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Abstract

The chemotaxis-growth system

{

ut = D∆u− χ∇ · (u∇v) + ρu− µuα,

vt = d∆v − κv + λu,
(⋆)

is considered under homogeneous Neumann boundary conditions in smoothly bounded domains
Ω ⊂ R

n, n ≥ 1. For any choice of α > 1, the literature provides a comprehensive result on global
existence for widely arbitrary initial data within a suitably generalized solution concept, but the
regularity properties of such solutions may be rather poor, as indicated by precedent results on the
occurrence of finite-time blow-up in corresponding parabolic-elliptic simplifications.

Based on the analysis of a certain eventual Lyapunov-type feature of (⋆), the present work shows
that whenever

α ≥ 2− 2

n
,

under an appropriate smallness assumption on χ any such solution at least asymptotically exhibits

relaxation by approaching the nontrivial spatially homogeneous steady state
(

( ρ
µ
)

1

α−1 , λ
κ
( ρ
µ
)

1

α−1

)

in the large time limit.
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1 Introduction

The reduction of regularity belongs to the most intensely studied effects of chemotactic cross-diffusion.
In the context of classical Keller-Segel systems, this becomes manifest not only in a comprehensive
literature focusing on the detection of blow-up phenomena ([13], [12], [24], [4], [41]), but also in sev-
eral findings concerned with more detailed analysis of singularity formation ([12], [33]), or extension
of solutions beyond blow-up ([3], [23], [54]).

The analysis of corresponding features apparently becomes significantly more challenging in systems
which couple chemotactic interaction to further mechanisms. Among accordingly refined variants
which attempt to provide more realistic descriptions in situations more complex than those addressed
by minimal Keller-Segel systems, of particular importance seem models which account for proliferation
and competition-induced death, known as relevant in a noticeably large number of biological contexts
such as bacterial pattern formation, self-organization during embryonic development, and tumor in-
vasion. also to self-organization during embryonic development ([48], [29], [6], [34], [37]).

Correspondingly, logistic Keller-Segel systems of the form

{

ut = D∆u− χ∇ · (u∇v) + ρu− µuα,

vt = d∆v − κv + λu,
(1.1)

as well as some close relatives have received considerable interest in the past years, and elaborate
methods have been developed to identify conditions on the system parameters therein which ensure
tht the joint dissipative action of diffusion and suitably strong degradation rules out the occurrence
of blow-up phenomena. In the best understood case α = 2 of quadratic absorption, for instance,
associated no-flux initial-boundary value problems in n-dimensional bounded domains Ω are known to
admit global bounded classical solutions for all suitably regular initial data if either n ≤ 2 ([27], [26]),
or n ≥ 3 and µ > µ0(µ0(D, d, χ, ρ, κ, λ,Ω) ([39]); for appropriately large µ, even some results on global
asymptotic stability of the corresponding spatialy homogenous equilibria ( ρ

µ
, λρ
κµ

) are available ([5],
[42]). Further findings in these directions, inter alia focusing at refinements with respect to parameter
setting, or generalizations to slightly modified systems, or also qualitative facets such as wave-like
behavior, can be found in [8], [14], [19], [18], [25], [49], [50], [55], [30], [31] and [32], for instance.

In the presence of weaker absorption, however, the knowledge in this regard seems significantly sparser:
While in two-dimensional domains already some subquadratic death terms involving certain logarith-
mic corrections have been shown to rule out blow-up ([51]), in the case n ≥ 3 it yet appears to be
unknown whether or not explosions may occur for small values of µ when α = 2; for such parameter
choices, only global weak solutions have been shown to exist, and results concerned with their qual-
itative behavior seem limited to statements on eventual smoothness for small ρ, and on asymptotic
decay for ρ ≤ 0, in the special case n = 3 ([17]; cf. also [36]).

Possible dampening effects of yet weaker degradation have been understood to a rudimentary extent
only up to now. Indeed, the knowledge in this regard so far reduces to statements on mere global
existence in suitably generalized solution frameworks. In [35], certain global solutions have been con-
structed under the assumptions that n ≥ 2 and α > 2 − 1

n
, and in [46] and [53] a relaxation of these

hypotheses could be achieved so as to ensure solvability even for any α > min{2 − 2
n
, 2n+4
n+4 } when

n ≥ 2. Only recently, in the context of a yet further generalized solution concept it has been found
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that actually any choice of α > 1 is sufficient to ensure global solvability for widely arbitrary intitial
data ([47]).

Asymptotics in weakly dampened chemotaxis-growth systems. Analysis beyond blow-up.
Beyond quite poor basic regularity features, however, no qualitative information on the behavior of
such solutions seems available in such weakly dampened cases. That, in fact, the correspondingly
generated dynamics might be considerably complex is indicated by some noticeable caveats contained
in the literature. Besides providing numerical evidence that shows remarkably colorful facets in lo-
gistic Keller-Segel systems, up to even chaotic behavior ([28]), previous studies have revealed quite
drastic phenomena related to the spontaneous emergence of large population densities, possibly at
intermediate timescales, partially even in frameworks of bounded solutions ([15], [16], [43], [44], [38]).
Yet more drastically, in some parabolic-elliptic simplifications of (1.1) even finite-time blow-up has
been detected, e.g. under the hypotheses that n ∈ {3, 4} and α < 7

6 ([45]), or n ≥ 5 and α < 3
2 +

1
2(n−1)

([40]); recent progress indicates that similar statements are actually available under the mere assump-
tions that n ≥ 3, α = 2 and µ > 0 is sufficiently small ([10]; cf. also [9] and [21] for further blow-up
results in this direction).

Despite these complicating circumstances, the present work attempts to develop a basic qualitative
theory for generalized solutions to (1.1) within reasonably large parameter ranges. By addressing
arbitrarily large initial data, we especially intend to include situations in which the above precedents
suggest to expect the occurrence of finite-time explosions, and in which thus a large time analysis of
global solutions amounts to describing life beyond blow-up, as having formed the objective, meanwhile
quite well-understood, of seminal studies concerned with simpler scalar parabolic problems ([2], [11],
[22]).

To make this more precise, let us henceforth consider the full initial-boundary value problem



















ut = D∆u− χ∇ · (u∇v) + ρu− µuα, x ∈ Ω, t > 0,

vt = d∆v − κv + λu, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.2)

in a smoothly bounded domain Ω ⊂ R
n, n ≥ 1, with positive parameters D, d, χ, ρ, µ, κ and λ, with

α > 1, and with initial data complying with the hypotheses that
{

u0 ∈ C0(Ω) such that u0 > 0 in Ω and

v0 ∈W 1,∞(Ω) such that v0 ≥ 0 in Ω.
(1.3)

Within this general setting, it follows from the results in [47] that (1.2) indeed admits globally defined
solutions in an appropriately generalized sense, and that these can be approximated by solutions to
suitably regularized variants of (1.2):

Proposition 1.1 Let α > 1, D > 0, d > 0, χ > 0, ρ > 0, µ > 0, κ > 0 and λ > 0, and assume (1.3).
Then there exists nonnegative functions

{

u ∈ Lαloc(Ω× [0,∞)) and

v ∈ L1
loc([0,∞);W 1,1(Ω))

(1.4)
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such that (u, v) forms a global generalized solution of (1.2) in the sense of Definition 5.5 given in the
Appendix, and that (u, v) can be approximated by solutions to the regularized problems (2.1) below in
the following sense: For each ε ∈ (0, 1), (2.1) admits a global classical solution (uε, vε) ∈ (C0(Ω ×
[0,∞)) ∩ C2,1(Ω × (0,∞)))2, and there exist (εj)j∈N ⊂ (0, 1) and a null set N ⊂ (0,∞) such that
εj ց 0 as j → ∞, and that

uε → u in L1
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (1.5)

vε → v in L1
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞) and (1.6)

vε(·, t) → v(·, t) in L1(Ω) and a.e. in Ω for all t ∈ (0,∞) \N (1.7)

as ε = εj ց 0.

In order to describe the large time behavior of these solutions, we shall examine how far expresions of
the form

F(t) :=

∫

Ω

(

u(·, t)− u⋆ − u⋆ ln
u(·, t)
u⋆

)

+
b

2

∫

Ω

(

v(·, t)− v(·, t)
)2
, t > 0, (1.8)

enjoy certain Lyapunov-type properties for (1.2) if the free parameter b > 0 therein is chosen ap-
propriately, and if the number u⋆ denotes the first component of the associated nontrivial spatially
homogeneous equilibrium (u⋆, v⋆) of (1.2) given by

u⋆ :=
(ρ

µ

)
1

α−1

and v⋆ :=
λu⋆

κ
. (1.9)

Here and throughout the sequel, we adapt standard notation by abbreviating

ψ :=
1

|Ω|

∫

Ω
ψ for ψ ∈ L1(Ω). (1.10)

In spite of evident challenges linked to the poor information on regularity and the topological setting in
the approximation statements in (1.5)-(1.7), a suitably designed analysis of F , as well as of a natural
counterpart Fε thereof at the level of approximate solutions, will reveal that whenever α ≥ 2 − 2

n

and χ is appropriately small, F plays the role of an eventual energy functional in the sense that for
each individual trajectory, F becomes nonincreasing after an adequate waiting time. On the basis of
this observation, we shall see that within this framework, any such solution approaches (u⋆, v⋆) in the
sense substantiated in the following main result of this work:

Theorem 1.2 Let n ≥ 1, D > 0, d > 0, ρ > 0, µ > 0 and λ > 0, and suppose that α > 1 is such that

α ≥ 2− 2

n
. (1.11)

Then given any bounded domain Ω ⊂ R
n with smooth boundary, one can find C(Ω) > 0 with the

property that whenever χ > 0 satisfies

χ2 ≤ C(Ω) · d
2D

λ2
· ρ−

3−α

α−1µ
2

α−1 , (1.12)
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for arbitrary initial data fulfilling (1.3) the problem (1.2) possesses a global generalized solution (u, v),
in the sense of Definition 5.5 below, such that with some T > 0 and some null set N ⊂ (T,∞) we
have

u(·, t) → u⋆ in L1(Ω) as (T,∞) \N ∋ t→ ∞ (1.13)

and
v(·, t) → v⋆ in L2(Ω) as (T,∞) \N ∋ t→ ∞, (1.14)

where u⋆ > 0 and v⋆ > 0 are given by (1.9).

