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Abstract

In a bounded domain Ω ⊂ R
n with smooth boundary, this work considers the indirect pursuit-

evasion model


















ut = ∆u− χ∇ · (u∇w) + u(λ− u+ av),

vt = ∆v + ξ∇ · (v∇z) + v(µ− v − bu),

0 = ∆w − w + v,

0 = ∆z − z + u,

with positive parameters χ, ξ, λ, µ, a and b.

It is firstly asserted that when n ≤ 3, for any given suitably regular initial data the corresponding
homogeneous Neumann initial-boundary problem admits a global and bounded smooth solution.
Moreover, it is shown that if bλ < µ and under some explicit smallness conditions on χ and ξ,
any nontrival bounded classical solution converges to the spatially homogeneous coexistence state
in the large time limit; if bλ > µ, however, then under an explicit smallness assumption on χ but
without any restriction on ξ, any bounded classical solution (u, v) with u 6≡ 0 stabilizes to (λ, 0) as
t → ∞.
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1 Introduction

Lotka-Volterra type interplay, forming a class of paradigmatic interaction mechanisms in population
dynamics, occurs in various biological and ecological processes, and the investigation of possible effects
has been stimulated both theoretical biology and applied mathematics during the past century. A
significant potential with regard to structure formation, preferably in contexts involving non-negligible
migration of individuals, is indicated by numerous findings on colorful solution behavior already in
simple reaction-diffusion systems combining Lotka-Volterra kinetics with undirected random diffusion
([15]).

To capture even more complex dynamics, and especially the occurrence of wave-like behavior, in
yet simple two-component models of predator-prey type, the authors in [24] propose to additionally
account for partially directed migration mechanisms reflecting, on the one hand, the ambition of
predators to move toward prey-rich regions, and, on the other hand, a certain predisposition of prey
individuals to move away from predator-populated areas. In the resulting model,

{

ut = ∆u− χ∇ · (u∇v) + f(u, v),

vt = ∆v + ξ∇ · (v∇u) + g(u, v),
(1.1)

the quantities u = u(x, t) and v = v(x, t) denote the densities of the predator and the prey population,
respectively, f and g represent the local kinetics, and the positive parameters χ and ξ measure the
strength of attractive and repulsive directed migration, respectively. Indeed, the numerical simulations
presented in [24] indicate that even in spatially one-dimensional frameworks and for f and g reflecting
functional response of so-called Holling type III, despite their seemingly artless structure such systems
can well describe the emergence of soliton-like taxis waves, as observed in experiments involving
bacterial populations of E. coli on semi-solid nutrient media ([23]).

In fact, already the literature on related systems indicates that in fact the introduction of the two cross-
diffusion mechanisms in (1.1) may go along with a substantial change of mathematical properties in
comparison to those known for the corresponding taxis-free variants in which χ = ξ = 0. For instance,
choosing ξ = 0, f ≡ 0 and g(u, v) = u − v shows that the celebrated Keller-Segel chemotaxis system
([14]), that is,

{

ut = ∆u− χ∇ · (u∇v),

vt = ∆v − v + u,
(1.2)

can be viewed as a special case of (1.1), and it is well-known that even finite-time blow-up of solutions
to corresponding Neumann problems in bounded n-dimensional domains will occur for suitably large
initial data in the cases n = 2 ([9]) and n ≥ 3 ([26]). The particularly delicate role of the attractive
taxis mechanism therein is underlined by the observation that no such drastic aggregation phenomenon
occurs when a single cross-diffusion term of the considered form is purely repulsive, such as in the
variant of (1.2) given by

{

ut = ∆u− u+ v,

vt = ∆v + ξ∇ · (v∇u).
(1.3)

Indeed, an associated Neumann problem is known to admit global smooth solutions when n = 2, and
at least some global weak solutions when n ∈ {3, 4}, and each of these solutions approaches a spatially
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homogeneous equilibrium in the large time limit ([3]).

Now in contexts of production and degradation processes which are closer to the prototypical choices
in Lotka-Volterra systems than those underlying (1.2) and (1.3), the explosion-supporting potential
of attractive taxis can partially be compensated by suitably regularizing influences of the respective
zero-order expressions involved. Setting ξ = 0 and g(u, v) = −uv+g0(v) in (1.1), for instance, reduces
(1.1) to the so-called prey-taxis system ([13])

{

ut = ∆u− χ∇ · (u∇v) + f(u, v),

vt = ∆v − uv + g0(v),
(1.4)

in which analytical findings indicate that at least in two-dimensional settings, the additional dissi-
pation generated by the absorptive term −uv therein may rule out the occurrence of blow-up under
various assumptions on χ or on local kinetics functions f and g0 ([19], [27]; cf. also [28], [12], [8], [16],
[19], [29] and [21] for some closely related variants).

