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Abstract

This work deals with a taxis cascade model for food consumption in two populations, namely
foragers directly orienting their movement upwards gradients of food concentration, and exploiters
taking a parasitic strategy in search of food via tracking higher forager densities. As a consequence,
the dynamics of both populations is adapted to the space distribution of food which is dynamically
modified in time and space by the two populations. This model extends classical one-species
chemotaxis-consumption systems by additionally accounting for a second taxis mechanism coupled
to the first in a consecutive manner.

It is rigorously proved that for all suitably regular initial data, an associated Neumann-type initial-
boundary value problem for the spatially one-dimensional version of this model possesses a globally
defined bounded classical solution. Moreover, it is asserted that the considered two populations
will approach spatially homogeneous distributions in the large timelimit, provided that either the
total population number of foragers or that of exploiters is appropriately small.
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1 Introduction

It is well-known that social interactions in mixed-species groups may lead to rich spatial patterns,
already in some cases of populations consisting of merely two fractions, and the ambition to understand
fundamental principles for such complex dynamics has been attracting considerable interest during
the past decade in the literature near the borderline regions between, inter alia, biology, behavioral
sciences and mathematics (cf. [10], [20], [12] and [4], for instance). Since living systems are complex
and usually involve processes at quite different scales, the modeling of such systems is quite challenging
and the corresponding mathematical descriptions vary from micro- and mesoscopic to macroscopic
models depending on various assumptions and on different mathematical tools (see [1] for a recent
review). Microscopic models are individual-based and developed by kinetic theory, such as the notable
Boltzmann equation; macroscopic models commonly describe collective dynamics and are derived
from hydrodynamic theory; and mesoscopic models bridge microscopic with macroscopic models.
Remarkable collective behavior in self-propelled systems often appear in our natural biological systems,
such as flocking of birds.

With the macroscopic formation of shearwater flocks through attraction to kittiwake foragers in Alaska
forming a paradigmatic example, a rather clearly traceable type of social interplay, in the comparatively
simple case of only two involved species, is constituted by so-called forager-exploiter interaction: The
members of a first population, the “foragers”, search for food by directly moving upward gradients
of the nutrient concentration; contrary to this, as “exploiters” the individuals of a second population
pursue a more indirect strategy by rather orienting their movement toward regions of higher forager
population densities. The interaction between foragers and exploiters generates rich dynamics and in
this regard several spatial models provide novel insights into the evolution of group foraging ([18], [20],
[22]). The N -persons forager-exploiter game model constructed by Vickery et al. in [22] explores the
frequency of occurrence of the different foraging strategies and predicts that as group size increases, the
frequency of the scrounging strategy should increase. The model in [22] assumes that the number of
discovered food patches in one time unit never exceeds one. By relaxing this assumption and assuming
that the number of discovered food patches depends on the foragers’ variable encounter rate with
patches, the authors in [18] proposed a modified forager-exploiter game model which reveals that the
proportion of scroungers will increase when resource is spatiotemporally clumped, but that scroungers
will decrease if the resource is evenly distributed. Under the assumption that the whole group size is
fixed, in [20] a taxis cascade model was developed, and it was found that taxis in producer-scrounger
groups can give rise to pattern formation; more precisely, fluctuating spatiotemporal patterns can be
sustained between such groups.

Besides presupposing that foragers and scroungers as well as the food resources undergo random
diffusion, the model in [20] assumes the latter to be degraded by both foragers and scroungers upon
contact, and to possibly be supplied by an external source and spontaneously decaying. According
to the above, foragers move up food gradients, whereas scroungers follow gradients of the forager
density. Based on these assumptions, as a macroscopic model for the spatio-temporal evolution of
the population densities u = u(x, t) and v = v(x, t) of foragers and scroungers in such contexts,
additionally accounting for the nutrient density w = w(x, t) as a third unknown the authors in [20]
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propose the parabolic PDE system











ut = ∆u− χ1∇ · (u∇w),

vt = ∆v − χ2∇ · (v∇u),

wt = d∆v − λ(u+ v)w − µw + r,

(1.1)

with positive parameters χ1, χ2, d and λ, and with µ ≥ 0 and r ≥ 0. In its most characteristic part,
(1.1) accounts for the group-specific strategies of directed motion by postulating taxis-type cross-
diffusion mechanisms to be responsible in both cases.

As a particular feature thereby generated, (1.1) contains a sequential coupling of two taxis processes,
which may be expected to considerably increase the mathematical complexity of (1.1) when compared,
for instance, to the corresponding one-species chemotaxis-consumption system, depending on the
application context sometimes also referred to as prey-taxis system ([16], [17], [31]), that is obtained
on letting v ≡ 0 in (1.1), and that is hence given by

{

ut = ∆u− χ1∇ · (u∇w),

wt = d∆v − λuw − µw + r.
(1.2)

In the prototypical case when µ = r = 0, namely, the structure of the latter is artless enough so as
to allow for a meaningful energy structure that can be used as a technical basis for a comprehensive
theory of global classical well-posedness in low-dimensional boundary value problems in which the
spatial dimension n satisfies n ≤ 2, of global weak solvability when n = 3, and even of asymptotic
stabilization toward spatially homogeneous equilibria whenever n ≤ 3 ([21]). Adaptations of such
approaches have been utilized to address several variants of (1.2), partially even involving further
components and interaction mechanisms ([15], [31], [28], [26]), but capturing the additional intricacy
induced by the second taxis interaction in (1.1) seems beyond the abilities of such methods.

Due to the presence of the first taxis mechanism in (1.1), only little information on the spatial regu-
larity of u seems available. In line with this, the sequential taxis process involving ∇u in the second
equation in (1.1) seems to increase the mathematical delicacy of (1.1) quite substantially. In particu-
lar, to the best of our knowledge it is yet left completely open by the analytical literature how far the
coupling of the nutrient taxis mechanism from (1.2) to a further cross-diffusion process sensitive to
the gradient of the first population may lead to substantial destabilization of the tendency toward ho-
mogeneity, as known to occur in (1.2); Indeed, when n ≤ 2, neither any blow-up phenomenon nor any
nontrivial pattern formation can occur in (1.2), as asserted in [21]; but the same issue for (1.1) largely
remains unknown due to its increased complexity. Only under some restrictive assumptions on r and
the initial data w|t=0, in essence ensuring that w remains below a suitably small threshold throughout
evolution, it has recently been possible to achieve some results on global existence of certain general-
ized solutions to (1.1) in multi-dimensional cases, as well as on their large time stabilization toward
constants when moreover r = r(x, t) decays suitably in time ([30]).

On the other hand, numerical simulations as well as formal considerations in [20] indicate that the
quantity of the total population

∫

Ω u of foragers or of the total population
∫

Ω v of scroungers plays
a crucial role in determining the large time behavior or formation of patterns of two groups, clearly
providing motivation to confirm such biologically important features by means of rigorous analysis.
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Apart from that, in light of the strong singularity-supporting potential of chemotactic cross-diffusion,
well-known as a striking feature e.g. of the classical Keller-Segel system ([13], [25]), already answers
to questions from basic theory of global solvability in (1.1) thus seem far from obvious, even in the
simplest case in which n = 1; in fact, the numerical experiments reported in [20] indicate quite a rich
dynamical potential of (1.1) already in such one-dimensional frameworks.

Main results. The purpose of the present work now consists in making sure that the evident math-
ematical challenges notwithstanding, and especially despite the apparent lack of any favorable energy
structure, at least the one-dimensional version of (1.1) does not only allow for a rather comprehensive
theory of classical solvability, but beyond this is even accessible to an essentially exhaustive qualitative
analysis in parameter constellations for which formal considerations predict asymptotic homogeniza-
tion: In particular, we shall develop an analytical approach which firstly enables us to assert global
existence of bounded classical solutions for widely arbitrary initial data, and which secondly is subtle
enough so as to allow for a conclusion on large time stabilization toward constant steady states under
an additional smallness assumption on the total population sizes of foragers and scroungers that quite
precisely seems to match a corresponding condition formally identified as essentially necessary and
sufficient therefor by means of a linear stability analysis in [20].

To take this more precise, in a bounded open interval Ω ⊂ R let us consider the initial-boundary value
problem for (1.1) given by































ut = uxx − χ1(uwx)x, x ∈ Ω, t > 0,

vt = vxx − χ2(vux)x, x ∈ Ω, t > 0,

wt = dwxx − λ(u+ v)w − µw + r, x ∈ Ω, t > 0,

ux = vx = wx = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.3)

where χ1, χ2, d, λ and µ are positive constants and r is nonnegative, and where the initial data are
such that











u0 ∈ W 1,∞(Ω) is nonnegative with u0 6≡ 0,

v0 ∈ W 1,∞(Ω) is nonnegative with v0 6≡ 0, and that

w0 ∈ W 1,∞(Ω) is positive in Ω.

(1.4)

Then the first of our main results asserts global existence of bounded classical solutions in the following
flavor.

Theorem 1.1 Let Ω ⊂ R be a bounded open interval, and let χ1, χ2, d, λ and µ be positive and r be
nonnegative. Then for any choice of (u0, v0, w0) fulfilling (1.4), the problem (1.3) possesses a global
classical solution (u, v, w) which is uniquely determined by the properties that

u, v and w belong to C0([0,∞);W 1,2(Ω)) ∩ C2,1(Ω× (0,∞)), (1.5)

and which is such that u > 0 and v > 0 in Ω× (0,∞) as well as w > 0 in Ω× [0,∞). Moreover, this
solution is bounded in the sense that there exists C > 0 such that

‖u(·, t)‖W 1,2(Ω) + ‖v(·, t)‖W 1,2(Ω) + ‖w(·, t)‖W 1,2(Ω) ≤ C for all t > 0. (1.6)
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Next intending to identify circumstances under which the diffusion processes in (1.3) are sufficiently
strong so as to warrant relaxation into homogeneous states, we note that in light of corresponding re-
sults on asymptotically diffusive behavior in chemotaxis systems with essentially superlinear nonlinear
ingredients ([5], [6], [24]) it seems far from audacious to conjecture that such dynamics can always be
observed if solutions remain small in all their components, and with respect to suitably fine topologies,
throughout evolution.