Remark. i) We underline that the key condition α ≥ 2 − 2
n

in Theorem 1.2 firstly allows for
actually any α > 1 when n = 2, but moreover includes some choices of α for which the literature
indicates the possibility of finite-time blow-up: In fact, when n = 5 the assumption α ≥ 2 − 2

n
= 8

5
can simultaneously be fulfilled with the assumption α < 3

2 +
1

2(n−1) =
13
8 from [40], and corresponding

consistency with the hypotheses from the yet unpublished work [10] can be achieved even for any
n ≥ 3.

ii) By essentially asserting relaxation into constant equilibria, Theorem 1.2 reveals that with respect to
solution behavior after a possible singularity formation, (1.1) considerably differs from corresponding
proliferation-free Keller-Segel systems in which, at least in two-dimensional parabolic-elliptic cases,
extensions beyond blow-up seem to reflect eternal persistence of Dirac-type singularities, as typically
emerging during explosion processes at some finite time ([3], [23]).

2 Preliminaries

2.1 Approximation of generalized solutions

As already announced, given parameters α > 1, D > 0, d > 0, χ > 0, ρ > 0, µ > 0, κ > 0 and λ > 0,
as well as initial data fulfilling (1.3), we follow the regularization procedure in [47] and hence consider
the approximate problems



















uεt = D∆uε − χ∇ · (uε∇vε) + ρuε − µuαε , x ∈ Ω, t > 0,

vεt = d∆vε − κvε + λ uε
1+εuε

, x ∈ Ω, t > 0,
∂uε
∂ν

= ∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(2.1)

for ε ∈ (0, 1). Each of these indeed admits a globally defined classical solution (uε, vε) ∈ (C0(Ω ×
[0,∞)) ∩ C2,1(Ω× (0,∞)))2 such that, according to (1.3) and the strong maximum principle, uε > 0
and vε > 0 in Ω× (0,∞) (cf. also [47, Lemma 2.1]), and, in fact, the arguments detailed in [47, Lemma
7.1, Lemma 8.2] for the prototypical choices D = d = χ = κ = λ = 1 show that in the limit of
vanishing ε, these solutions approach a solution of (1.2) in the sense documented in Proposition 1.1.

2.2 Basic bounds for uε. Absorbing sets in L1

Let us first apply an essentially straightforward argument to the first equation in (2.1) to achieve the
following basic regularity information.
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Lemma 2.1 Let α > 1, D > 0, d > 0, χ > 0, ρ > 0, µ > 0, κ > 0 and λ > 0, and assume (1.3). Then
for all t ≥ 0 and ε ∈ (0, 1),

∫

Ω
uε(·, t) ≤

{

2α−1µ

(3|Ω|)α−1ρ
+

({
∫

Ω
u0

}1−α

− 2α−1µ

(3|Ω|)α−1ρ

)

· e−(α−1)ρt

}− 1

α−1

(2.2)

and
∫

Ω
uε(·, t) ≤ m := max

{
∫

Ω
u0 ,

3

2
·
(ρ

µ

)
1

α−1 |Ω|
}

(2.3)

as well as
∫ t+1

t

∫

Ω
uαε ≤ (ρ+ 1)m

(1− (23)
α−1) · µ

. (2.4)

Proof. We abbreviate y0 :=
∫

Ω u0 and θ := (23)
α−1µ ∈ (0, µ), and let y ∈ C1([0,∞)) denote the

solution of
{

y′(t) = ρy(t)− θ|Ω|1−αyα(t), t > 0,

y(0) = y0,
(2.5)

that is, we let

y(t) :=

{

θ|Ω|1−α
ρ

+

(

y1−α0 − θ|Ω|1−α
ρ

)

· e−(α−1)ρt

}− 1

α−1

, t ≥ 0.

Since in view of the Hölder inequality the first equation in (2.1) ensures that for each ε ∈ (0, 1),

d

dt

∫

Ω
uε = ρ

∫

Ω
uε − µ

∫

Ω
uαε ≤ ρ

∫

Ω
uε − θ|Ω|1−α ·

{
∫

Ω
uε

}α

− (µ− θ)

∫

Ω
uαε for all t > 0,

and that thus yε(t) :=
∫

Ω uε(·, t), t ≥ 0, and hε(t) := (µ− θ)
∫

Ω u
α
ε (·, t), t > 0, satisfy

y′ε(t) + hε(t) ≤ ρyε(t)− θ|Ω|1−αyαε (t) for all t > 0, (2.6)

by nonnegativity of hε a comparison argument shows that

yε(t) ≤ y(t) ≤ max

{

y0 ,
( ρ

θ|Ω|1−α
)

1

α−1

}

= m for all t > 0

and thereby establishes both (2.2) and (2.3). An integration in (2.6) thereupon warrants that

∫ t+1

t

hε(s)ds ≤ yε(t) + ρ

∫ t+1

t

yε(s)ds ≤ m+ ρm for all t > 0,

which by definition of hε entails (2.4). �

In particular, this entails an absorption feature of suitably large balls in L1, in the following flavor.
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Lemma 2.2 Let α > 1, D > 0, d > 0, χ > 0, ρ > 0, µ > 0, κ > 0 and λ > 0, and let u⋆ > 0 be as in
(1.9). Then given any (u0, v0) fulfilling (1.3) one can find T⋆ = T⋆(u0, v0) > 0 with the property that

∫

Ω
uε(·, t) ≤ 2u⋆|Ω| for all t > T⋆ and ε ∈ (0, 1). (2.7)

Proof. We only need to employ (2.2) and observe that therein,

{

2α−1µ

(3|Ω|)α−1ρ
+

({
∫

Ω
u0

}1−α

− 2α−1µ

(3|Ω|)α−1ρ

)

· e−(α−1)ρt

}− 1

α−1

→
{ 2α−1µ

(3|Ω|)α−1ρ

}− 1

α−1

=
3

2
u⋆|Ω|

as t→ ∞. �

3 Construction of eventual energy functionals at the approximate

level

The purpose of this section is to make sure that for appropriately small χ > 0, at the stage of
approximate solutions the functional in (1.8) enjoys a genuine Lyapunov property after some relaxation
time possibly depending on the initial data. Here in comparison to the case α = 2 addressed in several
related precedents in the literature ([1], [7], [52]), in the presence especially of subquadratic degradation
some further technical efforts seem necessary so as to facilitate an efficient quantitative analysis of
how far the steady state u⋆ from (1.9) inherits attractiveness features from corresponding taxis-free
frameworks.

3.1 The time evolution of
∫

Ω
(uε − u⋆ − u⋆ ln

uε
u⋆
)

Our first objective in this regard is the function appearing in the first integral from (1.8). Some useful
of its properties are summarized in the following lemma.

Lemma 3.1 Let α > 1, D > 0, d > 0, χ > 0, ρ > 0, µ > 0, κ > 0 and λ > 0, and with u⋆ taken from
(1.9), let

H(ξ) := ξ − u⋆ − u⋆ ln
ξ

u⋆
, ξ > 0. (3.1)

Then H(ξ) ≥ 0 for all ξ > 0, and there exists C > 0 such that with q := min{α, 2} we have

∫

Ω
Hq(ψ) ≤

∫

Ω
ψα + C

∫

Ω

|∇ψ|2
ψ2

+ C ·
{
∫

Ω
| lnψ|

}2

+ C for all ψ ∈ Lα(Ω; (0,∞))

such that lnψ ∈W 1,2(Ω). (3.2)

Proof. Noting that nonnegativity of H can be seen by elementary analysis, to verify (3.2) we use
that according to a Poincaré inequality we can fix c1 > 0 such that

∫

Ω
ζ2 ≤ c1

∫

Ω
|∇ζ|2 + c1 ·

{
∫

Ω
|ζ|

}2

for all ζ ∈W 1,2(Ω).
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Therefore, given a positive ψ ∈ Lα(Ω) such that lnψ ∈W 1,2(Ω), observing that

H(ξ) ≤ −u⋆ ln ξ + c2 for all ξ ∈ (0, 2u⋆)

with c2 := u⋆ + u⋆| lnu⋆| > 0, we can set ζ := lnψ to see that thanks to Young’s inequality and the
fact that q ≤ 2,

∫

{ψ<2u⋆}
Hq(ψ) ≤

∫

{ψ<2u⋆}
H2(ψ) + |Ω|

≤ 2u2⋆

∫

{ψ<2u⋆}
| lnψ|2 + 2c22|Ω|+ |Ω|

≤ 2c1u
2
⋆

∫

Ω
|∇ lnψ|2 + 2c1u

2
⋆ ·

{
∫

Ω
| lnψ|

}2

+ 2c22|Ω|+ |Ω|. (3.3)

In the corresponding complementary region, however, we may simply use that ln ξ
u⋆

≥ 0 for ξ ≥ 2u⋆,
and that hence

H(ξ) ≤ ξ for all ξ ≥ 2u⋆,

to find that for any such ψ, again by Young’s inequality, and by the restriction q ≤ α,
∫

{ψ≥2u⋆}
Hq(ψ) ≤

∫

{ψ≥2u⋆}
Hα(ψ) + |Ω| ≤

∫

{ψ≥2u⋆}
ψα + |Ω|.