In contrast to its subsystems (1.2), (1.3) and (1.4), by simultaneously accounting for two taxis mech-
anisms the full model (1.1) can no longer be viewed as a triangular cross-diffusion system, which
substantially reduces its accessibility to well-established analytical techniques, and which is reflected
in an apparently complete absence of rigorous results concerned with global solutions to any version
of (1.1) involving nontrivial choices of both χ and µ. In order to nevertheless achieve some insight
into possible dynamical properties of pursuit-evasion processes, in this work we shall focus on a vari-
ant of (1.1) in which the respective tactic movements are oriented along gradients of some indirectly
produced stimuli, rather than following individuals directly. In fact, assuming predators and preys to
exert species-characteristic substances such as pheromones or scent marks, the authors in [25] propose
the variant of the pursuit-evasion model (1.1) given by



















ut = ∆u− χ∇ · (u∇w) + f(u, v),

vt = ∆v + ξ∇ · (v∇z) + g(u, v),

wt = Dw∆w − δww + v,

zt = Dz∆z − δzz + u,

(1.5)

additionally containing the concentrations w = w(x, t) and z = z(x, t) of the respectively emitted
chemicals, as well as the positive parameters Dw, Dz, δw and δz. Relying on the circumstance that
chemicals diffuse substantially faster than individuals, we shall follow a corresponding and standard
quasi-stationary approximation procedure, quite well-established in the context of chemotaxis systems
([11], [10]), and hence subsequently concentrate on the parabolic-elliptic simplification of (1.5) given
by



















ut = ∆u− χ∇ · (u∇w) + f(u, v),

vt = ∆v + ξ∇ · (v∇z) + g(u, v),

0 = Dw∆w − δww + v,

0 = Dz∆z − δzz + u.

(1.6)

Beyond some analytical results addressing questions of global weak solvability and boundedness in two-
dimensional boundary value problems ([7], [1]), numerical evidence indicates that even upon trivial
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choices of f, g, δw and δz, (1.6) may indeed generate various types of patterns ([6]).

Main results. The purpose of the present work is to investigate possible effects resulting from
the interplay of the doubly cross-diffusive and indirectly mediated migration in (1.6) with zero-order
kinetics genuinely related to Lotka-Volterra type predator-prey interaction. Accordingly, we shall
henceforth consider the indirect pursuit-evasion system







































ut = ∆u− χ∇ · (u∇w) + u(λ− u+ av), x ∈ Ω, t > 0,

vt = ∆v + ξ∇ · (v∇z) + v(µ− v − bu), x ∈ Ω, t > 0,

0 = ∆w − w + v, x ∈ Ω, t > 0,

0 = ∆z − z + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= ∂z
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.7)

in a bounded domain Ω ⊂ R
n with smooth boundary, where n ≥ 1, where χ, ξ, λ, µ, a and b are

positive parameters, and where u0 and v0 are given suitably regular functions.

In this framework, the first of our results asserts global existence of smooth solutions to (1.7) for
widely arbitrary initial data in any physically meaningful dimension:

Proposition 1.1 Let n ≤ 3, let Ω ⊂ R
n be a bounded domain with smooth boundary, and suppose

that the parameters χ, ξ, λ, µ, a and b are positive. Then for all nonnegative functions u0 ∈ C0(Ω̄) and
v0 ∈ C0(Ω̄), the problem (1.7) possesses a unique global classical solution (u, v, w, z) with















u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

w ∈ C2,0(Ω× (0,∞)),

z ∈ C2,0(Ω× (0,∞)),

which is bounded in the sense that there exists C > 0 satisfying

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω) ≤ C for all t > 0. (1.8)

Next concerned with the qualitative behavior of these solutions, we recall from well-known facts about
the ODE system associated with (1.7) that merely the sign of the number µ − bλ decides about the
existence of a spatially homogeneous equilibrium which is positive in both population components and
hence reflects coexistence ([15]). In fact, our second result will reveal that the assumption bλ < µ

therefor will retain its sufficiency with regard to asymptotic stability of this steady state, provided that
an explicit smallness condition on the taxis coefficients χ and ξ is satisfied. We note that the following
statement in this direction actually applies to any global bounded solution to (1.7), regardless of the
space dimension n ≥ 1, with unconditional applicability to widely arbitrary solutions when n ≤ 3 due
to Proposition 1.1.