In order to approach a more subtle picture in this regard, we recall that a linear stability analysis
detailed in [20] suggests to expect, in the normalized case when Ω = (0, 1) and the spatial averages
u0 :=

1
|Ω|

∫

Ω u0 and v0 :=
1
|Ω|v0 satisfying u0 + v0 = 1, the relation

8(λ+ µ)2(d+ 1)

λrχ1u0v0
+

2(d+ 1)

v0
& χ2 (1.7)

as the decisive condition for prevalence of homogeneity. In particular, this condition is entirely in-
dependent of w0, and moreover it involves u0 and v0 exclusively through their L1 norms as their
biologically best interpretable derivate. If, more generally, u0+v0 is supposed to remain below a given
number in an arbitrary bounded Ω, then assuming (1.7) evidently becomes equivalent to imposing a
certain smallness hypothesis on min{u0, v0}. Roughly speaking, this predicts that as long as either
the average population of foragers or that of scroungers is suitably small, the two populations as well
as food will eventually be homogenously distributed over the spatial habitat. The second of our main
results now provides a rigorous mathematical counterpart of this formal consideration.

Theorem 1.2 Suppose that Ω ⊂ R is a bounded open interval, that χ1, χ2, d, λ and µ are positive,
and that r ≥ 0. Then for all M > 0 one can find ε(M) > 0 with the property that whenever u0, v0 and
w0 are such that besides (1.4) we have

∫

Ω
u0 +

∫

Ω
v0 ≤ M (1.8)

as well as
∫

Ω
u0 ≤ ε(M) or

∫

Ω
v0 ≤ ε(M), (1.9)

there exist C = C(u0, v0, w0) > 0 and α = α(u0, v0, w0) > 0 such that the solution (u, v, w) of (1.3)
satisfies

‖u(·, t)− u0‖L∞(Ω) + ‖v(·, t)− v0‖L∞(Ω) + ‖w(·, t)− w⋆‖L∞(Ω) ≤ Ce−αt for all t > 0, (1.10)

where w⋆ is the nonnegative constant given by

w⋆ :=
r

λ(u0 + v0) + µ
. (1.11)

2 Local existence and an explicit L∞ bound for w

The following basic statement on local existence and extensibility can be obtained from standard
theory on evolution systems of parabolic type.
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Lemma 2.1 Suppose that Ω ⊂ R is a bounded open interval, that χ1, χ2, d, λ and µ are positive and
r ≥ 0, and that (1.4) holds. Then there exist Tmax ∈ (0,∞] and nonnegative functions u, v, w, uniquely
determined by the requirement that

u, v and w are elements of C0([0, Tmax);W
1,2(Ω)) ∩ C2,1(Ω× (0, Tmax)), (2.1)

which solve (1.3) in the classical sense in Ω× (0, Tmax), and which are such that

if Tmax < ∞, then lim sup
tրTmax

{

‖u(·, t)‖W 1,q(Ω)+‖v(·, t)‖W 1,q(Ω)+‖w(·, t)‖W 1,q(Ω)

}

= ∞ for all q > 1.

(2.2)
Moreover, u > 0 and v > 0 in Ω× (0, Tmax) and w > 0 in Ω× [0, Tmax), and we have

∫

Ω
u(·, t) =

∫

Ω
u0 and

∫

Ω
v(·, t) =

∫

Ω
v0 for all t ∈ (0, Tmax). (2.3)

Proof. Since all eigenvalues of the diffusion matrix

A(u, v, w) :=

( 1 0 −χ1u

−χ2v 1 0
0 0 d

)

are positive, the general theory on local existence and maximal extension from [2] is applicable to
(1.3); in particular, the existence of a uniquely determined maximal classical solution follows from
[2, Theorems 14.4 and 14.6], and the extensibility criterion (2.2) is ensured by [2, Theorem 15.5].
Moreover, the strong maximum principle along with our assumptions u0 6≡ 0 and v0 6≡ 0 in (1.4) yield
positivity of u and v in Ω× (0, Tmax), whereas a simple comparison argument shows that w(x, t) > 0
in Ω × [0, Tmax) thanks to our assumption that w0 > 0. Finally, the mass conservation properties
in (2.3) immediately result from integration in the first equation and the second equation in (1.3),
respectively. �

Constituting another basic but important feature of (1.3), the following pointwise bound on w is an
immediate consequence of the maximum principle.

Lemma 2.2 We have

‖w(·, t)‖L∞(Ω) ≤
r

µ
+ ‖w0‖L∞(Ω)e

−µt for all t ∈ (0, Tmax). (2.4)

Proof. We let w(x, t) := y(t) for x ∈ Ω and t ≥ 0, where

y(t) := y0e
−µt +

r

µ
(1− e−µt), t ≥ 0,

denotes the solution of y′(t) + µy(t) = r, t > 0, with y(0) = y0 := ‖w0‖L∞(Ω). Then w(·, 0) = y0 ≥
w(·, 0) in Ω as well as ∂w

∂ν
= 0 on ∂Ω× (0,∞). As moreover, by nonnegativity of λ, u and v,

wt − dwxx + λ(u+ v)w + µw − r ≥ wt − dwxx + µw − r

≥ y′ + µy − r = 0 in Ω× (0, Tmax),

by means of a comparison argument we conclude that w ≤ w in Ω× (0, Tmax), and that thus

w(x, t) ≤ y0e
−µt +

r

µ
for all x ∈ Ω and t ∈ (0, Tmax),

which is equivalent to (2.4). �
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3 Further estimates. Linking regularity to the size of
∫

Ω u0 +
∫

Ω v0

The goal of this section is to reveal further regularity properties of the above local solution which on
the one hand will allow for its global extension, but which on the other will also prepare our subsequent
qualitative analysis. For this purpose, the dependence of the obtained estimates on the averages u0
and v0 as well as on their sum, as appearing in (1.8), will carefully be traced throughout this section.

3.1 A bound for wx in Lq

In a first step we shall employ parabolic smoothing estimates to see that the mere mass conservation
properties in (2.3) entail Lq bounds for the chemotactic gradient acting in the first equation from
(1.3). In not requiring any restriction other than that q be finite, we here already make essential use
of our assumption on the spatial framework to be one-dimensional.

Lemma 3.1 There exists α > 0 such that for all M > 0 and any q > 1 one can find K(M, q) > 0 with
the property that whenever u0, v0 and w0 satisfy (1.4) as well as (1.8), there exists C = C(u0, v0, w0) >
0 such that

‖wx(·, t)‖Lq(Ω) ≤ K(M, q) + Ce−αt for all t ∈ (0, Tmax). (3.1)

Proof. Relying on known regularization features of the Neumann heat semigroup (eσ∆)σ≥0 on Ω
with ∆ := (·)xx ([24]), let us fix c1(q) > 0 and c2(q) > 0 such that for all t > 0,

‖∂xedt∆ϕ‖Lq(Ω) ≤ c1(q)‖ϕ‖W 1,∞(Ω) for all ϕ ∈ W 1,∞(Ω) (3.2)

and
‖∂xedt∆ϕ‖Lq(Ω) ≤ c2(q)(1 + t

−1+ 1
2q )‖ϕ‖L1(Ω) for all ϕ ∈ C0(Ω). (3.3)

Then representing w according to

w(·, t) = et(d∆−µ)w0 +

∫ t

0
e(t−s)(d∆−µ)

{

− λ(u(·, s) + v(·, s))w(·, s) + r
}

ds, t ∈ (0, Tmax),

we can combine (3.2) with (3.3) to estimate

‖wx(·, t)‖Lq(Ω)

≤ c1(q)e
−µt‖w0‖W 1,∞(Ω)

+c2(q)

∫ t

0
e−µ(t−s)

(

1 + (t− s)
−1+ 1

2q

)
∥

∥

∥
− λ(u(·, s) + v(·, s))w(·, s) + r

∥

∥

∥

L1(Ω)
ds

≤ c1(q)e
−µt‖w0‖W 1,∞(Ω)

+c2(q)λ

∫ t

0
e−µ(t−s)

(

1 + (t− s)
−1+ 1

2q

)

·
{

‖u(·, s)‖L1(Ω) + ‖v(·, s)‖L1(Ω)

}

‖w(·, s)‖L∞(Ω)ds

+c2(q)r|Ω|
∫ t

0
e−µ(t−s)

(

1 + (t− s)
−1+ 1

2q

)

ds for all t ∈ (0, Tmax). (3.4)
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Here using (2.3) along with (1.8) and Lemma 2.2, we find that

c2(q)λ

∫ t

0
e−µ(t−s)

(

1 + (t− s)
−1+ 1

2q

)

·
{

‖u(·, s)‖L1(Ω) + ‖v(·, s)‖L1(Ω)

}

‖w(·, s)‖L∞(Ω)ds

≤ c2(q)λ

{
∫

Ω
u0 +

∫

Ω
v0

}

·
∫ t

0
e−µ(t−s)

(

1 + (t− s)−1+ 1
2q

)

·
{ r

µ
+ ‖w0‖L∞(Ω)e

−µs
}

ds

≤ c2(q)λ

{
∫

Ω
u0 +

∫

Ω
v0

}

·
{

r

µ
·
( 2

µ
+ 2q

)

+ ‖w0‖L∞(Ω) · (te−µt + 2qt
1
2q e−µt)

}

≤ 2c2(q)λMr(1 + qµ)

