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Abstract

In a planar smoothly bounded domain Ω, we consider the model for oncolytic virotherapy given by



















ut = ∆u−∇ · (u∇v)− uz,

vt = −(u+ w)v,

wt = Dw∆w − w + uz,

zt = Dz∆z − z − uz + βw,

with positive parameters Dw, Dz and β.

It is firstly shown that whenever β < 1, for any choice of M > 0 one can find initial data such that
the solution of an associated no-flux initial-boundary value problem, well-known to exist globally
actually for any choice of β > 0, satisfies

u ≥ M in Ω× (0,∞).

If β > 1, however, then for arbitrary initial data the corresponding is seen to have the property
that

lim inf
t→∞

inf
x∈Ω

u(x, t) ≤ 1

β − 1
.

This may be interpreted as indicating that β plays the role of a critical virus replication rate with
regard to efficiency of the considered virotherapy, with corresponding threshold value given by
β = 1.
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1 Introduction

Chemotherapy is a traditional treatment for cancer; however, the drug delivery process and the drug
resistance limit the efficacy of this remedy ([23], [12], [10], [30]). In the search for efficient can-
cer treatment, a novel approach targeted at bypassing the above obstacles involves the use of virus.
Appropriate replication-competent oncolytic viruses can selectively attack and destroy cancer cells,
though being little harmful to normal healthy cells, and they are currently used in clinical trials
([13], [2], [5], [9], [21], [38], [22], [17]). To the best of our knowledge, the spatio-temporal modeling
of oncolytic virus therapy was initiated by Wu et. al in [36], and since then different mathematical
models have been developed to investigate the spatial spread of oncolytic virus particles ([16], [34],
[3], [11]). Nevertheless, clinical data revealed an innate immune response to virus that may mitigate
the effects of virotherapy ([8], [19]), and corresponding mathematical models were also established to
better understand the dynamics between tumor cells, a replication-competent virus and an immune
response ([37], [34]). Besides by virus clearance due to immune cells, virus spread is also restricted
by physical barriers inside tumors, such as extracellular matrix deposits or interstitial fluid pressure
([28], [35]).

In order to understand such physical barriers that hinder virus spread, and particularly to provide the-
oretical options to access quantitative questions related to overall efficiency of oncolytic viral therapy,
the authors in [1] recently proposed coupled PDE-ODE systems of the form



















ut = Du∆u− ξu∇ · (u∇v) + µuu(1− u)− ρuuz,

vt = −(αuu+ αww)v + µvv(1− v),

wt = Dw∆w − δww + ρwuz,

zt = Dz∆z − δzz − ρzuz + βw,

(1.1)

with given positive parameters Du, Dw, Dz, ξu, µu, µv, ρu, , ρz, αu, αw, δw, δz and β, and with the pop-
ulation densities u,w, z and v of uninfected tumor cells, infected tumor cells, virus particles and
the so-called extracellular matrix (MDE) denoting the unknown variables. As detailed in [1], this
model aims at including the core processes determining the virotherapy-influenced tumor evolution
by inter alia accounting for haptotactic motion of uninfected cancer cells toward increasing MDE
densities which themselves are degraded upon contact with tumor cells, for conversion of uninfected
into infected tumor cells through contact with virions, and for virus production by infected cancer
cells; beyond this, (1.1) assumes that both the MDE and uninfected tumor cells are able to proliferate
according to logistic laws.