Therefore, (3.2) results upon choosing C := max{2c1u2⋆ , 2c22|Ω|+ 2|Ω|}, for instance. �

Let us already here add a second preparation in this regard, albeit only used in our final proof of
Theorem 1.2 in Section 5.3, which asserts that

∫

ΩH(ψ) controls differences to u⋆ actually with respect
to the norm in L1(Ω):

Lemma 3.2 Let α > 1, D > 0, d > 0, χ > 0, ρ > 0, µ > 0, κ > 0 and λ > 0, let u⋆ and H be as in
(1.9) and (3.1), and let ψ : Ω → (0,∞) be measurable. Then

∫

Ω
|ψ − u⋆| ≤

1

1− ln 2

∫

Ω
H(ψ) +

√

8u⋆|Ω| ·
{
∫

Ω
H(ψ)

}
1

2

. (3.4)

Proof. Using that H(u⋆) = H ′(u⋆) = 0 and that H ′′(ξ) = u⋆
ξ2

≥ 1
4u⋆

for all ξ ∈ (0, 2u⋆), we first
observe that

H(ξ) ≥ 1

2
·
{

inf
σ∈(0,2u⋆)

H ′′(σ)

}

· (ξ − u⋆)
2 ≥ 1

8u⋆
· (ξ − u⋆)

2 for all ξ ∈ (0, 2u⋆),

so that given any measurable ψ : Ω → (0,∞) we can estimate
∫

{ψ<2u⋆}
|ψ − u⋆| ≤

∫

{ψ<2u⋆}

√

8u⋆H(ψ)

≤
√

8u⋆|Ω| ·
{
∫

{ψ<2u⋆}
H(ψ)

}
1

2

(3.5)
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by means of the Cauchy-Schwarz inequality. Apart from that, since writing c1 := 1− ln 2 we see that
for

ϕ(ξ) := H(ξ)− c1 · (ξ − u⋆), ξ ≥ 2u⋆,

we have

ϕ(2u⋆) = H(2u⋆)− c1u⋆ = (1− c1)u⋆ − u⋆ ln 2 = 0

as well as

ϕ′(ξ) = H ′(ξ)− c1 = 1− u⋆

ξ
− c1 ≥ 1− 1

2
− c1 = ln 2− 1

2
> 0 for all ξ ≥ 2u⋆,

so that ϕ(ξ) ≥ 0 for all ξ ≥ 2u⋆. Accordingly, for any ψ as given above we have

(1− ln 2)

∫

{ψ≥2u⋆}
(ψ − u⋆) ≤

∫

{ψ≥2u⋆}
H(ψ),

which together with (3.5) readily yields (3.4). �

The role of H in our asymptotic analysis of (1.2) is foreshadowed by the following straightforward
observation.

Lemma 3.3 Let α > 1, D > 0, d > 0, χ > 0, ρ > 0, µ > 0, κ > 0 and λ > 0, and let u⋆ and H be as
in (1.9) and (3.1). Then for all t > 0 and ε ∈ (0, 1),

d

dt

∫

Ω
H(uε) +Du⋆

∫

Ω

|∇uε|2
u2ε

+ µ

∫

Ω
(uα−1
ε − uα−1

⋆ ) · (uε − u⋆) = χu⋆

∫

Ω

∇uε
uε

· ∇vε. (3.6)

Proof. Using that

H ′(ξ) = 1− u⋆

ξ
and H ′′(ξ) =

u⋆

ξ2
for all ξ > 0,

thanks to the positivity of uε we may use the first equation in (2.1) to compute

d

dt

∫

Ω
H(uε) = −

∫

Ω
H ′′(uε)∇uε · (D∇uε − χuε∇vε) +

∫

Ω
H ′(uε) · (ρuε − µuαε )

= −Du⋆
∫

Ω

|∇uε|2
u2ε

+ χu⋆

∫

Ω

∇uε
uε

· ∇vε +
∫

Ω

(

1− u⋆

uε

)

· (ρuε − µuαε ) (3.7)

for t > 0 and ε ∈ (0, 1). Here by (1.9) we may replace ρ
µ
= uα−1

⋆ in verifying that

∫

Ω

(

1− u⋆

uε

)

· (ρuε − µuαε ) = µ

∫

Ω
(uε − u⋆) ·

(ρ

µ
− uα−1

ε

)

= −µ
∫

Ω
(uε − u⋆) · (uα−1

ε − uα−1
⋆ ) for all t > 0 and ε ∈ (0, 1),

so that (3.7) indeed is equivalent to (3.6). �
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3.2 Estimating
∫

Ω
(uα−1

ε − uα−1
⋆ ) · (uε − u⋆) from below

Now in order to appropriately estimate the last summand on the left of (3.6) from below, we first rely
on elementary calculus to verify the following.

Lemma 3.4 Let α > 1. Then

(ξα−1 − 1) · (ξ − 1) ≥ K · (ξ − 1)2 for all ξ ∈ [0, 2], (3.8)

where

K :=

{

(α− 1) · 2α−2 if α ∈ (1, 2),

1 if α ≥ 2.
(3.9)

Proof. If α < 2, then ϕ1(ξ) := 1 − ξα−1 − (α − 1) · (1 − ξ), ξ ∈ [0, 1], satisfies ϕ1(1) = 0 and
ϕ′
1(ξ) = −(α− 1)ξα−2 + α− 1 ≤ 0 for all ξ ∈ (0, 1), so that ϕ1 ≥ 0 on [0, 1] and hence

(ξα−1−1) · (ξ−1) =
(

ϕ1(ξ)+ (α−1) · (1− ξ)
)

· (1− ξ) ≥ (α−1) · (1− ξ)2 for all ξ ∈ [0, 1]. (3.10)

Moreover, for such α we see that ϕ2(ξ) := ξα−1−1− (α−1) ·2α−2(ξ−1), ξ ∈ [1, 2], has the properties
that ϕ2(1) = 0 and ϕ′

2(ξ) = (α−1) ·ξα−2−(α−1) ·2α−2 ≥ 0 for all ξ ∈ (1, 2), whence ϕ2 is nonnegative
on [1, 2]. Therefore,

(ξα−1 − 1) · (ξ − 1) =
(

ϕ2(ξ) + (α− 1) · 2α−2(ξ − 1)
)

· (ξ − 1)

≥ (α− 1) · 2α−2(ξ − 1)2 for all ξ ∈ [1, 2],

which together with (3.10) proves (3.8) in this case, because 2α−2 ≤ 1.

If, conversely, α ≥ 2, then ξα−1 ≤ ξ for ξ ∈ [0, 1] and thus

(ξα−1 − 1) · (ξ − 1) = (1− ξα−1) · (1− ξ) ≥ (1− ξ)2 for all ξ ∈ [0, 1], (3.11)

whereas letting ϕ3(ξ) := ξα−1 − 1 − (α − 1) · (ξ − 1), ξ ∈ [1, 2], we obtain ϕ3(1) = 0 and ϕ′
3(ξ) =

(α− 1) · ξα−2 − (α− 1) ≥ 0 for all ξ ∈ (1, 2), so that also ϕ3 ≥ 0 on [1, 2] and hence

(ξα−1 − 1) · (ξ − 1) =
(

ϕ3(ξ) + (α− 1) · (ξ − 1)
)

· (ξ − 1) ≥ (α− 1) · (ξ − 1)2 for all ξ ∈ [1, 2].

Along with (3.11), this establishes (3.8) for any such α, because then α− 1 ≥ 1. �

Combining the latter with the eventual L1 bound from Lemma 2.2, by means of a suitable splitting
of the integration domain we obtain the following important lower bound for the degradation-induced
contribution to (3.6), underlining its independence of the initial data.