Theorem 1.2 Let Ω ⊂ R
n be a bounded domain with smooth boundary, let λ > 0, µ > 0, a > 0 and

b > 0 satisfy
bλ < µ, (1.9)
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assume that the positive parameter χ is such that

χ < 4

√

a(1 + ab)

b(λ+ aµ)
(1.10)

and suppose that the positive parameter ξ fulfills

ξ < 4

√

b(1 + ab)

a(µ− bλ)
. (1.11)

Then any nonnegative global bounded classical solution (u, v, w, z) of the boundary value problem in
(1.7) with u 6≡ 0 and v 6≡ 0 satisfies

u(·, t) → u⋆ :=
λ+ aµ

1 + ab
and z(·, t) → u⋆ in C2(Ω̄) as t → ∞ (1.12)

as well as

v(·, t) → v⋆ :=
µ− bλ

1 + ab
and w(·, t) → v⋆ in C2(Ω̄) as t → ∞. (1.13)

If, conversely, bλ > µ, then under an again explicit restriction on smallness of χ, but now without any
constraint on the repulsive taxis coefficient ξ, the predators will asymptotically outcompete the prey
population.

Theorem 1.3 Suppose that Ω ⊂ R
n is a bounded domain with smooth boundary, that λ > 0, µ >

0, a > 0 and b > 0 are such that
bλ > µ, (1.14)

that

χ <

√

16a

bλ
, (1.15)

and that
ξ > 0 is arbitrary. (1.16)

Then whenever (u, v, w, z) is a nonnegative bounded global classical solution of the boundary value
problem in (1.7) satisfying u 6≡ 0 and v 6≡ 0, we have

u(·, t) → λ and z(·, t) → λ in C2(Ω̄) as t → ∞ (1.17)

as well as
v(·, t) → 0 and w(·, t) → 0 in C2(Ω̄) as t → ∞. (1.18)

2 Global existence and boundedness. Proof of Proposition 1.1

The following basic result on local existence can be proved by adapting well-established approaches
for parabolic-elliptic chemotaxis models (cf. [4] and [17], for instance).
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Lemma 2.1 Let n ≥ 1, and suppose that the parameters χ, ξ, λ, µ, a and b are positive. Then for all
nonnegative functions u0 ∈ C0(Ω̄) and v0 ∈ C0(Ω̄), there exist Tmax ∈ (0,∞] and a unique quadruple
(u, v, w, z) of nonnegative functions from C0(Ω̄×[0, Tmax))∩C

2,1(Ω̄×(0, Tmax)) solving (1.7) classically
in Ω× (0, Tmax). Moreover,

either Tmax = ∞, or

lim
tրTmax

sup
(

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)

)

= ∞. (2.1)

Some elemetary bounds on the respective total mass functionals will be of substantial importance in
the sequel.

Lemma 2.2 The solution of (1.7) satisfies

‖u(·, t)‖L1(Ω) = ‖z(·, t)‖L1(Ω) ≤ m for all t ∈ (0, Tmax) (2.2)

and

‖v(·, t)‖L1(Ω) = ‖w(·, t)‖L1(Ω) ≤
b

a
m for all t ∈ (0, Tmax), (2.3)

where m := max
{

∫

Ω u0 +
a
b

∫

Ω v0,
1
4

[

(λ+ 1)2 + a
b
(µ+ 1)2

]

· |Ω|
}

> 0.

Proof. Integrating the first and the second equation of (1.7) with respect to x ∈ Ω, we see that

d

dt

∫

Ω

(

u+
a

b
v
)

+

∫

Ω

(

u+
a

b
v
)

= (λ+ 1)

∫

Ω
u−

∫

Ω
u2 +

a

b

{

(µ+ 1)

∫

Ω
v −

∫

Ω
v2
}

≤
1

4

[

(λ+ 1)2 +
a

b
(µ+ 1)2

]

· |Ω| for all t ∈ (0, Tmax).