µ2
+ c2(q)λM‖w0‖L∞(Ω) · (te−µt + 2qt

1
2q e−µt) for all t ∈ (0, Tmax)

because
∫ t

0
e−µ(t−s)

(

1 + (t− s)
−1+ 1

2q

)

ds =

∫ t

0
e−µs(1 + s

−1+ 1
2q )ds ≤

∫ ∞

0
e−µs(1 + s

−1+ 1
2q )ds ≤ 2

µ
+ 2q

and
∫ t

0
e−µt

(

1 + (t− s)
−1+ 1

2q

)

ds = te−µt + 2qt
1
2q e−µt,

whence moreover estimating

te−µt ≤ 2

µ
e−

µ

2
t as well as 2qt

1
2q e−µt ≤ 2q

( 1

µq

)
1
2q
e−

µ

2
t

for t > 0, from (3.4) we infer that

‖wx(·, t)‖Lq(Ω) ≤ 2c2(q)λMr(1 + qµ)

µ2
+

2c2(q)r(1 + qµ)|Ω|
µ

+

{

c1(q)‖w0‖W 1,∞(Ω) + c2(q)λM
[ 2

µ
+ 2q

( 1

µq

)
1
2q
]

‖w0‖L∞(Ω)

}

· e−
µ

2
t

for all t ∈ (0, Tmax), which is precisely of the claimed form with suitably chosen K(M, q) > 0 and
C = C(u0, v0, w0) > 0, and with α := µ

2 . �

3.2 Estimating u in L∞ and ux in a spatio-temporal L2 norm

Through a standard testing procedure performed using the first equation in (1.3), when applied to
q := 2 the latter has a first consequence on regularity of u as well as its gradient.

Lemma 3.2 There exists α > 0 with the property that given any M > 0 one can choose K(M) > 0
such that if (1.4) and (1.8) hold, there exists C = C(u0, v0, w0) > 0 such that

∫

Ω
u2(·, t) ≤ K(M)u20 + Ce−αt for all t ∈ (0, Tmax) (3.5)

and
∫ t+τ

t

∫

Ω
u2x ≤ K(M)u20 + Ce−αt for all t ∈ (0, Tmax − τ), (3.6)

where τ := min{1, 12Tmax}.
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Proof. Let us first apply Lemma 3.1 to q := 2 to fix positive constants α and k1(M) such that
whenever (1.4) and (1.8) hold, one can find c1 = c1(u0, v0, w0) > 0 such that

‖wx(·, t)‖L2(Ω) ≤ k1(M) + c1e
−αt for all t ∈ (0, Tmax), (3.7)

where without loss of generality we may assume that k1(M) ≥ 1 and α < 1
6 . Apart from that, by

means of the Gagliardo-Nirenberg inequality and Young’s inequality we can choose c2 > 0, c3 > 0 and
c4 > 0 such that

‖ϕ‖L∞(Ω) ≤ c2‖ϕx‖
2
3

L2(Ω)
‖ϕ‖

1
3

L1(Ω)
+ c2‖ϕ‖L1(Ω) for all ϕ ∈ W 1,2(Ω), (3.8)

that
1

2
‖ϕ‖2L2(Ω) ≤

1

4
‖ϕx‖2L2(Ω) + c3‖ϕ‖2L1(Ω) for all ϕ ∈ W 1,2(Ω), (3.9)

and that

c2χ1|Ω|
1
3ab ≤ 1

8
a

6
5 + c4b

6 for all a ≥ 0 and b ≥ 0. (3.10)

Now assuming (1.4) and (1.8), we test the first equation in (1.3) by u to see using the Cauchy-Schwarz
inequality as well as (3.7), (3.8), (3.9) and (2.3), that

1

2

d

dt

∫

Ω
u2 +

1

2

∫

Ω
u2 +

∫

Ω
u2x

= χ1

∫

Ω
uuxwx +

1

2

∫

Ω
u2

≤ χ1‖u‖L∞(Ω)‖ux‖L2(Ω)‖wx‖L2(Ω) +
1

2

∫

Ω
u2

≤ χ1‖u‖L∞(Ω)‖ux‖L2(Ω) ·
{

k1(M) + c1e
−αt
}

+
1

2

∫

Ω
u2

≤ c2χ1‖ux‖
5
3

L2(Ω)
‖u‖

1
3

L1(Ω)
·
{

k1(M) + c1e
−αt
}

+ c2χ1‖ux‖L2(Ω)‖u‖L1(Ω) ·
{

k1(M) + c1e
−αt
}

+
1

4
‖ux‖2L2(Ω) + c3‖u‖2L1(Ω)

= c2χ1|Ω|
1
3u

1
3

0 ‖ux‖
5
3

L2(Ω)
·
{

k1(M) + c1e
−αt
}

+ c2χ1|Ω|u0‖ux‖L2(Ω) ·
{

k1(M) + c1e
−αt
}

+
1

4
‖ux‖2L2(Ω) + c3|Ω|2u20 for all t ∈ (0, Tmax), (3.11)

where by (3.10),

c2χ1|Ω|
1
3u

1
3

0 ‖ux‖
5
3

L2(Ω)
·
{

k1(M) + c1e
−αt
}

≤ 1

8
‖ux‖2L2(Ω) + c4u

2
0 ·
{

k1(M) + c1e
−αt
}6

and where once more by Young’s inequality,

c2χ1|Ω|u0‖ux‖L2(Ω) ·
{

k1(M) + c1e
−αt
}

≤ 1

8
‖ux‖2L2(Ω) + 2c22χ

2
1|Ω|2u20 ·

{

k1(M) + c1e
−αt
}2

9



for all t ∈ (0, Tmax). Since k1(M) ≥ 1 and thus

{

k1(M) + c1e
−αt
}2

≤
{

k1(M) + c1e
−αt
}6

≤ 32 ·
{

k61(M) + c61e
−6αt

}

for all t > 0,

from (3.11) we altogether obtain that

d

dt

∫

Ω
u2 +

∫

Ω
u2 +

∫

Ω
u2x ≤ k2(M)u20 + c5e

−6αt for all t ∈ (0, Tmax) (3.12)

with

k2(M) := 2c3|Ω|2 + 64c4k
6
1(M) + 128c22χ

2
1|Ω|2k61(M)

and

c5 ≡ c5(u0, v0, w0) := 64c61c4u
2
0 + 128c61c

2
2χ

2
1|Ω|2u20.

Using that 6α < 1, we may invoke Lemma 6.1 to firstly conclude from (3.12) that

∫

Ω
u2(·, t) ≤

{
∫

Ω
u20 +

c5

1− 6α

}

· e−6αt + k2(M)u20 for all t ∈ (0, Tmax), (3.13)

and that thus (3.5) holds with evident choices of the constants therein. After that, by direct integration
of (3.12) we see that since τ ≤ 1,

∫ t+τ

t

∫

Ω
u2x ≤

∫

Ω
u2(·, t) + k2(M)u20 + c5

∫ t+τ

t

e−6αsds

≤
∫

Ω
u2(·, t) + k2(M)u20 + c5e

−6αt for all t ∈ (0, Tmax − τ),

which shows that (3.13) also entails (3.6). �

By again going back to Lemma 3.1, in light of the outcome of Lemma 3.2 we can now once more
employ heat semigroup estimates to actually improve the topological setting in (3.5) so as to involve
the respective L∞ norm.

Lemma 3.3 There exists α > 0 such that if M > 0, then one can fix K(M) > 0 such that under the
assumptions (1.4) and (1.8) it is possible to find C = C(u0, v0, w0) > 0 such that

‖u(·, t)‖L∞(Ω) ≤ K(M)u0 + Ce−αt for all t ∈ (0, Tmax). (3.14)

Proof. We begin by employing Lemma 3.2 and Lemma 3.1 to take α1 ∈ (0, 1) and α2 ∈ (0, 1) such
that given M > 0 we can find k1(M) > 0 and k2(M) > 0 with the property that if (1.4) and (1.8)
hold, then with some ci = ci(u0, v0, w0) > 0, i ∈ {1, 2}, we have

‖u(·, t)‖L2(Ω) ≤ k1(M)u0 + c1e
−α1t for all t ∈ (0, Tmax)

and

‖wx(·, t)‖L4(Ω) ≤ k2(M) + c2e
−α2t for all t ∈ (0, Tmax)

10



and hence, by the Hölder inequality,

‖u(·, t)wx(·, t)‖
L

4
3 (Ω)

≤ ‖u(·, t)‖L2(Ω)‖wx(·, t)‖L4(Ω)

≤ k1(M)k2(M)u0 + c1k2(M)e−α1t + c2k1(M)u0e
−α2t + c1c2e

−(α1+α2)t

≤ k1(M)k2(M)u0 + c3e
−αt for all t ∈ (0, Tmax) (3.15)

with α := min{α1, α2} and c3 = c3(u0, v0, w0) := c1k2(M) + c2k1(M)u0 + c1c2. Next, parabolic
smoothing estimates ([24], [9]) provide c4 > 0 and c5 > 0 such that for all t > 0,

‖et∆ϕx‖L∞(Ω) ≤ c4(1 + t−
7
8 )‖ϕ‖

L
4
3 (Ω)

for all ϕ ∈ C1(Ω) such that ϕx = 0 on ∂Ω

and

‖et∆ϕ‖L∞(Ω) ≤ c5(1 + t−
1
2 )‖ϕ‖L1(Ω) for all ϕ ∈ C0(Ω),

so that henceforth assuming (1.4) and (1.8) for some M > 0, and rewriting the first equation in (1.3)
in the form

ut − uxx + u = −χ1(uwx)x + u in Ω× (0, Tmax),

by means of an associated variation-of-constants representation we may estimate

‖u(·, t)‖L∞(Ω) =

∥

∥

∥

∥

et(∆−1)u0 − χ1

∫ t

0
e(t−s)(∆−1)∂x

(

u(·, s)wx(·, s)
)

ds+

∫ t

0
e(t−s)(∆−1)u(·, s)ds

∥

∥

∥

∥

L∞(Ω)