Viewed from a mathematical perspective, due to the presence of haptotactic cross-diffusion, models
of this type noticeably differ from classical reaction-diffusion systems, which apparently goes along
with a significant reduction of accessibility to approaches well-established in the analysis of the latter.
Indeed, rigorous results addressing haptotaxis systems seem yet mainly limited to issues from basic
solution theory ([29], [7], [6], [40], [39], [24], [25], [4], [14], [20]), with the few available exceptions
concerned with more subtle qualitative questions apparently restricted to systems of rather simple
structure ([15], [18], [32]); to the best of our knowledge, apart from a recent discovery of a blow-up
dichotomy in a simplified version of (1.1) ([27]), a quantitative comprehension in the sense of deter-
mining critical parameter ranges and relationships has nowhere been achieved in the literature on any
related haptotaxis system.
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Main results. Despite these methodological obstacles, the present study aims at contributing to
a basic understanding about how far in the context of models of the form in (1.1), the efficacy of
virotherapy is influenced by crucial system ingredients. In order to address this issue in a framework
translatable to a genuine mathematical question, we shall henceforth concentrate on the distribution
of uninfected tumor cells as the main objective of treatment, and accordingly intend to identify situa-
tions in which the quantity u is favorably diminished during evolution in an appropriate sense. Here
to keep a clear focus on genuinely therapy-related mechanisms, we shall neglect both proliferation
processes in (1.1), and our analysis will reveal that in such settings, the virus reproduction rate β will
play the role of a critical parameter in this regard.

To analyze and describe this in a notationally convenient setup, we will set Du = ρu = ρw = ρz =
αu = αw = δw = δz = 1 and consider the resulting system in a spatially planar framework along with
suitable initial and boundary conditions, and hence we shall subsequently investigate the problem







































ut = ∆u−∇ · (u∇v)− uz, x ∈ Ω, t > 0,

vt = −(u+ w)v, x ∈ Ω, t > 0,

wt = Dw∆w − w + uz, x ∈ Ω, t > 0,

zt = Dz∆z − z − uz + βw, x ∈ Ω, t > 0,

(∇u− u∇v) · ν = ∂w
∂ν

= ∂z
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), z(x, 0) = z0(x), x ∈ Ω,

(1.2)

in a bounded domain Ω ⊂ R
2 with smooth boundary, where β > 0; then according to the outcome of

[26], the hypotheses that

{

u0, v0 and w0 are nonnegative functions from C2+ϑ(Ω) for some ϑ > 0,

with u0 6≡ 0, w0 6≡ 0, z0 6≡ 0,
√
v0 ∈ W 1,2(Ω) and ∂u0

∂ν
= ∂v0

∂ν
= ∂w0

∂ν
= ∂z0

∂ν
= 0 on ∂Ω,

(1.3)

ensure global existence of classical solutions (cf. also Lemma 2.1 below). Attempting to go beyond
these basic findings, in the present work we focus on exploring qualitative solution properties.

Our first results in this direction will reveal that whenever the virus production rate satisfies β < 1,
the population density of uninfected tumor cells can be controlled from below at each point in the
following sense.

Theorem 1.1 Let Ω ⊂ R
2 be a bounded domain with smooth boundary, and suppose that

β ∈ (0, 1). (1.4)

Then there exists C = C(β,Ω) > 0 with the property that whenever u0, v0, w0 and z0 satisfy (1.3), for
the solution of (1.2) we have

u(x, t) ≥
{

inf
y∈Ω

u0(y)

}

· exp
{

− ‖v0‖L∞(Ω) − C‖w0‖L2(Ω) − C‖z0‖L∞(Ω)

}

for all x ∈ Ω and t > 0.

(1.5)

In particular, this implies that for any such value of β, appropriately large initial distributions of un-
infected tumor cells remain uniformly large throughout evolution, and throughout the spatial domain:
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Corollary 1.2 Let Ω ⊂ R
2 be a smoothly bounded domain, let β ∈ (0, 1), and let v0, w0 and z0 be

given functions satisfying the respective requirements in (1.3). Then for any M > 0 one can find
C(β,Ω, v0, w0, z0,M) > 0 such that if u0 complies with (1.3) and is such that

u0(x) ≥ C(β,Ω, v0, w0, z0,M) > 0, (1.6)

then the solution of (1.2) has the property that

u(x, t) ≥ M for all x ∈ Ω and t > 0. (1.7)

In sharp contrast to this, replication rates fulfilling β > 1 ensure that arbitrarily large populations
of uninfected cancer cells must eventually fall below an explicitly known threshold value at least
somewhere in space:

Proposition 1.3 Let Ω ⊂ R
2 be a bounded domain with smooth boundary, and let

β > 1. (1.8)

