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Abstract

This paper deals with the nutrient taxis system

{
ut = ∆u−∇ · (u∇v),
0 = ∆v − uv − µv + r(x, t),

in a bounded domain Ω ⊂ R
n, n ≥ 1, with smooth boundary, where µ ≥ 0 is a parameter and

r ∈ C1(Ω× [0,∞)) is a given nonnegative function.

It is shown that for any prescribed initial data u0 ∈W 1,∞(Ω) with u0 > 0 in Ω, the corresponding
Neumann initial-boundary problem admits a global classical solution. With regard to qualitative
aspects, it is moreover, inter alia, seen that if r additionally satisfies

∫ t+1

t

∫

Ω

|∇
√
r|2 → 0 as t→ ∞,

then in the large time limit the solution component u stabilizes toward the constant 1
|Ω|

∫
Ω
u0 with

respect to the norm in L1(Ω), and that if furthermore

sup
t>0

‖r(·, t)‖Lq(Ω) <∞

for some q ≥ 1 fulfilling q > n
2 , then u is uniformly bounded.

Key words: nutrient taxis, prey taxis, global smooth solution, boundedness, stabilization
MSC (2010): 35K51, 35B40, 35Q92, 92C17

∗taoys@dhu.edu.cn
#michael.winkler@math.uni-paderborn.de

1



1 Introduction

Chemotaxis, the biased movement of individuals along concentration gradients of a chemical, is known
as a universal and fundamental migration mechanism in numerous biological contexts, having attacted
both experimentalists and theoretical researchers inter alia due to its assured potential to generate
aggregation patterns in several relevant situations. The corresponding dynamical prospects seem best
understood in cases when an attractive signal is produced by individuals of the respective population
themselves, as prototypically described by the celebrated Keller-Segel system

{
ut = ∆u−∇ · (u∇v),
vt = ∆v + u− v,

(1.1)

for the unknown cell density u = u(x, t) and signal concentration v = v(x, t). Indeed, known results
on the occurrence of exploding solutions in two-and higher-dimensional domains illustrate the drastic
extent of destabilization clearly due to the introduction of the cross-diffusive term −∇ · (u∇v) to the
otherwise linear system (1.1) ([8] and [25]).

In comparison to this, the knowledge seems much less developed in the less reinforced case when the
attractive signal, instead of being produced by individuals, is rather consumed by the latter. This
typically occurs in nutrient-directed motion of very primitive cells, such as in populations of aerobic
bacteria like Bacillus subtilis ([5]), but apart from that such nutrient taxis mechanisms seem to play an
important role in predator-prey interactions in which predators orient their movement toward regions
of increasing prey concentration ([13], [9], [19], [4]). As corresponding relatives of (1.1), in addition
potentially accounting for spontaneous nutrient decay and for external reproduction of the latter,
parabolic problems of the form

{
ut = ∆u−∇ · (u∇v),
vt = d∆v − λuv − µv + r(x, t),

(1.2)

have been introduced as theoretical despritions in such situations ([5], [23], [?]).

Due to the essentially dissipative character of the influence exerted by cells on the signal concentration
through such consumption mechanisms, it might be expected that in comparison to (1.1), the nutrient
taxis system (1.2) should exhibit some considerably stronger tendency toward relaxation, and partic-
ularly be unable to spontaneously generate extreme aggregates in the sense of exploding solutions.
At the level of rigorous mathematical analysis, this could in fact be confirmed for two-dimensional
versions of (1.2) for which indeed in quite general frameworks results on global existence of smooth
solutions are available, thus in particular ruling out any blow-up phenomenon (cf. [20], [27], [12], [22]
and [26], for example). In three-dimensional settings, however, corresponding findings on smooth
solvability seem yet lacking even in the simplest case when r ≡ 0, although, after all, for associated
Neumann-type initial-boundary value problems certain global weak solutions could be constructed
which become smooth and classical at least eventually ([20]).

Main results. The purpose of the present work consists in revealing that with regard to rigorous
verifiability of the intuitive conjecture that the behavior in nutrient taxis systems should be signif-
icantly more dissipation-dominated than in (1.1), the situation becomes much more favorable when
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the fully parabolic model (1.2) is simplified according to a standard assumption on quasi-stationarity
of the chemical concentration. In fact, modeling hypotheses of this form, justifiable in any situation
in which chemicals diffuse substantially faster than individuals, have enhanced accessibility to tools
from mathematical analysis in numerous studies on corresponding parabolic-elliptic variants of (1.1)
(see [11], [16], [17], for instance), thereby partially even opening perspectives for quite refined insight
(see e.g. [21], [2] for some recent examples). Accordingly assuming that the attractant in (1.2) diffuses
much faster than the population, we shall henceforth consider the parabolic-elliptic nutrient taxis
system 




ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

0 = ∆v − uv − µv + r(x, t), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.3)

where Ω ⊂ R
n, n ≥ 1, is a bounded domain with smooth boundary, where µ ≥ 0 is a fixed parameter,

and where r and u0 are suitably regular given functions on Ω× (0,∞) and on Ω, respectively.

Our first result then states that under mild assumptions on these ingredients, globally defined smooth
solutions can always be found, hence ruling out any blow-up phenomenon.