Thus, y(t) :=
∫

Ω

(

u(·, t) + a
b
v(·, t)

)

, t ∈ [0, Tmax), satisfies

d

dt
y(t) + y(t) ≤

1

4

[

(λ+ 1)2 +
a

b
(µ+ 1)2

]

· |Ω| for all t ∈ (0, Tmax).

which upon a simple ODE comparison shows that

y(t) ≤ max

{
∫

Ω
u0 +

a

b

∫

Ω
v0,

1

4

[

(λ+ 1)2 +
a

b
(µ+ 1)2

]

· |Ω|

}

for all t ∈ (0, Tmax). (2.4)

Since integrating the third and fourth equations in (1.7) we find that
∫

Ω
w =

∫

Ω
v and

∫

Ω
z =

∫

Ω
u for all t ∈ (0, Tmax),

from (2.4) we readily obtain (2.2) and (2.3) thanks to the nonnegativity of u and v. �

Next making essential use of the assumption n ≤ 3 underlying Proposition 1.1, we shall turn the
above L1 bounds for w and z into Lp estimates for u and v. Concerning the latter second solution
component v, this can be viewed as a fairly obvious extension of a related result already observed in
[20, Theorem 1.1] for a proliferation-free variant of (1.7); the corresponding argument for u, however,
will require an additional consideration here, basically reducing to the observation that within the
course of a standard Lp testing procedure, the nonlinear source term +auv in (1.7) can be compared
in strength with the chemotactic term −χ∇ · (u∇w) (see (2.12) below).
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Lemma 2.3 Let n ≤ 3, χ > 0, ξ > 0, λ > 0, µ > 0, a > 0 and b > 0. Then for any finite p > 1 one
can find C(p) > 0 such that the solution of (1.7) satisfies

‖v(·, t)‖Lp(Ω) ≤ C(p) for all t ∈ (0, Tmax) (2.5)

as well as
‖u(·, t)‖Lp(Ω) ≤ C(p) for all t ∈ (0, Tmax). (2.6)

Proof. In essence, the proof follows the idea from [20]. So, we only outline the main steps and
point out that the two terms of local kinetics will not induce any new technical difficulty in the proof.
Step 1. In light of known results on elliptic boundary problem with inhomogeneities in L1(Ω) ([2])
together with the L1 bound for u asserted in (2.2), we find that for any s ∈ [1, n

n−1), there exists
c1 = c1(s) > 0 such that

‖z(·, t)‖W 1,s(Ω) ≤ c1 for all t ∈ (0, Tmax).

This in conjunction with the Sobolev embedding, W 1,s(Ω) →֒ Lr(Ω) for any r ∈ [1, ns
(n−s)+

), yields

that for all r > 1 fulfilling r < n
(n−2)+

, there exists c2 = c2(r) > 0 such that

‖z(·, t)‖Lr(Ω) ≤ c2 for all t ∈ (0, Tmax) (2.7)

(cf. [20, lemma 3.1] for more details).
Step 2. We multiply the second equation in (1.7) by vp−1 and integrate by parts using the identity
∆z = z − u to obtain that

1

p

d

dt

∫

Ω
vp +

4(p− 1)

p2

∫

Ω
|∇v

p

2 |2 = −(p− 1)ξ

∫

Ω
vp−1∇v · ∇z + µ

∫

Ω
vp −

∫

Ω
vp+1 − b

∫

Ω
uvp

≤
p− 1

p
ξ

∫

Ω
vp∆z + µ

∫

Ω
vp

=
p− 1

p
ξ

∫

Ω
vp(z − u) + µ

∫

Ω
vp

≤
p− 1

p
ξ

∫

Ω
vpz + µ

∫

Ω
vp for all t ∈ (0, Tmax) (2.8)

thanks to the nonnegativity of u and v. Here since n ≤ 3, we can fix r > 1 such that

n

2
< r <

n

(n− 2)+
, (2.9)

and thus relying on the Hölder inequality, using (2.7) and invoking the Gagliardo-Nirenberg inequality
along with (2.3) we can find c3 = c3(p) > 0 and c4 = c4(p) > 0 such that

p− 1

p
ξ

∫

Ω
vpz ≤

p− 1

p
ξ
(

∫

Ω
vpr

′
)

1

r′

·
(

∫

Ω
zr
)

1
r

≤ c3

(

∫

Ω
vpr

′
)

1

r′

= c3‖v
p

2 ‖2
L2r′ (Ω)

≤
2(p− 1)

p2

∫

Ω
|∇v

p

2 |2 + c4 for all t ∈ (0, Tmax)
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where r′ := r
r−1 satisfies 2r′ < 2n

(n−2)+
due to the left inequality in (2.9). Inserting this into (2.8) yields

d

dt

∫

Ω
vp +

∫

Ω
vp +

2(p− 1)

p

∫

Ω
|∇v

p

2 |2 ≤ (1 + µp)

∫

Ω
vp + pc4 for all t ∈ (0, Tmax). (2.10)

Now using the Poincaré inequality and noting that ‖v
p

2 ‖
2
p

L
2
p (Ω)

=
∫

Ω v ≤ b
a
m for all t ∈ (0, Tmax) due

to (2.3), we further obtain c5 = c5(p) > 0 such that

(1 + µp)

∫

Ω
vp ≤

2(p− 1)

p

∫

Ω
|∇v

p

2 |2 + c5 for all t ∈ (0, Tmax),

which combined with (2.10) entails that

d

dt

∫

Ω
vp +

∫

Ω
vp ≤ pc4 + c5 for all t ∈ (0, Tmax).