Lemma 3.5 Let α > 1, and let

p :=

{

2
3−α if α ≤ 2,

2 if α > 2.
(3.12)
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Then there exists K1 > 0 with the property that for any choice of D > 0, d > 0, χ > 0, ρ > 0, µ >

0, κ > 0 and λ > 0, given any (u0, v0) fulfilling (1.3) one can find T⋆ > 0 such that

‖uε(·, t)− u⋆‖2Lp(Ω) ≤ K1u
2−α
⋆

∫

Ω
(uα−1
ε − uα−1

⋆ ) · (uε − u⋆) for all t > T⋆ and ε ∈ (0, 1), (3.13)

where u⋆ > 0 is taken from (1.9).

Proof. We let K > 0 be as introduced in Lemma 3.4 and claim that then for any u0 and v0
fulfilling (1.3) we can find T⋆ > 0 such that (3.13) holds with

K1 := c1 + c2, where c1 :=







2
2
p

1−21−α · (2|Ω|)2−α if α ≤ 2,

2
2
p

1−21−α · 22−α if α > 2
and c2 :=

(2|Ω|)
2−p

p

K
.

(3.14)
To this end, given any such (u0, v0) we first invoke Lemma 2.2 to pick T⋆ = T⋆(u0, v0) > 0 fulfilling

‖uε(·, t)‖L1(Ω) ≤ 2u⋆|Ω| for all t > T⋆ and ε ∈ (0, 1), (3.15)

and use the fact that since p ≥ 2 we have (a+ b)
2

p ≤ 2
2

p
−1

(a
2

p + b
2

p ) for a ≥ 0 and b ≥ 0,

‖uε − u⋆‖2Lp(Ω) =

{
∫

{uε<2u⋆}
|uε − u⋆|p +

∫

{uε≥2u⋆}
(uε − u⋆)

p

}
2

p

≤ 2
2

p
−1 ·

{
∫

{uε<2u⋆}
|uε − u⋆|p

}
2

p

+2
2

p
−1 ·

{
∫

{uε≥2u⋆}
upε

}
2

p

for all t > 0 and ε ∈ (0, 1). (3.16)

Here in the latter integral we can make use of (3.15) to see that if α ≤ 2 then due to the Hölder
inequality and thanks to our choice of p,

{
∫

{uε≥2u⋆}
upε

}
2

p

= ‖uε‖2
L

2
3−α ({uε≥2u⋆})

≤ ‖uε‖αLα({uε≥2u⋆})
‖uε‖2−αL1({uε≥2u⋆})

≤ (2u⋆|Ω|)2−α
∫

{uε≥2u⋆}
uαε for all t > T⋆ and ε ∈ (0, 1), (3.17)

while in the case when α > 2 and thus p = 2, we can trivially estimate

{
∫

{uε≥2u⋆}
upε

}
2

p

=

∫

{uε≥2u⋆}
u2ε ≤ (2u⋆)

2−α

∫

{uε≥2u⋆}
uαε for all t > 0 and ε ∈ (0, 1). (3.18)

As, on the other hand, regardless of the sign of α− 2 we have
∫

{uε≥2u⋆}
(uα−1
ε − uα−1

⋆ ) · (uε − u⋆) ≥
∫

{uε≥2u⋆}

(

uα−1
ε −

(uε

2

)α−1)

·
(

uε −
uε

2

)

=
1− 21−α

2

∫

{uε≥2u⋆}
uαε for all t > 0 and ε ∈ (0, 1),

11



from (3.17) and (3.18) we infer that

2
2

p
−1 ·

{
∫

{uε≥2u⋆}
upε

}
2

p

≤ c1u
2−α
⋆

∫

{uε≥2u⋆}
(uα−1
ε − uα−1

⋆ ) · (uε − u⋆) for all t > T⋆ and ε ∈ (0, 1)

(3.19)
with c1 > 0 as defined in (3.14).

Next, in order to control the first summand on the right of (3.16), we note that again by applying the
Hölder inequality and relying on the fact that p ≤ 2, we may utilize Lemma 3.4 to find that for all
t > 0 and ε ∈ (0, 1),

2
2

p
−1 ·

{
∫

{uε<2u⋆}
|uε − u⋆|p

}
2

p

≤ 2
2

p
−1|Ω|

2−p

p

∫

{uε<2u⋆}
(uε − u⋆)

2

= (2|Ω|)
2−p

p u2⋆

∫

{uε<2u⋆}

(uε

u⋆
− 1

)2

≤ (2|Ω|)
2−p

p u2⋆
K

∫

{uε<2u⋆}

((uε

u⋆

)α−1
− 1

)

·
(uε

u⋆
− 1

)

=
(2|Ω|)

2−p

p u2−α⋆

K

∫

{uε<2u⋆}
(uα−1
ε − uα−1

⋆ ) · (uε − u⋆).

Together with (3.19), this shows that indeed (3.13) is valid if we take K1 > 0 as in (3.14). �

3.3 The evolution of
∫

Ω
(vε − vε)

2

Next turning our attention to the second summand making up (1.8), we note the following basic
description of its evolution at the level of approximate solutions.

Lemma 3.6 Let α > 1, D > 0, d > 0, χ > 0, ρ > 0, µ > 0, κ > 0 and λ > 0. Then for any choice of
a ∈ R,

1

2

d

dt

∫

Ω

(

vε(·, t)− vε(·, t)
)2

+ d

∫

Ω
|∇vε(·, t)|2 + κ

∫

Ω

(

vε(·, t)− vε(·, t)
)2

= λ

∫

Ω

( uε(·, t)
1 + εuε(·, t)

− a
)

·
(

vε(·, t)− vε(·, t)
)

for all t > 0 and ε ∈ (0, 1). (3.20)

Proof. As
∫

Ω

(

vε(·, t)− vε(·, t)
)

= 0 for all t > 0 and ε ∈ (0, 1) (3.21)

by (1.10), on the basis of the second equation in (2.1) we see that

1

2

d

dt

∫

Ω

(

vε(·, t)− vε(·, t)
)2

=

∫

Ω

(

vε(·, t)− vε(·, t)
)

·
(

vεt(·, t)− ∂tvε(·, t)
)

=

∫

Ω

(

vε(·, t)− vε(·, t)
)

·
(

d∆vε(·, t)− κvε(·, t) + λ
uε(·, t)

1 + εuε(·, t)
)
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= −d
∫

Ω
|∇vε(·, t)|2 − κ

∫

Ω

(

vε(·, t)− vε(·, t)
)

· vε(·, t)

+λ

∫

Ω

(

vε(·, t)− vε(·, t)
)

· uε(·, t)
1 + εuε(·, t)

for all t > 0 and ε ∈ (0, 1).

Since, again due to (3.21),

−κ
∫

Ω

(

vε(·, t)− vε(·, t)
)

· vε(·, t) = −κ
∫

Ω

(

vε(·, t)− vε(·, t)
)2

as well as

λ

∫

Ω

(

vε(·, t)− vε(·, t)
)

· uε(·, t)
1 + εuε(·, t)

= λ

∫

Ω

(

vε(·, t)− vε(·, t)
)

·
( uε(·, t)
1 + εuε(·, t)

− a
)

for t > 0 and ε ∈ (0, 1) whenever a ∈ R, this already establishes (3.20). �

3.4 An eventual Lyapunov property for small χ

Now it turns out that for adequately small χ, the right-hand side contributions to both (3.6) and
(3.20) can simultaneously be absorbed by suitable of the respectively dissipated quantities in such a
way that for some choice of b a linear combination of the form in (1.8) indeed eventually plays the
role of an energy functional for (2.1):

Lemma 3.7 Let α > 1 be such that α ≥ 2− 2
n
, let D > 0, d > 0, ρ > 0, µ > 0, κ > 0 and λ > 0, and

suppose that χ > 0 is such that

χ2 ≤ d2D

K1K2λ2
ρ
− 3−α

α−1µ
2

α−1 , (3.22)

where K1 is taken from Lemma 3.5, and where K2 > 0 is such that with p > 1 taken from (3.12) we
have

‖ϕ− ϕ‖2
L

p

p−1 (Ω)
≤ K2‖∇ϕ‖2L2(Ω) for all ϕ ∈W 1,2(Ω). (3.23)

Then there exists b > 0 such that whenever (u0, v0) satisfies (1.3), one can find C = C(u0, v0) > 0
and T⋆ = T⋆(u0, v0) > 0 such that writing

Fε(t) :=
∫

Ω

(

uε(·, t)− u⋆ − u⋆ ln
uε(·, t)
u⋆

)

+
b

2

∫

Ω

(

vε(·, t)− vε(·, t)
)2
, (3.24)

and

Dε(t) := C

∫

Ω

|∇uε(·, t)|2
u2ε(·, t)

+ C‖uε(·, t)− u⋆‖2Lp(Ω) + C

∫

Ω

(

vε(·, t)− vε(·, t)
)2
, t > 0, ε ∈ (0, 1),

(3.25)
we have

F ′
ε(t) +Dε(t) ≤ 0 for all t > T⋆ and ε ∈ (0, 1). (3.26)
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Proof. We let

b :=
χ2u⋆

dD
(3.27)

and recall that u⋆ = ( ρ
µ
)

1

α−1 to see that according to (3.22) we have

bK1K2λ
2u2−α⋆

d
=
K1K2λ

2u3−α⋆ χ2

d2D
=
K1K2λ

2ρ
3−α

α−1µ
− 2

α−1χ2

d2D
· µ ≤ µ. (3.28)