Theorem 1.1 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, and let µ ≥ 0 and

r ∈ C1(Ω× [0,∞)) be nonnegative. Then for any choice of u0 ∈ W 1,∞(Ω) such that u0 > 0 in Ω, the
problem (1.3) admits a global classical solution (u, v), uniquely determined by the inclusions

{
u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) and

v ∈ C2,0(Ω× (0,∞)),
(1.4)

for which furthermore u > 0 and v ≥ 0 in Ω× [0,∞).

Beyond this addressing the question how far (1.3) really reflects relaxation, we shall next study the
large time behavior of the respective first solution component. In this regard, the following second
among our main results reveals that indeed u approaches its conserved spatial average in the large time
limit, provided that the external reproduction rate r in (1.3) satisfies a condition which, surprisingly,
exclusively requires some decay of the gradient ∇√

r, rather than of r itself; in fact, we find it worth
emphasizing that the following statement asserts stabilization of u in numerous cases in which r itself
is unbounded, and in which, as we shall see in Proposition 1.3 below, even in some situations in which
the signal concentration v definitely must be unbounded. Here and throughout the sequel, we use the
notation ψ := 1

|Ω|

∫
Ω ψ for ψ ∈ L1(Ω).

Theorem 1.2 Let µ ≥ 0, and suppose that r ∈ C1(Ω× [0,∞)) is a nonnegative function fulfilling

√
r ∈ L2

loc([0,∞);W 1,2(Ω)) (1.5)

as well as ∫ t+1

t

∫

Ω
|∇

√
r|2 → 0 as t→ ∞. (1.6)
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Then for any u0 ∈W 1,∞(Ω) which is such that u0 > 0 in Ω, the solution (u, v) of (1.3) satisfies

u(·, t) → u0 in L1(Ω) as t→ ∞ (1.7)

and that ∫ t+1

t

‖∇v 1
4 (·, s)‖4L2(Ω)ds→ 0 as t→ ∞. (1.8)

If furthermore there exists q ≥ 1 such that q > n
2 and

sup
t>0

‖r(·, t)‖Lq(Ω) <∞, (1.9)

then u belongs to L∞(Ω× (0,∞)), and we even have

u(·, t) → u0 in Lp(Ω) for all p ∈ [1,∞) and u(·, t) ⋆
⇀ u0 in L∞(Ω) as t→ ∞. (1.10)

Not only to underline the above, let us finally add some qualitative information on how the large time
behavior of v may be influenced by boundedness properties of r, and by positivity assumptions of µ.

Proposition 1.3 Suppose that µ ≥ 0, that u0 ∈W 1,∞(Ω) is positive in Ω, and that r ∈ C1(Ω×[0,∞))
is nonnegative, and let (u, v) denote the corresponding solution of (1.3).

i) We have

‖v(·, t)‖L∞(Ω) ≥
1∫

Ω u0 + µ|Ω| ·
∫

Ω
r(·, t) for all t > 0. (1.11)

In particular, if (r(·, t))t>0 is unbounded in L1(Ω), then

lim sup
t→∞

‖v(·, t)‖L∞(Ω) = ∞. (1.12)

ii) If µ > 0 and

sup
t>0

‖r(·, t)‖Lq(Ω) <∞ for some q ≥ 1 such that q >
n

2
, (1.13)

then there exists C > 0 such that

‖v(·, t)‖L∞(Ω) ≤ C for all t > 0. (1.14)

2 Global existence of classical solutions. Proof of Theorem 1.1

Unfortunately, mainly due to lacking strict positivity of the Neumann Laplacian on Ω which exclusively
forms the linear part in the second equation at least in the case µ = 0 to be explicity included in
our analysis, the system (1.3) apparently fails to fall among any class of taxis-type systems for which
standard approaches more or less directly yield local existence and convenient extensibility criteria,
typically ensuring that prolongation of a solution is possible once, for instance, the spatial L∞ norm
of its first component remains bounded (cf. e.g. [3] for a detailed demonstration in the context of a
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parabolic-elliptic system simplifying a variant of (1.1). In fact, to warrant invertibility, after all, of the
Helmholtz operator ϕ 7→ −∆ϕ+uϕ, it seems in order to invest some appropriate positivity properties
of the function u which, in turn, forms part of the unknown solution. Pursuing an approach which on
the one hand we find mathematically convenient in this regard, and which on the other hand will turn
out to be sufficient for our purposes, relying on our overall assumption on positivity of u0 we shall first
derive the following result on local existence, additionally providing an extensibility criterion involving
a positivity property of u.

Lemma 2.1 Let µ ≥ 0 and r ∈ C1(Ω × [0,∞)) be nonnegative, and suppose that u0 ∈ W 1,∞(Ω)
is such that u0 > 0 in Ω. Then there exist Tmax ∈ (0,∞] and a uniquely determined pair (u, v) of
functions {

u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) and

v ∈ C2,0(Ω× (0, Tmax)),
(2.1)

with u > 0 and v ≥ 0 in Ω×[0, Tmax), such that (u, v) solves (1.3) in the classical sense in Ω×(0, Tmax),
and that

if Tmax <∞, then lim inf
tրTmax

inf
x∈Ω

u(x, t) = 0. (2.2)

Moreover, ∫

Ω
u(·, t) =

∫

Ω
u0 for all t ∈ (0, Tmax). (2.3)

