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We consider a class of macroscopic models for the spatio-temporal evolution of urban

crime, as originally going back to 28. The focus here is on the question of how far a certain
porous medium enhancement in the random diffusion of criminal agents may exert visible

relaxation effects. It is shown that sufficient regularity of the nonnegative source terms in

the system and a sufficiently strong nonlinear enhancement ensure that a corresponding
Neumann-type initial-boundary value problem, posed in a smoothly bounded planar

convex domain, admits locally bounded solutions for a wide class of arbitrary initial data.
Furthermore, this solution is globally bounded under mild additional conditions on the

source terms. These results are supplemented by numerical evidence which illustrates

smoothing effects in solutions with sharply structured initial data in the presence of
such porous medium type diffusion and support the existence of singular structures in
the linear diffusion case, which is the type of diffusion proposed in 28.
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1. Introduction

This manuscript is concerned with an adaptation of a macroscopic model for the

dynamics of urban crime, such as residential burglaries. In its original version, as

proposed in 28, this model takes the formut = ∇ · (D∇u)− 2∇ ·
(
u
v∇v

)
− uv +B1(x, t), x ∈ Ω, t > 0,

vt = ∆v + uv − v +B2(x, t), x ∈ Ω, t > 0,
(1.1)
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System (1.1) is derived from an agent-based lattice model that incorporates the

movement of criminals, u, and a scalar field representing the attractiveness of crime,

v, measuring the appeal of a location from a criminal agents perspective. The sys-

tem is grounded on the assumptions of routine activity theory and the so-called

repeat and near-victimization effect (9, 27). Routine activity theory asserts that

crime revolves around three factors: a potential offender, a suitable target, and the

absence of guardianship (9).

The repeat and near-repeat victimization effect states that criminal activity in a

certain location increases the probability of another crime occurring at the same,

or nearby, locations within a short period of time. This effect has been measured in

real-life data for crimes like residential burglaries (15, 27). In (1.1), this self-exciting

nature of crime is incorporated in the assumption that each crime increases the at-

tractiveness field, giving rise to the summand +uv in the second equation (following

from the fact that uv is the expected number of crimes). The near-repeat victim-

ization effect is incorporated in the diffusivity of the attractiveness value, leading

to the term ∆v in the second equation.

It is also assumed that when criminal agents commit a crime they exit the system,

which gives rise to the term −uv in the first equation. To counteract the exit of

criminal agents, the criminal population is subject to growth that is determined by

the known function B1. Moreover, an assumed base attractiveness value gives rise

to the the growth function, B2, observed in the second equation. We remark that

for the analysis done in 28, it is assumed that B1 and B2 are constant functions;

however, the authors mention that spatially and temporally dependent functions B1

and B2 are more realistic. On a final note, in system (1.1), criminals are assumed to

move with a combination of unconditional dispersal, D∆u, and conditional disper-

sal, −2∇ ·
(
u
v∇v

)
, biased by high values of attractiveness. In fact, in system (1.1),

D is a constant and thus the criminals move with a combination of linear dispersal

and a chemotactic-like dispersal.

Before we discuss the model of focus, let us mention some related previous works.

The fundamental issue of the well-posedness of (1.1) has been addressed by various

authors. In 26, the existence of global solutions to (1.1) in a one-dimensional inter-

val has been established; in two-dimensional balls and in the presence of radially

symmetric initial data, at least some globally defined generalized solutions have

been constructed (36). The well-posedness of certain variants of (1.1) have been

addressed in 20 and 25. Beyond the well-posedness theory, the existence of spatially

heterogeneous equilibrium solutions and their qualitative properties have also been

addressed. In 29, a weakly nonlinear analysis around the bifurcation point between

the linear stability and instability of the constant solutions is performed. Global

bifurcation of spatially heterogeneous steady states emanating from the unique

constant equilibrium solution is investigated in 6. The existence and stability of

spike-type equilibrium solutions to some related problems has been studied in 4, 12,
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17, 18, 21 and 33, for instance. Finally, we note that generalizations to system (1.1)

that include police dynamics have been proposed and analyzed in 16, 23, and 24; or

where criminals disperse through a Lévy process over Brownian motion 8. For other

related models and their analysis we refer the reader to 2, 8, 5, 7, 19 and 37.

The adaptation of (1.1) that we consider in this work is based on the premise that

criminals might have a tendency to avoid regions with a high density of other crim-

inals. For example, this is reasonable when criminals want to avoid competition, or

even suspect that hotspot policing, a strategy where the police force is deployed to

areas with high crime, is being employed (29). In such cases, criminals might want

to avoid areas with a high police density (or equivalently areas with a high crim-

inal density). The assumption that criminal agents tend to avoid police officers is

a natural consequence of routine activity theory. Indeed, one of the factors needed

for crime to occur, based on this theory, is absence of guardianship. Thus, criminal

agents will tend not commit a crime in locations where there are police agents, but

will instead choose to move away from areas with a high density of police.

A natural approach to incorporate such a change in the movement strategy of crim-

inal agents consists in allowing the diffusion rate D to depend on u – recall that

in (1.1), D is a constant. In particular, we assume that the diffusivity of criminals

increases with u, thus modeling an overcrowding effect. Here we concentrate on

the prototypical algebraic choice of D = D(u), hence leading to porous medium

type diffusion operators. In the framework of a full no-flux initial-boundary value

problem we subsequently consider the variant of (1.1) given by
ut = ∇ · (um−1∇u)− χ∇ ·

(
u
v∇v

)
− uv +B1(x, t), x ∈ Ω, t > 0,

vt = ∆v + uv − v +B2(x, t), x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.2)

in a bounded domain Ω ⊂ R2 with smooth boundary. Here, B1 and B2 are suitably

regular nonnegative functions on Ω × (0,∞), m > 1 is a given parameter and χ is

allowed to attain any positive value, thus including the choice χ = 2 in (1.1) as a

special case.

We note that in order to keep the modeling framework as simple as possible, in

this work we do not independently model the dynamics of the police force by, e.g.,

describing their population density through an additional variable, but rather we

make the simplifying assumption that the police force will match those of the crim-

inal agents.

Main results: Blow-up suppression by strong diffusion enhancement.

Due to the potentially substantial destabilizing character of the self-enhanced cross-

diffusive interaction therein, systems of the form (1.1) seem to bring about signifi-
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cant challenges already at the level of basic solution theories. Accordingly, the few

analytical findings available for (1.1) and related systems are either restricted to

spatially one-dimensional settings (26), or address ranges of suitably small χ which

do not contain the relevant choice χ = 2 (10), or concentrate on certain small-

data solutions in cases of sufficiently small B1 and B2 (31), or resort to strongly

generalized concepts of solvability which do not a priori preclude the emergence of

singularities within finite time (13, 36). Although apparently no analytical study has

rigorously detected the occurrence of such phenomena yet, the outcome of numeri-

cal experiments supports the conjecture that indeed the linear diffusion mechanism

in (1.1) is insufficient to rule out the possibility of explosions (cf. also Section 9).

In contrast to this, we shall see that the presence of suitably strong nonlinear dif-

fusion enhancement entirely suppresses any such singular behavior in (1.2) within

finite time intervals, as expressed in the following statement on global existence of

locally bounded solutions:

Theorem 1.1. Let Ω ⊂ R2 be a bounded convex domain with smooth boundary,

and suppose that χ > 0, that

B1 and B2 are nonnegative functions from C1(Ω× [0,∞)), (B)

and that

m >
3

2
. (1.3)

Then for any choice of functions u0 and v0 which are such that{
u0 ∈W 1,∞(Ω) is nonnegative, and that

v0 ∈W 1,∞(Ω) is positive in Ω,
(1.4)

the problem (1.2) possesses at least one global weak solution (u, v) in the sense of

Definition 8.1 below. This solution is locally bounded in that

esssup
t∈(0,T )

‖u(·, t)‖L∞(Ω) <∞ for all T > 0

and

esssup
t∈(0,T )

‖v(·, t)‖W 1,q(Ω) <∞ for all T > 0 and q > 2.

Under quite mild additional assumptions on B1 and B2, particularly fulfilled by

any nonnegative B1 = B1(x) ∈ C1(Ω) and 0 6≡ B2 = B2(x) ∈ C1(Ω), solutions can

be found which are in fact globally bounded, meaning that in such cases moreover

even any infinite-time singularity formation is ruled out:

Theorem 1.2. Assume that Ω ⊂ R2 be a bounded convex domain with smooth

boundary, that m > 3
2 and χ > 0, and that (u0, v0) satisfies (1.4), and suppose

furthermore that B1 and B2 are such that beyond (B) we have

sup
(x,t)∈Ω×(0,∞)

{
B1(x, t) +B2(x, t)

}
<∞ (B1)
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and

lim inf
t→∞

∫
Ω

B2(x, t)dx > 0. (B2)

Then (1.2) admits a global weak solution according to Definition 8.1 which is globally

bounded in the sense that

esssup
t>0

‖u(·, t)‖L∞(Ω) <∞ (1.5)

and

esssup
t>0

‖v(·, t)‖W 1,q(Ω) <∞ for all q > 2. (1.6)

Accompanied and illustrated by outcomes of corresponding numerical simula-

tions, to be presented in Section 9, these results quantitatively identify an effect of

the considered diffusion strengthening on overcrowding prevention. This seems to

indicate that nonlinear migration mechanisms of the said flavor may stabilize sys-

tems of the considered form by precluding a model breakdown due to the emergence

of singularities. Viewed in the contexts of the addressed application seems to be of

relevance, especially due to the nontrivial size of criminal agents. As partially seen

in Section 9, the description of crime hotspot formation, as known to occur in asso-

ciated typical real-life situations, is thereby transported to mathematical sceneries

involving structured but bounded spatial profiles, rather than exploding solutions

such as naturally going along with Keller-Segel type modeling of aggregation in

populations of microbial individuals (14, 35; see also 3).