Assuming (1.3) and taking Fε as accordingly defined by (3.24), on the basis of Lemma 3.3 and Lemma
3.6, the latter applied to a := u⋆

1+εu⋆
, we then obtain that

F ′
ε(t) + Du⋆

∫

Ω

|∇uε|2
u2ε

+ bd

∫

Ω
|∇vε|2 + µ

∫

Ω
(uα−1
ε − uα−1

⋆ ) · (uε − u⋆) + bκ

∫

Ω

(

vε − vε(·, t)
)2

= χu⋆

∫

Ω

∇uε
uε

· ∇vε

+bλ

∫

Ω

( uε

1 + εuε
− u⋆

1 + εu⋆

)

·
(

vε − vε(·, t)
)

for all t > 0 and ε ∈ (0, 1). (3.29)

Here by Young’s inequality and (3.27),

χu⋆

∫

Ω

∇uε
uε

· ∇vε ≤ Du⋆

2

∫

Ω

|∇uε|2
u2ε

+
χ2u⋆

2D

∫

Ω
|∇vε|2

≤ Du⋆

2

∫

Ω

|∇uε|2
u2ε

+
bd

2

∫

Ω
|∇vε|2 for all t > 0 and ε ∈ (0, 1), (3.30)

whereas due to the Hölder inequality, (3.23) and Young’s inequality,

bλ

∫

Ω

( uε

1 + εuε
− u⋆

1 + εu⋆

)

·
(

vε − vε(·, t)
)

≤ bλ
∥

∥

∥

uε

1 + εuε
− u⋆

1 + εu⋆

∥

∥

∥

Lp(Ω)

∥

∥

∥
vε − vε(·, t)

∥

∥

∥

L
p

p−1 (Ω)

≤ bλ
√

K2

∥

∥

∥

uε

1 + εuε
− u⋆

1 + εu⋆

∥

∥

∥

Lp(Ω)
‖∇vε‖L2(Ω)

≤ bd

2
‖∇vε‖2L2(Ω) +

bK2λ
2

2d

∥

∥

∥

uε

1 + εuε
− u⋆

1 + εu⋆

∥

∥

∥

2

Lp(Ω)
for all t > 0 and ε ∈ (0, 1). (3.31)

Since
∥

∥

∥

uε

1 + εuε
− u⋆

1 + εu⋆

∥

∥

∥

Lp(Ω)
≤ ‖uε − u⋆‖Lp(Ω) for all t > 0 and ε ∈ (0, 1)

by the mean value theorem, and since thus Lemma 3.5 in conjunction with (3.28) say that with T⋆ > 0
as provided there we have

bK2λ
2

2d

∥

∥

∥

uε

1 + εuε
− u⋆

1 + εu⋆

∥

∥

∥

2

Lp(Ω)
+
bK2λ

2

2d
‖uε − u⋆‖2Lp(Ω)
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≤ bK2λ
2

d
‖uε − u⋆‖2Lp(Ω)

≤ bK1K2λ
2u2−α⋆

d

∫

Ω
(uα−1
ε − uα−1

⋆ ) · (uε − u⋆)

≤ µ

∫

Ω
(uα−1
ε − uα−1

⋆ ) · (uε − u⋆) for all t > T⋆ and ε ∈ (0, 1),

from (3.29), (3.30) and (3.31) we thus infer that

F ′
ε(t) +

Du⋆

2

∫

Ω

|∇uε|2
u2ε

+
bK2λ

2

d
‖uε − u⋆‖pLp(Ω) + bκ

∫

Ω

(

vε − vε(·, t)
)2

≤ 0

for all t > T⋆ and ε ∈ (0, 1). We therefore readily arrive at (3.26) upon taking C > 0 suitably small
and then defining Dε through (3.25). �

Intending to make use of (3.26) for suitably large times only, we next aim at providing bounds for Fε
from above, possibly depending on time but not on ε. This will be based on the following elementary
evolution property.

Lemma 3.8 Let α > 1, D > 0, d > 0, χ > 0, ρ > 0, µ > 0, κ > 0 and λ > 0. Then

− d

dt

∫

Ω
lnuε+D

∫

Ω

|∇uε|2
u2ε

= χ

∫

Ω

∇uε
uε

·∇vε−ρ|Ω|+µ
∫

Ω
uα−1
ε for all t > 0 and ε ∈ (0, 1). (3.32)

Proof. This can be seen by straightforward computation using the first equation in (2.1). �

In fact, in conjunction with another standard testing procedure the latter enables us to derive the
following.

Lemma 3.9 Let α > 1 be such that α ≥ 2− 2
n
, and let D > 0, d > 0, ρ > 0, µ > 0, κ > 0 and λ > 0.

Then for all T > 0 there exists C(T ) > 0 such that

−
∫

Ω
lnuε(·, t) ≤ C(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (3.33)

and that
∫

Ω
v2ε(·, t) ≤ C(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (3.34)

Proof. We test the second equation in (2.1) against vε to see that taking p as in (3.12), due to the
Hölder inequality we have

1

2

d

dt

∫

Ω
v2ε + d

∫

Ω
|∇vε|2 + κ

∫

Ω
v2ε = λ

∫

Ω

uε

1 + εuε
vε

≤ λ
∥

∥

∥

uε

1 + εuε

∥

∥

∥

Lp(Ω)
‖vε‖

L
p

p−1 (Ω)

≤ λ‖uε‖Lp(Ω)‖vε‖
L

p

p−1 (Ω)
for all t > 0 and ε ∈ (0, 1).(3.35)

Since p
p−1 is finite and satisfies p

p−1 ≤ 2n
(n−2)+

thanks to the assumption that α ≥ 2 − 2
n
, and since

thus W 1,2(Ω) is continuously embedded into L
p

p−1 (Ω), we can find c1 > 0 such that ‖ϕ‖2
L

p

p−1 (Ω)
≤
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c1 · (‖∇ϕ‖2L2(Ω) + ‖ϕ‖2
L2(Ω)) for all ϕ ∈ W 1,2(Ω), so that letting c2 := min{d2 , κ} > 0, from (3.35) we

infer that by Young’s inequality,

d

dt

∫

Ω
v2ε + d

∫

Ω
|∇vε|2 ≤ −2c2 ·

{
∫

Ω
|∇vε|2 +

∫

Ω
v2ε

}

+ 2
√
c1λ‖uε‖Lp(Ω) ·

{
∫

Ω
|∇vε|2 +

∫

Ω
v2ε

}
1

2

≤ c1λ
2

2c2
‖uε‖2Lp(Ω) for all t > 0 and ε ∈ (0, 1). (3.36)

Here in the case α ≤ 2 we can use the Hölder inequality along with (2.3) to find c3 > 0 such that

c1λ
2

2c2
‖uε‖2Lp(Ω) ≤

c1λ
2

2c2
‖uε‖αLα(Ω)‖uε‖2−αL1(Ω)

≤ c3

∫

Ω
uαε for all t > 0 and ε ∈ (0, 1), (3.37)

while if α > 2 then, again by Young’s inequality,

c1λ
2

2c2
‖uε‖2Lp(Ω) =

c1λ
2

2c2

∫

Ω
u2ε ≤

c1λ
2

2c2

∫

Ω
uαε +

c1λ
2|Ω|

2c2
for all t > 0 and ε ∈ (0, 1). (3.38)

Therefore, (3.36) entails that with c4 := max{c3 , c1λ
2

2c2
,
c1λ

2|Ω|
2c2

} we have

d

dt

∫

Ω
v2ε + d

∫

Ω
|∇vε|2 ≤ c4

∫

Ω
uαε + c4 for all t > 0 and ε ∈ (0, 1), (3.39)

which combined with Lemma 3.8 shows that if we let c5 := χ2

4dD , then once more due to Young’s
inequality,

d

dt

{

−
∫

Ω
lnuε + c5

∫

Ω
v2ε

}

≤ −D
∫

Ω

|∇uε|2
u2ε

+ χ

∫

Ω

∇uε
uε

· ∇vε − ρ|Ω|+ µ

∫

Ω
uα−1
ε

−c5d
∫

Ω
|∇vε|2 + c4c5

∫

Ω
uαε + c4c5

≤ −ρ|Ω|+ µ

∫

Ω
uα−1
ε + c4c5

∫

Ω
uαε + c4c5

≤ (c4c5 + µ)

∫

Ω
uαε + c4c5 + µ|Ω| for all t > 0 and ε ∈ (0, 1)

and hence

−
∫

Ω
lnuε(·, t) + c5

∫

Ω
v2ε(·, t) ≤ −

∫

Ω
lnu0 + c5

∫

Ω
v20 + (c4c5 + µ)

∫ t

0

∫

Ω
uαε + (c4c5 + µ|Ω|) · t

for all t > 0 and ε ∈ (0, 1). In view of (2.4) and the fact that −
∫

Ω lnu0 < ∞ by (1.3), this readily
yields the claim, because

∫

Ω lnuε(·, t) ≤
∫

Ω uε(·, t) ≤ m for all t > 0 and ε ∈ (0, 1) thanks to (2.3). �

We are now in the position to derive the following consequence of (3.26).
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Lemma 3.10 Let α > 1 be such that α ≥ 2− 2
n
, let D > 0, d > 0, ρ > 0, µ > 0, κ > 0 and λ > 0, and

suppose that χ > 0 satisfies (3.22). Then given (u0, v0) fulfilling (1.3), one can find C = C(u0, v0) > 0
and T⋆ = T⋆(u0, v0) > 0 such that

∫

Ω
lnuε(·, t) ≥ −C for all t > T⋆ and ε ∈ (0, 1) (3.40)

and
∫ ∞

T⋆

∫

Ω

|∇uε|2
u2ε

≤ C for all ε ∈ (0, 1) (3.41)

as well as
∫ ∞

T⋆

‖uε(·, t)− u⋆‖2Lp(Ω)dt ≤ C for all ε ∈ (0, 1) (3.42)

and
∫ ∞

T⋆

‖vε(·, t)− vε(·, t)‖2L2(Ω)dt ≤ C for all ε ∈ (0, 1), (3.43)

where p > 1 is taken from (3.12).