Proof. In order to create an appropriate fixed point framework, let us first recall a standard result
from elliptic regularity theory ([7]) to fix θ1 ∈ (0, 1) and c1 > 0 such that

‖ϕ‖C1+θ1 (Ω) ≤ c1‖ −∆ϕ+ ϕ‖L∞(Ω) for all ϕ ∈ C2(Ω) such that ∂ϕ
∂ν

= 0 on ∂Ω, (2.4)

and introduce the positive numbers

η := min
{
1 , inf

x∈Ω
u0(x)

}
and M := 2‖u0‖L∞(Ω) (2.5)

as well as
δ :=

η

2
and R := ‖r‖L∞(Ω×(0,1)). (2.6)

Then writing

c2 :=
c1 · (M + µ+ 1) ·R

δ + µ
+ c1R (2.7)

and

T := min

{
1 ,

δ + µ

(1 + µ)R
ln 2 ,

1

R
ln 2

}
, (2.8)

by means of parabolic regularity theory ([18]) we obtain θ2 ∈ (0, 1) and c3 > 0 such that whenever
a ∈ C0(Ω× (0, T );Rn), b ∈ C0(Ω× (0, T )) and z ∈ C0(Ω× [0, T ]) ∩ C2,1(Ω× (0, T )) are such that

‖a‖L∞(Ω×(0,T )) ≤ c2 and ‖b‖L∞(Ω×(0,T )) ≤
(M + µ)R

δ + µ
+R (2.9)
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and that 



zt = ∆z + a(x, t) · ∇z + b(x, t)z, x ∈ Ω, t ∈ (0, T ),
∂z
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, T ),

z(x, 0) = u0(x), x ∈ Ω,

(2.10)

we have
‖z‖

Cθ2,
θ2
2 (Ω×[0,T ])

≤ c3. (2.11)

Then taking any θ ∈ (0, θ2), in the closed convex subset

S :=
{
ϕ ∈ X

∣∣∣ δ ≤ ϕ ≤M in Ω× [0, T ]
}

of the Banach space X := Cθ, θ
2 (Ω × [0, T ]), given u ∈ S we use that µ ≥ 0, and that r(·, t) ≥ 0 and

δ ≤ u(·, t) ≤ M in Ω for all t ∈ (0, T ), to see employing the Lax-Milgram lemma that for any such t
the problem {

−∆v + u(x, t)v + µv = r(x, t), x ∈ Ω,
∂v
∂ν

= 0, x ∈ ∂Ω,
(2.12)

admits a uniquely determined weak solution v(·, t) ∈ W 1,2(Ω). By standard bootstrap arguments
relying on the inclusions u(·, t) ∈ Cθ(Ω) an r(·, t) ∈ C1(Ω) for t ∈ (0, T ), it can moreover readily
be verified that v(·, t) actually belongs to C2+θ(Ω) and satisfies (2.12) in the classical sense for all
t ∈ (0, T ), whence the classical comparison principle ([7, Theorem 3.5]) becomes applicable so as to
ensure that

0 ≤ v(·, t) ≤ R

δ + µ
in Ω for all t ∈ (0, T ), (2.13)

because for v := 0 and v := R
δ+µ

we have −∆v + u(·, t)v + µv − r(·, t) = −r(·, t) ≤ 0 and

−∆v + u(·, t)v + µv − r(·, t) =
(
u(·, t) + µ

)
· R

δ + µ
− r(·, t) ≥ R− r(·, t) ≥ 0

in Ω for all t ∈ (0, T ) due to the definitions of S and R and the fact that T ≤ 1.

Now for t ∈ (0, T ) and s ∈ (0, T ), (2.12) implies that w := v(·, t)− v(·, s) satisfies

−∆w +
(
u(·, t) + µ

)
w = −

(
u(·, t)− u(·, s)

)
· v(·, s) + r(·, t)− r(·, s) in Ω,

which upon testing by w any invoking Young’s inequality yields
∫

Ω
|∇w|2 + (δ + µ)

∫

Ω
w2 ≤

∫

Ω
|∇w|2 +

∫

Ω

(
u(·, t) + µ

)
w2

= −
∫

Ω

(
u(·, t)− u(·, s)

)
v(·, s)w +

∫

Ω

(
r(·, t)− r(·, s)

)
w

≤ δ + µ

2

∫

Ω
w2 +

1

δ + µ

∫

Ω

(
u(·, t)− u(·, s)

)2
v2(·, s)

+
1

δ + µ

∫

Ω

(
r(·, t)− r(·, s)

)2
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≤ δ + µ

2

∫

Ω
w2 +

R2

(δ + µ)3

∫

Ω

(
u(·, t)− u(·, s)

)2

+
1

δ + µ

∫

Ω

(
r(·, t)− r(·, s)

)2

because of (2.13). As clearly u and r belong to Cθ, θ
2 (Ω × [0, T ]), we therefore obtain c4 = c4(u) > 0

such that

‖v(·, t)− v(·, s)‖W 1,2(Ω) ≤ c4|t− s| θ2 for all t ∈ (0, T ) and s ∈ (0, T ),

so that since furthermore (2.4), (2.12) and (2.13) ensure that

‖v(·, t)‖C1+θ1 (Ω) ≤ c1‖v(·, t)− u(·, t)v(·, t)− µv(·, t) + r(·, t)‖L∞(Ω)

≤ c1 ·
{

R

δ + µ
+M · R

δ + µ
+ µ · R

δ + µ
+R

}

= c2 for all t ∈ (0, T ), (2.14)

by interpolation we easily find θ3 = θ3(u) ∈ (0, 1) such that v ∈ C1+θ3,θ3(Ω × [0, T ]). Accordingly,
standard parabolic Schauder theory ([15]) guarantees the existence of a classical solution u ∈ C0(Ω×
[0, T ]) ∩ C2,1(Ω× (0, T )) of





ut = ∆u−∇v · ∇u− u2v − µuv + r(x, t)u, x ∈ Ω, t ∈ (0, T ),
∂u
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(2.15)

which we claim to actually be an element of S.