2. Regularization and basic properties

In order to conveniently regularize (1.2), we combine the essence of the corre-

sponding procedure in 36 with a standard non-degenerate approximation of porous

medium type diffusion operators, and hence we shall subsequently consider the

problems
uεt = ∇ ·

(
(uε + ε)m−1∇uε

)
− χ∇ ·

(
uε
vε
∇vε

)
− uεvε +B1(x, t), x ∈ Ω, t > 0,

vεt = ∆vε + uεvε
1+εuεvε

− vε +B2(x, t), x ∈ Ω, t > 0,
∂uε
∂ν = ∂vε

∂ν = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,
(2.1)

for ε ∈ (0, 1), which indeed are all globally solvable in the classical sense:

Lemma 2.1. Assume (B) and (1.4), and let m > 1 and ε ∈ (0, 1). Then there exist

functions {
uε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

vε ∈
⋂
p>2 C

0([0,∞);W 1,p(Ω)) ∩ C2,1(Ω× (0,∞)),



July 8, 2020 14:18 WSPC/INSTRUCTION FILE
crime˙nonlinear˙diffusion˙final

6 Nancy Rodriguez and Michael Winkler

which solve (2.1) classically in Ω × [0,∞), and which are such that uε > 0 in

Ω× (0,∞) and vε > 0 in Ω× [0,∞).

Proof. This can be seen by a straightforward adaptation of the reasoning in 36 on

the basis of standard results on local existence and extensibility, as provided e.g. by

the general theory in 1.

Throughout the sequel, without further explicit mentioning we shall assume that

(B) and (1.4) are satisfied, and for m > 1 and ε ∈ (0, 1) we let (uε, vε) denote the

solutions of (2.1) gained above.

In our respective formulation of statements on regularity of these solutions, we find

it convenient to make use of the following notational convention concerning a certain

time independence of constants under the hypotheses (B1) and (B2).

Definition 2.1. Let K : (0,∞) → (0,∞). We then say that K satisfies (K) if K

has the property that

sup
T>0

K(T ) <∞ whenever (B1) and (B2) hold.

With reference to this property, our first basic statement on a pointwise lower

bound for the second solution component, resembling similar information found in
26 and 36 already, reads as follows.

Lemma 2.2. Let m > 1. Then there exists K : (0,∞)→ (0,∞) fulfilling (K) such

that whenever T > 0,

1

vε(x, t)
≤ K(T ) for all x ∈ Ω, t ∈ (0, T ) and ε ∈ (0, 1). (2.2)

Proof. Firstly, in view of the nonnegativity of uε, vε and B2 it follows by a com-

parison argument that

vε(x, t) ≥
{

inf
y∈Ω

v0(y)

}
· e−t for all x ∈ Ω, t > 0 and ε ∈ (0, 1). (2.3)

Moreover, the convexity of Ω allows us to import from 11 a result on a pointwise

positivity feature of the Neumann heat semigroup (et∆)t≥0 on Ω to fix c1 > 0

fulfilling

et∆ψ ≥ c1
∫

Ω

ψ in Ω for all t > 1 and any nonnegative ψ ∈ C0(Ω),
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whence again by the comparison principle, for arbitrary t0 ≥ 0 we can estimate

vε(·, t) = et(∆−1)v0 +

∫ t

0

e(t−s)(∆−1)
{ uε(·, s)vε(·, s)

1 + εuε(·, s)vε(·, s)
+B2(·, s)

}
ds

≥ c1

∫ t

t0

e−(t−s) ·
{∫

Ω

B2(·, s)
}
ds

≥ c1 ·
{

inf
s>t0

∫
Ω

B2(·, s)
}
·
∫ t

t0

e−(t−s)ds

= c1 ·
{

inf
s>t0

∫
Ω

B2(·, s)
}
· (1− e−(t−t0))

≥ (1− e−1)c1 ·
{

inf
s>t0

∫
Ω

B2(·, s)
}

in Ω for all t > t0 + 1. (2.4)

Combining (2.3) with (2.4) readily yields (2.2) with some K satisfying (K).

Likewise, our second basic observation has quite closely related precedents in 26

and 36.

Lemma 2.3. Let m > 1. Then there exists K : (0,∞) → (0,∞) such that (K)

holds, and such that for all T > 0,∫
Ω

uε(·, t) ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (2.5)

and that ∫
Ω

vε(·, t) ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (2.6)

Proof. According to Lemma 2.2, we can find k1 : (0,∞)→ (0,∞) with the corre-

sponding property (K) such that for all T > 0,

1

vε
≤ k1(T ) in Ω× (0, T ) for all ε ∈ (0, 1). (2.7)

Then letting

k2(T ) := min
{

1 ,
1

2k1(T )

}
, T > 0, (2.8)

we use (2.1) to see that given any T > 0, for all t > 0 and each ε ∈ (0, 1) we have

d

dt

{
2

∫
Ω

uε +

∫
Ω

vε

}
+ k2(T ) ·

{
2

∫
Ω

uε +

∫
Ω

vε

}
= −2

∫
Ω

uεvε + 2

∫
Ω

B1

−
∫

Ω

vε +

∫
Ω

uεvε
1 + εuεvε

+

∫
Ω

B2

+2k2(T )

∫
Ω

uε + k2(T )

∫
Ω

vε

≤ −
∫

Ω

uεvε + 2k2(T )

∫
Ω

uε + 2

∫
Ω

B1 +

∫
Ω

B2, (2.9)
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because k2(T ) ≤ 1. Using that moreover 2k2(T ) ≤ 1
k1(T ) and hence

−
∫

Ω

uεvε + 2k2(T )

∫
Ω

uε ≤ −
1

k1(T )

∫
Ω

uε + 2k2(T )

∫
Ω

uε ≤ 0

for all t ∈ (0, T ) and ε ∈ (0, 1), by (2.7), from (2.9) we infer that

d

dt

{
2

∫
Ω

uε +

∫
Ω

vε

}
+ k2(T ) ·

{
2

∫
Ω

uε +

∫
Ω

vε

}
≤ k3(T ) := sup

s∈(0,T )

{
2

∫
Ω

B1 +

∫
Ω

B2

}
for all t ∈ (0, T ) and ε ∈ (0, 1). Therefore, an ODE comparison shows that

2

∫
Ω

uε(·, t) +

∫
Ω

vε(·, t) ≤ max

{
2

∫
Ω

u0 +

∫
Ω

v0 ,
k3(T )

k2(T )

}
for all t ∈ (0, T ) and ε ∈ (0, 1), from which both (2.5) and (2.6) result upon the

observation that in view of (2.7), (K) holds for the function k3
k2

.

3. Estimates for vε in W 1,q(Ω) with q ≤ 2

The following estimate essentially reproduces a similar finding from 36 to the present

framework involving slightly different hypotheses on B1 and B2.

Lemma 3.1. Assume that m > 1, and let p ∈ (0, 1). Then there exists a function

K ≡ K(p) : (0,∞)→ (0,∞) which satisfies (K) and is such that whenever T > 0,∫ t+1

t

∫
Ω

vp−2
ε |∇vε|2 ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (3.1)

Proof. Relying on Lemma 2.3, we can fix a mapping k1 : (0,∞) → (0,∞) which

enjoys the boundedness feature in (K) and is such that for all T > 0,∫
Ω

vε(·, t) ≤ k1(T ) for all t ∈ (0, T + 1) and ε ∈ (0, 1),

whence given p ∈ (0, 1) we can use Young’s inequality to see that∫
Ω

vpε (·, t) ≤
∫

Ω

(
vε(·, t) + 1

)
≤ k1(T ) + |Ω| for all t ∈ (0, T + 1) and ε ∈ (0, 1).

(3.2)

Since according to (2.1) we have

1

p

d

dt

∫
Ω

vpε = (1− p)
∫

Ω

vp−2
ε |∇vε|2 −

∫
Ω

vpε +

∫
Ω

uεv
p
ε

1 + εuε
+

∫
Ω

vp−1
ε B2

≥ (1− p)
∫

Ω

vp−2
ε |∇vε|2 −

∫
Ω

vpε for all t > 0 and ε ∈ (0, 1)
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and thus

(1− p)
∫ t+1

t

∫
Ω

vp−2
ε |∇vε|2 ≤

1

p

∫
Ω

vpε (·, t+ 1)− 1

p

∫
Ω

vpε (·, t) +

∫ t+1

t

∫
Ω

vpε

≤ 1

p

∫
Ω

vpε (·, t+ 1) +

∫ t+1

t

∫
Ω

vpε

for all t > 0 and ε ∈ (0, 1), utilizing (3.2) to estimate

1

p

∫
Ω

vpε (·, t+ 1) +

∫ t+1

t

∫
Ω

vpε ≤
1

p
·
(
k1(T ) + |Ω|

)
+ k1(T ) + |Ω|

for all t ∈ (0, T ) and ε ∈ (0, 1). We arrive at (3.1) upon an evident choice of K.