≤ e−t‖et∆u0‖L∞(Ω) + c4χ1

∫ t

0
e−(t−s)

(

1 + (t− s)−
7
8

)

‖u(·, s)wx(·, s)‖
L

4
3 (Ω)

ds

+c5

∫ t

0
e−(t−s)

(

1 + (t− s)−
1
2

)

‖u(·, s)‖L1(Ω)ds for all t ∈ (0, Tmax). (3.16)

Here by the maximum principle and the fact that α ≤ 1,

e−t‖et∆u0‖L∞(Ω) ≤ ‖u0‖L∞(Ω)e
−t ≤ ‖u0‖L∞(Ω)e

−αt for all t > 0, (3.17)

whereas (2.3) ensures that

c5

∫ t

0
e−(t−s)

(

1 + (t− s)−
1
2

)

‖u(·, s)‖L1(Ω)ds = c5|Ω|u0
∫ t

0
e−(t−s)

(

1 + (t− s)−
1
2

)

ds

≤ c5c6|Ω|u0 for all t ∈ (0, Tmax) (3.18)

with c6 :=
∫∞
0 e−σ(1 + σ− 1

2 )dσ < ∞. Moreover, thanks to (3.15) we have

c4χ1

∫ t

0
e−(t−s)

(

1 + (t− s)−
7
8

)

‖u(·, s)wx(·, s)‖
L

4
3 (Ω)

ds

≤ c4χ1k1(M)k2(M)u0

∫ t

0
e−(t−s)

(

1 + (t− s)−
7
8

)

ds

+c3c4χ1

∫ t

0
e−(t−s)

(

1 + (t− s)−
7
8

)

e−αsds for all t ∈ (0, Tmax), (3.19)

11



where
∫ t

0
e−(t−s)

(

1 + (t− s)−
7
8

)

ds ≤ c7 :=

∫ ∞

0
e−σ(1 + σ− 7

8 )dσ for all t > 0,

and where
∫ t

0
e−(t−s)

(

1 + (t− s)−
7
8

)

e−αsds = e−αt

∫ t

0
e−(1−α)σ(1 + σ− 7

8 )dσ ≤ c8e
−αt for all t > 0

with c8 :=
∫∞
0 e−(1−α)σ(1 + σ− 7

8 )dσ being finite thanks to our restriction that α < 1.

Inserting (3.17)-(3.19) into (3.16) thus shows that for all t ∈ (0, Tmax),

‖u(·, t)‖L∞(Ω) ≤
{

c5c6|Ω|+ c4c7χ1k1(M)k2(M)
}

· u0 +
{

‖u0‖L∞(Ω) + c3c4c8χ1

}

· e−αt,

and therefore establishes (3.14) upon the observation that c4, c5, c6 and c7 do not depend on our
particular choice of u0, v0 and w0. �

3.3 Space-time L2 bounds for v and for wxx

Now unlike in the analysis of (1.2), for globally extending our solution the bounds obtained in Lemma
3.3 and Lemma 3.1 seem yet insufficient: In view of the second equation in (1.3) it seems that for
the detection of appropriate estimates for the second solution component, further information on the
respectively relevant cross-diffusive gradient ux seems in order. To prepare our derivation thereof in
the next section, let us here provide some preliminary bounds on v, vx and wxx useful for that purpose.

We begin with a basic space-time integrability feature of (ln(v+1))x which by another straightforward
testing procedure can be seen to be quite a direct consequence of our present knowledge on ux from
Lemma 3.2.

Lemma 3.4 One can find α > 0 with the property that to any M > 0 there corresponds some
K(M) > 0 such that if (1.4) and (1.8) hold, then there exists C = C(u0, v0, w0) > 0 fulfilling

∫ t+τ

t

∫

Ω

v2x
(v + 1)2

≤ K(M) + Ce−αt for all t ∈ (0, Tmax − τ), (3.20)

where τ := min{1, 12Tmax}.

Proof. We multiply the second equation in (1.3) by 1
v+1 and integrate by parts to see that due to

Young’ inequality,

d

dt

∫

Ω
ln(v + 1) =

∫

Ω

v2x
(v + 1)2

− χ2

∫

Ω

v

(v + 1)2
uxvx

≥ 1

2

∫

Ω

v2x
(v + 1)2

− χ2
2

2

∫

Ω

v2

(v + 1)2
u2x

≥ 1

2

∫

Ω

v2x
(v + 1)2

− χ2
2

2

∫

Ω
u2x for all t ∈ (0, Tmax).

12



As 0 ≤ ln(ξ + 1) ≤ ξ for all ξ ≥ 0, further integration shows that thanks to (2.3),

1

2

∫ t+τ

t

∫

Ω

v2x
(v + 1)2

≤
∫

Ω
ln
(

v(·, t+ τ) + 1
)

−
∫

Ω
ln
(

v(·, t) + 1
)

+
χ2

2

∫ t+τ

t

∫

Ω
u2x

≤
∫

Ω
v0 +

χ2

2

∫ t+τ

t

∫

Ω
u2x for all t ∈ (0, Tmax, τ),

so that (3.20) becomes a consequence of Lemma 3.2. �

Again thanks to the fact that the considered setting is one-dimensional, a simple interpolation argu-
ment shows that the above entails a space time bound on v itself, rather than on the quantity ln(v+1)
addressed in Lemma 3.4.

Lemma 3.5 There exists α > 0 such that whenever M > 0, one can pick K(M) > 0 such that if
(1.4) and (1.8) hold, then with some C = C(u0, v0, w0) > 0 we have

∫ t+τ

t

∫

Ω
v2 ≤ K(M) + Ce−αt for all t ∈ (0, Tmax − τ), (3.21)

where again τ := min{1, 12Tmax}.

Proof. According to the one-dimensional Gagliardo-Nirenberg inequality, we can fix c1 > 0 such
that

‖ϕ‖4L4(Ω) ≤ c1‖ϕx‖2L1(Ω)‖ϕ‖2L2(Ω) + c1‖ϕ‖4L2(Ω) for all ϕ ∈ W 1,1(Ω),

which when applied to
√

v(·, t) + 1, t ∈ (0, Tmax), shows that since ‖
√
v + 1‖2

L2(Ω) =
∫

Ω v0+ |Ω| for all
t ∈ (0, Tmax) by (2.3),

∫

Ω
v2 ≤

∫

Ω
(v + 1)2 = ‖

√
v + 1‖4L4(Ω)

≤ c1‖∂x
√
v + 1‖2L1(Ω)‖

√
v + 1‖2L2(Ω) + c1‖

√
v + 1‖4L2(Ω)

=
c1

4
·
{
∫

Ω
v0 + |Ω|

}

·
{
∫

Ω

|vx|√
v + 1

}2

+ c1 ·
{
∫

Ω
v0 + |Ω|

}2

for all t ∈ (0, Tmax). Once more in view of (2.3), using the Cauchy-Schwarz inequality we see that
herein

{
∫

Ω

|vx|√
v + 1

}2

≤
{
∫

Ω
(v + 1)

}

·
∫

Ω

v2x
(v + 1)2

≤
{
∫

Ω
v0 + |Ω|

}

·
∫

Ω

v2x
(v + 1)2

for all t ∈ (0, Tmax),

whence altogether, after a time integration,

∫ t+τ

t

∫

Ω
v2 ≤ c1 ·

{
∫

Ω
v0 + |Ω|

}2

·
{

1

4

∫

Ω

v2x
(v + 1)2

+ 1

}

for all t ∈ (0, Tmax − τ)
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due to the fact that τ ≤ 1. The claimed statement thus readily results from Lemma 3.4. �

Thus having at hand spatio-temporal integral estimates for v and, through e.g. Lemma 3.3, also for u,
we have collected sufficient regularity information on all the source terms in the third equation from
(1.3), when considered as a semilinear heat equation, so as to obtain the following as the outcome of
a further standard testing process.

Lemma 3.6 One can find α > 0 in such a way that for each M > 0 there exists K(M) > 0 such that
assuming (1.4) and (1.8) entails that with some C = C(u0, v0, w0) > 0,

∫ t+τ

t

∫

Ω
w2
xx ≤ K(M)

τ
+ Ce−αt for all t ∈ (0, Tmax − τ), (3.22)

where once more τ := min{1, 12Tmax}.