Indeed, letting u(x, t) := y(t), (x, t) ∈ Ω× [0,∞), with y ∈ C1([0,∞)) denoting the solution of

{
y′(t) = − R

δ+µ
· y2(t)− µR

δ+µ
· y(t), t > 0,

y(0) = η,

we see that since η ≤ u0 in Ω by (2.5), the comparison principle asserts that u ≥ u in Ω × [0, T ]. As
(2.5) moreover ensures that η ≤ 1, y can conveniently be estimated from below by using that thus

y ≤ η ≤ 1 and hence y′(t) ≥ − (1+µ)R
δ+µ

· y(t) for all t > 0, which namely warrants that

y(t) ≥ ηe
−

(1+µ)R
δ+µ

·t ≥ ηe
−

(1+µ)R
δ+µ

·T ≥ η

2
for all t ∈ (0, T )

according to the second restriction implied by (2.8). In consequence,

u(x, t) ≥ y(t) ≥ η

2
= δ for all x ∈ Ω and t ∈ (0, T ) (2.16)

due to (2.6).

To achieve a pointwise upper estimate, we let u(x, t) := y(t) := ‖u0‖L∞(Ω)e
Rt for (x, t) ∈ Ω × [0,∞)
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and observe that by nonnegativity of u, v and µ, a second application of the comparison principle
ensures that u ≤ u in Ω× [0, T ], and that therefore

u(x, t) ≤ ‖u0‖L∞(Ω)e
RT =

M

2
· eRT ≤M for all x ∈ Ω and t ∈ (0, T ) (2.17)

according to (2.5) and the third implication contained in (2.8).

Now the inequalities in (2.16) and (2.17) enable us to apply (2.10) to a := −∇v, b := −uv − µv + r

and z := u, which indeed satisfy

‖a(·, t)‖L∞(Ω) ≤ ‖∇v(·, t)‖C1+θ1 (Ω) ≤ c2 for all t ∈ (0, T )

and

‖b(·, t)‖L∞(Ω) ≤M · R

δ + µ
+ µ · R

δ + µ
+R for all t ∈ (0, T ).

Consequently, (2.11) states that u in fact belongs to Cθ2,
θ2
2 (Ω× [0, T ]) with

‖u‖
Cθ2,

θ2
2 (Ω×[0,T ])

≤ c3. (2.18)

In conjunction with (2.16) and (2.17), this shows that if we let Fu := u, then indeed F maps S
into itself, whereas the quantitative estimate in (2.18) along with the Arzelà-Asoli theorem and our
restriction that θ < θ2 ensures that FS is compact in X. Since it can readily be shown that F
furthermore is continuous, it thus follows from Schauder’s theorem that F possesses a fixed point
u ∈ S which, along with v as accordingly determined through (2.12), clearly yields a classical solution
of (1.3) in Ω×(0, T ). As our above choice of T only depends on u0 and r through δ =

1
2 min{1, infΩ u0}

and R = supΩ×(0,1) r, a standard argument thereupon warrants extensibility up to some maximal
Tmax ∈ (0,∞] fulfilling (2.2).

The claimed uniqueness property can be verified in a straightforward manner, adapting the reasonings
e.g. from [10] or [3], so that we may omit giving details on this here. Finally, (2.3) can be obtained
upon direct integration of the first equation in (1.3). �

In order to warrant global extensibility by ruling out the second alternative in (2.2), by means of
another maximum principle-based argument we can establish temporally local pointwise lower bounds
on u as follows.

Lemma 2.2 Under the assumptions from Lemma 2.1, for any T > 0 one can find C(T ) > 0 such
that

u(x, t) ≥ C(T ) for all x ∈ Ω and t ∈ [0,min{T, Tmax}). (2.19)

Proof. Given T > 0, we let
R(T ) := ‖r‖L∞(Ω×(0,T )) (2.20)

and fix α > 0 suitably large such that
α > R(T ). (2.21)
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We furthermore rely on the presupposed positivity of u0 in Ω in fixing η > 0 small enough fulfilling

η < inf
x∈Ω

u0(x), (2.22)

and therefupon define

z(x, t) := u(x, t)− ηe−αt, x ∈ Ω, t ∈ [0, Tmax). (2.23)

Then z belongs to C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) with

z(x, 0) = u0(x)− η > 0 for all x ∈ Ω (2.24)

by (2.22), and with
∂z(x, t)

∂ν
= 0 for all x ∈ ∂Ω and t ∈ (0, Tmax) (2.25)

according to (1.3), and from (1.3) we moreover obtain that

zt = ut + αηe−αt

= ∆u−∇v · ∇u− u2v − µuv + ur + αηe−αt

= ∆z −∇v · ∇z − (z + ηe−αt)2v − µ(z + ηe−αt)v + (z + ηe−αt)r + αηe−αt

for all x ∈ Ω and t ∈ (0, Tmax). (2.26)