Besides being of independent use in some of our subsequent estimates (see

Lemma 4.1 and Lemma 7.2), Lemma 3.1, through suitable interpolation involv-

ing Lemma 2.3, also entails the following boundedness property of vε with respect

to the norm in W 1,q(Ω) for q ∈ [1, 2) arbitrarily close to 2.

Lemma 3.2. Suppose that m > 1 and let q ∈ [1, 2). Then there exists K ≡ K(q) :

(0,∞) → (0,∞) fulfilling (K) with the property that for all T > 0, any ε ∈ (0, 1)

and each t ∈ (0, T ) fulfilling t ≥ 2 one can find t0 = t0(t, ε) ∈ (t− 2, t− 1) such that

‖vε(·, t0)‖W 1,q(Ω) ≤ K(T ). (3.3)

Proof. We evidently need to define K(T ) for T ≥ 2 only, and to achieve this we

first employ Lemma 3.1 and Lemma 2.3 to find ki : (0,∞) → (0,∞), i ∈ {1, 2},
which comply with (K) and are such that whenever T ≥ 2,∫ t−1

t−2

∫
Ω

v
− 3

2
ε |∇vε|2 ≤ k1(T ) for all t ∈ [2, T ] and ε ∈ (0, 1) (3.4)

and ∫
Ω

vε ≤ k2(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (3.5)

Moreover, given q ∈ [1, 2) we define p = p(q) := 3q
2(2−q) > 1 and make use of the

continuity of the embedding W 1,2(Ω) ↪→ L4p(Ω) to fix c1 = c1(q) > 0 such that

‖ϕ‖4pL4p(Ω) ≤ c1‖∇ϕ‖
4p
L2(Ω) + c1‖ϕ‖4pL4(Ω) for all ϕ ∈W 1,2(Ω). (3.6)

Now letting T ≥ 2 and t ∈ [2, T ] be arbitrary, from (3.4) we infer the existence of

t0 = t0(t, ε) ∈ (t− 2, t− 1) such that∫
Ω

v
− 3

2
ε (·, t0)|∇vε(·, t0)|2 ≤ k1(T ), (3.7)
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which in conjunction with (3.6) and (3.5) entails that∫
Ω

vpε (·, t0) = ‖v
1
4
ε (·, t0)‖4pL4p(Ω)

≤ c1‖∇v
1
4
ε (·, t0)‖4pL2(Ω) + c1‖v

1
4
ε (·, t0)‖4pL4(Ω)

=
c1
44p
·
{∫

Ω

v
− 3

2
ε (·, t0)|∇vε(·, t0)|2

}2p

+ c1 ·
{∫

Ω

vε(·, t0)

}p
≤ k3(T ) ≡ k(q)

3 (T ) :=
c1
44p
· k2p

1 (T ) + c1k
2
p(T ).

Once more combined with (3.7), due to Young’s inequality and thanks to our defi-

nition of p this shows that∫
Ω

|∇vε(·, t0)|q =

∫
Ω

{
v
− 3

2
ε (·, t0)|∇vε(·, t0)|2

} q
2 · v

3q
4
ε (·, t0)

≤
∫

Ω

v
− 3

2
ε (·, t0)|∇vε(·, t0)|2 +

∫
Ω

v
3q

2(2−q)
ε (·, t0)

≤ k1(T ) + k3(T ).

In view of (3.5), this implies the claimed boundedness property in W 1,q(Ω).

4. Superlinear integrability properties of uε

Our derivation of further regularity properties of vε will crucially rely on the fol-

lowing a priori information on the first solution component, obtained by means of

a standard testing procedure on the basis of Lemma 3.1.

Lemma 4.1. Let m > 1. Then there exists K : (0,∞) → (0,∞) satisfying (K)

such that if T > 0 then

∫ t+1

t

∫
Ω

(uε + ε)m−1(uε + 1)m−3|∇uε|2 ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1),

if m ∈ (1, 2],∫ t+1

t

∫
Ω

(uε + ε)2m−4|∇uε|2 ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1)

if m > 2.
(4.1)

Proof. We again return to Lemma 2.2 and additionally employ Lemma 3.1 to pick

ki : (0,∞)→ (0,∞), i ∈ {1, 2}, which comply with (K) and are such that if T > 0

then

vε ≥
1

k1(T )
in Ω× (0, T ) for all ε ∈ (0, 1) (4.2)

and ∫ t+1

t

∫
Ω

v
− 3

2
ε |∇vε|2 ≤ k2(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (4.3)
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and to further prepare our argument for large m we utilize Young’s inequality

together with (B1) to find k3 : (0,∞) → (0,∞) which is such that (K) holds and

that if m > 2, then whenever T > 0,{
1

k1(T )
+ ‖B1(·, t)‖L∞(Ω)

}
· ξm−2 ≤ 1

2k1(T )
ξm−1 + k3(T ) for all t ∈ (0, T ).

(4.4)

Now for such m, we use (uε + ε)m−2 as a test function in (2.1) to see that

1

m− 1

d

dt

∫
Ω

(uε + ε)m−1 + (m− 2)

∫
Ω

(uε + ε)2m−4|∇uε|2

= (m− 2)χ

∫
Ω

uε(uε + ε)m−3∇uε ·
∇vε
vε

−
∫

Ω

uε(uε + ε)m−2vε +

∫
Ω

(uε + ε)m−2B1 for all t > 0 and ε ∈ (0, 1),(4.5)

where once more by Young’s inequality, and by (4.2), given T > 0 we can estimate

(m− 2)χ

∫
Ω

uε(uε + ε)m−3∇uε ·
∇vε
vε

≤ m− 2

2

∫
Ω

(uε + ε)2m−4|∇uε|2 +
(m− 2)χ2

2

∫
Ω

( uε
uε + ε

)2 |∇vε|2

v2
ε

≤ m− 2

2

∫
Ω

(uε + ε)2m−4|∇uε|2 +
(m− 2)χ2

2
k

1
2
1 (T )

∫
Ω

v
− 3

2
ε |∇vε|2

for all t ∈ (0, T ) and ε ∈ (0, 1), and where (4.2) together with (4.4) ensures that for

all T > 0,

−
∫

Ω

uε(uε + ε)m−2vε +

∫
Ω

(uε + ε)m−2B1

≤ − 1

k1(T )

∫
Ω

uε(uε + ε)m−2 +

∫
Ω

(uε + ε)m−2B1

= − 1

k1(T )

∫
Ω

(uε + ε)m−1 +
ε

k1(T )

∫
Ω

(uε + ε)m−2 +

∫
Ω

(uε + ε)m−2B1

≤ − 1

k1(T )

∫
Ω

(uε + ε)m−1 +

{
1

k1(T )
+ ‖B1(·, t)‖L∞(Ω)

}
·
∫

Ω

(uε + ε)m−2

≤ − 1

2k1(T )

∫
Ω

(uε + ε)m−1 + k3(T )|Ω| for all t ∈ (0, T ) and ε ∈ (0, 1).

Therefore, (4.5) entails that whenever T > 0,

1

m− 1

d

dt

∫
Ω

(uε + ε)m−1 +
m− 2

2

∫
Ω

(uε + ε)2m−4|∇uε|2 +
1

2k1(T )

∫
Ω

(uε + ε)m−1

≤ (m− 2)χ2

2
k

1
2
1 (T )

∫
Ω

v
− 3

2
ε |∇vε|2 + k3(T )|Ω| (4.6)

for all t ∈ (0, T ) and ε ∈ (0, 1), from which in light of (4.3) the respective inequality

in (4.1) readily results upon an integration in time.
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We are thus left with the case when m ∈ (1, 2], in which we let Φ(ξ) :=
∫ ξ

0

∫ σ
0

(τ +

1)m−3dτdσ, ξ ≥ 0, and noting that Φ′′(ξ) = (ξ + 1)m−3 for all ξ ≥ 0 we once more

resort to (2.1) to see that similarly to the above, given an arbitrary T > 0 we have

d

dt

∫
Ω

Φ(uε) =

∫
Ω

Φ′(uε) ·
{
∇ ·
(
(uε + ε)m−1∇uε

)
− χ∇ ·

(uε
vε
∇vε

)
− uεvε +B1

}
= −

∫
Ω

(uε + ε)m−1Φ′′(uε)|∇uε|2 + χ

∫
Ω

uεΦ
′′(uε)∇uε ·

∇vε
vε

−
∫

Ω

uεΦ
′(uε)vε +

∫
Ω

Φ′(uε)B1

= −
∫

Ω

(uε + ε)m−1(uε + 1)m−3|∇uε|2 + χ

∫
Ω

uε(uε + 1)m−3∇uε ·
∇vε
vε

−
∫

Ω

uεΦ
′(uε)vε +

∫
Ω

Φ′(uε)B1

≤ −1

2

∫
Ω

(uε + ε)m−1(uε + 1)m−3|∇uε|2 −
∫

Ω

uεΦ
′(uε)vε

+
χ2

2

∫
Ω

u2
ε(uε + ε)1−m(uε + 1)m−3 |∇vε|2

v2
ε

+

∫
Ω

Φ′(uε)B1

≤ −1

2

∫
Ω

(uε + ε)m−1(uε + 1)m−3|∇uε|2 +
χ2

2
k

1
2
1 (T )

∫
Ω

v
− 3

2
ε |∇vε|2

−
∫

Ω

uεΦ
′(uε)vε +

∫
Ω

Φ′(uε)B1 (4.7)

for all t ∈ (0, T ) and ε ∈ (0, 1) because of the pointwise inequality

u2
ε(uε + ε)1−m(uε + 1)m−3 ≤ (uε + ε)3−m(uε + 1)m−3 ≤ 1,

valid throughout Ω × (0,∞) for each ε ∈ (0, 1) and any such m. Now from the

definition of Φ we furthermore see that for all ξ ≥ 0,

Φ′(ξ) =

{
− 1

2−m (ξ + 1)m−2 + 1
2−m , if ,m ∈ (1, 2),

ln(ξ + 1), if m = 2,
(4.8)

and

Φ(ξ) =

{
− 1

(2−m)(m−1) (ξ + 1)m−1 + 1
2−mξ + 1

(2−m)(m−1) , if m ∈ (1, 2),

(ξ + 1) ln(ξ + 1)− ξ, if m = 2,

from which it follows that for each ξ ≥ 0,

ξΦ′(ξ)− Φ(ξ) =

{
1

m−1 (ξ + 1)m−1 − 1
2−m (ξ + 1)m−2 − 1

(2−m)(m−1) , if m ∈ (1, 2),

ξ − (ξ + 1) ln(ξ + 1), if m = 2.