Upon an ODE comparison, this results in

∫

Ω
vp(·, t) ≤ c6 = c6(p) := max

{
∫

Ω
v
p
0 , pc4 + c5

}

for all t ∈ (0, Tmax) (2.11)

and thereby proves (2.5).

Step 3. By straightforward computation using three integrations by parts, similar to the derivation
of (2.8) we have

1

p

d

dt

∫

Ω
up +

4(p− 1)

p2

∫

Ω
|∇u

p

2 |2 = (p− 1)χ

∫

Ω
up−1∇u · ∇w + λ

∫

Ω
up −

∫

Ω
up+1 + a

∫

Ω
upv

≤ −
p− 1

p
χ

∫

Ω
up∆w + λ

∫

Ω
up + a

∫

Ω
upv

= −
p− 1

p
χ

∫

Ω
up(w − v) + λ

∫

Ω
up + a

∫

Ω
upv

≤
(p− 1

p
χ+ a

)

∫

Ω
upv + λ

∫

Ω
up for all t ∈ (0, Tmax), (2.12)

where relying on the estimate (2.11) and proceeding as in Step 2 to deal with the first summand on
the right hand side of (2.12), we obtain c7 = c7(p) > 0 such that

(p− 1

p
χ+ a

)

∫

Ω
upv ≤

2(p− 1)

p2

∫

Ω
|∇u

p

2 |2 + c7 for all t ∈ (0, Tmax).

Combining this with (2.12) entails

1

p

d

dt

∫

Ω
up +

2(p− 1)

p2

∫

Ω
|∇u

p

2 |2 ≤ λ

∫

Ω
up + c7 for all t ∈ (0, Tmax),

from which (2.6) can be derived, similarly to to reasoning in Step 2, through an application of the
Poincaré inequality and (2.2). �
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We now in a position to complete the proof of global existence and boundedness of solutions to (1.7).

Proof of Proposition 1.1. In view of Lemma 2.3 and standard elliptic regularity theory ([5]), fixing
any p > n we obtain bounds for both w and z in L∞((0, Tmax);W

2,p(Ω)), which along with a Sobolev
embedding theorem implies

‖∇w(·, t)‖L∞(Ω) + ‖∇z(·, t)‖L∞(Ω) ≤ c1 for all t ∈ (0, Tmax)

with some c1 > 0. Using this information together with Lemma 2.3 and performing a Moser-type
iteration (cf. [18, Lemma A.1]), we obtain c2 > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ c2 for all t ∈ (0, Tmax).

In conjunction with the extensibility criterion (2.1) in Lemma 2.1, this immediately leads to the
statements in Proposition 1.1. �

3 Large time behavior of bounded solutions

3.1 A general observation on evolution of functionals involving logarithms

Our qualitative analysis of bounded solutions to (1.7) will rely on the construction of Lyapunov
functionals on the basis of the following observations.

Lemma 3.1 Any global classical solution of (1.7) with u 6≡ 0 and v 6≡ 0 satisfies

d

dt

∫

Ω
lnu ≥ −

χ2

4

∫

Ω
|∇w|2 + λ|Ω| −

∫

Ω
u+ a

∫

Ω
v for all t > 0 (3.1)

and
d

dt

∫

Ω
ln v ≥ −

ξ2

4

∫

Ω
|∇z|2 + µ|Ω| −

∫

Ω
v − b

∫

Ω
u for all t > 0 (3.2)

as well as
d

dt

∫

Ω
u = λ

∫

Ω
u−

∫

Ω
u2 + a

∫

Ω
uv for all t > 0 (3.3)

and
d

dt

∫

Ω
v = µ

∫

Ω
v −

∫

Ω
v2 − b

∫

Ω
uv for all t > 0. (3.4)

Moreover,
∫

Ω
|∇w|2 = −

∫

Ω
(w − v⋆)

2 +

∫

Ω
(v − v⋆)(w − v⋆) for all t > 0 (3.5)

and
∫

Ω
|∇z|2 = −

∫

Ω
(z − u⋆)

2 +

∫

Ω
(u− u⋆)(z − u⋆) for all t > 0. (3.6)
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Proof. Since u is positive in Ω × (0,∞) by the strong maximum principle, we may multiply the
first equation in (1.7) by 1

u
to obtain using integration by parts that

d

dt

∫

Ω
lnu =

∫

Ω

|∇u|2

u2
−

∫

Ω

χ

u
∇u · ∇w + λ|Ω| −

∫

Ω
u+ a

∫

Ω
v for all t > 0.