Then for any choice of (u0, v0, w0, z0) fulfilling (1.3), the solution of (1.2) satisfies

lim inf
t→∞

inf
x∈Ω

u(x, t) ≤ 1

β − 1
. (1.9)

In summary, the above results do not only confirm that increasing the virus replication rate may
improve the efficacy of this type of virus-based therapy, but moreover they also identify the value
β = 1 as a threshold level for the critical parameter in this regard. In order to keep a clear focus on
these statements and our ambition to provide access of such subtle dichotomies to rigorous analysis,
we only remark at this point that by means of evident modifications, our findings can be extended in a
straightforward manner to versions of (1.2) which more closely adapt to situations of potential clinical
relevance by involving more general parameters such as diffusion, cross-diffusion and degradation rates.

Main ideas. In the case β < 1, a basic consideration shows that w and z decay exponentially in
L1 (cf. Lemma 3.1 below). Using this and relying on the observation that

F(t) :=
1

2

∫

Ω
w2(·, t) +

∫

Ω
w(·, t)z(·, t) + b

2

∫

Ω
z2(·, t), t ≥ 0,

satisfies

F ′(t) + F(t) ≤ C ·
{
∫

Ω
w(·, t)

}2

for all t > 0

with suitable b > 0 and some C > 0 (see Lemma 3.2 for details), we find the exponential decay of
w in L2 and thus of z in L∞ (cf. Lemma 3.3 and Lemma 3.4). By means of a parabolic comparison
argument, the latter implies a pointwise lower bound for u in ths flavor of that asserted in (1.5)
(Lemma 3.5), and thereby establishes Theorem 1.1. Finally, the proof of Proposition 1.3 is based on
a contradiction argument concerned with the evolution of the linear functional

y(t) :=

∫

Ω
w(·, t) + σ

∫

Ω
z(·, t), t ≥ t0,

with appropriately chosen σ > 0 and t0 > 0.
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2 Preliminaries. Global existence and L1 bounds

Let us first recall from [26] the following:

Lemma 2.1 Let Ω ⊂ R
2 be a bounded domain with smooth boundary, let β > 0, and suppose that

(u0, v0, w0, z0) satisfies (1.3). Then the problem (1.2) possesses a uniquely determined classical solution
(u, v, w, z) ∈ (C2,1(Ω× [0,∞)))4 for which v is nonnegative, and for which u,w and z are positive in
Ω× (0,∞). Moreover,

∫

Ω
u(·, t) ≤

∫

Ω
u0 for all t > 0, (2.1)

and for any choice of t0 ≥ 0 we have

‖v(·, t)‖L∞(Ω) ≤ ‖v(·, t0)‖L∞(Ω) for all t > t0. (2.2)

Without further mentioning, throughout the sequel we shall refer to this solution whenever a quadruple
(u0, v0, w0, z0) fulfilling (1.3) is given.

In describing a first solution feature beyond those in (2.1) and (2.2), we shall make use of the following
elementary statement on decay of solutions to a linearly dampened ODE involving a suitably decreasing
source.

Lemma 2.2 Let y ∈ C0([0,∞)) ∩ C1((0,∞)) be nonnegative and such that with some nonnegative
f ∈ L1((0,∞)) and some λ > 0 we have

y′(t) + λy(t) ≤ f(t) for all t > 0. (2.3)

Then
∫ ∞

0
y(t)dt < ∞ (2.4)

and
y(t) → 0 as t → ∞. (2.5)

Proof. An integration of (2.3) directly yields (2.4), which thereafter can readily be seen by ele-
mentary calculus to imply (2.5) when combined with the fact that as t → ∞ we have

∫ t

t−1 f(s)ds → 0.
�

In fact, due to the presence of the degradation term in the first equation from (1.2), the latter can be
used to assert some decay properties of w and z with respect to spatial L1 norms whenever β > 0.