Now writing T̂ := min{T, Tmax}, we see that (2.24) ensures that

t0 := sup
{
t⋆ ∈ (0, T̂ )

∣∣∣ z(x, t) > 0 for all x ∈ Ω and t ∈ [0, t⋆]
}

(2.27)

is well-defined and positive, and to verify that actually t0 = T̂ , assuming the contrary we could find
x0 ∈ Ω such that z(x0, t0) = 0, because z is continuous in Ω×[0, T̂ ). As thus z(x0, t0) = minx∈Ω z(x, t0),
from (2.25) it follows that in both cases x0 ∈ Ω and x0 ∈ ∂Ω we furthermore know that ∇z(x0, t0) = 0,
and that hence the inclusion z(·, t0) ∈ C2(Ω) enables us to infer that ∆z(x0, t0) ≥ 0. Since apart from
that the nonnegativity of z in Ω× [0, t0], as implied by (2.27), warrants that zt(x0, t0) ≤ 0, using that
(2.26) is especially valid in all of Ω× {t0} we may conclude from the latter that

0 ≥ zt(x0, t0) ≥ −η2e−2αt0v(x0, t0)− µηe−αt0v(x0, t0) + ηe−αt0r(x0, t0) + αηe−αt0 . (2.28)

To derive a contradiction from this, we now use the continuity of v(·, t0) in picking x1 ∈ Ω such that

v(x1, t0) = maxx∈Ω v(x, t0), and similarly to the above consideration note that since also ∂v(x,t0)
∂ν

= 0
for all x ∈ ∂Ω by (1.3), regardless of whether x1 ∈ Ω or x1 ∈ ∂Ω we have ∇v(x1, t0) = 0 and
∆v(x1, t0) ≤ 0, through (1.3) implying that

0 ≥ ∆v(x1, t0) = u(x1, t0)v(x1, t0) + µv(x1, t0)− r(x1, t0)

≥ u(x1, t0)v(x1, t0) + µv(x1, t0)−R(T ) (2.29)

due to (2.20). But once more by nonnegativity of z on Ω × [0, t0], from (2.23) we particularly infer
that u(x1, t0) ≥ ηe−αt0 , and thus from (2.29) we obtain that

v(x1, t0) ≤
R(T )

ηe−αt0 + µ
.
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As v(x0, t0) ≤ v(x1, t0) by definition of x1, this enables us to draw from (2.28) and (2.21) the absurd
conclusion that

0 ≥ −
(
η2e−2αt0 + µηe−αt0

)
· R(T )

ηe−αt0 + µ
+ r(x0, t0)ηe

−αt0 + αηe−αt0

= −Rηe−αt0 + r(x0, t0)ηe
−αt0 + αηe−αt0

≥ (α−R)ηe−αt0

> 0,

because r is nonnegative. In consequence, we indeed must have t0 = T̂ and hence z > 0 in Ω× [0, T̂ ),
which in view of (2.23) establishes (2.19) with C(T ) := ηe−αT . �

Thereby our result on global classical solvability becomes evident.

Proof of Theorem 1.1. The claim directly follows by combining Lemma 2.1 with Lemma 2.2. �

3 Stabilization. Proof of Theorem 1.2

In preparation of our energy-based analysis of the large time behavior in the first solution component,
let us state the following quite elementary functional inequality.

Lemma 3.1 Let ϕ ∈ C2(Ω) be such that ϕ > 0 in Ω and ∂ϕ
∂ν

= 0 on ∂Ω. Then

∫

Ω
|∇ϕ 1

4 |2 ≤
√

|Ω|
8

·
{∫

Ω

|∆ϕ|2
ϕ

} 1
2

. (3.1)

Proof. We only need to integrate by parts and employ the Cauchy-Schwarz inequality to see that
indeed

∫

Ω
|∇ϕ 1

4 |2 =
1

16

∫

Ω
ϕ− 3

2∇ϕ · ∇ϕ

= −1

8

∫

Ω
∇ϕ− 1

2 · ∇ϕ

=
1

8

∫

Ω
ϕ− 1

2∆ϕ

≤ 1

8
|Ω| 12 ·

{∫

Ω
ϕ−1|∆ϕ|2

} 1
2

for any such ϕ. �

Now the key observation toward our derivation of Theorem 1.2 consists in the following detection of
an energy-like structure in (1.3).

Lemma 3.2 Whenever µ ≥ 0 and u0 ∈ W 1,∞(Ω) is positive in Ω, for any choice of 0 ≤ r ∈ C1(Ω×
[0,∞)) fulfilling (1.5), the solution (u, v) of (1.3) satisfies

d

dt

∫

Ω
u lnu+

∫

Ω

|∇u|2
u

+
64

|Ω| ·
{∫

Ω
|∇v 1

4 |2
}2

≤
∫

Ω
|∇

√
r|2 for all t > 0. (3.2)
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Proof. Using the positivity of u in Ω× (0,∞), ba means of the first equation in (1.3) we compute

d

dt

∫

Ω
u lnu+

∫

Ω

|∇u|2
u

=

∫

Ω
∇u · ∇v for all t > 0, (3.3)

which trivially asserts (3.2) for each t ∈ S with S := {t > 0 | r(·, t) ≡ 0 in Ω}, because the second
equation in (1.3) implied that v(·, t) ≡ 0 in Ω for any such t.