Proof. By means of Lemma 3.2 and Lemma 3.5, we can find α1 > 0 and α2 > 0 such that given
any M > 0 one can pick k1(M) > 0 and k2(M) > 0 such that whenever (1.4) and (1.8) hold, for the
corresponding solution of (1.3) we have

∫

Ω
u2 ≤ k1(M) + c1e

−α1t for all t ∈ (0, Tmax) (3.23)

and
∫ t+τ

t

∫

Ω
v2 ≤ k2(M) + c2e

−α2t for all t ∈ (0, Tmax − τ) (3.24)

with some ci = ci(u0, v0, w0) > 0, i ∈ {1, 2}, and τ = min{1, 12Tmax}.
Now indeed assuming (1.4) and (1.8), we use wxx as a test function for the third equation in (1.3) to
see that by Young’s inequality,

1

2

d

dt

∫

Ω
w2
x + µ

∫

Ω
w2
x + d

∫

Ω
w2
xx = λ

∫

Ω
uwwxx + λ

∫

Ω
vwwxx

≤ d

2

∫

Ω
w2
xx +

λ2

d

∫

Ω
u2w2 +

λ2

d

∫

Ω
v2w2

≤ d

2

∫

Ω
w2
xx +

λ2

d
‖w‖2L∞(Ω) ·

{
∫

Ω
u2 +

∫

Ω
v2
}

for all t ∈ (0, Tmax) and hence

d

dt

∫

Ω
w2
x + 2µ

∫

Ω
w2
x + d

∫

Ω
w2
xx ≤ 2λ2

d
‖w‖2L∞(Ω) ·

{
∫

Ω
u2 +

∫

Ω
v2
}

for all t ∈ (0, Tmax). (3.25)

Here aiming at an application of Lemma 6.2, we pick any α > 0 such that α < 2µ and α ≤ min{α1, α2},
and combine (3.23) and (3.24) with the outcome of Lemma 2.2 and Young’s inequality to estimate

∫ t+τ

t

{

2λ2

d
‖w(·, s)‖2L∞(Ω) ·

{
∫

Ω
u2(·, s) +

∫

Ω
v2(·, s)

}

}

ds
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≤ 2λ2

d

∫ t+τ

t

{

r

µ
+ ‖w0‖L∞(Ω)e

−µt

}2

·
{
∫

Ω
u2(·, s) +

∫

Ω
v2(·, s)

}

ds

≤ 4λ2

d
·
{

r2

µ2
+ ‖w0‖2L∞(Ω)e

−2µt

}

·
{
∫ t+τ

t

∫

Ω
u2 +

∫ t+τ

t

∫

Ω
v2
}

≤ 4λ2

d
·
{

r2

µ2
+ ‖w0‖2L∞(Ω)e

−2µt

}

·
{

k1(M) + k2(M) + c1e
−α1t + c2e

−α2t
}

for all t ∈ (0, Tmax − τ), where we have used that τ ≤ 1 and that hence
∫ t+τ

t
e−βsds ≤ e−βt for all

t > 0 and any β > 0. Since α ≤ min{α1, α2, 2µ}, this readily implies that

∫ t+τ

t

{

2λ2

d
‖w(·, s)‖2L∞(Ω) ·

{
∫

Ω
u2(·, s)+

∫

Ω
v2(·, s)

}

}

ds ≤ k3(M)+c4e
−αt for all t ∈ (0, Tmax−τ)

(3.26)

with k3(M) := 4λ2r2

dµ2 (k1(M) + k2(M)) and

c4 ≡ c4(u0, v0, w0) :=
4λ2r2

dµ2
(c1 + c2) +

4λ2

d
‖w0‖2L∞(Ω)(k1(M) + k2(M) + c1 + c2).

Upon employing Lemma 6.2, we thus obtain that (3.25) firstly entails the inequality

∫

Ω
w2
x ≤ k3(M)

2µτ
+ k3(M) + c5e

−αt for all t ∈ (0, Tmax)

if we let

c5 ≡ c5(u0, v0, w0) :=
eα

τ
·
{
∫

Ω
w2
0x + c4 +

c4

2µ− α
+ k3(M)

}

+ c4e
α.

Thereupon, directly integrating (3.25) shows that again due to (3.26),

d

∫ t+τ

t

∫

Ω
w2
xx ≤

∫

Ω
w2
x(·, t) + k3(M) + c4e

−αt

≤ k3(M)

2µτ
+ 2k3(M) + (c4 + c5)e

−αt for all t ∈ (0, Tmax − τ),

which yields (3.22) upon again recalling that τ ≤ 1. �

3.4 Estimating ux in L2

Thanks to Lemma 3.6, we now have appropriate information on the coefficient functions a(x, t) :=
−χ1wx and b(x, t) := −χ1wxx in the identity ut = uxx + a(x, t)ux + b(x, t)u to see that again due to
a variational argument, ux indeed enjoys the following integrability features which go substantially
beyond those obtained in Lemma 3.2.
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Lemma 3.7 There exists α > 0 such that for arbitrary M > 0 it is possible to choose K(M) > 0 in
such a way that whenever (1.4) and (1.8) are satisfied, there exists C = C(u0, v0, w0) > 0 such that
writing τ := min{1, 12Tmax} we have

∫

Ω
u2x(·, t) ≤

K(M)

τ2
+ Ce−αt for all t ∈ (0, Tmax) (3.27)

and
∫ t+τ

t

∫

Ω
u2xx ≤ K(M)

τ2
+ Ce−αt for all t ∈ (0, Tmax − τ). (3.28)

Proof. As a consequence of Lemma 3.3 and Lemma 3.6, we may pick α1 > 0 and α2 > 0 such that
for all M > 0 we can find k1(M) > 0 and k2(M) > 0 with the property that under the assumptions
(1.4) and (1.8) one may fix c1 = c1(u0, v0, w0) > 0 and c2 = c2(u0, v0, w0) > 0 fulfilling

‖u(·, t)‖2L∞(Ω) ≤ k1(M) + c1e
−α1t for all t ∈ (0, Tmax) (3.29)

and
∫ t+τ

t

∫

Ω
w2
xx ≤ k2(M)

τ
+ c2e

−α2t for all t ∈ (0, Tmax − τ). (3.30)

Apart from that, we combine the Gagliardo-Nirenberg inequality with Young’s inequality to obtain
c3 > 0 and c4 > 0 such that

‖ϕx‖2L4(Ω) ≤ c3‖ϕxx‖L2(Ω)‖ϕ‖L∞(Ω) for all ϕ ∈ W 2,2(Ω) (3.31)

and that
∫

Ω
ϕ2
x ≤ 1

2

∫

Ω
ϕ2
xx + c4

{
∫

Ω
|ϕ|
}2

for all ϕ ∈ W 2,2(Ω) (3.32)

Now assuming (1.4) and (1.8) to be valid for some M > 0, we integrate by parts in the first equation
from (1.3) and use the Cauchy-Schwarz inequality along with (3.31), Young’s inequality and (3.32) to
see that for all t ∈ (0, Tmax),

d

dt

∫

Ω
u2x +

∫

Ω
u2x + 2

∫

Ω
u2xx = 2χ1

∫

Ω
uxwxuxx + 2χ1

∫

Ω
uuxxwxx +

∫

Ω
u2x

= −χ1

∫

Ω
u2xwxx + 2χ1

∫

Ω
uuxxwxx +

∫

Ω
u2x

≤ χ1‖ux‖2L4(Ω)‖wxx‖L2(Ω) + 2χ1‖u‖L∞(Ω)‖uxx‖L2(Ω)‖wxx‖L2(Ω) +

∫

Ω
u2x

≤ (c3 + 2)χ1‖u‖L∞(Ω)‖uxx‖L2(Ω)‖wxx‖L2(Ω) +

∫

Ω
u2x

≤
∫

Ω
u2xx +

(c3 + 2)2χ2
1

2
‖u‖2L∞(Ω)‖wxx‖2L2(Ω) + c4

{
∫

Ω
u0

}2

because of (2.3). In view of the hypothesis (1.8), this shows that abbreviating c5 :=
(c3+2)2χ2

1

2 we have

d

dt

∫

Ω
u2x +

∫

Ω
u2x +

∫

Ω
u2xx ≤ c5‖u‖2L∞(Ω)

∫

Ω
w2
xx + c4M

2 for all t ∈ (0, Tmax), (3.33)
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where thanks to (3.29) and (3.30), fixing any α ∈ (0, 1) such that α ≤ min{α1, α2} we can estimate

∫ t+τ

t

{

c5‖u(·, s)‖2L∞(Ω)

∫

Ω
w2
xx(·, s) + c4M

2

}

ds

≤ c5 ·
{

k1(M) + c1e
−α1t

}

·
{k2(M)

τ
+ c2e

−α2t
}

+ c4M
2

≤ k3(M)

τ
+ c6e

−αt for all t ∈ (0, Tmax − τ) (3.34)

with k3(M) := c5k1(M)k2(M) + c4M
2 and c6 ≡ c6(u0, v0, w0) := c2c5k1(M) + c1c5k2(M)

τ
+ c1c2c5. As

a consequence of Lemma 6.2 and other restriction that α < 1, from (3.33) we thus infer that writing

c7 ≡ c7(u0, v0, w0) :=
eα

τ
·
{

∫

Ω u20x + c6 +
c6

1−α
+ k3(M)

τ

}

+ c6e
α we have

∫

Ω
u2x ≤ k3(M)

τ2
+

k3(M)

τ
+ c7e

−αt for all t ∈ (0, Tmax), (3.35)

and that hence, by integration of (3.33) and again using (3.34),

∫ t+τ

t

∫

Ω
u2xx ≤

∫

Ω
u2x(·, t) +

k3(M)

τ
+ c6e

−αt

≤ k3(M)

τ2
+

2k3(M)

τ
+ (c6 + c7)e

−αt for all t ∈ (0, Tmax − τ). (3.36)

Since τ ≤ 1, the claimed properties directly result from (3.35) and (3.36). �

3.5 An L2 bound for vx

We can thereby gradually improve our knowledge on the second solution component, firstly addressing
v itself in the course of a further testing procedure:

Lemma 3.8 There exists α > 0 such that for all M > 0 one can fix K(M) > 0 having the property
that whenever (1.4) and (1.8) hold, with some C = C(u0, v0, w0) > 0 we have

∫

Ω
v4(·, t) ≤ K(M)v40

τ10
+ Ce−αt for all t ∈ (0, Tmax). (3.37)

Proof. On the basis of Lemma 3.7, it is possible to pick α1 ∈ (0, 1) in such a way that given M > 0
we can choose k1(M) > 0 which is such that if (1.4) and (1.8) hold,

{
∫

Ω
u2x

}5

≤ k1(M)

τ10
+ c1e

−α1t for all t ∈ (0, Tmax) (3.38)

with some c1 = c1(u0, v0, w0) > 0. Once more relying on the Gagliardo-Nirenberg inequality and
Young’s inequality, we furthermore fix c2 > 0, c3 > 0 and c4 > 0 such that

‖ϕ‖L∞(Ω) ≤ c2‖ϕx‖
4
5

L2(Ω)
‖ϕ‖

1
5

L
1
2 (Ω)