Lemma 2.3 Let β > 0. Then

∫

Ω
w(·, t) → 0 and

∫

Ω
z(·, t) → 0 as t → ∞, (2.6)

Proof. We integrate the first equation in (1.2) to see that

d

dt

∫

Ω
u = −

∫

Ω
uz for all t > 0
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and that thus

∫ t

0

∫

Ω
uz =

∫

Ω
u0 −

∫

Ω
u(·, t) ≤

∫

Ω
u0 for all t > 0,

so that f(t) :=
∫

Ω u(·, t)z(·, t), t > 0, belongs to L1((0,∞)). As, next,

d

dt

∫

Ω
w +

∫

Ω
w =

∫

Ω
uz = f(t) for all t > 0

by the third equation in (1.2), from Lemma 2.2 we conclude that

∫

Ω
w → 0 as t → ∞ and

∫ ∞

0

∫

Ω
w < ∞,

whence, in particular g(t) := β
∫

Ωw(·, t), t > 0, satisfies g ∈ L1((0,∞)) as well. Since integrating the
fourth equation from (1.2) shows that

d

dt

∫

Ω
z +

∫

Ω
z = −

∫

Ω
uz + β

∫

Ω
w ≤ g(t) for all t > 0,

we may thus invoke Lemma 2.2 for a second time to conclude that, indeed, also

∫

Ω
z → 0 as t → ∞,

as intended. �

3 Persistently large solutions when β < 1

The intention of this section is to derive Theorem 1.1 and Corollary 1.2 by making sure that under
the assumption β < 1, beyond what is foreshadowed in Lemma 2.3 the quantity z actually decays
suitably fast and in a topology appropriately strong so as to allow for a convenient control of u from
below through a comparison argument in Lemma 3.5.

Our first step toward this asserts that if β < 1, then the L1 decay information in (2.6) can be sharpened
as follows.

Lemma 3.1 Let β < 1. Then

∫

Ω
w(·, t) ≤

{
∫

Ω
w0 +

∫

Ω
z0

}

· e−(1−β)t for all t > 0 (3.1)

and
∫

Ω
z(·, t) ≤

{
∫

Ω
w0 +

∫

Ω
z0

}

· e−(1−β)t for all t > 0 (3.2)
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Proof. We once more integrate the third and fourth equations in (1.2) over Ω to see upon adding
the resulting identities that

d

dt

{
∫

Ω
w +

∫

Ω
z

}

=

{

−
∫

Ω
w +

∫

Ω
uz

}

+

{

−
∫

Ω
z −

∫

Ω
uz + β

∫

Ω
w

}

= −(1− β)

∫

Ω
w −

∫

Ω
z

≤ −(1− β) ·
{
∫

Ω
w +

∫

Ω
z

}

for all t > 0

and thus, after an integration in time, infer that

∫

Ω
w +

∫

Ω
z ≤

{
∫

Ω
w0 +

∫

Ω
z0

}

· e−(1−β)t for all t > 0,

which yields both (3.1) and (3.2). �

In order to improve the topological framework within which w and z decay, we next state the following
observation concerned with a quasi-energy structure in (1.2), valid in this general form actually for all
β > 0.

Lemma 3.2 Let β > 0. Then there exist b > 0 and C > 0 such that for any choice of (u0, v0, w0, z0)
fulfilling (1.3), the function F defined by letting

F(t) :=
1

2

∫

Ω
w2(·, t) +

∫

Ω
w(·, t)z(·, t) + b

2

∫

Ω
z2(·, t), t ≥ 0, (3.3)

satisfies

F ′(t) + F(t) ≤ C ·
{
∫

Ω
w(·, t)

}2

for all t > 0. (3.4)

Proof. We let

b :=
(Dw +Dz)

2

2DwDz
, (3.5)

abbreviate f := uz, and use (1.2) to see that the accordingly defined function F from (3.3) satisfies

F ′(t) + F(t) =

∫

Ω
wwt +

∫

Ω
wtz +

∫

Ω
wzt + b

∫

Ω
zzt +

1

2

∫

Ω
w2 +

∫

Ω
wz +

b

2

∫

Ω
z2

= −Dw

∫

Ω
|∇w|2 −

∫

Ω
w2 +

∫

Ω
fw

−Dw

∫

Ω
∇w · ∇z −

∫

Ω
wz +

∫

Ω
fz

−Dz

∫

Ω
∇w · ∇z −

∫

Ω
wz −

∫

Ω
fw + β

∫

Ω
w2

−bDz

∫

Ω
|∇z|2 − b

∫

Ω
z2 − b

∫

Ω
fz + bβ

∫

Ω
wz
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+
1

2

∫

Ω
w2 +

∫

Ω
wz +

b

2

∫

Ω
z2

= −Dw

∫

Ω
|∇w|2 − bDz

∫

Ω
|∇z|2 − (Dw +Dz)