Using that (ξ+ 1)m−2 ≤ 1 for all ξ ≥ 0 when m < 2, and that ln(ξ+ 1) ≤ ξ for any

ξ ≥ 0, we thus obtain c1 > 0 and c2 > 0 such that in both cases,

ξΦ′(ξ)− Φ(ξ) ≥ −c1 for all ξ ≥ 0
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and

Φ′(ξ) ≤ ξ + c2 for all ξ ≥ 0.

As (4.8) moreover implies that Φ′ ≥ 0 on [0,∞), once again going back to (4.2) and

recalling Lemma 2.3, we can thus find k4 : (0,∞)→ (0,∞) fulfilling (K) such that

for fixed T > 0 we can estimate the two rightmost summands in (4.7) according to

−
∫

Ω

uεΦ
′(uε)vε +

∫
Ω

Φ′(uε)B1 ≤ −
1

k1(T )

∫
Ω

uεΦ
′(uε) + ‖B1(·, t)‖L∞(Ω)

∫
Ω

Φ′(uε)

≤ − 1

k1(T )

∫
Ω

{
Φ(uε) + c1

}
+‖B1(·, t)‖L∞(Ω)

∫
Ω

(uε + c2)

≤ − 1

k1(T )

∫
Ω

Φ(uε) + k4(T )

for all t ∈ (0, T ) and ε ∈ (0, 1). For any such T , from (4.7) we consequently derive

the analogue of (4.6) given by

d

dt

∫
Ω

Φ(uε) +
1

2

∫
Ω

(uε + ε)m−1(uε + 1)m−3|∇uε|2 +
1

k1(T )

∫
Ω

Φ(uε)

≤ χ2

2
k

1
2
1 (T )

∫
Ω

v
− 3

2
ε |∇vε|2 + k4(T ) for all t ∈ (0, T ) and ε ∈ (0, 1),

which due to (4.3) and the evident nonnegativity of Φ entails the claimed inequality

in (4.1) also for such values of m.

An interpolation of the latter with the L1 bound provided by Lemma 2.3, namely,

yields a spatio-temporal integral estimate for uε itself which involves superlinear

summability powers conveniently increasing with m.

Lemma 4.2. Let m > 1. Then there exists K : (0,∞) → (0,∞) satisfying (K)

such that whenever T > 0,∫ t+1

t

∫
Ω

u2m−1
ε ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (4.9)

Proof. We fix ρ ∈ C0([0,∞)) such that ρ ≡ 0 on [0, 1], ρ(ξ) = ξm−2 for all ξ ≥ 2

and 0 ≤ ρ(ξ) ≤ ξm−2 for all ξ ≥ 0, and let P (ξ) :=
∫ ξ

0
ρ(σ)dσ for ξ ≥ 0. Then P

belongs to C1([0,∞)) and satisfies P (ξ) ≤ ξm−1

m−1 as well as

P (ξ) ≥
∫ ξ

2

ρ(σ)dσ =
ξm−1 − 2m−1

m− 1
≥ c1ξm−1 for all ξ ≥ 3 (4.10)

with c1 :=
1−( 2

3 )m−1

m−1 > 0. Since thus

‖P (uε)‖
1

m−1

L
1

m−1 (Ω)
≤ (m− 1)−

1
m−1

∫
Ω

uε for all t > 0 and ε ∈ (0, 1)
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and

‖∇P (uε)‖2L2(Ω) =

∫
Ω

ρ2(uε)|∇uε|2 ≤
∫
{uε≥1}

u2m−4
ε |∇uε|2

for all t > 0 and ε ∈ (0, 1), and since herein∫
{uε≥1}

u2m−4
ε |∇uε|2 =

∫
{uε≥1}

um−1
ε · um−3

ε |∇uε|2

≤ 23−m
∫

Ω

(uε + ε)m−1(uε + 1)m−3|∇uε|2

for all t > 0 and ε ∈ (0, 1) if m ≤ 2 and, clearly,∫
{uε≥1}

u2m−4
ε |∇uε|2 ≤ (uε + ε)2m−4|∇uε|2 for all t > 0 and ε ∈ (0, 1)

if m > 2, by combining Lemma 2.3 with Lemma 4.1 we obtain functions ki :

(0,∞) → (0,∞), i ∈ {1, 2}, for which (K) holda and which are such that when

T > 0,

‖P (uε)‖
L

1
m−1 (Ω)

≤ k1(T ) for all t ∈ (0, T + 1) and ε ∈ (0, 1) (4.11)

and∫ t+1

t

‖∇P (uε(·, s))‖2L2(Ω)ds ≤ k2(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (4.12)

As the Gagliardo-Nirenberg inequality provides c1 > 0 fulfilling∫
Ω

|ϕ|
2m−1
m−1 ≤ c1‖∇ϕ‖2L2(Ω)‖ϕ‖

1
m−1

L
1

m−1 (Ω)
+ c1‖ϕ‖

2m−1
m−1

L
1

m−1 (Ω)
for all ϕ ∈W 1,2(Ω),

we thus infer that for any T > 0,∫ t+1

t

∫
Ω

P
2m−1
m−1 (uε) ≤ c1

∫ t+1

t

‖∇P (uε(·, s))‖2L2(Ω)‖P (uε(·, s))‖
1

m−1

L
1

m−1 (Ω)
ds

+c1

∫ t+1

t

‖P (uε(·, s))‖
2m−1
m−1

L
1

m−1 (Ω)
ds

≤ c1k
1

m−1

1 (T )k2(T ) + c1k
2m−1
m−1

1 (T )

for all t ∈ (0, T ) and ε ∈ (0, 1), from which (4.9) immediately follows thanks to

(4.10) and the trivial fact that u2m−1
ε ≤ 32m−1 in {uε ≤ 3}.

5. Estimating ‖vε‖W 1,q(Ω) for some q > 2 when m > 3
2

Now an observation of crucial importance to our approach asserts a bound for vε
with respect to the norm inW 1,q(Ω) with some q > 2, provided that the integrability

exponent in Lemma 4.2 can be chosen to be superquadratic. This circumstance can

be viewed as the core of our requirement on m in Theorem 1.1 and Theorem 1.2.
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Lemma 5.1. Let m > 3
2 . Then one can find a function K : (0,∞) → (0,∞) such

that (K) holds, and that if T > 0 then

‖vε(·, t)‖W 1,2m−1(Ω) ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (5.1)

Proof. As p := 2m− 1 satisfies p > 2, a Gagliardo-Nirenberg interpolation corre-

sponding to the continuous embeddings W 1,p(Ω) ↪→ L∞(Ω) ↪→ L1(Ω) warrants the

existence of c1 > 0 such that

‖ϕ‖L∞(Ω) ≤ c1‖ϕ‖aW 1,p(Ω)‖ϕ‖
1−a
L1(Ω) for all ϕ ∈W 1,p(Ω), (5.2)

with the number a := 2p
3p−2 ∈ (0, 1) satisfying

1

p
+
p− 1

pa
=

1

p
+

(p− 1)(3p− 2)

2p2
=

3p2 − 3p+ 2

2p2
>

1

2
,

because 2p2−3p+2 = 2(p−1)2 +p > 0. We can therefore pick q ∈ (1, 2) sufficiently

close to 2 such that

1

q
<

1

p
+
p− 1

pa
, (5.3)

and thereupon invoke known smoothing properties of the Neumann heat semigroup

(eσ∆)σ≥0 on Ω (34) to fix positive constants c2, c3 and c4 fulfilling

‖eσ∆ϕ‖W 1,p(Ω) ≤ c2σ−α‖ϕ‖W 1,q(Ω) for all σ ∈ (0, 2) and ϕ ∈ C1(Ω) (5.4)

and

‖eσ∆ϕ‖W 1,p(Ω) ≤ c3‖ϕ‖W 1,∞(Ω) for all σ ∈ (0, 2) and ϕ ∈ C1(Ω) (5.5)

as well as

‖eσ∆ϕ‖W 1,p(Ω) ≤ c4σ−
1
2 ‖ϕ‖Lp(Ω) for all σ ∈ (0, 2) and ϕ ∈ C0(Ω), (5.6)

where α := 1
q −

1
p > 0. Apart from that, Lemma 2.3 together with Lemma 4.2, (B),

Lemma 3.2 and (1.4) provides functions ki : (0,∞)→ (0,∞), i ∈ {1, 2, 3, 4}, which

satisfy (K) and are such that for all T > 0,

‖vε(·, t)‖L1(Ω) ≤ k1(T ) for all t ∈ (0, T ) and ε ∈ (0, 1) (5.7)

and ∫ t

(t−2)+

∫
Ω

upε ≤ k2(T ) for all t ∈ (0, T ) and ε ∈ (0, 1) (5.8)

as well as

‖B2(·, t)‖Lp(Ω) ≤ k3(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (5.9)

and that for any such T , each t0 ∈ (0, T ) and arbitrary ε ∈ (0, 1) we can find t? ≥ 0

t? = t?(t0, ε) ≥ 0 with the properties that

t? ∈
(
(t0 − 2)+, (t0 − 1)+

)
and ‖vε(·, t?)‖W 1,q(Ω) ≤ k4(T ) if t0 ≥ 2, (5.10)
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and that

t? = 0 and ‖vε(·, t?)‖W 1,∞(Ω) ≤ c5 := ‖v0‖W 1,∞(Ω) if t0 ∈ (0, 2). (5.11)