Proof. According to Lemma 3.7, we can fix b > 0, c1 = c1(u0, v0) > 0 and T⋆ = T⋆(u0, v0) > 0
such that with (Fε)ε∈(0,1) as defined in (3.24) we have

F ′
ε(t) + c1 ·

{

∥

∥

∥

∇uε(·, t)
uε(·, t)

∥

∥

∥

2

L2(Ω)
+
∥

∥

∥
vε(·, t)− vε(·, t)

∥

∥

∥

2

L2(Ω)
+ ‖uε(·, t)− u⋆‖2Lp(Ω)

}

≤ 0 (3.44)

for all t > T⋆ and ε ∈ (0, 1). Apart from that, again explicitly relying on the assumption α ≥ 2 − 2
n

we may invoke Lemma 3.9 along with (2.3) to find ci = ci(u0, v0) > 0, i ∈ {2, 3, 4}, such that

−
∫

Ω
lnuε(·, T⋆) ≤ c2,

∫

Ω
v2ε(·, T⋆) ≤ c3 and

∫

Ω
uε(·, T⋆) ≤ c4 for all ε ∈ (0, 1),

so that

Fε(T⋆) ≤
∫

Ω
uε(·, T⋆)− u⋆

∫

Ω
lnuε(·, T⋆) + |Ω|u⋆| lnu⋆|+

b

2

∫

Ω
v2ε(·, T⋆)

≤ c5 := c4 + c2u⋆ + u⋆| lnu⋆|+
bc3

2
for all ε ∈ (0, 1).

An integration of (3.44) therefore shows that for all t > T⋆ and ε ∈ (0, 1),

Fε(t) + c1

∫ t

T⋆

{

∥

∥

∥

∇uε(·, s)
uε(·, s)

∥

∥

∥

2

L2(Ω)
+
∥

∥

∥
vε(·, s)− vε(·, s)

∥

∥

∥

2

L2(Ω)
+ ‖uε(·, s)− u⋆‖2Lp(Ω)

}

ds ≤ c5,

and thereby entails (3.40), (3.41), (3.42) and (3.43) due to the fact that Fε(t) ≥ −(u⋆+u⋆| lnu⋆|)|Ω|−
u⋆

∫

Ω lnuε(·, t) for all t > 0 and ε ∈ (0, 1). �
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4 Persistence of energy decrease in the limit problem

We shall next address the question how far the monotonicity property in (3.26) persists in the limit of
vanishing ε. Our crucial preparation in this respect relies on the integral estimate from Lemma 3.1.

Corollary 4.1 Let α > 1 be such that α ≥ 2 − 2
n
, let D > 0, d > 0, ρ > 0, µ > 0, κ > 0, λ > 0 and

χ > 0 be such that (3.22) holds, and suppose that (1.3) is satisfied. Then there exist T⋆ = T⋆(u0, v0) > 0
and C = C(u0, v0) > 0 such that

∫ t+1

t

∫

Ω
Hq(uε) ≤ C for all t > T⋆ and ε ∈ (0, 1), (4.1)

where H is taken from (3.1) and q := max{α, 2}.
Proof. We employ Lemma 3.10 to find T⋆ = T⋆(u0, v0) > 0, c1 = c1(u0, v0) > 0 and c2 =
c2(u0, v0) > 0 such that

∫

Ω
lnuε(·, t) ≥ −c1 for all t > T⋆ and ε ∈ (0, 1) (4.2)

and
∫ ∞

T⋆

∫

Ω

|∇uε|2
u2ε

≤ c2 for all ε ∈ (0, 1), (4.3)

and applying Lemma 2.1 yields c3 = c3(u0, v0) > 0 and c4 = c4(u0, v0) > 0 fulfilling
∫

Ω
uε(·, t) ≤ c3 for all t > 0 and ε ∈ (0, 1) (4.4)

as well as
∫ t+1

t

∫

Ω
uαε ≤ c4 for all t > 0 and ε ∈ (0, 1). (4.5)

Since Lemma 3.1 provides c5 = c5(u0, v0) > 0 such that
∫

Ω
Hq(uε) ≤

∫

Ω
uαε + c5

∫

Ω

|∇uε|2
u2ε

+ c5 ·
{
∫

Ω
| lnuε|

}2

+ c5 for all t > 0,

and since using the elementary inequality ln ξ ≤ ξ for ξ > 1 we see that herein
∫

Ω
| lnuε| = 2

∫

{uε>1}
uε −

∫

Ω
lnuε

≤ 2c3 + c1 for all t > T⋆ and ε ∈ (0, 1),

this implies that
∫ t+1

t

∫

Ω
Hq(uε) ≤

∫ t+1

t

∫

Ω
uαε + c5

∫ t+1

t

∫

Ω

|∇uε|2
u2ε

+ c5

∫ t+1

t

{
∫

Ω
| lnuε|

}2

+ c5

≤ c4 + c2c5 + (2c3 + c1)
2c5 + c5 for all t > T⋆ and ε ∈ (0, 1),

and hence establishes (4.1). �

Thanks to the latter, passing to the limit in the first integral appearing in (3.24) is therefore possible
in the following sense.
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Lemma 4.2 Let α > 1 be such that α ≥ 2 − 2
n
, let D > 0, d > 0, ρ > 0, µ > 0, κ > 0, λ > 0 and

χ > 0 be such that (3.22) holds, and assume (1.3). Then there exist T⋆ = T⋆(u0, v0) > 0 and a null
set N = N(u0, v0) ⊂ (T⋆,∞) such that with (εj)j∈N and H taken from Proposition 1.1 and (3.1), we
have H(u(·, t)) ∈ L1(Ω) for all t ∈ (T⋆,∞) \N and

∫

Ω
H(uε(·, t)) →

∫

Ω
H(u(·, t)) for all t ∈ (T⋆,∞) \N as ε = εj ց 0. (4.6)

Proof. We take T⋆ = T⋆(u0, v0) > 0 as given by Corollary 4.1 and hence infer from the latter that
for each T > T⋆, the family (H(uε))ε∈(0,1) is bounded in Lq(Ω× (T⋆, T )) for q = min{α, 2}. As q > 1,
this implies that for any such T , (H(uε))ε∈(0,1) is uniformly integrable over Ω × (T⋆, T ), so that the
existence of a null set N = N(u0, v0) ⊂ (T⋆,∞) with the claimed properties readily results upon an
application of the Vitali convergence theorem, relying on the fact that uε → u a.e. in Ω× (T⋆,∞) as
ε = εj ց 0 according to Proposition 1.1. �

Along with a similar but in fact more straightforward property of the respective second summands,
this ensures that we may indeed pass to the limit in (3.24) and (3.26) to achieve the following.

Corollary 4.3 Let α > 1 satisfy α ≥ 2 − 2
n
, let D > 0, d > 0, ρ > 0, µ > 0, κ > 0, λ > 0 and

χ > 0 be such that (3.22) is valid, let b > 0 be as in Lemma 3.7, and assume (1.3). Then there exist
T⋆ = T⋆(u0, v0) > 0 and a null set N⋆ = N⋆(u0, v0) ⊂ (T⋆,∞) such that letting

F(t) :=

∫

Ω

(

u(·, t)− u⋆ − u⋆ ln
u(·, t)
u⋆

)

+
b

2

∫

Ω

(

v(·, t)− v(·, t)
)2
, t ∈ (T⋆,∞) \N⋆, (4.7)

defined a function F : (T⋆,∞) \N⋆ → [0,∞) satisfying

F(t) ≤ F(t0) for all t0 ∈ (T⋆,∞) \N⋆ and each t ∈ (t0,∞) \N⋆. (4.8)

Proof. We combine Lemma 4.2 with Lemma 3.7 to find T⋆ = T⋆(u0, v0) > 0 and a null set
N1 = N1(u0, v0) ⊂ (T⋆,∞) such that the function H defined in (3.1) satisfies H(u(·, t)) ∈ L1(Ω) for
all t ∈ (T⋆,∞) \N1, that taking (εj)j∈N from Proposition 1.1 we have

∫

Ω
H(uε(·, t)) →

∫

Ω
H(u(·, t)) for all t ∈ (T⋆,∞) \N1 as ε = εj ց 0, (4.9)

and that moreover

Fε(t) ≤ Fε(t0) for all t0 ∈ (T⋆,∞), any t > t0 and each ε ∈ (0, 1), (4.10)

where (Fε)ε∈(0,1) is as in (3.24). Apart from that, taking a null set N2 = N2(u0, v0) ⊂ (0,∞) such
that in accordance with Proposition 1.1 we have

vε(·, t) → v(·, t) in L2(Ω) for all t ∈ (0,∞) \N2 as ε = εj ց 0, (4.11)

and that hence clearly also

vε(·, t) → v(·, t) for all t ∈ (0,∞) \N2 as ε = εj ց 0, (4.12)

we conclude that if we let N⋆ := N1∪N2, then for all t ∈ (T⋆,∞)\N⋆ the definition in (4.7) introduces
a real-valued and nonnegative function F on (T⋆,∞) \N⋆ which due to (4.10), (4.9), (4.11) and (4.12)
indeed satisfies (4.8). �
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5 Convergence of (u, v) in the large time limit

5.1 Stabilization of
∫

Ω
v

Next concerned with possible implications of (4.8) on the large time behavior of u and v, we first
address the averages v appearing therein, and proceed to make sure that these stabilize toward a
limit compatible with the claim in (1.14). Our verification of this will utilize the following elementary
convergence feature.