+ c2‖ϕ‖
L

1
2 (Ω)

for all ϕ ∈ W 1,2(Ω), (3.39)
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that
∫

Ω
ϕ2 ≤ ‖ϕx‖2L2(Ω) + c3‖ϕ‖2

L
1
2 (Ω)

for all ϕ ∈ W 1,2(Ω), (3.40)

and that
6c2χ2ab ≤ a

10
9 + c4b

10 for all a ≥ 0 and b ≥ 0. (3.41)

Then supposing that (1.4) and (1.8) to be satisfied, we use the second equation in (1.3) to see that
due to the Cauchy-Schwarz inequality and (2.3), applications of (3.39), (3.41), (3.40) and Young’s
inequality show that for all t ∈ (0, Tmax),

d

dt

∫

Ω
v4 +

∫

Ω
v4 + 3

∫

Ω
(v2)2x = 6χ2

∫

Ω
v2ux(v

2)x +

∫

Ω
v4

≤ 6χ2‖v2‖L∞(Ω)‖ux‖L2(Ω)‖(v2)x‖L2(Ω) +

∫

Ω
v4

≤ 6c2χ2‖(v2)x‖
9
5

L2(Ω)
‖v2‖

1
5

L
1
2 (Ω)

‖ux‖L2(Ω)

+6c2χ2‖(v2)x‖L2(Ω)‖v2‖
L

1
2 (Ω)

‖ux‖L2(Ω)

+

∫

Ω
v4

≤ ‖(v2)x‖2L2(Ω) + c4‖v2‖2
L

1
2 (Ω)

‖ux‖10L2(Ω)

+‖(v2)x‖2L2(Ω) + 9c22χ
2
2‖v2‖2

L
1
2 (Ω)

‖ux‖2L2(Ω)

+‖(v2)x‖2L2(Ω) + c3‖v2‖2
L

1
2 (Ω)

= 3

∫

Ω
(v2)2x +

{

c4‖ux‖10L2(Ω) + 9c22χ
2
2‖ux‖2L2(Ω) + c3

}

· ‖v0‖4L1(Ω).(3.42)

Since here, by using Young’s inequality and relying on the fact that τ ≤ 1, we can estimate
{

c4‖ux‖10L2(Ω) + 9c22χ
2
2‖ux‖2L2(Ω) + c3

}

· ‖v0‖4L1(Ω)

≤ (c4 + 9c22χ
2
2)‖v0‖4L1(Ω) ·

{
∫

Ω
u2x

}5

+ (9c22χ
2
2 + c3)‖v0‖4L1(Ω)

≤ k2(M)v40
τ10

+ c5e
−α1t for all t ∈ (0, Tmax)

with k2(M) :=
{

(c4 + 9c22χ
2
2)k1(M) + 9c22χ

2
2 + c3

}

· |Ω|4 and c5 ≡ c5(u0, v0, w0) := c1 · (9c22χ2
2 +

c4)‖v0‖4L1(Ω), from (3.42) we thus infer that

d

dt

∫

Ω
v4 +

∫

Ω
v4 ≤ k2(M)v40

τ10
+ c5e

−α1t for all t ∈ (0, Tmax).

Through Lemma 6.1, applicable here since α1 < 1, this entails that

∫

Ω
v4 ≤ k2(M)v40

τ10
+

{
∫

Ω
v40 +

c5

1− α1

}

· e−α1t for all t ∈ (0, Tmax)
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and hence completes the proof. �

Yet concentrating on v itself, we next resort to a semigroup-based argument once more to turn the
above into an esimate involving the norm in L∞(Ω).

Lemma 3.9 One can find α > 0 in such a manner that for each M > 0 there exists K(M) > 0 such
that if (1.4) and (1.8) are satisfied, then

‖v(·, t)‖L∞(Ω) ≤
K(M)v0

τ
7
2

+ Ce−αt for all t ∈ (0, Tmax) (3.43)

with some C = C(u0, v0, w0) > 0.

Proof. A verification of this can be achieved in a way quite similar to that in Lemma 3.3: By the
Hölder inequality as well as Lemma 3.8 and Lemma 3.7, we see that with some α ∈ (0, 1), given any
M > 0 we can find k1(M) > 0 such that if (1.4) and (1.8) hold, there exists c1 = c1(u0, v0, w0) > 0
fulfilling

‖vux‖
L

4
3 (Ω)

≤ ‖v‖L4(Ω)‖ux‖L2(Ω) ≤
k1(M)v0

τ
7
2

+ c1e
−αt for all t ∈ (0, Tmax).

Henceforth assuming (1.4) and (1.8), we combine this with known regularization features of the Neu-
mann heat semigroup and (2.3) to see that with some positive constants c2 and c3 independent of
u0, v0 and w0 we have

‖v(·, t)‖L∞(Ω) =

∥

∥

∥

∥

∥

et(∆−1)v0 − χ2

∫ t

0
e(t−s)(∆−1)∂x

(

v(·, s)ux(·, s)
)

ds+

∫ t

0
e(t−s)(∆−1)v(·, s)ds

∥

∥

∥

∥

∥

L∞(Ω)

≤ e−t‖et∆v0‖L∞(Ω) + c2

∫ t

0
e−(t−s)

(

1 + (t− s)−
7
8

)

‖v(·, s)ux(·, s)‖
L

4
3 (Ω)

ds

+c2

∫ t

0
e−(t−s)

(

1 + (t− s)−
1
2

)

‖v(·, s)‖L1(Ω)ds

≤ e−t‖v0‖L∞(Ω) +
c2k1(M)v0

τ
7
2

∫ t

0
e−(t−s)

(

1 + (t− s)−
7
8

)

ds

+c1c2

∫ t

0
e−(t−s)

(

1 + (t− s)−
7
8

)

e−αsds

+c2|Ω|v0
∫ t

0
e−(t−s)

(

1 + (t− s)−
1
2

)

ds

≤ e−t‖v0‖L∞(Ω) +
c2k1(M)v0

τ
7
2

∫ ∞

0
e−σ(1 + σ− 7

8 )dσ

+c1c2e
−αt

∫ ∞

0
e−(1−α)σ(1 + σ− 7

8 )dσ

+c2|Ω|v0
∫ ∞

0
e−σ(1 + σ− 1

2 )dσ for all t ∈ (0, Tmax),

which readily yields (3.43) due to the inequalities α < 1 and τ ≤ 1. �
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As we are now in a position quite identical to that encountered immediately before Lemma 3.7, we
can repeat the argument thereof to finally derive the following gradient estimate for the crucial second
solution component.

Lemma 3.10 There exists α > 0 such that for all M > 0 one can choose K(M) > 0 with the property
that if (1.4) and (1.8) hold, the with some C = C(u0, v0, w0) > 0, we have

∫

Ω
v2x(·, t) ≤

K(M)

τ10
+ Ce−αt for all t ∈ (0, Tmax). (3.44)

Proof. The claimed inequality can be derived by means of an essentially verbatim copy of the
argument from Lemma 3.7, instead of referring to Lemma 3.3 and Lemma 3.6 now relying on Lemma
3.9 and (3.28); we may therefore refrain from giving details here. �

4 Global existence and boundedness. Proof of Theorem 1.1

Now asserting global extensibility of our solution actually reduces to a mere collection of our previously
obtained estimates, where at this stage neither any knowledge on the precise dependence thereof on
M or on u0 and v0 is needed, nor do we rely on the exponentially decaying contributions to the above
inequalities.

Lemma 4.1 For all u0, v0 and w0 fulfilling (1.4), we have Tmax = ∞, and furthermore we can find
C = C(u0, v0, w0) > 0 such that (1.6) holds.

Proof. In view of the extensibility criterion (2.2) from Lemma 2.1, for any fixed (u0, v0, w0)
satisfying (1.4) we may apply Lemma 3.7, Lemma 3.10 and Lemma 3.1 to M :=

∫

Ω u0 +
∫

Ω v0 and
q := 2 and thereby readily obtain that indeed Tmax cannot be finite, and that hence moreover (1.6) is
a consequence of (3.27), (3.44) and (3.1). �

In other words, we thereby already have derived our main result on global classical solvability in (1.3):

Proof of Theorem 1.1. We only need to combine Lemma 4.1 with Lemma 2.1. �

5 Convergence for small values of min{u0, v0}. Proof of Theorem 1.2

Next, in contrast to our development of the above existence statement, our investigation of the large
time behavior in (1.3), as forming the objective of this section, will considerably benefit from the more
detailed information provided by our estimates from Section 3.

5.1 Identifying a conditional energy functional

The following lemma basically only collects the essence of what will be needed from Section 3 for our
subsequent qualitative analysis.