Now given T > 0, t0 ∈ (0, T ) and ε ∈ (0, 1), taking t? = t?(t0, ε) as thus specified

we estimate the number

M :=


sup

t∈(t?,t0]

{
(t− t?)α‖vε(·, t)‖W 1,p(Ω)

}
if t0 ≥ 2,

sup
t∈(t?,t0]

‖vε(·, t)‖W 1,p(Ω)

(5.12)

by relying on a Duhamel representation associated with the second sub-problem of

(2.1) to see that due to (5.6),

‖vε(·, t)‖W 1,p(Ω) =

∥∥∥∥e(t−t?)(∆−1)vε(·, t?) +

∫ t

t?

e(t−s)(∆−1) uε(·, s)vε(·, s)
1 + εuε(·, s)vε(·, s)

ds

+

∫ t

t?

e(t−s)(∆−1)B2(·, s)ds
∥∥∥∥
W 1,p(Ω)

≤ e−(t−t?)‖e(t−t?)∆vε(·, t?)‖W 1,p(Ω)

+c4

∫ t

t?

(t− s)− 1
2 e−(t−s)

∥∥∥∥ uε(·, s)vε(·, s)
1 + εuε(·, s)vε(·, s)

∥∥∥∥
Lp(Ω)

ds

+c4

∫ t

t?

(t− s)− 1
2 e−(t−s)‖B2(·, s)‖Lp(Ω)ds (5.13)

for all t ∈ (t?, t0], because t0 − t? ∈ (0, 2). Here if t0 ≥ 2, then by (5.4) and (5.10),

e−(t−t?)‖e(t−t?)∆vε(·, t?)‖W 1,p(Ω) ≤ c2(t−t?)−α‖vε(·, t?)‖W 1,q(Ω) ≤ c2k4(T )(t−t?)−α

(5.14)

for all t ∈ (t?, t0], and if t0 < 2, then by (5.5) and (5.11),

e−(t−t?)‖e(t−t?)∆vε(·, t?)‖W 1,p(Ω) ≤ c3‖vε(·, t?)‖W 1,∞(Ω) ≤ c3c5, (5.15)

while (5.9) asserts that

c4

∫ t

t?

(t− s)− 1
2 e−(t−s)‖B2(·, s)‖Lp(Ω)ds ≤ c4k3(T )

∫ t

t?

(t− s)− 1
2 ds

= 2c4k3(T )(t− t?)
1
2

≤ 2
3
2 c4k3(T ) (5.16)

for all t ∈ (t?, t0]. In order to appropriately cope with the crucial second last sum-

mand on the right of (5.13), we first concentrate on the case when t0 ≥ 2, in which

we apply (5.2) together with (5.7) and recall our respective definition of M from

(5.12) to find that∥∥∥∥ uε(·, s)vε(·, s)
1 + εuε(·, s)vε(·, s)

∥∥∥∥
Lp(Ω)

≤ ‖uε(·, s)‖Lp(Ω)‖vε(·, s)‖L∞(Ω)

≤ c1‖uε(·, s)‖Lp(Ω)‖vε(·, s)‖aW 1,p(Ω)‖vε(·, s)‖
1−a
L1(Ω)

≤ c1k
1−a
1 (T )Ma‖uε(·, s)‖Lp(Ω)(s− t?)−αa
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for all s ∈ (t?, t0), so that by the Hölder inequality,

c4

∫ t

t?

(t− s)− 1
2 e−(t−s)

∥∥∥∥ uε(·, s)vε(·, s)
1 + εuε(·, s)vε(·, s)

∥∥∥∥
Lp(Ω)

ds

≤ c1c4k
1−a
1 (T )Ma

∫ t

t?

(t− s)− 1
2 (s− t?)−αa‖uε(·, s)‖Lp(Ω)ds

≤ c1c4k
1−a
1 (T )Ma ·

{∫ t

t?

∫
Ω

upε

} 1
p

·
{∫ t

t?

(t− s)−
p

2(p−1) (s− t?)−
pαa
p−1 ds

} p−1
p

(5.17)

for all t ∈ (t?, t0]. Here,∫ t

t?

(t− s)−
p

2(p−1) (s− t?)−
pαa
p−1 ds = c6(t− t?)1− p

2(p−1)
− pαap−1 for all t > t?,

with c6 :=
∫ 1

0
(1−σ)−

p
2(p−1)σ−

pαa
p−1 dσ being finite, because the inequalities p > 2, q >

1 and a < 1 imply that p
2(p−1) < 1 and pαa

p−1 = (p−q)a
(p−1)q < a < 1. In view of (5.8),

from (5.17) we therefore obtain that

c4

∫ t

t?

(t− s)− 1
2 e−(t−s)

∥∥∥∥ uε(·, s)vε(·, s)
1 + εuε(·, s)vε(·, s)

∥∥∥∥
Lp(Ω)

ds

≤ c1c4c
p−1
p

6 k1−a
1 (T )k

1
p

2 (T )Ma(t− t?)
p−1
p −

1
2−αa for all t ∈ (t?, t0], (5.18)

which combined with (5.14) and (5.16) shows that (5.13) implies the inequality

(t− t?)α‖vε(·, t)‖W 1,p(Ω) ≤ c2k4(T ) + c1c4c
p−1
p

6 k1−a
1 (T )k

1
p

2 (T )Ma(t− t?)
p−1
p −

1
2−αa+α

+2
3
2 c4k3(T )(t− t?)α

≤ k5(T ) + k5(T )Ma for all t ∈ (t?, t0] (5.19)

with

k5(T ) := max
{
c2k4(T ) + 2

3
2 c4k3(T ) · 2α , c1c4c

p−1
p

6 k1−a
1 (T )k

1
p

2 (T ) · 2
p−1
p −

1
2−αa+α

}
,

because again since p > 2 and a < 1,

p− 1

p
− 1

2
− αa+ α =

p− 2

2p
+ (1− a)α > 0.

As a further consequence of the fact that a < 1, (5.19) finally entails that

M ≤ k6(T ) := max
{

1 , (2k5(T ))
1

1−a

}
,

from which by the definition of M in (5.12) it particularly follows that whenever

t0 ≥ 2,

‖vε(·, t0)‖W 1,p(Ω) ≤ (t0 − t?)−αM ≤ k6(T ), (5.20)

because t0 − t? ≥ 1 and α ≥ 0.

If t0 ∈ (0, 2), however, then referring to the respective part in (5.12) enables us
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to actually simplify the above reasoning so as to infer, in a way similar to that in

(5.17) and (5.18), that

c4

∫ t

t?

(t− s)− 1
2 e−(t−s)

∥∥∥∥ uε(·, s)vε(·, s)
1 + εuε(·, s)vε(·, s)

∥∥∥∥
Lp(Ω)

ds

≤ c1c4k
1−a
1 (T )Ma ·

{∫ t

0

∫
Ω

upε

} 1
p

·
{∫ t

0

(t− s)−
p

2(p−1) ds

} p−1
p

≤ c1c4c
p−1
p

7 k1−a
1 (T )k

1
p

2 (T )Ma for all t ∈ (t?, t0] ≡ (0, t0],

with c7 :=
∫ 2

0
σ−

p
2(p−1) dσ ≡ 2(p−1)

p−2 ·2
p−2

2(p−1) . In this case now relying on (5.15) instead

of (5.14), from (5.13) and (5.16) we thus infer that

‖vε(·, t)‖W 1,p(Ω) ≤ c3c5 + c1c4c
p−1
p

7 k1−a
1 (T )k

1
p

2 (T )Ma + 2
3
2 c4k3(T ) for all t ∈ (0, t0]

and that hence

M ≤ k7(T ) + k7(T )Ma,

where k7(T ) := max{c3c5+2
3
2 c4k3(T ) , c1c4c

p−1
p

7 k1−a
1 (T )k

1
p

2 (T )}. Again since a < 1,

this especially shows that for any such t0,

‖vε(·, t0)‖W 1,p(Ω) ≤M ≤ max
{

1 , (2k7(T ))
1

1−a

}
,

which together with (5.20) yields the claimed conclusion.

6. Boundedness properties in L∞(Ω)×W 1,q(Ω) for arbitrary q > 2

With the knowledge from Lemma 5.1 at hand, we can successively improve our

information about regularity in the course of a three-step bootstrap procedure, the

first part of which is concerned with bounds on uε in Lp(Ω) for arbitrarily large

finite p.