As by Young’s inequality we can estimate

∣

∣

∣

∣

−

∫

Ω

χ

u
∇u · ∇w

∣

∣

∣

∣

≤

∫

Ω

|∇u|2

u2
+

χ2

4

∫

Ω
|∇w|2 for all t > 0,

this yields (3.1). Similarly, testing the second equation in (1.7) against 1
v
leads to (3.2), whereas

the identities (3.3) and (3.4) directly result on integrating the first two equations in (1.7) over Ω.
Furthermore, we use (w − v⋆) as a testing function for the third equation in (1.7) to derive (3.5),
whereas (3.6) is a consequence of testing the fourth equation in (1.7) by (z − u⋆). �

3.2 Coexistence. Proof of Theorem 1.2

Now when the taxis parameters χ and ξ are suitably small, assuming (1.9) enables us to discover a
gradient-like structure in (1.7) in the following sense:

Lemma 3.2 Let (1.9), (1.10) and (1.11) hold. Then there exist positive numbers α, β, η and γ such
that given any global classical solution of (1.7) with u 6≡ 0 and v 6≡ 0, letting

F (1) :=

∫

Ω

(

u(·, t)− u⋆ − u⋆ ln
u(·, t)

u⋆

)

+
a

b

∫

Ω

(

v(·, t)− v⋆ − v⋆ ln
v(·, t)

u⋆

)

, t > 0, (3.7)

we have

d

dt
F (1)(t) ≤ −α

∫

Ω
(u− u⋆)

2 − β

∫

Ω
(v − v⋆)

2 − η

∫

Ω
(w − v⋆)

2 − γ

∫

Ω
(z − u⋆)

2 for all t > 0. (3.8)

Proof. As our assumptions (1.9), (1.10) and (1.11) imply that χ2

16u⋆ < a
b
and aξ2

16bv⋆ < 1, we can
fix some ε ∈ (0, 1) such that

α := 1−
aξ2

16b(1− ε)
v⋆ > 0 (3.9)

and

β :=
a

b
−

χ2

16(1− ε)
u⋆ > 0. (3.10)

We then combine the differential inequalities (3.1) and (3.2) with the identities (3.3) and (3.4) to see
on straightforward rearrangements that

d

dt
F (1) ≤ λ

∫

Ω
u−

∫

Ω
u2 + a

∫

Ω
uv

−u⋆ ·

{

−
χ2

4

∫

Ω
|∇w|2 + λ|Ω| −

∫

Ω
u+ a

∫

Ω
v

}
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+
a

b
·

{

µ

∫

Ω
v −

∫

Ω
v2 − b

∫

Ω
uv

}

−
a

b
v⋆ ·

{

−
ξ2

4

∫

Ω
|∇z|2 + µ|Ω| −

∫

Ω
v − b

∫

Ω
u

}

=
χ2

4
u⋆ ·

∫

Ω
|∇w|2 +

aξ2

4b
v⋆ ·

∫

Ω
|∇z|2

−

∫

Ω
u2 + (λ+ u⋆ + av⋆)

∫

Ω
u

−
a

b

∫

Ω
v2 +

(a

b
µ− au⋆ +

a

b
v⋆

)

∫

Ω
v

−λu⋆|Ω| −
a

b
µv⋆|Ω| for all t > 0.