∫

Ω
∇w · ∇z

+
(

β − 1

2

)

∫

Ω
w2 − b

2

∫

Ω
z2 + (bβ − 1)

∫

Ω
wz

+(1− b)

∫

Ω
fz for all t > 0. (3.6)

Here, (3.5) ensures that thanks to Young’s inequality,

−(Dw +Dz)

∫

Ω
∇w · ∇z ≤ Dw

2

∫

Ω
|∇w|2 + (Dw +Dz)

2

2Dw

∫

Ω
|∇z|2

≤ Dw

2

∫

Ω
|∇w|2 + bDz

∫

Ω
|∇z|2 for all t > 0,

and that furthermore

(1− b)

∫

Ω
fz ≤ 0 for all t > 0,

because (Dw+Dz)2

2DwDz
≥ 1 and both f and z are nonnegative. Since, apart from that, Young’s inequality

warrants that

(bβ − 1)

∫

Ω
wz ≤ b

2

∫

Ω
z2 +

(bβ − 1)2+
2b

∫

Ω
w2 for all t > 0,

from (3.6) we infer that

F ′(t) + F(t) +
Dw

2

∫

Ω
|∇w|2 ≤ c1

∫

Ω
w2 for all t > 0 (3.7)

with c1 := (β− 1
2)++

(bβ−1)2+
2b . We now only need to observe that as a consequence of a Poincaré-type

inequality we can find c2 > 0 fulfilling

c1

∫

Ω
ϕ2 ≤ Dw

2

∫

Ω
|∇ϕ|2 + c2 ·

{
∫

Ω
|ϕ|

}2

for all ϕ ∈ W 1,2(Ω),

which when applied to ϕ := w(·, t) for t > 0, namely, shows that (3.7) entails (3.4) with C := c2. �

Now in the case β < 1 on which we concentrate here, the exponentially decaying bound implied by
Lemma 3.1 for the expression on the right of (3.4) enables us to obtain from the above a similar
convergence property of F , a particular consequence of which is documented as follows.

Lemma 3.3 Let β < 1. Then there exist γ > 0 and C > 0 with the property that whenever
(u0, v0, w0, z0) are such that (1.3) holds, we have

‖w(·, t)‖L2(Ω) ≤ C ·
{

‖w0‖L2(Ω) + ‖z0‖L2(Ω)

}

· e−γt for all t > 0. (3.8)
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Proof. We first apply Lemma 3.2 to fix b > 0 and c1 > 0 such that if (1.3) is satisfied, then the
function F defined in (3.3) has the property that

F ′(t) + F(t) ≤ c1 ·
{
∫

Ω
w

}2

for all t > 0, (3.9)

and thereafter we fix (u0, v0, w0, z0) such that (1.3) holds, and rely on our assumption that β < 1 to
see that due to Lemma 3.1, choosing any γ > 0 such that

γ ≤ 1− β and γ <
1

2
, (3.10)

we have
∫

Ω
w ≤ K1e

−γt for all t > 0, (3.11)

where
Kp := ‖w0‖Lp(Ω) + ‖z0‖Lp(Ω), p ≥ 1. (3.12)

Inserted into (3.9), (3.11) implies that

F ′(t) + F(t) ≤ c1K
2
1e

−2γt for all t > 0,

where the second restriction in (3.10) enables us to conveniently integrate to conclude that therefore

F(t) ≤ F(0)e−t + c1K
2
1

∫ t

0
e−(t−s)e−2γsds

= F(0)e−t +
c1

1− 2γ
·K2

1 · (e−2γt − e−t)

≤ F(0)e−t +
c1

1− 2γ
·K2

1 · e−2γt for all t > 0. (3.13)