If t ∈ (0,∞) \ S, then according to the nonnegativity of µ and r(·, t) and the positivity of u(·, t), a
strong maximum principle ([7]) warrants that v(·, t) > 0 in Ω, whence we may multiply the second

equation in (1.3) by ∆v(·,t)
v(·,t) to see upon integrating by parts and employing Young’s inequality that

∫

Ω

|∆v|2
v

=

∫

Ω
u∆v + µ

∫

Ω
∆v −

∫

Ω
r
∆v

v

= −
∫

Ω
∇u · ∇v −

∫

Ω
r
|∇v|2
v2

+

∫

Ω
∇r · ∇v

v

= −
∫

Ω
∇u · ∇v −

∫

Ω
r
|∇v|2
v2

+ 2

∫

Ω

√
r∇

√
r · ∇v

v

≤ −
∫

Ω
∇u · ∇v +

∫

Ω
|∇

√
r|2 for all t ∈ (0,∞) \ S.

Adding this to (3.3) shows that

d

dt

∫

Ω
u lnu+

∫

Ω

|∇u|2
u

+

∫

Ω

|∆v|2
v

≤
∫

Ω
|∇

√
r|2 for all t ∈ (0,∞) \ S

and thereby yields (3.2) also for all these t, because according to Lemma 3.1 we have

∫

Ω

|∆v|2
v

≥ 64

|Ω| ·
{∫

Ω
|∇v 1

4 |2
}

for all t ∈ (0,∞) \ S. �

In appropriately exploiting the latter under suitable assumptions on temporal decay of ∇√
r, we shall

make use of the following basic statement on decay in a linear inhomogeneous ODE.

Lemma 3.3 Let y ∈ C1([0,∞)) and h ∈ L1
loc([0,∞)) both be nonnegative, and suppose that

∫ t+1

t

h(s)ds→ 0 as t→ ∞,

and that there exists λ > 0 such that

y′(t) + λy(t) ≤ h(t) for all t > 0.

Then

y(t) → 0 as t→ ∞.

11



Proof. A proof of this can be found in [6, Lemma 4.6]. �

By means of a standard logarithmic Sobolev inequality and a Csiszár-Kullback inequality, through
Lemma 3.3 the inequality from Lemma 3.3 indeed can be seen to imply the stabilization properties
claimed in Theorem 1.2.

Lemma 3.4 Let µ ≥ 0, and suppose that r ∈ C1(Ω× [0,∞)) is a nonnegative function fulfilling (1.5)
as well as (1.6). Then for any choice of 0 < u0 ∈ W 1,∞(Ω), the solution (u, v) of (1.3) has the
properties (1.7) and (1.8).

Proof. According to a well-known logarithmic Sobolev inequality ([1]), there exists c1 > 0 such
that ∫

Ω
ϕ2 ln

ϕ2

1
|Ω|

∫
Ω ϕ

2
≤ c1

∫

Ω
|∇ϕ|2 for all ϕ ∈ C1(Ω), (3.4)

and a Csiszár-Kullback type inequality ([24]) provides c2 > 0 with the property that

‖ψ − ψ‖2L1(Ω) ≤ c2ψ

∫

Ω
ψ ln

ψ

ψ
for all ψ ∈ C0(Ω) such that ψ > 0 in Ω. (3.5)

Thanks to (2.3), an application of (3.4) to ϕ :=
√
u(·, t) for t > 0 thus shows that

∫

Ω
u ln

u

u0
≤ c1

4

∫

Ω

|∇u|2
u

for all t > 0,

whence due to (3.2), y(t) :=
∫
Ω u(·, t) ln

u(·,t)
u0

, t ≥ 0, as well as g(t) := 64
|Ω|

{∫
Ω |∇v 1

4 (·, t)|2
}2

and

h(t) :=
∫
Ω |∇

√
r(·, t)|2, t > 0, satisfy

y′(t) +
4

c1
y(t) + g(t) ≤ h(t) for all t > 0. (3.6)

As a consequence of our hypothesis (1.6), through Lemma 3.3 this firstly implies that

y(t) → 0 as t→ ∞, (3.7)

which in view of (3.5) immediately yields (1.7).
Thereafter going back to (3.6) once more, upon an integration thereof we obtain that

∫ t+1

t

g(s)ds ≤ y(t) +

∫ t+1

t

h(s)ds for all t > 0,

so that combining (3.7) with, again, (1.6) entails (1.8). �

In order to complete our verification of Theorem 1.2 by deriving the boundedness statement formulated
therein, let us suitably adapt the celebrated Moser-type interative argument to the present situation.