Lemma 6.1. Let m > 3
2 and p > max{1 ,m − 1 + 2m−3

2m−1}. Then there exists K ≡
K(p) : (0,∞)→ (0,∞) such that (K) is valid and that whenever T > 0,∫

Ω

upε(·, t) ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (6.1)

Proof. On testing the first equation in (2.1) by up−1
ε and using Young’s inequality,

we see that

1

p

d

dt

∫
Ω

upε +
2(p− 1)

(m+ p− 1)2

∫
Ω

|∇u
m+p−1

2
ε |2

=
p− 1

2

∫
Ω

um+p−3
ε |∇uε|2 − (p− 1)

∫
Ω

up−2
ε (uε + ε)m−1|∇uε|2

+(p− 1)χ

∫
Ω

up−1
ε ∇uε ·

∇vε
vε
−
∫

Ω

upεvε +

∫
Ω

up−1
ε B1

≤ (p− 1)χ2

2

∫
Ω

u−m+p−1
ε

|∇vε|2

v2
ε

−
∫

Ω

upεvε +

∫
Ω

up−1
ε B1 for all t > 0,(6.2)
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where using Lemma 2.2 along with (B) and again Young’s inequality we can find

ki : (0,∞)→ (0,∞), i ∈ {1, 2, 3}, fulfilling (K) and such that for all T > 0,

−
∫

Ω

upεvε +

∫
Ω

up−1
ε B1 ≤ −k1(T )

∫
Ω

upε + k2(T )

∫
Ω

up−1
ε

≤ −k1(T )

2

∫
Ω

upε + k3(T ) (6.3)

for all t ∈ (0, T ) and ε ∈ (0, 1). Apart from that, Lemma 5.1 in conjunction with

Lemma 2.2 entails the existence of k4 : (0,∞) → (0,∞) such that (K) holds, and

that if T > 0 then∫
Ω

|∇vε|2m−1

v2m−1
ε

≤ k4(T ) for all t ∈ (0, T ) and ε ∈ (0, 1),

whence utilizing the Hölder inequality we find that for any such T ,

(p− 1)χ2

2

∫
Ω

u−m+p−1
ε

|∇vε|2

v2
ε

≤ (p− 1)χ2

2
·
{∫

Ω

u
(2m−1)(−m+p−1)

2m−3
ε

} 2m−3
2m−1

·
{∫

Ω

|∇vε|2m−1

v2m−1
ε

} 2m−3
2m−1

≤ k5(T ) ·
{∫

Ω

u
(2m−1)(−m+p−1)

2m−3
ε

} 2m−3
2m−1

for all t ∈ (0, T ) and ε ∈ (0, 1) (6.4)

with k5(T ) := (p−1)χ2

2 k
2m−3
2m−1

4 (T ). Now since 2
m+p−1 <

2
m+p−1 ·

(2m−1)(−m+p+1)
2m−3 due

to the fact that −m+ p+ 1 > 2m−3
2m−1 by assumption on p, the Gagliardo-Nirenberg

inequality applies so as to say that with

a :=
(2m− 1)(−m+ p+ 1)− 2m+ 3

(2m− 1)(−m+ p+ 1)
∈ (0, 1) (6.5)

and some c1 = c1(p) > 0 we have{∫
Ω

u
(2m−1)(−m+p−1)

2m−3
ε

} 2m−3
2m−1

= ‖u
m+p−1

2
ε ‖

2(−m+p+1)
m+p−1

L
2

m+p−1
· 2m−1)(−m+p+1)

2m−3 (Ω)

≤ c1‖∇u
m+p−1

2
ε ‖

2(−m+p+1)a
m+p−1

L2(Ω) ‖u
m+p−1

2
ε ‖

2(−m+p+1)(1−a)
m+p−1

L
2

m+p−1 (Ω)

+‖u
m+p−1

2
ε ‖

2(−m+p+1)
m+p−1

L
2

m+p−1 (Ω)
(6.6)

for all t > 0 and ε ∈ (0, 1). Here we recall that Lemma 2.3 provides k6 : (0,∞) →
(0,∞) such that (K) holds and that for all T > 0,

‖u
m+p−1

2
ε ‖

2
m+p−1

L
2

m+p−1 (Ω)
=

∫
Ω

uε ≤ k6T ) for all t ∈ (0, T ) and ε ∈ (0, 1),
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and furthermore we note that according to (6.5),

(−m+ p+ 1)a

m+ p− 1
− 1 =

(2m− 1)(−m+ p+ 1)− 2m+ 3

(2m− 1)(m+ p− 1)
− 1

=
(2m− 1)(−2m+ 2)− 2m+ 3

(2m− 1)(m+ p− 1)

= − 2(m− 1)

m+ p− 1
− 2m− 3

(2m− 1)(m+ p− 1)

< 0,

so that θ := m+p−1
(−m+p+1)a satisfies θ > 1. An application of Young’s inequality to (6.6)

therefore yields functions ki : (0,∞) → (0,∞), i ∈ {7, 8}, for which (K) is valid,

and which are such that for all T > 0,

k5(T ) ·
{∫

Ω

u
(2m−1)(−m+p−1)

2m−3
ε

} 2m−3
2m−1

≤ k7(T )‖∇u
m+p−1

2
ε ‖

2(−m+p+1)a
m+p−1

L2(Ω) + k7(T )

≤ 2(p− 1)

(m+ p− 1)2

∫
Ω

|∇u
m+p−1

2
ε |2 + k8(T ) for all t ∈ (0, T ) and ε ∈ (0, 1).

Together with (6.3) and (6.4) inserted into (6.2), this shows that for each T > 0 we

have

1

p

d

dt

∫
Ω

upε +
k1(T )

2

∫
Ω

upε ≤ k3(T ) + k8(T ) for all t ∈ (0, T ) and ε ∈ (0, 1),

which results in (6.1) by means of an evident ODE comparison argument.

This in turn improves our knowledge on the second solution component:

Lemma 6.2. Let m > 3
2 and q > 2. Then one can find K ≡ K(q) : (0,∞)→ (0,∞)

such that (K) holds, and that given any T > 0 we have

‖vε(·, t)‖W 1,q(Ω) ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (6.7)

Proof. As W 1,2m−1(Ω) ↪→ L∞(Ω) due to the hypothesis m > 3
2 , Lemma 5.1

together with Lemma 6.1 and (B) in particular yields k1 : (0,∞)→ (0,∞) fulfilling

(K) and such that writing fε(x, t) := uε
1+εuεvε

(x, t) + B2(x, t), (x, t) ∈ Ω × (0,∞),

ε ∈ (0, 1), for all T > 0 we have

‖fε(·, t)‖Lp(Ω) ≤ k1(T ) for all t ∈ (0, T ) and ε ∈ (0, 1).

Therefore, (6.7) can be derived by straightforward application of well-known reg-

ularization estimates for the Neumann heat semigroup (34) to the inhomogeneous

linear heat equation vεt = ∆vε + fε.

When combined with Lemma 6.1, through a standard argument the latter in

fact asserts a boundedness feature of uε even with respect to the norm in L∞(Ω).
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Lemma 6.3. Let m > 3
2 . Then there exists K : (0,∞)→ (0,∞) fulfilling (K) such

that for all T > 0,

‖uε(·, t)‖L∞(Ω) ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1).

Proof. This can readily be obtained from the bounds provided by Lemma 6.1 and

Lemma 6.2 through a standard application of a Moser-type recursive argument

(cf. e.g. 30 ).

7. Further compactness properties and regularity in time

For our mere existence statement in Theorem 1.1, tracking a possible dependence

of estimates on the asymptotic behavior of B1 and B2 seems unnecessary; the next

three statements preparing our limit procedure ε ↘ 0 will therefore not involve

our hypothesis (K), but rather exclusively provide information on arbitrary but

fixed time intervals. Our first observation in this regard is an essentially immediate

consequence Lemma 4.1 when combined with the boundedness information from

Lemma 6.3.

Lemma 7.1. Let m > 3
2 and

α ≥


m+ 1

2
if m ∈

(
3
2 , 2
]
,

m− 1 if m > 2.
(7.1)

Then for all T > 0 there exists C(α, T ) > 0 such that∫ T

0

∫
Ω

|∇(uε + ε)α|2 ≤ C(α, T ) for all ε ∈ (0, 1). (7.2)

Proof. In view of Lemma 6.3, given T > 0 we can fix c1(T ) > 0 fulfilling

uε ≤ c1(T ) in Ω× (0, T ) for all ε ∈ (0, 1). (7.3)

Therefore, in the case m ∈ ( 3
2 , 2] we can use that then (7.1) requires that 2α ≥ m+1

to estimate
1

α2
|∇(uε + ε)α|2 = (uε + ε)2α−2|∇uε|2

=
{

(uε + ε)m−1(uε + 1)m−3|∇uε|2
}
· (uε + ε)2α−m−1(uε + 1)3−m

≤
{

(uε + ε)m−1(uε + 1)m−3|∇uε|2
}
· (c1(T ) + 1)2α−m−1(c1(T ) + 1)3−m

in Ω× (0, T ) for all ε ∈ (0, 1), so that in light of Lemma 4.1, (7.2) results upon an

integration over Ω× (0, T ).

Similarly, if m > 2 then 2α ≥ 2m− 2 by (7.1), and thus

1

α2
|∇(uε + ε)α|2 =

{
(uε + ε)2m−4|∇uε|2

}
· (uε + ε)2α−2m−2

≤
{

(uε + ε)2m−4|∇uε|2
}
· (c1(T ) + 1)2α−2m−2 in Ω× (0, T )
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for all ε ∈ (0, 1), again implying (7.2) due to Lemma 4.1.

