕ ∈W 1,2(Ω),

which, again by (2.2), entails that
∫

Ω
n2 = ‖

√
n‖4L4(Ω)

≤ C5‖∇
√
n‖2L2(Ω)‖

√
n‖2L2(Ω) + C5‖

√
n‖4L2(Ω)

≤ C5m‖∇
√
n‖2L2(Ω) + C5m

2

=
C5m

4

∫

Ω

|∇n|2
n

+ C5m
2 for all t ∈ (0, Tmax).

Therefore,
∫

Ω

|∇n|2
n

≥ 4

C5m

∫

Ω
n2 − 4m for all t ∈ (0, Tmax),

so that (3.1) implies the inequality

d

dt

∫

Ω
n ln

n

n0
+

4

C5m

∫

Ω
n2 ≤ −

∫

Ω
∇n · ∇c+ 4m for all t ∈ (0, Tmax)

and thus, together with (3.11) and (3.12), that for all t ∈ (0, Tmax),

y′(t) +
4

C5m

∫

Ω
n2 +

1

2

∫

Ω
|∆c|2 ≤ C6 ln

{
∫

Ω
n2 + e

}

· y(t)− C2
1y(t)z

′(t) + 4m (3.13)

with C6 := C2
1C4. Since a Young-type inequality says that

ξη ≤ aξ ln ξ +
a

e
e

η

a for all ξ > 0, η > 0 and a > 0,

an application to a := 4e
C5m

, ξ := C6y(t)
a

and η := a ln
{

∫

Ω n
2(·, t) + e

}

for t ∈ (0, Tmax) shows that for

any such t,

C6 ln

{
∫

Ω
n2 + e

}

· y(t) =

{

C6y(t)

a

}

·
{

a ln

{
∫

Ω
n2 + e

}

}

≤ a ·
{

C6y(t)

a

}

· ln C6y(t)

a
+
a

e
· exp

{

1

a
· a ln

{
∫

Ω
n2 + e

}

}

= C6y(t) ln y(t) +
4

C5m
·
{
∫

Ω
n2 + e

}

+ C6 ·
{

ln
C5C6m

4e

}

· y(t).(3.14)
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Now letting C7 := max
{

0 , C6 · ln C5C6m
4e

}

and using that y(t) ≥ e and hence ln y(t) ≥ 1 for all

t ∈ (0, Tmax), by combining (3.14) with (3.13) we infer that

y′(t) +
1

2

∫

Ω
|∆c|2 ≤ C6y(t) ln y(t) + C7y(t) +

4e

C5m
+ 4m− C2

1y(t)z
′(t)

≤ C6y(t) ln y(t) +
(

C7 +
4

C5m
+

4m

e

)

· y(t)− C2
1y(t)z

′(t)

≤
(

C6 + C7 +
4

C5m
+

4m

e

)

· y(t) ln y(t)− C2
1y(t)z

′(t) for all t ∈ (0, Tmax)

and hence conclude upon defining b := C2
1 and C := C6 + C7 +

4
C5m

+ 4m
e
. �

Among the regularity features thereby implied upon integration, we only note those which are relevant
to our subsequent analysis:

Lemma 3.8 Suppose that Tmax <∞. Then

∫ Tmax

0

∫

Ω
|∆c|2 <∞, (3.15)

and there exists C > 0 such that
∫

Ω
|∇c(·, t)|2 ≤ C for all t ∈ (0, Tmax) (3.16)

and
∫

Ω
|u(·, t)|2 ≤ C for all t ∈ (0, Tmax). (3.17)