Lemma 5.1 If g ∈ L1
loc((0,∞)) and g∞ ∈ R are such that

∫ t+1

t

|g(s)− g∞|ds→ 0 as t→ ∞, (5.1)

then for each a > 0,
∫ t

0
e−a(t−s)g(s)ds→ g∞

a
as t→ ∞. (5.2)

Proof. We first note that since
∫ t

0 e
−a(t−s)ds = 1

a
(1− e−at) → 1

a
as t → ∞, upon replacing g by

g − g∞ if necessary we may assume that g∞ = 0. Then given η > 0, we can first pick t1 = t1(η) > 1
large such that

∫ t

t−1
|g(s)|ds ≤ (1− e−a)η

2
for all t > t1, (5.3)

and then choose t2 = t2(η) > t1 in such a way that
∣

∣

∣

∣

∫ t1

0
easg(s)ds

∣

∣

∣

∣

· e−at2 ≤ η

2
. (5.4)

For fixed t > t2, we now rely on (5.4) in estimating
∣

∣

∣

∣

∫ t

0
e−a(t−s)g(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

e−at
∫ t1

0
easg(s)ds+

∫ t

t1

e−a(t−s)g(s)ds

∣

∣

∣

∣

≤ η

2
+

∫ t

t1

e−a(t−s)|g(s)|ds, (5.5)

where taking k = k(t) ∈ N such that t− k ≤ t1 < t− k + 1 we see that

∫ t

t1

e−a(t−s)|g(s)|ds ≤
∫ t

t−k
e−a(t−s)|g(s)|ds

=
k−1
∑

j=0

∫ t−j

t−j−1
e−a(t−s)|g(s)|ds

≤
k−1
∑

j=0

e−aj
∫ t−j

t−j−1
|g(s)|ds

≤
{ k−1
∑

j=0

e−aj
}

· (1− e−a)η

2
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=
1− e−ka

1− e−a
· (1− e−a)η

2

≤ η

2
.

Combined with (5.5), this yields the claim due to the fact that η > 0 was arbitrary. �

In fact, due to a basic mass evolution property in (2.1) the latter warrants the following.

Lemma 5.2 Let α > 1 be such that α ≥ 2− 2
n
, let D > 0, d > 0, ρ > 0, µ > 0, κ > 0, λ > 0 and χ > 0

be such that (3.22) holds, and assume (1.3). Then there exists and a null set N = N(u0, v0) ⊂ (T⋆,∞)
such that

∫

Ω
v(·, t) → λu⋆|Ω|

κ
as (0,∞) \N ∋ t→ ∞. (5.6)

Proof. An integration of the second equation in (2.1) shows that

d

dt

∫

Ω
vε + κ

∫

Ω
vε = λ

∫

Ω

uε

1 + εuε
for all t > 0 and ε ∈ (0, 1), (5.7)

and that hence
∫

Ω
vε(·, t) = e−κt

∫

Ω
v0 + λ

∫ t

0
e−κ(t−s) ·

{
∫

Ω

uε(·, s)
1 + εuε(·, s)

}

ds for all t > 0 and ε ∈ (0, 1). (5.8)

Now according to Proposition 1.1 we can find a null set N = N(u0, v0) ⊂ (0,∞) such that with (εj)j∈N
as given there we have

uε → u in L1(Ω× (0, t)) and a.e. in Ω× (0, t) for all t > 0 (5.9)

and
vε(·, t) → v(·, t) in L1(Ω) for all t ∈ (0,∞) \N (5.10)

and ε = εj ց 0. Since (5.9) together with the dominated convergence theorem entails that for all
t > 0 we also have

uε

1 + εuε
= uε −

εu2ε
1 + εuε

→ u in L1(Ω× (0, t)) as ε = εj ց 0

due to the fact that εu2ε
1+εuε

→ 0 a.e. in Ω× (0,∞) as ε = εj ց 0 and 0 ≤ εu2ε
1+εuε

≤ uε for all ε ∈ (0, 1),
we see that on the right-hand side of (5.8),

∣

∣

∣

∣

∣

λ

∫ t

0
e−κ(t−s) ·

{
∫

Ω

uε(·, s)
1 + εuε(·, s)

}

ds− λ

∫ t

0
e−κ(t−s) ·

{
∫

Ω
u(·, s)

}

ds

∣

∣

∣

∣

∣

= λ ·
∣

∣

∣

∣

∣

∫ t

0
e−κ(t−s) ·

{
∫

Ω

( uε(·, s)
1 + εuε(·, s)

− u(·, s)
)

}

ds

∣

∣

∣

∣

∣

≤ λ

∫ t

0

∫

Ω

∣

∣

∣

uε

1 + εuε
− u

∣

∣

∣

→ 0 for all t > 0 as ε = εj ց 0.
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Consequently, (5.8) and (5.10) imply that

∫

Ω
v(·, t) = e−κt

∫

Ω
v0 + λ

∫ t

0
e−κ(t−s) ·

{
∫

Ω
u(·, s)

}

ds for all t ∈ (0,∞) \N, (5.11)

where clearly

e−κt
∫

Ω
v0 → 0 as t→ ∞. (5.12)

Furthermore, an application of Lemma 5.1 to a := κ and g(t) := λ
∫

Ω u(·, t), t > 0, shows that

λ

∫ t

0
e−κ(t−s) ·

{
∫

Ω
u(·, s)

}

ds→ λu⋆|Ω|
κ

as t→ ∞, (5.13)

because by the Cauchy-Schwarz inequality,

∫ t+1

t

|g(s)− λu⋆|Ω| |ds = λ

∫ t+1

t

∣

∣

∣

∣

∫

Ω

(

u(·, s)− u⋆)
)

∣

∣

∣

∣

ds

≤ λ

∫ t+1

t

‖u(·, s)− u⋆‖L1(Ω)ds

≤ λ ·
{
∫ t+1

t

‖u(·, s)− u⋆‖2L1(Ω)ds

}
1

2

≤ λ ·
{
∫ ∞

t

‖u(·, s)− u⋆‖2L1(Ω)ds

}
1

2

for all t > 0,

and because Lemma 3.10 obviously entails that

∫ ∞

t

‖u(·, s)− u⋆‖2L1(Ω) → 0 as t→ ∞.

In summary, from (5.11), (5.12) and (5.13) we obtain (5.6). �

5.2 Decay of F along a subsequence

Thanks to the weak convergence properties implied by Lemma 5.2 and Lemma 3.10, the two summands
constituting F become arbitrarily small at least along suitable sequences of times:

Lemma 5.3 Let α > 1 be such that α ≥ 2− 2
n
, let D > 0, d > 0, ρ > 0, µ > 0, κ > 0, λ > 0 and χ > 0

be such that (3.22) holds, and given (u0, v0) fulfilling (1.3), let N⋆ = N⋆(u0, v0) be as in Corollary 4.3.
Then there exists (tk)k∈N ⊂ (T⋆,∞) \ N⋆ such that tk → ∞ as k → ∞, and that with H taken from
(3.1) we have

H(u(·, tk)) → 0 in L1(Ω) as k → ∞ (5.14)

and
v(·, tk) → v⋆ in L2(Ω) as k → ∞. (5.15)
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Proof. We first invoke Lemma 5.2 to identify a null set N1 ⊃ N⋆ such that

v(·, t) → λu⋆

κ
= v⋆ as (0,∞) \N1 ∋ t→ ∞, (5.16)

and once more use that the exponent p appearing in Lemma 3.10 satisfies p ≥ 1 in finding T1 =
T1(u0, v0) > 0, c1 = c1(u0, v0) > 0 and c2 = c2(u0, v0) > 0 fulfilling

∫ ∞

T1

‖uε(·, t)− u⋆‖2L1(Ω)dt ≤ c1 for all ε ∈ (0, 1) (5.17)

and
∫ ∞

T1

∫

Ω

(

vε(x, t)− vε(·, t)
)2
dxdt ≤ c2 for all ε ∈ (0, 1). (5.18)

Since Proposition 1.1 ensures that with (εj)j∈N as given there we have ‖uε(·, t)−u⋆‖L1(Ω) → ‖u(·, t)−
u⋆‖L1(Ω) for a.e. t > T1 and ε = εj ց 0, through Fatou’s lemma we infer from (5.17) that

∫ ∞

T1

‖u(·, t)− u⋆‖2L1(Ω)dt <∞, (5.19)

and similarly we conclude from (5.18) that

∫ ∞

T1

∫

Ω

(

v(x, t)− v(·, t)
)2
dxdt <∞, (5.20)

because vε → v a.e. in Ω× (T1,∞) as ε = εj ց 0 by (1.6), and because vε(·, t) → v(·, t) for a.e. t > T1
and ε = εj ց 0 due to (1.7).