Now for suitably large α, the expressions appearing in (7.2) enjoy some favorable

time regularity feature:

Lemma 7.2. Let m > 3
2 and

α ≥

2 if m ∈
(

3
2 , 2
]
,

m− 1 if m > 2.
(7.4)

Then for all T > 0 there exists C(α, T ) > 0 such that∫ T

0

∥∥∥∂t(uε(·, t) + ε
)∥∥∥

(W 2,2(Ω))?
dt ≤ C(α, T ) for all ε ∈ (0, 1). (7.5)

Proof. Using (2.1), for fixed t > 0 and ϕ ∈ C∞(Ω) we compute

1

α

∫
Ω

∂t(uε + ε)αϕ

=

∫
Ω

(uε + ε)α−1ϕ ·
{
∇ ·
(
(uε + ε)m−1∇uε

)
− χ∇ ·

(uε
vε
∇vε

)
− uεvε +B1

}
= −

∫
Ω

{
(α− 1)(uε + ε)α−2ϕ∇uε + (uε + ε)α−1∇ϕ

}
·
{

(uε + ε)m−1∇uε − χ
uε
vε
∇vε

}
−
∫

Ω

uε(uε + ε)α−1vεϕ+

∫
Ω

(uε + ε)α−1ϕ

= −(α− 1)

∫
Ω

(uε + ε)m+α−3|∇uε|2ϕ+ (α− 1)χ

∫
Ω

uε(uε + ε)α−2
(
∇uε ·

∇vε
vε

)
ϕ

−
∫

Ω

(uε + ε)m+α−2∇uε · ∇ϕ+ χ

∫
Ω

uε(uε + ε)α−1∇vε
vε
· ∇ϕ

−
∫

Ω

uε(uε + ε)α−1vεϕ+

∫
Ω

(uε + ε)α−1ϕ for all ε ∈ (0, 1). (7.6)

Here given T > 0, we note that Lemma 6.3, Lemma 2.2, Lemma 5.1 and (B) ensure

the existence of positive constants ci(T ), i ∈ {1, 2, 3, 4}, such that for all ε ∈ (0, 1),

uε ≤ c1(T ), c2(T ) ≤ vε ≤ c3(T ) and B1 ≤ c4(T ) in Ω× (0, T ). (7.7)

Since (7.4) especially requires that α ≥ 1, by using Young’s inequality we thus

obtain that whenever t ∈ (0, T ) and ε ∈ (0, 1),∣∣∣∣χ∫
Ω

uε(uε + ε)α−1∇vε
vε
· ∇ϕ

∣∣∣∣ ≤ ∫
Ω

v
− 3

2
ε |∇vε|2 +

χ2

4

∫
Ω

u2
ε(uε + ε)2α−2

v
1
2
ε

|∇ϕ|2

≤
∫

Ω

v
− 3

2
ε |∇vε|2 +

χ2

4
· c

2
1(T ) · (c1(T ) + 1)2α−2

c
1
2
2 (T )

· ‖∇ϕ‖2L2(Ω)

(7.8)
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and ∣∣∣∣− ∫
Ω

uε(uε + ε)α−1vεϕ

∣∣∣∣ ≤ c1(T ) · (c1(T ) + 1)α−1c3(T )|Ω| · ‖ϕ‖L∞(Ω) (7.9)

as well as ∣∣∣∣ ∫
Ω

(uε + ε)α−1B1ϕ

∣∣∣∣ ≤ (c1(T ) + 1)α−1c4(T )|Ω| · ‖ϕ‖L∞(Ω). (7.10)

Now in the case m ∈ ( 3
2 , 2] in which (7.4) asserts that α ≥ 2 ≥ max{m+1

2 , 3−m
2 },

the first three summand on the right of (7.6) can similarly be estimated according

to∣∣∣∣− (α− 1)

∫
Ω

(uε + ε)m+α−3|∇uε|2ϕ
∣∣∣∣

≤ (α− 1)(c1(T ) + ε)α−2(c1(T ) + 1)3−m ·
{∫

Ω

(uε + ε)m−1(uε + 1)m−3|∇uε|2
}
· ‖ϕ‖L∞(Ω)

(7.11)

and∣∣∣∣(α− 1)χ

∫
Ω

uε(uε + ε)α−2
(
∇uε ·

∇vε
vε

)
ϕ

∣∣∣∣
≤ v

− 3
2

ε |∇vε|2 +
(α− 1)2χ2

4
·
{∫

Ω

u2
ε(uε + ε)2α−4

v
1
2
ε

|∇uε|2
}
· ‖ϕ‖L∞(Ω)

≤ v
− 3

2
ε |∇vε|2

+
(α− 1)2χ2

4
· (c1(T ) + ε)−m+2α−1(c1(T ) + 1)3−m

c
1
2
2 (T )

×

×
{∫

Ω

(uε + ε)m−1(uε + 1)3−m|∇uε|2
}
· ‖ϕ‖L∞(Ω)

(7.12)

and∣∣∣∣− ∫
Ω

(uε + ε)m+α−2∇uε · ∇ϕ
∣∣∣∣

≤
∫

Ω

(uε + ε)2m+2α−4|∇uε|2 +
1

4
‖∇ϕ‖2L2(Ω)

≤ (c1(T ) + ε)m+2α−3(c1(T ) + 1)3−m
∫

Ω

(uε + ε)m−1(uε + 1)m−3|∇uε|2 +
1

4
‖∇ϕ‖2L2(Ω)

(7.13)

for all t ∈ (0, T ) and ε ∈ (0, 1). Since W 2,2(Ω) ↪→ L∞(Ω), from (7.6) and (7.8)-

(7.13) we thus infer that if m ∈ ( 3
2 , 2] and α satisfies (7.4), then for each T > 0

there exists c5(T ) > 0 such that for all t ∈ (0, T ) and ε ∈ (0, 1),

‖∂t(uε + ε)‖(W 2,2(Ω))? ≤ c5(T ) ·
{∫

Ω

(uε + ε)m−1(uε + 1)m−3|∇uε|2 +

∫
Ω

v
− 3

2
ε |∇vε|2 + 1

}
,
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so that (7.5) results from Lemma 4.1 and Lemma 3.1 upon an integration in time

for any such m and α.

If m > 2, then in view of the accordingly modified form of the estimate in Lemma

4.1, given T > 0 we rely on the hypothesis α ≥ m − 1 in replacing (7.11)-(7.13)

with the inequalities∣∣∣∣− (α− 1)

∫
Ω

(uε + ε)m+α−3|∇uε|2ϕ
∣∣∣∣

≤ (α− 1) · (c1(T ) + ε)−m+α+1 ·
{∫

Ω

(uε + ε)2m−4|∇uε|2
}
· ‖ϕ‖L∞(Ω)

and∣∣∣∣(α− 1)χ

∫
Ω

uε(uε + ε)α−2
(
∇uε ·

∇vε
vε

)
ϕ

∣∣∣∣
≤ v

− 3
2

ε |∇vε|2 +
(α− 1)2χ2

4

(c1(T ) + ε)−2m+2α+2

c
1
2
2 (T )

{∫
Ω

(uε + ε)2m−4|∇uε|2
}
‖ϕ‖L∞(Ω)

as well as∣∣∣∣− ∫
Ω

(uε + ε)m+α−2∇uε · ∇ϕ
∣∣∣∣ ≤ (c1(T ) + ε)2α

∫
Ω

(uε + ε)2m−4|∇uε|2 +
1

4
‖∇ϕ‖2L2(Ω)

for all t ∈ (0, T ) and ε ∈ (0, 1), and conclude as before.

Independently from the latter two lemmata, the estimates from Lemma 6.3 and

Lemma 6.2 entail a Hölder regularity property of the second solution component as

follows.

Lemma 7.3. Let m > 3
2 . Then for all T > 0 there exist ϑ = ϑ(T ) ∈ (0, 1) and

C(T ) > 0 such that

‖vε‖
Cϑ,

ϑ
2 (Ω×[0,T ])

≤ C(T ) for all ε ∈ (0, 1).

Proof. Once more letting fε := uεvε
1+εuεvε

+ B2 in Ω × (0,∞) for ε ∈ (0, 1), from

Lemma 6.3 and, e.g., Lemma 6.2 we especially know that (fε)ε∈(0,1) is bounded

in L∞loc(Ω × [0,∞)). As v0 is Hölder continuous in Ω thanks to (1.4), the claimed

estimate therefore directly follows from standard theory on Hölder regularity in

scalar parabolic equations (22).

8. Passing to the limit. Proof of Theorem 1.1 and Theorem 1.2

We are now prepared to construct a solution of (1.2) by means of appropriate

compactness arguments, where following quite standard precedents, our concept of

solvability will be as specified in the following.
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Definition 8.1. Assume that m ≥ 1, that χ ∈ R, and that (B) and (1.4) hold.