Since direct computation shows that

−

∫

Ω
u2 + (λ+ u⋆ + av⋆)

∫

Ω
u = −

∫

Ω
u2 + 2u⋆

∫

Ω
u

= −

∫

Ω
(u− u⋆)

2 + u2⋆|Ω| for all t > 0

and

−
a

b

∫

Ω
v2 +

(a

b
µ− au⋆ +

a

b
v⋆

)

∫

Ω
v =

a

b
·

{

−

∫

Ω
v2 + (µ− bu⋆ + v⋆)

∫

Ω
v

}

=
a

b
·

{

−

∫

Ω
v2 + 2v⋆

∫

Ω
v

}

=
a

b
·

{

−

∫

Ω
(v − v⋆)

2 + v2⋆|Ω|

}

for all t > 0

as well as
{

− λu⋆ −
a

b
µv⋆ + u2⋆ +

a

b
v2⋆

}

· |Ω| = 0,

this entails that

d

dt
F (1) ≤

χ2

4
u⋆ ·

∫

Ω
|∇w|2 +

aξ2

4b
v⋆ ·

∫

Ω
|∇z|2 −

∫

Ω
(u− u⋆)

2 −
a

b

∫

Ω
(v − v⋆)

2

for all t > 0. From this and the identities (3.5) and (3.6) we infer that

d

dt
F (1) ≤ −

χ2

4
u⋆

∫

Ω
(w − v⋆)

2 +
χ2

4
u⋆

∫

Ω
(v − v⋆)(w − v⋆)

−
aξ2

4b
v⋆

∫

Ω
(z − u⋆)

2 +
aξ2

4b
v⋆

∫

Ω
(u− u⋆)(z − u⋆)

−

∫

Ω
(u− u⋆)

2 −
a

b

∫

Ω
(v − v⋆)

2 for all t > 0, (3.11)
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where Young’s inequality implies that

χ2

4
u⋆

∫

Ω
(v − v⋆)(w − v⋆) ≤

χ2

16(1− ε)
u⋆

∫

Ω
(v − v⋆)

2 +
χ2

4
(1− ε)u⋆

∫

Ω
(w − v⋆)

2

for all t > 0 and

aξ2

4b
v⋆

∫

Ω
(u− u⋆)(z − u⋆) ≤

aξ2

16b(1− ε)
v⋆

∫

Ω
(u− u⋆)

2 +
aξ2

4b
(1− ε)v⋆

∫

Ω
(z − u⋆)

2

for all t > 0. This together with (3.11) yields (3.8) with α and β defined as in (3.9) and (3.10), and

with η := ε · χ2

4 u⋆ > 0 and γ := ε · aξ2

4b v⋆ > 0. �

We now assert asymptotic coexistence in the flavor of and under the assumptions of Theorem 1.2.
Proof of Theorem 1.2. By means of standard parabolic and elliptic Schauder theory in conjunction
with Proposition 1.1, we first obtain θ ∈ (0, 1) and c1 > 0 with the property that for all t > 1,

‖u‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
+ ‖v‖

C2+θ,1+ θ
2 (Ω̄×[t,t+1])

+ ‖w‖
C2+θ, θ

2 (Ω̄×[t,t+1])
+ ‖z‖

C2+θ, θ
2 (Ω̄×[t,t+1])

≤ c1. (3.12)

As (u(·, t))t>1 and (v(·, t))t>1 are relatively compact in C2(Ω̄) by the Arzelá-Ascoli theorem, for the
proof of (1.12) and (1.13) it is evidently sufficient to derive that

u(·, t) → u⋆ and z(·, t) → u⋆ in L∞(Ω) as t → ∞ (3.13)

and
v(·, t) → v⋆ and w(·, t) → v⋆ in L∞(Ω) as t → ∞. (3.14)

But since Lemma 3.2 asserts that if we take F (1), α, β, η and γ as introduced there, then since F (1)

can readily seen to be nonnegative, for all t > 1 we have

α

∫ t

1

∫

Ω
(u− u⋆)

2 + β

∫ t

1

∫

Ω
(v − v⋆)

2 + η

∫ t

1

∫

Ω
(w − v⋆)

2 + γ

∫ t

1

∫

Ω
(z − u⋆)

2 ≤ F (1).

In view of the spatio-temporal equicontinuity property implied by (3.12), the basic decay information
contained herein actually entails (3.13) and (3.14) (cf. [22] for a detailed reasoning on this by a
contradictory argument). �

4 Extinction of preys. Proof of Theorem 1.3

Our construction of a Lyapunov functional in the framework of supercritical values of bλ will, in
addition to (3.1), (3.3) and (3.4), rely on the following observation that can directly be obtained upon
testing the third equation in (1.7) by w.

Lemma 4.1 If (u, v, w, z) is any global classical solution of (1.7), then

∫

Ω
|∇w|2 = −

∫

Ω
w2 +

∫

Ω
vw for all t > 0. (4.1)
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Now under the assumption (1.14), we can find an energy-type structure in (1.7) for any ξ > 0 if the
pursuit parameter χ is appropriately small.