Proof. By Lemma 3.7, we can fix C1 > 0 and b > 0 such that with y and z as defined in (3.8) and
(3.9) we have

y′(t) +
1

2

∫

Ω
|∆c|2 ≤ C1y(t) ln y(t)− by(t)z′(t) for all t ∈ (0, Tmax), (3.18)

which upon letting h(t) := 1
2y(t) ·

∫

Ω |∆c(·, t)|2, t ∈ (0, Tmax), means that

(ln y)′(t) + h(t) ≤ C1 ln y(t)− bz′(t) for all t ∈ (0, Tmax)

and that thus, after integrating,

ln y(t) +

∫ t

0
eC1(t−s)h(s)ds ≤

{

ln y(0)
}

· eC1t − b

∫ t

0
eC1(t−s)z′(s)ds for all t ∈ (0, Tmax). (3.19)

Here an integration by parts reveals that since z is nonnegative,

−b
∫ t

0
eC1(t−s)z′(s)ds = −bz(t) + bz(0)eC1t − bC1

∫ t

0
eC1(t−s)z(s)ds

≤ −bz(t) + bz(0)eC1t for all t ∈ (0, Tmax),
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whence (3.19) entails that

ln y(t)+ bz(t)+

∫ t

0
eC1(t−s)h(s)ds ≤ C2 :=

{

ln y(0)
}

· eC1Tmax + bz(0)eC1Tmax for all t ∈ (0, Tmax),

(3.20)
with C2 being finite according to our hypothesis on Tmax. In particular, from this we infer that

y(t) ≤ eC2 for all t ∈ (0, Tmax),

and that thus, by definition of h,

∫ t

0
eC1(t−s)h(s)ds ≥

∫ t

0
h(s)ds ≥ 1

2eC2

∫ t

0

∫

Ω
|∆c|2 for all t ∈ (0, Tmax),

so that (3.20) implies that not only

∫

Ω
|∇c|2 ≤ 2eC2 for all t ∈ (0, Tmax)

and
∫

Ω
|u|2 ≤ C2

b
for all t ∈ (0, Tmax),

but that also

∫ t

0

∫

Ω
|∆c|2 ≤ 2C2e

C2 for all t ∈ (0, Tmax),

whereby the proof becomes complete. �

4 Higher regularity properties. Proof of Theorem 1.1

Having the bounds from Lemma 3.8 at hand, once more relying on the two-dimensionality of the
considered setting we can successively increase the available information on regularity, firstly asserting
the following.

Lemma 4.1 If Tmax <∞, then there exists C > 0 such that

∫

Ω
n2(·, t) ≤ C for all t ∈ (0, Tmax), (4.1)

and, moreover,
∫ Tmax

0

∫

Ω
|∇n|2 <∞. (4.2)
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Proof. The argument is quite standard, essentially following the precedent in [33]: According to
the first equation in (1.4), the Cauchy-Schwarz inequality and Young’s inequality, we see that with
some C1 > 0 we have

1

2

d

dt

∫

Ω
n2 +

∫

Ω
|∇n|2 = −

∫

Ω
n∇n · ∇c

=
1

2

∫

Ω
n2∆c

≤ 1

2
‖∆c‖L2(Ω)‖n‖2L4(Ω)

≤ C1‖∆c‖L2(Ω) ·
{

‖∇n‖L2(Ω)‖n‖L2(Ω) + ‖n‖2L2(Ω)

}

≤ 1

2
‖∇n‖2L2(Ω) +

C2
1

2
‖∆c‖2L2(Ω)‖n‖2L2(Ω) + C1‖∆c‖L2(Ω)‖n‖2L2(Ω)

≤ 1

2

∫

Ω
|∇n|2 + g(t)

∫

Ω
n2 for all t ∈ (0, Tmax)

and hence

d

dt

∫

Ω
n2 +

∫

Ω
|∇n|2 ≤ 2g(t)

∫

Ω
n2 for all t ∈ (0, Tmax),

where

g(t) := C2
1

∫

Ω
|∆c(·, t)|2 + 1, t ∈ (0, Tmax).