Lemma 5.1 Let M > 0. Then there exists K(M) > 0 with the property that if (1.4) and (1.8) hold,
then one can find t0 = t0(u0, v0, w0) ≥ 0 such that

‖u(·, t)‖L∞(Ω) ≤ K(M)u0 for all t > t0 (5.1)
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and
‖v(·, t)‖L∞(Ω) ≤ K(M)v0 for all t > t0 (5.2)

as well as
‖w(·, t)‖L∞(Ω) ≤ K(M) for all t > t0. (5.3)

Proof. From Lemma 3.3, Lemma 3.9 and Lemma 2.2 we infer the existence of α > 0 such that
whenever M > 0, one can find k1(M) > 0 such that if (1.4) and (1.8) hold, we have

‖u(·, t)‖L∞(Ω) ≤ k1(M)u0 + e−αt for all t > 0 (5.4)

and
‖v(·, t)‖L∞(Ω) ≤ k1(M)v0 + e−αt for all t > 0 (5.5)

as well as
‖w(·, t)‖L∞(Ω) ≤ k1(M) + e−αt for all t > 0, (5.6)

where we note that in light of the fact that Tmax = ∞ we now know that the number τ in Lemma 3.9
actually satisfies τ = 1. For t0 := 1

α
· ln+ 1

k1(M)·min{u0,v0,1}
and with K(M) := 2k1(M), the claimed

inequalities now directly result from (5.4)-(5.6). �

Now a key toward our proof of stabilization can be found in the following observation on a genuine
energy-type structure in (1.3) when restricted to trajectories corresponding to initial data compatible
with (1.8) and (1.9). The presence of such conditional energy functionals, interpretable as a rigorous
mathematical manifestation of superlinear dependence on the unknown in the crucial nonlinearities,
has been used in several studies on asymptotic behavior in related chemotaxis problems in the recent
few years (see e.g. [23], [7], [31], [26], [32] or also [29] for an incomplete collection); in comparison to
most of these, the seemingly most unique feature of the present situation consists in that here it is
possible to relax the smallness condition appearing therein in such a substantial manner that in its
remaining part it merely reduces to a smallness assumption essentially equivalent to (1.8)-(1.9):

Lemma 5.2 Let M > 0. Then there exists δ(M) > 0 such that if u0, v0 and w0 are such that if
beyond (1.4) and (1.8) we have

{
∫

Ω
u0

}

·
{
∫

Ω
v0

}2

≤ δ(M), (5.7)

then it is possible to find b = b(u0, v0, w0) > 0 and t0 = t0(u0, v0, w0) > 0 with the property that

F(t) :=

∫

Ω
u(·, t) ln u(·, t)

u0
+ b

∫

Ω
v(·, t) ln v(·, t)

v0
+

χ1

2λ

∫

Ω

w2
x(·, t)
w(·, t) , t > 0, (5.8)

and

D(t) :=
1

2

∫

Ω

u2x(·, t)
u(·, t) +

b

2

∫

Ω

v2x(·, t)
v(·, t) +

χ1µ

4λ

∫

Ω

w2
x(·, t)
w(·, t) , t > 0, (5.9)

satisfy
F ′(t) ≤ −D(t) for all t > t0. (5.10)

21



Proof. Given M > 0, we first apply Lemma 5.1 to fix k1(M) > 0 with the property that for any
choice of (u0, v0, w0) complying with (1.4) and (1.8) we can find t0(u0, v0, w0) ≥ 0 such that for all
t > t0,

‖u(·, t)‖L∞(Ω) ≤ k1(M)u0, ‖v(·, t)‖L∞(Ω) ≤ k1(M)v0 and ‖w(·, t)‖L∞(Ω) ≤ k1(M), (5.11)

and we thereupon claim that the intended conclusion holds if we let

δ(M) :=
µ|Ω|3

8χ1χ
2
2λk

4
1(M)

. (5.12)

To see this, we fix any (u0, v0, w0) fulfilling (1.4) and (1.8) as well as (5.7), and abbreviating t0 :=
t0(u0, v0, w0), Lu := k1(M)u0, Lv := k1(M)v0 and Lw := k1(M) we infer from (5.12) that it is possible
to pick b = b(u0, v0, w0) > 0 such that

4χ1λLvLw

µ
≤ b ≤ 1

2χ2
2LuLv

. (5.13)

We then let F and D be as accordingly defined through (5.8) and (5.9), and in order to verify (5.10)
we integrate by parts in (1.3) and use (2.3) to compute

d

dt

∫

Ω
u ln

u

u0
=

d

dt

∫

Ω
u lnu = −

∫

Ω

u2x
u

+ χ1

∫

Ω
uxwx (5.14)

and
d

dt

∫

Ω
v ln

v

v0
=

d

dt

∫

Ω
v ln v = −

∫

Ω

v2x
v

+ χ2

∫

Ω
uxvx (5.15)

as well as

d

dt

∫

Ω

w2
x

w
= 2

∫

Ω

wx

w
·
{

dwxxx − λuxw − λuwx − λvxw − λvwx − µwx

}

−
∫

Ω

w2
x

w2
·
{

dwxx − λuw − λvw − µw + r
}

= −2d

∫

Ω

w2
xx

w
+ d

∫

Ω

w2
xwxx

w

−2λ

∫

Ω
uxwx − 2λ

∫

Ω
vxwx − λ

∫

Ω

u

w
w2
x − λ

∫

Ω

v

w
w2
x − µ

∫

Ω

w2
x

w
(5.16)

for t > 0. Here once more integrating by parts we see that

∫

Ω

w4
x

w3
= −1

2

∫

Ω

( 1

w2

)

x
w3
x =

3

2

∫

Ω

w2
xwxx

w2
for all t > 0,

which by the Cauchy-Schwarz inequality firstly entails that

∫

Ω

w4
x

w3
≤ 3

2

{
∫

Ω

w2
xx

w

}
1
2

·
{
∫

Ω

w4
x

w3

}
1
2

for all t > 0
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and hence
∫

Ω

w4
x

w3
≤ 9

4

∫

Ω

w2
xx

w
for all t > 0,

and which, as a consequence, secondly shows that thus in (5.16) we can estimate

−2d

∫

Ω

w2
xx

w
+ d

∫

Ω

w2
xwxx

w
= −2d

∫

Ω

w2
xx

w
+

2d

3

∫

Ω

w4
x

w3
≤ −d

2

∫

Ω

w2
xx

w
≤ 0 for all t > 0.

Upon combining (5.14)-(5.16) and neglecting two further well-signed summands, we therefore obtain
that

F ′(t) +

∫

Ω

u2x
u

+ b

∫

Ω

v2x
v

+
χ1µ

2λ

∫

Ω

w2
x

w
≤ bχ2

∫

Ω
uxvx − χ1

∫

Ω
vxwx for all t > 0. (5.17)

Here by Young’s inequality and (5.11),

bχ2

∫

Ω
uxvx ≤ 1

2

∫

Ω

u2x
u

+
b2χ2

2

2

∫

Ω
uv2x

≤ 1

2

∫

Ω

u2x
u

+
b2χ2

2

2
‖u‖L∞(Ω)‖v‖L∞(Ω)

∫

Ω

v2x
v

≤ 1

2

∫

Ω

u2x
u

+
b2χ2

2LuLv

2

∫

Ω

v2x
v

≤ 1

2

∫

Ω

u2x
u

+
b

4

∫

Ω

v2x
v

for all t > t0, (5.18)

because thanks to the right inequality in (5.13) we know that

b2χ2
2LuLv

2
b
4

= 2bχ2
2LuLv ≤ 1.

Likewise, Young’s inequality together with (5.11) moreover shows that

−χ1

∫

Ω
vxwx ≤ b

4

∫

Ω

v2x
v

+
χ2
1

b

∫

Ω
vw2

x

≤ b

4

∫

Ω

v2x
v

+
χ2
1

b
‖v‖L∞(Ω)‖w‖L∞(Ω)

∫

Ω

w2
x

w

≤ b

4

∫

Ω

v2x
v

+
χ2
1LvLw

b

∫

Ω

w2
x

w

≤ b

4

∫

Ω

v2x
v

+
χ1µ

4λ

∫

Ω

w2
x

w
for all t > t0, (5.19)

since by the left restriction in (5.13),

χ2
1LvLw

b
χ1µ
4λ

=
4χ1λLvLw

bµ
≤ 1.

It thus remains to insert (5.18) and (5.19) into (5.17) to end up with (5.10). �
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5.2 Exponential convergence. Proof of Theorem 1.2

A first and rather immediate consequence of (5.10) when combined with well-known inequalities of
logarithmic Sobolev and Csiszár-Kullback type yields convergence already at algebraic rates, but yet
with respect to spatial L1 norms only.

Lemma 5.3 Given M > 0, let δ(M) > 0 be as in Lemma 5.2, and suppose that (1.4), (1.8) and (5.7)
hold. Then there exist C = C(u0, v0, w0) > 0 and α = α(u0, v0, w0) > 0 such that

‖u(·, t)− u0‖L1(Ω) + ‖v(·, t)− v0‖L1(Ω) ≤ Ce−αt for all t > 0. (5.20)

Proof. Given (u0, v0, w0) such that (1.4), (1.8) and (5.7) hold, we take b = b(u0, v0, w0) > 0 and
t0 = t0(u0, v0, w0) > 0 as provided by Lemma 5.2, and recall that according to a logarithmic Sobolev
inequality ([11], [19]) and (2.3) there exists c1 > 0 such that

∫

Ω
u ln

u

u0
+ b

∫

Ω
v ln

v

v0
≤ c1 ·

{

1

2

∫

Ω

u2x
u

+
b

2

∫

Ω

v2x
v

}

for all t > 0.

Writing c2 := max{c1, 2
µ
}, for F and D as in (5.8) and (5.9) we thus obtain that

F(t) ≤ c2D(t) for all t > 0,

so that (5.10) implies the autonomous ODI

F ′(t) ≤ − 1

c2
F(t) for all t > t0.

Upon integration, this entails that

F(t) ≤ F(t0)e
−

t−t0
c2 for all t > t0

and thereby establishes (5.20) with suitably large C > 0 and α := 1
2c2

, because according to a Csiszár-
Kullback inequality ([8], [3]) and (2.3) we can find c3 > 0 fulfilling

‖u(·, t)− u0‖2L1(Ω) ≤ c3

∫

Ω
u(·, t) ln u(·, t)

u0
≤ c3F(t)

and

‖v(·, t)− v0‖2L1(Ω) ≤ c3

∫

Ω
v(·, t) ln v(·, t)

v0
≤ c3

b
F(t)

for all t > 0. �

Thanks to the temporally uniform H1 bounds for both u and v known from Theorem 1.1, a straight-
forward interpolation finally asserts exponential convergence also with respect to L∞ norms.