Lemma 3.5 Assume that µ ≥ 0 and that u0 ∈ W 1,∞(Ω) is positive in Ω, and suppose that r ∈
C1(Ω × [0,∞)) is nonnegative and such that (1.9) is valid with some q ≥ 1 such that q > n

2 . Then
there exists C > 0 such that for the solution of (1.3) we have

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0. (3.8)
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Proof. For nonnegative integers k, we let pk := 2k as well as

Mk(T ) := sup
t∈(0,T )

∫

Ω
upk(·, t) and Mk := sup

T>0
Mk(T ), (3.9)

noting that then Mk(T ) is finite for each T > 0, and that

M0(T ) =

∫

Ω
u0 for all T > 0 (3.10)

by (2.3). In order to estimate Mk(T ) for k ≥ 1, we integrate by parts in (1.3) to obtain

1

pk

d

dt

∫

Ω
upk + (pk − 1)

∫

Ω
upk−2|∇u|2 = (pk − 1)

∫

Ω
upk−1∇u · ∇v

=
pk − 1

pk

∫

Ω
∇upk · ∇v

= −pk − 1

pk

∫

Ω
upk∆v

= −pk − 1

pk

∫

Ω
upk+1v − µ · pk − 1

pk

∫

Ω
upkv +

pk − 1

pk

∫

Ω
upkr

≤ pk − 1

pk

∫

Ω
upkr for all t > 0, (3.11)

where according to our assumption (1.9), using the Hölder inequality we see that with some c1 > 0
we have

pk − 1

pk

∫

Ω
upkr ≤ ‖u

pk
2 ‖2

L2q′ (Ω)
‖r‖Lq(Ω)

≤ c1‖u
pk
2 ‖2

L2q′ (Ω)
for all t > 0

with q′ ∈ (1,∞] taken in such a way that 1
q
+ 1

q′
= 1. As pk − 1 ≥ pk

2 for all k ≥ 1, from (3.11) we
thus obtain the inequality

d

dt

∫

Ω
upk + 2

∫

Ω
|∇u

pk
2 |2 ≤ c1pk‖u

pk
2 ‖2

L2q′ (Ω)
for all t > 0, (3.12)

where thanks to our restrictions on q we have (n − 2) · 2q′ < 2n, so that the Gagliardo-Nirenberg
inequality becomes applicable so as to provide c2 > 0 such that whenever k ≥ 1,

c1pk‖u
pk
2 ‖2

L2q′ (Ω)
≤ c2pk‖∇u

pk
2 ‖2aL2(Ω)‖u

pk
2 ‖2(1−a)

L1(Ω)
+ c2pk‖u

pk
2 ‖2L1(Ω)

≤ c2pkM
2(1−a)
k−1 (T )‖∇u

pk
2 ‖2aL2(Ω) + c2pkM

2
k−1(T ) for all t ∈ (0, T )

with a := n(q+1)
(n+2)q ∈ (0, 1). In light of Young’s inequality and the observation that pk ≤ p

1
1−a

k due to the

fact that 1
1−a

> 1, we thus obtain c3 > 0 with the property that for all k ≥ 1,

c1pk‖u
pk
2 ‖2

L2q′ (Ω)
≤ ‖∇u

pk
2 ‖2L2(Ω) + c3p

1
1−a

k M2
k−1(T ) + c2pkM

2
k−1(T )

≤ ‖∇u
pk
2 ‖2L2(Ω) + (c2 + c3)p

1
1−a

k M2
k−1(T ) for all t ∈ (0, T ). (3.13)
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Apart from that, an Ehrling-type inequality associated with the embeddings W 1,2(Ω) →֒→֒ L2(Ω) →֒
L1(Ω) asserts the existence of c4 > 0 such that for all k ≥ 1, since p

1
1−a

k ≥ 1 we have

‖u
pk
2 ‖2L2(Ω) ≤ ‖∇u

pk
2 ‖2L2(Ω) + c4‖u

pk
2 ‖2L1(Ω)

≤ ‖∇u
pk
2 ‖2L2(Ω) + c4M

2
k−1(T )

≤ ‖∇u
pk
2 ‖2L2(Ω) + c4p

1
1−a

k M2
k−1(T ) for all t ∈ (0, T ).

Together with (3.13), this shows that (3.12) entails the inequality

d

dt

∫

Ω
upk +

∫

Ω
upk ≤ c5p

1
1−a

k M2
k−1(T ) for all t ∈ (0, T )

with c5 := c2 + c3 + c4, so that by a comparison argument,

∫

Ω
upk ≤ max

{∫

Ω
u
pk
0 , c5p

1
1−a

k M2
k−1(T )

}
for all t ∈ (0, T ).

In view of (3.10), through an induction this readily implies that actually all the Mk as introduced in
(3.9) are finite for k ≥ 1, and that

Mk ≤ max

{∫

Ω
u
pk
0 , c5p

1
1−a

k M2
k−1

}
for all k ≥ 1. (3.14)

The remaining part is quite standard: If incidentally Mk ≤
∫
Ω u

pk
0 for infinitely many k ≥ 1, the we

directly infer that

‖u(·, t)‖L∞(Ω) ≤ lim inf
k→∞

M
1
pk

k ≤ lim inf
k→∞

{∫

Ω
u
pk
0

} 1
pk

= ‖u0‖L∞(Ω) for all t > 0.

Otherwise, (3.14) easily yields b > 1 such that

Mk ≤ bkM2
k−1 for all k ≥ 1,

which by straightforward induction entails that

Mk ≤ b2
k+1−k−2M2k

0 for all k ≥ 1

and thus

M
1
pk

k ≤ b
2k+1

−k−2

2k M0 ≤ b2M0 for all k ≥ 1,

by (3.10) implying that

‖u(·, t)‖L∞(Ω) ≤ b2
∫

Ω
u0 for all t > 0

and thus ensuring boundedness of u also in this case. �
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Actually, our main results on qualitative behavior in the first solution component have thereby essen-
tially been established already.