Since by definition of F and Young’s inequality we have

F(0) =
1

2

∫

Ω
w2
0 +

∫

Ω
w0z0 +

b

2

∫

Ω
z20

≤
∫

Ω
w2
0 +

b+ 1

2

∫

Ω
z20

≤ K2
2 +

b+ 1

2
·K2

2 =
b+ 3

2
·K2

2 ,

and since due to the Cauchy-Schwarz,

K1 ≤ |Ω| 12 ‖w0‖L2(Ω) + |Ω| 12 ‖z0‖L2(Ω) = |Ω| 12K2,

from (3.13) we infer that

1

2

∫

Ω
w2(·, t) ≤ F(t) ≤ b+ 3

2
·K2

2e
−t +

c1|Ω|
1− 2γ

·K2
2e

−2γt for all t > 0.
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As e−t ≤ e−2γt for all t > 0 by (3.10), this implies (3.8) if we let C :=
√

b+ 3 + 2c1|Ω|
1−2γ , for instance. �

In view of well-known parabolic smoothing properties, due to the planarity of the considered spatial
setting the latter is sufficient to entail exponential decay of z actually with respect to the norm in
L∞(Ω):

Lemma 3.4 If β < 1, then one can fix γ > 0 and C > 0 such that for arbitrary (u0, v0, w0, z0)
complying with (1.3), we have

‖z(·, t)‖L∞(Ω) ≤ C ·
{

‖w0‖L2(Ω) + ‖z0‖L∞(Ω)

}

· e−γt for all t > 0. (3.14)

Proof. Based on standard smoothing estimates for the Neumann heat semigroup (eσ∆)σ≥0 on Ω
([31]), we fix c1 > 0 and c2 > 0 such that and

‖etDz∆ϕ‖L∞(Ω) ≤ c1t
− 1

2 ‖ϕ‖L2(Ω) for all ϕ ∈ C0(Ω) and any t ∈ (0, 1) (3.15)

and
‖eDz∆ϕ‖L∞(Ω) ≤ c2‖ϕ‖L1(Ω) for all ϕ ∈ C0(Ω), (3.16)

and invoking Lemma 3.2 we find γ ∈ (0, 1− β] and c3 > 0 fulfilling

‖w(·, t)‖L2(Ω) ≤ c3K2e
−γt for all t > 0, (3.17)

where again Kp := ‖w0‖Lp(Ω)+ ‖z0‖Lp(Ω) for p ≥ 1. Now given t > 0, we let t0 ≡ t0(t) := (t− 1)+ and
use the comparison principle to see that by nonnegativity of u and z,

z(·, t) = e(t−t0)(Dz∆−1)z(·, t0)−
∫ t

t0

e(t−s)(Dz∆−1)
{

u(·, s)z(·, s)
}

ds+ β

∫ t

t0

e(t−s)(Dz∆−1)w(·, s)ds

≤ e(t−t0)Dz∆z(·, t0) + β

∫ t

t0

e(t−s)Dz∆w(·, s)ds in Ω.

Since z(·, t) is nonnegative, this implies that

‖z(·, t)‖L∞(Ω) ≤ ‖e(t−t0)Dz∆z(·, t0)‖L∞(Ω) + β

∫ t

t0

‖e(t−s)Dz∆w(·, s)‖L∞(Ω)ds, (3.18)

where by (3.15) and (3.17) we can estimate

β

∫ t

t0

‖e(t−s)Dz∆w(·, s)‖L∞(Ω)ds ≤ c1β

∫ t

t0

(t− s)−
1
2 ‖w(·, s)‖L2(Ω)ds

≤ c1βK2

∫ t

t0

(t− s)−
1
2 e−γsds

≤ c1βK2e
−γt0

∫ t

t0

(t− s)−
1
2ds

= 2c1βK2e
−γt0 · (t− t0)

1
2

≤ 2c1βe
γK2e

−γt, (3.19)
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because t0 ≥ t− 1. Apart from that, (3.16) and Lemma 3.1 imply that if t ≥ 1, then

‖e(t−t0)Dz∆z(·, t0)‖L∞(Ω) = ‖eDz∆z(·, t− 1)‖L∞(Ω)