Lemma 5.4 Under the assumptions of Lemma 5.3, one can find C = C(u0, v0, w0) > 0 and α =
α(u0, v0, w0) > 0 such that

‖u(·, t)− u0‖L∞(Ω) ≤ Ce−αt for all t > 0 (5.21)

and
‖v(·, t)− v0‖L∞(Ω) ≤ Ce−αt for all t > 0. (5.22)

24



Proof. By means of a Gagliardo-Nirenberg interpolation, we can find c1 > 0 such that

‖ϕ− ϕ‖L∞(Ω) ≤ c1‖ϕx‖
2
3

L2(Ω)
‖ϕ− ϕ‖

1
3

L1(Ω)
for all ϕ ∈ W 1,2(Ω),

whereas Theorem 1.1 warrants the existence of c2 > 0 such that

‖ux(·, t)‖L2(Ω) ≤ c2 and ‖vx(·, t)‖L2(Ω) ≤ c2 for all t > 0.

In view of (2.3), we therefore obtain that for all t > 0,

‖u(·, t)− u0‖L∞(Ω) + ‖v(·, t)− u0‖L∞(Ω) ≤ c1c
2
3

2 ‖u(·, t)− u0‖
1
3

L1(Ω)
+ c1c

2
3

2 ‖v(·, t)− v0‖
1
3

L1(Ω)
,

which due to Lemma 5.3 implies both (5.21) and (5.22). �

On the basis of a final testing procedure independent from the above, again combined with an interpo-
lation argument of the above flavor, we can lastly derive exponential and spatially uniform stabilization
also in the third solution component.

Lemma 5.5 Suppose that the hypotheses of Lemma 5.3 are satisfied. Then there exist C = C(u0, v0, w0) >
0 and α = α(u0, v0, w0) > 0 such that with w⋆ ≥ 0 given by (1.11) we have

‖w(·, t)− w⋆‖L∞(Ω) ≤ Ce−αt for all t > 0. (5.23)

Proof. Using that by definition of w⋆ we have {λ(u0 + v0) + µ}w⋆ = r, upon testing the third
equation in (1.3) by w − w⋆ we obtain that for all t > 0,

1

2

d

dt

∫

Ω
(w − w⋆)

2 + d

∫

Ω
w2
x =

∫

Ω

{

− λ(u+ v)w − µw + r
}

· (w − w⋆)

=

∫

Ω

{

− λ(u0 + v0)w − µw + r
}

· (w − w⋆)

−λ

∫

Ω
(u− u0)w(w − w⋆)− λ

∫

Ω
(v − v0)w(w − w⋆)

= −c1

∫

Ω
(w − w⋆)

2

−λ

∫

Ω
(u− u0)w(w − w⋆)− λ

∫

Ω
(v − v0)w(w − w⋆) (5.24)

with c1 := λ(u0 + v0) + µ > 0. Here since ‖w(·, t)‖L∞(Ω) ≤ c2 := r
µ
+ ‖w0‖L∞(Ω) for all t > 0 by

Lemma 2.2, Young’s inequality shows that

−λ

∫

Ω
(u− u0)w(w − w⋆) ≤ c1

4

∫

Ω
(w − w⋆)

2 +
λ2

c1

∫

Ω
(u− u0)

2w2

≤ c1

4

∫

Ω
(w − w⋆)

2 +
c22λ

2

c1

∫

Ω
(u− u0)

2 for all t > 0,

and similarly estimating the rightmost summand in (5.24) we altogether infer that

d

dt

∫

Ω
(w − w⋆)

2 + c1

∫

Ω
(w − w⋆)

2 ≤ c3

∫

Ω
(u− u0)

2 + c3

∫

Ω
(v − v0)

2 for all t > 0 (5.25)
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if we let c3 :=
2c22λ

2

c1
. As Lemma 5.4 provides c4 > 0 and α1 ∈ (0, c1) fulfilling

∫

Ω

(

u(·, t)− u0

)2
+

∫

Ω

(

v(·, t)− v0

)2
≤ c4e

−α1t for all t > 0,

through e.g. Lemma 6.1 we readily conclude from (5.25) that

∫

Ω

(

w(·, t)− w⋆

)2
≤ c5e

−α1t for all t > 0

with c5 :=
∫

Ω(w0 + w⋆)
2 + c4

c1−α1
.

Now since Lemma 4.1 in conjunction with Lemma 3.1 asserts the existence of c6 > 0 such that
‖w(·, t)− w⋆‖W 1,2(Ω) ≤ c6 for all t > 0, and hence by the Gagliardo-Nirenberg inequality we can find
c7 > 0 such that

‖w(·, t)− w⋆‖L∞(Ω) ≤ c7‖w(·, t)− w⋆‖
1
2

W 1,2(Ω)
‖w(·, t)− w⋆‖

1
2

L2(Ω)
for all t > 0,

this implied that

‖w(·, t)− w⋆‖L∞(Ω) ≤ c
1
4

5 c
1
2

6 c7e
−

α1
4
t for all t > 0

and hence entails (5.23). �

Our main statements on temporal asymptotics thereby become almost evident:

Proof of Theorem 1.2. For M > 0 we take δ(M) > 0 as provided by Lemma 5.2 and let ε(M) > 0

be small enough such that ε(M) ≤ δ(M)
M2 and ε(M) ≤

√

δ
M)M . It can then readily be verified that

assuming (1.8) together with (1.9) entails (5.7), so that for completing the proof it is sufficient to
collect the statements from Lemma 5.4 and Lemma 5.5. �

6 Appendix: Two statements on ODE comparison

Let us finally state two elementary results of quite straightforward ODE comparison arguments, in
view of our above applications with particular focus on the respective dependence on the parameters
appearing therein. We begin with a simple observation that has been used in the proofs of Lemma
3.2, Lemma 3.8 and Lemma 5.5.

Lemma 6.1 Let κ > 0, a ≥ 0, b ≥ 0 and α > 0 be such that α < κ, and suppose that y ∈ C0([0, T )) ∩
C1((0, T )) is a nonnegative function satisfying

y′(t) + κy(t) ≤ ae−αt + b for all t ∈ (0, T ) (6.1)

with some T ∈ (0,∞]. Then

y(t) ≤
(

y(0) +
a

κ− α

)

e−αt +
b

κ
for all t ∈ (0, T ). (6.2)
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Proof. We let c1 := y(0) + a
κ−α

and y(t) := c1e
−αt + b

κ
for t ≥ 0. Then clearly y(0) > y(0), and

since moreover y′(t) + κy(t) − ae−αt − b = {(κ − α)c1 − a}e−αt = (κ − α)y(0)e−αt ≥ 0 for all t > 0
thanks to the nonnegativity of y and our assumption that α < κ, the inequality in (6.2) results from
a comparison argument. �

Our second statement in this direction, as used in crucial places in Lemma 3.6 and Lemma 3.7, merely
imposes some hypothesis on temporal averages of the respective force term, and therefore requires a
slightly more subtle argument:

Lemma 6.2 Let κ > 0, a ≥ 0, b ≥ 0 and α ∈ (0, κ), and assume that with some T ∈ (0,∞] and
τ ∈ (0, T ) such that τ ≤ 1, the nonnegative functions y ∈ C0([0, T )) ∩ C1((0, T )) and f ∈ L1

loc([0, T ))
are such that

y′(t) + κy(t) ≤ f(t) for all t ∈ (0, T ) (6.3)

and
∫ t+τ

t

f(s)ds ≤ ae−αt + b for all t ∈ [0, T − τ). (6.4)

Then

y(t) ≤
{

(

y(0) + a+
a

κ− α
+ b
)

· e
α

τ
+ aeα

}

· e−αt +
b

κτ
+ b for all t ∈ (0, T ). (6.5)

Proof. Letting z(t) :=
∫ t+τ

t
y(s)ds for t ∈ [0, T − τ), by two integrations of (6.3), from (6.4) we

obtain that firstly
z′(t) + κz(t) ≤ ae−αt + b for all t ∈ (0, T − τ), (6.6)

and that secondly,

y(t) ≤ y(t0)+

∫ t

t0

f(s)ds ≤ y(t0)+ae−αt0 + b for all t0 ∈ [0, T ) and t ∈ (t0, T ) such that t ≤ t0+ τ,

(6.7)
whence in particular

y(t) ≤ y(0) + a+ b for all t ∈ (0, τ ] (6.8)

As thus

z(0) =

∫ τ

0
y(s)ds ≤ y(0) + a+ b

due to our assumption that τ ≤ 1, by applying Lemma 6.1 to (6.6) we see that

z(t) ≤
(

z(0) +
a

κ− α

)

e−αt +
b

κ

≤
(

y(0) + a+
a

κ− α
+ b
)

e−αt +
b

κ
for all t ∈ (0, T − τ),

which implies that

z(t− τ) ≤
(

y(0) + a+
a

κ− α
+ b
)

e−α(t−τ) +
b

κ
for all t ∈ (τ, T ). (6.9)
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In view of the definition of z(t − τ), this especially means that whenever t ∈ (τ, T ), we can find
t0(t) ∈ (t− τ, t) fulfilling

y(t0(t)) ≤
1

τ
·
(

y(0) + a+
a

κ− α
+ b
)

· e−α(t−τ) +
b

κτ
.

Again employing (6.7), and moreover using the that e−αt0 < e−α(t−τ) due to the inclusion t0 ∈ (t−τ, t),
we conclude that for any such t,

y(t) ≤ y(t0(t)) + ae−αt0 + b

≤
{

1

τ

(

y(0) + a+
a

κ− α
+ b
)

eατ + aeατ
}

· e−αt +
b

κτ
+ b,

from which (6.5) immediately follows once more due to the inequality τ ≤ 1.

If t ∈ (0, τ ], however, we infer (6.5) directly from (6.8), because clearly

y(0) + a+ b ≤ 1

τ

(

y(0) + a+ b
)

eατe−αt

for all t ∈ (0, τ ]. �
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