Lemma 4.2 If (1.14), (1.15) and (1.16) are valid, one can find δ > 0 and κ > 0 such that bwhenever
(u, v, w, z) is a global classical solution of (1.7) with u 6≡ 0 and v 6≡ 0, then

F (2)(t) :=

∫

Ω

(

u(·, t)− λ− λ ln
u(·, t)

λ

)

+
a

b

∫

Ω
v(·, t), t > 0, (4.2)

satisfies
d

dt
F (2)(t) ≤ −

∫

Ω
(u− λ)2 − δ

∫

Ω
v2 − κ

∫

Ω
w2 for all t > 0. (4.3)

Proof. Observing that our assumption (1.15) implies that a
b
− λχ2

16 > 0, let us pick some ε ∈ (0, 1)
such that

δ :=
a

b
−

λχ2

16(1− ε)
> 0. (4.4)

Thus, given a global solution fulfilling u 6≡ 0, we may recall (3.1), (3.3) and (3.4) to obtain that

d

dt
F (2)(t) ≤ λ

∫

Ω
u−

∫

Ω
u2 + a

∫

Ω
uv

−λ ·

{

−
χ2

4

∫

Ω
|∇w|2 + λ|Ω| −

∫

Ω
u+ a

∫

Ω
v

}

+
a

b
·

{

µ

∫

Ω
v −

∫

Ω
v2 − b

∫

Ω
uv

}

= −

∫

Ω
(u− λ)2

−
a

b

∫

Ω
v2 +

λχ2

4

∫

Ω
|∇w|2

−
a

b
· (λb− µ)

∫

Ω
v for all t > 0,

where the last summand on the right is nonpositive by our assumption that λb − µ > 0, and where
(4.1) along with Young’s inequality implies that

−
a

b

∫

Ω
v2 +

λχ2

4

∫

Ω
|∇w|2 = −

a

b

∫

Ω
v2 +

λχ2

4

∫

Ω
vw −

λχ2

4

∫

Ω
w2

≤ −
a

b

∫

Ω
v2 +

λχ2

16(1− ε)

∫

Ω
v2 +

λχ2

4
(1− ε)

∫

Ω
w2 −

λχ2

4

∫

Ω
w2

= −

(

a

b
−

λχ2

16(1− ε)

)
∫

Ω
v2 −

λχ2

4
ε

∫

Ω
w2 for all t > 0,

so that (4.3) results from (4.4) if we let κ := λχ2

4 ε. �

Using the decay information of the functional F (2)(t) provided by Lemma 4.2, we can finally verify
the statement made in Theorem 1.3.
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Proof of Theorem 1.3. From Lemma 4.2 we infer that
∫ ∞

1

∫

Ω
(u− λ)2 < ∞,

∫ ∞

1

∫

Ω
v2 < ∞ and

∫ ∞

1

∫

Ω
w2 < ∞, (4.5)

because the function F (2) from (4.2) is nonneative. Since multiplying the last equation in (1.7) by
(z − λ) and using Young’s inequality we obtain that

∫

Ω
|∇(z − λ)|2 +

∫

Ω
(z − λ)2 =

∫

Ω
(u− λ)(z − λ)

≤
1

2

∫

Ω
(z − λ)2 +

1

2

∫

Ω
(u− λ)2 for all t > 0,

and since thus, by nonnegativity of the first summand on the left-hand side herein,
∫

Ω
(z − λ)2 ≤

∫

Ω
(u− λ)2 for all t > 0,

the first inequality in (4.5) guarantees that furthermore
∫ ∞

1

∫

Ω
(z − λ)2 ≤

∫ ∞

1

∫

Ω
(u− λ)2 < ∞. (4.6)

On the basis of (4.5) and (4.6), proceeding as in the proof of Theorem 1.2 we readily obtain the
intended convergence features in (1.17) and (1.18). �

Acknowledgment. Y. Tao acknowledges support of the National Natural Science Foundation of
China (No. 11861131003). M. Winkler was supported by the Deutsche Forschungsgemeinschaft
in the context of the project Emergence of structures and advantages in cross-diffusion systems
(No. 411007140, GZ: WI 3707/5-1).

References

[1] Amorim, P., Telch, B., Villada, L.M.: A reaction-diffusion predator-prey model with pur-
suit, evasion, and nonlocal sensing. Math. Biosci. Eng. 16, 5114-5145 (2019)

[2] Bréezis, H., Strauss, W.A.: Semilinear second-order elliptic equations in L1. J. Math. Soc.
Japan 25, 565-590 (1973)
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