As Lemma 3.8 guarantees that
∫ Tmax

0 g(t)dt is finite, integrating this readily leads to both (4.1) and
(4.2). �

The latter provides favorable bounds on the forcing term in the Navier-Stokes subsystem of (1.4), in
particular implying estimates for u in norms appearing in (2.1). As usual, this will be seen in the
course of two steps, the first of which is achieved by means of a standard testing procedure:

Lemma 4.2 If Tmax <∞, then there exists C > 0 such that
∫

Ω
|∇u(·, t)|2 ≤ C for all t ∈ (0, Tmax). (4.3)

Proof. Proceeding in a standard manner (see e.g. [41, p. 340]), we test a projected version of the
third equation in (1.4) by Au and apply Young’s inequality and the Gagliardo-Nirenberg inequality
to infer that with C1 := ‖∇Φ‖2

L∞(Ω) and some C2 > 0 we have

1

2

d

dt

∫

Ω
|∇u|2 +

∫

Ω
|Au|2 =

∫

Ω
Au · P[(u · ∇)u] +

∫

Ω
Au · P[n∇Φ]

≤ 1

2

∫

Ω
|Au|2 +

∫

Ω
|P[(u · ∇)u]|2 +

∫

Ω
|P[n∇Φ]|2

≤ 1

2

∫

Ω
|Au|2 +

∫

Ω
|(u · ∇)u|2 +

∫

Ω
|n∇Φ|2

13



≤ 1

2

∫

Ω
|Au|2 + ‖u‖2L∞(Ω)‖∇u‖2L2(Ω) + C1

∫

Ω
n2

≤ 1

2

∫

Ω
|Au|2 + C2‖Au‖L2(Ω)‖u‖L2(Ω)‖∇u‖2L2(Ω) + C1

∫

Ω
n2

≤
∫

Ω
|Au|2 + C2

2

2
‖u‖2L2(Ω)‖∇u‖4L2(Ω) + C1

∫

Ω
n2 for all t ∈ (0, Tmax),

so that writing g(t) := C2
2‖u(·, t)‖2L2(Ω)‖∇u(·, t)‖2L2(Ω) and h)t) := 2C1

∫

Ω n
2(·, t), t ∈ (0, Tmax), we

obtain that

d

dt

∫

Ω
|∇u|2 ≤ g(t) ·

∫

Ω
|∇u|2 + h(t) for all t ∈ (0, Tmax).

Since
∫ Tmax

0 g(t)dt and
∫ Tmax

0 h(t)dt are both finite thanks to Lemma 3.8 and Lemma 4.1, an integration
thereof yields (4.3). �

This will in turn enable us to suitably control, besides the forcing term containing n, also the nonlinear
convection term from the Navier-Stokes system in a regularity argument based on smoothing properties
of the Stokes semigroup:

Lemma 4.3 Assume that Tmax <∞. Then given any α ∈ (12 , 1) one can find C(α) > 0 fulfilling

∫

Ω
|Aαu(·, t)|2 ≤ C(α) for all t ∈ (0, Tmax). (4.4)

In particular,
sup

t∈(0,Tmax)
‖u(·, t)‖L∞(Ω) <∞. (4.5)

Proof. Using that α < 1, we can pick p ∈ (1, 2) such that 1
p
< 3

2 −α, and rely on known smoothing

properties of the Stokes semigroup (e−tA)t≥0 and continuity features of P ([13], [12]) to find C1 > 0
and C2 > 0 such that

‖Aαu(·, t)‖L2(Ω) =

∥

∥

∥

∥

Aαe−tAu0 −
∫ t

0
Aαe−(t−s)AP

[

(u(·, s) · ∇)u(·, s)
]

ds

+

∫ t

0
Aαe−(t−s)AP

[

n(·, s)∇Φ
]

ds

∥

∥

∥

∥

L2(Ω)

≤ ‖u0‖W 2,2(Ω) + C1

∫ t

0
(t− s)