Then a pair (u, v) of functions{
u ∈ Lmloc(Ω× [0,∞)) and

v ∈ L1
loc([0,∞);W 1,1(Ω))

(8.1)

will be called a global weak solution of (1.2) if u ≥ 0 and v > 0 a.e. in Ω× (0,∞), if

u

v
∇v belongs to L1

loc(Ω× [0,∞);R2) (8.2)

and

uv lies in L1
loc(Ω× [0,∞)), (8.3)

and if for each ϕ ∈ C∞0 (Ω × [0,∞)) fulfilling ∂ϕ
∂ν = 0 on ∂Ω × (0,∞), and for any

φ ∈ C∞0 (Ω× [0,∞)), the identities

−
∫ ∞

0

∫
Ω

uϕt −
∫

Ω

u0ϕ(·, 0) =
1

m

∫ ∞
0

∫
Ω

um∆ϕ+ χ

∫ ∞
0

∫
Ω

u

v
∇v · ∇ϕ

−
∫ ∞

0

∫
Ω

uvϕ+

∫ ∞
0

∫
Ω

B1ϕ (8.4)

and

−
∫ ∞

0

∫
Ω

vφt −
∫

Ω

v0φ(·, 0) = −
∫ ∞

0

∫
Ω

∇v · ∇φ−
∫ ∞

0

∫
Ω

vφ+

∫ ∞
0

∫
Ω

uvφ+

∫ ∞
0

∫
Ω

B2φ

(8.5)

are valid.

We are now prepared to construct a solution of (1.2) by means of appropriate

compactness arguments.

Lemma 8.1. Let m > 3
2 . Then there exist (εj)j∈N ⊂ (0, 1) as well as functions{

u ∈ L∞loc(Ω× [0,∞)) and

v ∈ C0(Ω× [0,∞)) ∩
⋂
q>2 L

∞
loc([0,∞);W 1,q(Ω))

(8.6)

such that εj ↘ 0 as j → ∞, that u ≥ 0 a.e. in Ω × (0,∞) and and v > 0 in

Ω× [0,∞), that as ε = εj ↘ 0 we have

uε → u in
⋂
p≥1

Lploc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (8.7)

vε → v in C0
loc(Ω× [0,∞)) and (8.8)

∇vε
?
⇀ ∇v in

⋂
q>2

L∞loc([0,∞);Lq(Ω)), (8.9)

and that (u, v) form a global weak solution of (1.2) in the sense of Definition 8.1.
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Proof. We take any α > 0 such that

α ≥

max
{m+ 1

2
, 2
}
≡ 2 if m ∈

(
3
2 , 2
]
,

m− 1 if m > 2,

and note that then Lemma 7.1 and Lemma 7.2 may simultaneously be applied so

as to show that thanks to Lemma 2.3,(
(uε + ε)α

)
ε∈(0,1)

is bounded in L2((0, T );W 1,2(Ω)) for all T > 0

and that(
∂t(uε + ε)α

)
ε∈(0,1)

is bounded in L1
(
(0, T ); (W 2,2(Ω))?

)
for all T > 0.

Therefore, employing an Aubin-Lions lemma (32) yields (εj)j∈N ⊂ (0, 1) and a

nonnegative function u on Ω × (0,∞) such that εj ↘ 0 as j → ∞, and that as

ε = εj ↘ 0 we have (uε + ε)α → uα in L2
loc(Ω × [0,∞)) and a.e. in Ω × (0,∞),

whence in particular also uε → u a.e. in Ω× (0,∞). Since furthermore Lemma 6.3

warrants boundedness of (uε)ε∈(0,1) in L∞(Ω × (0, T )) for all T > 0, (8.7) as well

as the inclusion u ∈ L∞loc(Ω× [0,∞)) result from this due to the Vitali convergence

theorem.

As, apart from that, given T > 0 we know from Lemma 7.3 and Lemma 6.2 that

(vε)ε∈(0,1) is bounded in Cϑ,
ϑ
2 (Ω × [0, T ]) and in L∞((0, T );W 1,q(Ω)) for some

ϑ = ϑ(T ) ∈ (0, 1) and each q > 2, in view of the Arzelá-Ascoli theorem and the

Banach-Alaoglu theorem we may assume upon passing to a subsequence if necessary

that, in fact, (εj)j∈N is such that with some function v complying with (8.6) we also

have (8.8) and (8.9) as ε = εj ↘ 0. The positivity of v in Ω × [0,∞) therefore is

a consequence of Lemma 2.2, whereas, finally, the integral inequalities in (8.4) and

(8.5) can be verified in a straightforward manner by relying on (8.7)-(8.9) when

taking ε = εj ↘ 0 in the corresponding weak formulations associated with (2.1).

Our main result on global solvability has thereby actually been established al-

ready:

Proof. (c of Theorem 1.1). All statements have actually been covered by Lemma

8.1 already.

According to our preparations, and especially due to our efforts to control the

dependence of our estimates from Lemma 6.3 and Lemma 6.2 on T through (K),

also the claimed boundedness features can now be obtained as simple consequences:

Proof. (c of Theorem 1.2). Again taking the global weak solution of (1.2) ob-

tained in Lemma 8.1, we only need to observe that thanks to the hypotheses (B1)
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and (B2), Lemma 6.3 and Lemma 6.2 in conjunction with our notational convention

concerning the property (K) guarantee boundedness of (uε)ε∈(0,1) in L∞(Ω×(0,∞))

and of (vε)ε∈(0,1) in L∞((0,∞);W 1,q(Ω)) for each q > 2. Therefore, namely, the ad-

ditional features (1.5) and (1.6) directly result from (8.7) and (8.9).

9. Numerical Experiments

The purpose of this section is thee-fold: (1) to illustrate how the overcrowding

effect included in (1.2) results in the relaxation of solutions, (2) to provide some

comparison of this to the situation corresponding to the linear diffusion case m = 1,

which was not addressed by our previous analysis, and (3) to study the effect that

the parameter χ has on the potential concentration of the solution in the linear

diffusion case. To this end, we consider the associated evolution problems (1.2)

under initial conditions involving the mildly concentrated data given by: u0(x) =

v0(x) = 1√
2πσ2

e−
|x|2

2σ2 , for x ∈ Ω, with some small σ on the square Ω := (−3, 3)2.

We first solve the (1.2) numerically with m = 1 (leading to linear diffusion) and

m = 3 (leading to porous medium type diffusion) with σ = 1/4. We illustrate our

results for χ = 10 in both simulations, but all other terms are as in the original

model proposed in 28 with B1 = 1 and B2 = 1.

The initial condition for u is illustrated in Figure 1a. In the case when m = 1, we

see a concentration of mass around t = .95 – see Figure 1b. Here there is a real

possibility that blow-up happens in finite time, although to make this more precise,

more thorough numerical experiments need to be run, which goes beyond the scope

of the present work. What is evident is the concentration around the origin (even

if there were eventual relaxation) in finite time. On the other hand, the porous

medium type diffusion suppresses this concentration entirely as can be observed

in Figure 2, which illustrates the solution to (1.2) with the same initial data and

m = 3. We clearly see that there is never a concentration of density, and that by

time t = 10, solution comfortably reaches an equilibrium. This may be interpreted

as describing crime hotspots that have spontaneously emerged due to the reaction-

cross-diffusion interplay in (1.2). Videos of the full simulations can be found in the

supplementary material. These preliminary results lead us to believe that there is

blow-up when χ is sufficiently large in the presence of linear diffusion, even for some

initial data that are only mildly concentrated. However, the considered nonlinear

diffusion enhancement suppresses this potential blow-up.
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(a) t = 0 (b) t = .95

Fig. 1: Numerical solutions with m = 1, χ = 10 and u0(x) = v0(x) = 1√
2πσ2

e−
|x|2

2σ2

with σ = 1/4.

From more general numerical experiments, we observe that the smaller χ is, the

more concentrated the initial data needs to be in order for a potential blow-up to

occur in the m = 1 case. Moreover, for each χ there are initial data which are not

sufficiently concentrated to lead to potential blow-up, but concentrated enough to

see some initial growth. However, this initial growth is suppressed by the overcrowd-

ing effect from (1.2). This is shown in Figure 3, where the top row illustrates the

linear diffusion case (m = 1) and the bottom row illustrates the non-linear diffusion

with m = 3. In the top row, we observe the initial growth of the solution in Figure

3b. This growth does not last for very long and the solution is already decaying at

time t = .5 as illustrated in Figure 3c. Note that in the m = 3 case, this initial

growth never occurs, see Figure 3e. However, we do see some numerical instabilities

for the case m = 3 on the boundary of the concentration. We expect that this is

due to the degeneracy of the diffusion and more sophisticated numerical methods

need to be used to deal with potential contact lines.

In conclusion, the numerical experiments presented here provide evidence of a po-

tential blow-up of the solution to the original model proposed in 28, when the initial

data is sufficiently concentrated. Note that the case of linear diffusion is not covered

by our theoretical analysis. At the same time, we observe that this blow-up, or ini-

tial growth, are suppressed by replacing the linear diffusion with a porous medium

type diffusion.
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(a) t = .95 (b) t = 1.2

(c) t = 1.95 (d) t = 9.95

Fig. 2: Numerical solutions with m = 3, χ = 10 and u = v = 1√
2πσ2

e−
|x|2

2σ2 with

σ = 1/4.



July 8, 2020 14:18 WSPC/INSTRUCTION FILE
crime˙nonlinear˙diffusion˙final

30 Nancy Rodriguez and Michael Winkler

(a) m = 1, t = 0 (b) m = 1, t = .1 (c) m = 1, t = .5

(d) m = 3, t = 0 (e) m = 3, t = .1 (f) m = 3, t = .5

Fig. 3: Numerical solutions comparing m = 1 and m = 3 with χ = 5 and u0(x) =

v0(x) = 1√
2πσ2

e−
|x|2

2σ2 with σ = .16.
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