≤ c2‖z(·, t− 1)‖L1(Ω)

≤ c2K1e
−(1−β)(t−1)

= c2e
1−βK1e

−(1−β)t, (3.20)

while if t < 1, then using the comparison principle we infer that

‖e(t−t0)Dz∆z(·, t0)‖L∞(Ω) = ‖etDz∆z0‖L∞(Ω) ≤ ‖z0‖L∞(Ω) ≤ e1−β‖z0‖L∞(Ω)e
−(1−β)t. (3.21)

SinceK2 ≤ ‖w0‖L2(Ω)+|Ω| 12 ‖z0‖L∞(Ω) andK1 ≤ |Ω| 12 ‖w0‖L2(Ω)+|Ω|‖z0‖L∞(Ω) by the Cauchy-Schwarz
inequality, combining (3.18) with (3.19), (3.20) and (3.21) yields (3.14) upon an evident choice of C,
because e−(1−β)t ≤ e−γt for all t > 0 due to our restriction that γ ≤ 1− β. �

Now a pointwise lower bound for u in the style of that claimed in Theorem 1.1 can be achieved by
means of an argument based on comparison with spatially flat functions, applied to the variable ue−v

which, as is well-known, indeed satisfies a parabolic equation free of cross-diffusion terms:

Lemma 3.5 Let β < 1. Then there exists C > 0 such that whenever (1.3) holds, the solution of (1.2)
satisfies

u(x, t) ≥ inf
y∈Ω

{

u0(y)e
−v0(y)

}

· exp
{

− C ·
{

‖w0‖L2(Ω) + ‖z0‖L∞(Ω)

}

}

for all x ∈ Ω and t > 0.

(3.22)

Proof. According to Lemma 3.4, let us pick γ > 0 and c1 > 0 such that given any (u0, v0, w0, z0)
fulfilling (1.3), writing K := ‖w0‖L2(Ω) + ‖z0‖L∞(Ω) we have

z(x, t) ≤ c1Ke−γt for all x ∈ Ω and t > 0. (3.23)

Next, fixing any such (u0, v0, w0, z0) we see by means of a straightforward computation based on (1.2)
that

a(x, t) := u(x, t)e−v(x,t), x ∈ Ω, t ≥ 0,

satisfies

at = e−v∇ · (ev∇a)− avt − az for all x ∈ Ω and t > 0,

with ∂a
∂ν

= 0 throughout ∂Ω × (0,∞) (cf. also [29] or [26]), whence particularly, by (3.23) and the
inequality vt ≤ 0 asserted by (1.2),

at ≥ e−v∇ · (ev∇a)− c1Ke−γta for all x ∈ Ω and t > 0. (3.24)

On the other hand, for

a(x, t) := ϕ(t), x ∈ Ω, t ≥ 0,
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with ϕ ∈ C1([0,∞)) denoting the solution of

{

ϕ′(t) = −c1Ke−γtϕ(t), t > 0,

ϕ(0) = ϕ0 := infy∈Ω

{

u0(y)e
−v0(y)

}

,
(3.25)

we have

at − e−v(x,t)∇ · (ev(x,t)∇a) + c1Ke−γta

= ϕ′(t) + c1Ke−γtϕ(t)

= 0 for all x ∈ Ω and t > 0,

so that since clearly ∂a
∂ν

= 0 on ∂Ω× (0,∞) and

a(x, 0) = ϕ0 = inf
y∈Ω

a(y, 0) ≤ a(x, 0) for all x ∈ Ω,

from the comparison principle we conclude that a ≥ a in Ω× (0,∞) and hence

u(x, t) = a(x, t)ev(x,t) ≥ a(x, t) ≥ ϕ(t) for all x ∈ Ω and t > 0. (3.26)

Since an explicit integration of (3.25) shows that

ϕ(t) = ϕ0 · exp
{

− c1K

∫ t

0
e−γsds

}

= ϕ0 · exp
{

− c1K

γ
· (1− e−γt)

}

≥ ϕ0e
−

c1K
γ for all t > 0,

from (3.26) we readily obtain (3.22) by choosing C := c1
γ
. �

The first of our main results has thus essentially been established already:

Proof of Theorem 1.1. As a consequence of (1.4) and Lemma 3.5, there exists c1 = c1(β,Ω) such
that if (1.3) holds, then

u(x, t) ≥ inf
y∈Ω

{

u0(y)e
−v0(y)

}

· e−c1K for all x ∈ Ω and t > 0,

where again K := ‖w0‖L2(Ω) + ‖z0‖L∞(Ω). Since

u0(y)e
−v0(y) ≥ u0(y)e

−‖v0‖L∞(Ω) for all y ∈ Ω,

this entails that for any such (u0, v0, w0, z0) we have

u(x, t) ≥
{

inf
y∈Ω

u0(y)

}

· e−‖v0‖L∞(Ω)−c1K for all x ∈ Ω and t > 0,

and thereby establishes (1.5) with C := c1. �
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The announced consequence concerned with uninfected tumor cell populations persistently exceeding
prescribed levels can thereby been drawn quite immediately:

Proof of Corollary 1.2, In line with Theorem 1.1, given β ∈ (0, 1) and (v0, w0, z0) fulfilling (1.3),
we may choose c1 = c1(β,Ω, v0, w0, z0) > 0 with the property that whenever u0 satisfies (1.3), we have

u(x, t) ≥ c1 · inf
y∈Ω

u0(y) for all x ∈ Ω and t > 0. (3.27)

Thus, if for fixed M > 0 we let

c2 ≡ c2(β,Ω, v0, w0, z0,M) := c1M,

then for any u0 fulfilling (1.3) as well as u0 ≥ c2 we infer from (3.27) that indeed (1.7) is valid, and
that hence the claim holds with C := c2. �

4 Universal asymptotic upper bounds for infΩ u when β > 1.

Finally, the claimed statement on the eventual occurrence of smallness in the population of uninfected
cancer cells can be derived by a contradiction-based argument relying on the L1 boundedness infor-
mation entailed by Lemma 2.3.

Proof of Proposition 1.3. Assuming (1.9) not to be true, we could find M > 1
β−1 and t0 > 0 such

that
u(x, t) ≥ M for all x ∈ Ω and t > t0. (4.1)

Here since M > 1
β−1 implies that βM > M + 1 and thus 1

β
< M

M+1 , we can choose some b > 0 such
that

1

β
< b <

M

M + 1
, (4.2)

and keeping this parameter fixed, we let

y(t) :=

∫

Ω
w(·, t) + b

∫

Ω
z(·, t), t ≥ t0.

Then
y(t0) > 0 (4.3)

by positivity of w(·, t0) and z(·, t0), as asserted by Lemma 2.1, and apart from that, once more
according to (1.2),

y′(t) =

{

−
∫

Ω
w +

∫

Ω
uz

}

+ b ·
{

−
∫

Ω
z −

∫

Ω
uz + β

∫

Ω
w

}

= (bβ − 1)

∫

Ω
w + (1− b)

∫

Ω
uz − b

∫

Ω
z for all t > t0. (4.4)

Here since (4.2) particularly ensures that 1− b > 0, we may use (4.1) to estimate

(1− b)

∫

Ω
uz ≥ (1− b)M

∫

Ω
z for all t > t0,
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so that (4.4) implies that

y′(t) ≥ (bβ − 1)

∫

Ω
w +

{

(1− b)M − b
}

·
∫

Ω
z for all t > t0.

Using that bβ − 1 > 0 by the first inequality in (4.2), and that (1− b)M − b > M − (M +1)b > 0 due
to the second restriction therein, we may recall the definition of y to estimate

y′(t) ≥ (bβ − 1)

∫

Ω
w +

(1− b)M − b

b
· b

∫

Ω
z

≥ c1y(t) for all t > t0

with c1 := min{bβ − 1 , (1−b)M−b
b

} > 0. In view of (4.3), an integration would thus show that

y(t) ≥ y(t0)e
c1(t−t0) → +∞ as t → ∞

and thereby contradict the outcome of Lemma 2.3, hence revealing that our assumption in fact must
have been false. �
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