−α− 1

p
+ 1

2

∥

∥

∥
P
[

(u(·, s) · ∇)u(·, s)
]
∥

∥

∥

Lp(Ω)
ds

+C1

∫ t

0
(t− s)−α‖n(·, s)∇Φ‖L2(Ω)ds

≤ ‖u0‖W 2,2(Ω) + C2

∫ t

0
(t− s)

−α− 1

p
+ 1

2 ‖u(·, s)‖
L

2p

2−p (Ω)
‖∇u(·, s)‖L2(Ω)ds

+C1‖∇Φ‖L∞(Ω)

∫ t

0
(t− s)−α‖n(·, s)‖L2(Ω)ds for all t ∈ (0, Tmax).
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Since W 1,2(Ω) →֒ L
2p

2−p (Ω), and since Lemma 4.2 and Lemma 4.1 thus warrant boundedness not only

of (∇u(·, t))t∈(0,Tmax) in L2(Ω), but also of (u(·, t))t∈(0,Tmax) in L
2p

2−p (Ω), and of (n(·, t))t∈(0,Tmax) in

L2(Ω), and since −α > −α − 1
p
+ 1

2 > −1 according to our choice of p, this already yields (4.4).

Applying this to an arbitrary fixed α ∈ (12 , 1) thereafter implies (4.5) by continuity of the embedding
D(Aα) →֒ L∞(Ω) ([16]). �

The fluid flow is thereby known to be smooth enough so as to allow for a conclusion on regularity of
the signal gradient that goes beyond those from Lemma 3.8.

Lemma 4.4 Suppose that Tmax <∞. Then there exists C > 0 such that
∫

Ω
|∇c(·, t)|4 ≤ C for all t ∈ (0, Tmax). (4.6)

Proof. A standard computation on the basis of the second equation in (1.4) ([38, Lemma 7.1])
yields the identity

1

4

d

dt

∫

Ω
|∇c|4 + 1

2

∫

Ω

∣

∣

∣
∇|∇c|2

∣

∣

∣

2
+

∫

Ω
|∇c|2|D2c|2 +

∫

Ω
|∇c|4

=

∫

Ω
|∇c|2∇n · ∇c+

∫

Ω
(u · ∇c)∇ · (|∇c|2∇c)

= +
1

2

∫

∂Ω
|∇c|2∂|∇c|

2

∂ν
for all t ∈ (0, Tmax). (4.7)

Here by means of the Cauchy-Schwarz inequality, the Gagliardo-Nirenberg inequality and (3.16), we
can find C1 > 0 and C2 > 0 such that due to Young’s inequality,

∫

Ω
|∇c|2∇n · ∇c ≤ ‖∇n‖L2(Ω)

∥

∥

∥
|∇c|2

∥

∥

∥

3

2

L3(Ω)

≤ C1‖∇n‖L2(Ω) ·
{

∥

∥

∥
∇|∇c|2

∥

∥

∥

2

L2(Ω)

∥

∥

∥
|∇c|2

∥

∥

∥

L1(Ω)
+
∥

∥

∥
|∇c|2

∥

∥

∥

3

L1(Ω)

}
1

2

≤ C2‖∇n‖L2(Ω) ·
{

∥

∥

∥
∇|∇c|2

∥

∥

∥

2

L2(Ω)
+ 1

}
1

2

≤ 1

4

∫

Ω

∣

∣

∣
∇|∇c|2

∣

∣

∣

2
+

1

4
+ C2

2

∫

Ω
|∇n|2 for all t ∈ (0, Tmax), (4.8)

whereas employing (4.5) we obtain C3 > 0 fulfilling
∫

Ω
(u · ∇c)∇ · (|∇c|2∇c) =

∫

Ω
(u · ∇c) ·

(

2∇c · (D2c · ∇c) + |∇c|2∆c
)

≤ (2 +
√
2)