Proof of Theorem 1.2. The properties (1.7) and (1.8) have precisely been asserted by Lemma 3.4,
whereas boundedness of u under the additional assumption (1.9) has been established in Lemma 3.5.
On the basis of (1.7), a derivation of (1.10) can thereafter be achieved by standard arguments involving
the dominated convergence theorem and the Banach-Alaoglu theorem. �

4 Boundedness vs. unboundedness of v. Proof of Proposition 1.3

Let us finally verify the statements on unboundedness vs. boundedness of v, as claimed in Proposition
and forming, especially in their first part, some at leats partially remarkable complement to the
outcome of Theorem 1.2.

Proof of Proposition 1.3. i) Since ∂v
∂ν

= 0 on ∂Ω × (0,∞), an integration of the second equation
in (1.3) shows that

∫

Ω
r =

∫

Ω
uv + µ

∫

Ω
v ≤ ‖u‖L1(Ω)‖v‖L∞(Ω) + µ|Ω|‖v‖L∞(Ω) for all t > 0,

which immediately yields (1.11) due to (2.3).

ii) Performing a simplified variant of the Moser-type procedure from Lemma 3.5, for integers k ≥ 0
we let pk := 2k and

Mk(T ) := max

{
1 , sup

t∈(0,T )

∫

Ω
vpk(·, t)

}
, T > 0, (4.1)

as well as Mk := supT>0Mk(T ), and then obtain on testing the second equation in (1.3) by vpk−1 for
k ≥ 1 that since pk − 1 ≥ pk

2 and u ≥ 0,

2

∫

Ω
|∇v

pk
2 |2 + µpk

∫

Ω
vpk ≤ 4(pk − 1)

pk

∫

Ω
|∇v

pk
2 |2 + µpk

∫

Ω
vpk

= pk

∫

Ω
rvpk−1 − pk

∫

Ω
uvpk

≤ (pk − 1)

∫

Ω
rvpk +

∫

Ω
r for all t > 0 (4.2)

due to Young’s inequality. Once more taking q′ := q
q−1 if q > 1 and q′ := ∞ if q = 1, by means of

the Hölder inequality, our assumption (1.13), the Gagliardo-Nirenberg inequality and again Young’s

inequality, we see that with some positive constants c1, c2 and c3 and with a := n(q+1)
(n+2)q ∈ (0, 1), for all

k ≥ 1 we have

(pk − 1)

∫

Ω
rvpk +

∫

Ω
r ≤ pk‖r‖Lq(Ω)‖v

pk
2 ‖2

L2q′ (Ω)
+ ‖r‖L1(Ω)

≤ c1pk‖v
pk
2 ‖2

L2q′ (Ω)
+ c1

≤ c2pk‖∇v
pk
2 ‖2aL2(Ω)‖v

pk
2 ‖2(1−a)

L1(Ω)
+ c2pk‖v

pk
2 ‖2L1(Ω) + c1
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≤ c2pkM
2(1−a)
k−1 (T )‖∇v

pk
2 ‖2aL2(Ω) + c2pkM

2
k−1(T ) + c1

≤ 2‖∇v
pk
2 ‖2L2(Ω) + c3p

1
1−a

k M2
k−1(T ) + c2pkM

2
k−1(T ) + c1

≤ 2‖∇v
pk
2 ‖2L2(Ω) + (c1 + c2 + c3)p

1
1−a

k M2
k−1(T ) for all t ∈ (0, T ),

because 1 ≤ pk ≤ p
1

1−a

k and Mk−1(T ) ≥ 1 for k ≥ 1 and T > 0.
From (4.2) we therefore obtain that if we let c4 :=

c1+c2+c3
µ

, then

∫

Ω
vpk ≤ c4p

a
1−a

k M2
k−1(T ) for all t ∈ (0, T ), (4.3)

which firstly, by induction, shows that Mk <∞ for all k ≥ 1 due to the fact that

∫

Ω
v =

1

µ
·
{∫

Ω
r −

∫

Ω
uv

}
≤ c5 :=

1

µ
‖r‖L∞((0,∞);L1(Ω)) for all t > 0

and hence
M0(T ) ≤ max{1 , c5} for all T > 0. (4.4)

Thereafter, (4.3) secondly ensures that since Mk ≥ 1 by (4.1), we can find b > 1 such that Mk ≤
bkM2

k−1 for all k ≥ 1 and that thus

M
1
pk

k ≤ b
2k+1

−k−2

2k M0 ≤ b2M0 for all k ≥ 1,

readily implying (1.14) through (4.1) and (4.4). �

Acknowledgment. Y. Tao acknowledges support of the National Natural Science Foundation of
China (No. 11571070). M. Winkler was supported by the Deutsche Forschungsgemeinschaft within
the project Analysis of chemotactic cross-diffusion in complex frameworks.

References

[1] Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequal-
ities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial
Differential Equations 26, 43-100 (2001)

[2] Bellomo, N., Winkler, M.: Finite-time blow-up in a degenerate chemotaxis system with flux
limitation. Trans. Amer. Math. Soc. B 4, 31-67 (2017)
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