∫

Ω
|u| · |∇c|3|D2c|

≤ C3

∫

Ω
|∇c|3|D2c|

≤
∫

Ω
|∇c|2|D2c|2 + C2

3

4

∫

Ω
|∇c|4 for all t ∈ (0, Tmax), (4.9)
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again thanks to Young’s inequality. Since ∂|∇c|2

∂ν
≤ C4|∇c|2 on ∂Ω × (0, Tmax) with some C4 > 0 by

([30]), in since thus by continuity of W
1

2
,2(Ω) →֒ L2(∂Ω) and by compactness of W 1,2(Ω) →֒W

1

2
,2(Ω)

there exists C5 > 0 such that

1

2

∫

∂Ω
|∇c|2∂|∇c|

2

∂ν
≤ C4

2

∥

∥

∥
|∇c|2

∥

∥

∥

2

L2(∂Ω)
≤ 1

4

∫

Ω

∣

∣

∣
∇|∇c|2

∣

∣

∣

2
+ C5

∫

Ω
|∇c|4 for all t ∈ (0, Tmax),

from (4.7)-(4.9) we hence infer that

d

dt

∫

Ω
|∇c|4 ≤ 1 + 4C2

2

∫

Ω
|∇n|2 + (C2

3 + 4C5)

∫

Ω
|∇c|4 for all t ∈ (0, Tmax),

which due to (4.2) entails (4.6) upon integration. �

Finally, Lemma 4.4 together with Lemma 4.3 imply an L∞ bound for n through regularization features
of the Neumann heat semigroup.

Lemma 4.5 If Tmax <∞, then one can find C > 0 such that

‖n(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax). (4.10)

Proof. We estimate K(T ) := supt∈(0,T ) ‖n(·, t)‖L∞(Ω), T ∈ (0, Tmax), by using the first equation

in (1.4) along with standard smoothing properties of the Neumann heat semigroup (et∆)t≥0 on Ω
([11]), the Hölder inequality, (2.2) and the boundedness of (h(·, t))t∈(0,Tmax), as asserted to hold for
h := ∇c+ u in L4(Ω) by Lemma 4.4 and Lemma 4.3, to see that with some C1 > 0 and C2 > 0,

‖n(·, t)‖L∞(Ω) =

∥

∥

∥

∥

et∆n0 −
∫ t

0
e(t−s)∆∇ ·

{

n(·, s)h(·, s)
}

ds

∥

∥

∥

∥

L∞(Ω)

≤ ‖n0‖L∞(Ω) + C1

∫ t

0
(t− s)−

5

6 ‖n(·, s)h(·, s)‖L3(Ω)ds

≤ ‖n0‖L∞(Ω) + C1

∫ t

0
(t− s)−

5

6 ‖n(·, s)‖
11

12

L∞(Ω)‖n(·, s)‖
1

12

L1(Ω)
‖h(·, s)‖L4(Ω)ds

≤ ‖n0‖L∞(Ω) + C2

∫ t

0
(t− s)−

5

6 ‖n(·, s)‖
11

12

L∞(Ω)ds

≤ C3 + C3M
11

12 (T ) for all T ∈ (0, Tmax) and any t ∈ (0, T ),

where C3 := max{‖n0‖L∞(Ω) , 6C2T
1

6
max}. Therefore, K(T ) ≤ C3 + C3M

11

12 (T ) and hence K(T ) ≤
max{1 , (2C3)

12} for all T ∈ (0, Tmax), which establishes (4.10). �

In summary, we thereby arrive at our main result on global smooth solvability in (1.4):

Proof of Theorem1.1. According to (2.1) and the fact that
∫

Ω
c(·, t) ≤ max

{
∫

Ω
n0 ,

∫

Ω
c0

}

for all t ∈ (0, Tmax)

due to a simple integration of the second equation in (1.4), followed by an ODE comparison using
(2.2), the claim is a consequence of Lemma 4.5, Lemma 4.4 and Lemma 4.3 when combined with the
statements on local existence, regularity and positivity from Lemma 2.1. �
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