Apart from that, we may employ Corollary 4.1 to obtain T2 = T2(u0, v0) > T1 and c3 = c3(u0, v0) > 0
such that again with q = min{α, 2} we have

∫ t+1

t

∫

Ω
Hq(uε) ≤ c3 for all t > T2,

which once more by means of Fatou’s lemma entails that

∫ t+1

t

∫

Ω
Hq(u) ≤ c3 for all t > T2, (5.21)

because H(uε) → H(u) a.e. in Ω× (T2,∞) as ε = εj ց 0 according to (1.5).

Now a combination of (5.19), (5.20) and (5.21) enables us to pick (tk)k∈N ⊂ (T2,∞) \ N1 with the
properties that as k → ∞ we have tk → ∞ and

‖u(·, tk)− u⋆‖L1(Ω) → 0 (5.22)

as well as
‖v(·, tk)− v(·, tk)‖L2(Ω) → 0, (5.23)
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and that
∫

Ω
Hq(u(·, tk)) ≤ c3 for all k ∈ N, (5.24)

where on the basis of (5.22) we may assume upon extracting a subsequence if necessary that also

u(·, tk) → u⋆ a.e. in Ω as k → ∞.

Since the latter clearly entails that H(u(·, tk)) → H(u⋆) = 0 a.e. in Ω as k → ∞, and since (5.24) along
with the the inequality q > 1 warrants equi-integrability of (H(u(·, tk)))k∈N over Ω, an application of
the Vitali convergence theorem shows that indeed (5.14) is valid, whereas (5.15) results from (5.14)
due to the fact that v(·, tk) → v⋆ as k → ∞ by (5.16). �

5.3 Convergence. Proof of Theorem 1.2

We now only need to make use of the downward monotonicity of F outside N⋆ to obtain its genuine
decay in the following flavor.

Corollary 5.4 Let α > 1 be such that α ≥ 2 − 2
n
, let D > 0, d > 0, ρ > 0, µ > 0, κ > 0,

λ > 0 and χ > 0 be such that (3.22) holds, and given (u0, v0) fulfilling (1.3), let N⋆ = N⋆(u0, v0),
T⋆ = T⋆(u0, v0) > 0 and F be as in Corollary 4.3. Then

F(t) → 0 as (T⋆,∞) \N⋆ ∋ t→ ∞. (5.25)

Proof. We only need to observe that according to Lemma 5.3, given any η > 0 we can choose
t0 = t0(η) ∈ (T⋆,∞) \N⋆ suitably large such that

∫

Ω
H(u(·, t0)) ≤

η

2
,

and that with b as in Corollary 4.3 we have
∫

Ω

(

v(·, t)− v(·, t)
)2

≤ η

b
,

and that thus, by (4.7),

F(t0) ≤
η

2
+
b

2
· η
b
= η.

Thefeore, namely, (4.8) ensures that

F(t) ≤ η for all t ∈ (t0,∞) \N⋆,

and that therefore (5.25) holds. �

Thanks to the auxiliary statement on H from Lemma 3.2, this can be turned into our main result
asserting convergence of u and v in the claimed Lebesgue space topologies:

Proof of Theorem 1.2. With K1 > 0 and K2 > 0 taken from Lemma 3.5 and Lemma 3.7, we define
C(Ω) := 1

K1K2
, and assuming (1.12) we let T⋆ > 0 and N⋆ ⊂ (T⋆,∞) be as given by Corollary 4.3, to
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then infer from Corollary 5.4 that then the global generalized solution (u, v) of (1.2) from Proposition
1.1 satisfies

∫

Ω
H(u(·, t)) → 0 as (T⋆,∞) \N⋆ ∋ t→ ∞ (5.26)

and
∫

Ω

(

v(·, t)− v(·, t)
)2

→ 0 as (T⋆,∞) \N⋆ ∋ t→ ∞. (5.27)

Apart from that taking a null set N1 ⊂ (0,∞) such that in accordance with Lemma 5.2 we have

v(·, t) → v⋆ as (0,∞) \N1 ∋ t→ ∞,

from (5.27) we infer that (1.14) holds if we let T := T⋆ and N := N⋆ ∪N1. Since (5.26) together with
Lemma 3.2 ensures that

∫

Ω
|u(·, t)− u⋆| → 0 as (T⋆,∞) \N⋆ ∋ t→ ∞,

we furthermore see that also (1.13) is valid for this choice of T and N . �

Appendix: The underlying solution concept

The following definition essentially adapts the one underlying the existence theory from [47] to the case of
arbitrary positive parameters D, d, χ, κ and λ. We accordingly may refrain from detailing a discussion about
how far this concept is consistent with that of classical solvability here, and rather refer the reader to ([47] and
the related precedent in [20] instead.

Definition 5.5 Let
{

u ∈ Lα
loc(Ω× [0,∞)) and

v ∈ L1

loc([0,∞);W 1,1(Ω))
(5.28)

be nonnegative. Then we call (u, v) a global generalized solution of (1.2) if

−
∫

∞

0

∫

Ω

vϕt −
∫

Ω

v0ϕ(·, 0) = −d
∫

∞

0

∫

Ω

∇v · ∇ϕ− κ

∫

∞

0

∫

Ω

vϕ+ λ

∫

∞

0

∫

Ω

uϕ (5.29)

for all ϕ ∈ c∞0 (Ω× [0,∞)), if

∫

Ω

u(·, t) ≤
∫

Ω

u0 +

∫ t

0

∫

Ω

(ρu− µuα) for a.e. t > 0, (5.30)

and if there exist functions φ ∈ C2([0,∞)), ψ ∈ C2([0,∞)) and Φ ∈ C2([0,∞)) such that

φ′ < 0, ψ > 0 and φ′′ > 0 on [0,∞), (5.31)

that
Φ′ =

√

φ′′ on [0,∞), (5.32)
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that

{

dφ(u)ψ′′(v)− (D + d)2

4D

φ′2(u)

φ′′(u)
· ψ

′2(v)

ψ(v)
− χ2

4D
u2φ′′(u)ψ(v) +

(d−D)χ

2D
uφ′(u)ψ′(v)

}

|∇v|2,

uφ′(u)ψ(v)|∇v|, φ(u)ψ′(v)|∇v| and
Φ(u)φ′(u)
√

φ′′(u)
ψ′(v)|∇v| as well as

uαφ′(u)ψ(v), vφ(u)ψ′(v) and uφ(u)ψ′(v) belong to L1

loc(Ω× [0,∞)), (5.33)

that
Φ(u)

√

ψ(v) ∈ L2

loc([0,∞);W 1,2(Ω)), (5.34)

and that for each nonnegative ϕ ∈ C∞

0 (Ω× [0,∞)), the inequality

−
∫

∞

0

∫

Ω

φ(u)ψ(v)ϕt −
∫

Ω

φ(u0)ψ(v0)ϕ(·, 0)

≤ −D
∫

∞

0

∫

Ω

∣

∣

∣

∣

∇
(

Φ(u)
√

ψ(v)
)

+
{D + d

2D

φ′(u)
√

φ′′(u)
· ψ′(v)
√

ψ(v)
− 1

2
Φ(u)

ψ′(v)
√

ψ(v)
− χ

2D
u
√

φ′′(u) ·
√

ψ(v)
}

∇v
∣

∣

∣

∣

2

ϕ

−
∫

∞

0

∫

Ω

{

dφ(u)ψ′′(v)− (D + d)2

4D

φ′2(u)

φ′′(u)
· ψ

′2(v)

ψ(v)
− χ2

4D
u2φ′′(u)ψ(v) +

(d−D)χ

2D
uφ′(u)ψ′(v)

}

· |∇v|2ϕ

−D
∫

∞

0

∫

Ω

φ′(u)
√

φ′′(u)

√

ψ(v)∇
(

Φ(u)
√

ψ(v)
)

· ∇ϕ

+

∫

∞

0

∫

Ω

{

χuφ′(u)ψ(v)− dφ(u)ψ′(v) +
D

2

Φ(u)φ′(u)
√

φ′′(u)
ψ′(v)

}

∇v · ∇ϕ

+

∫

∞

0

∫

Ω

{

(ρu− µuα)φ′(u)ψ(v)− κvφ(u)ψ′(v) + λuφ(u)ψ′(v)
}

· ϕ (5.35)

holds.

According to the analysis detailed in [47], with some appropriately chosen (εj)j∈N ⊂ (0, 1) fulfilling εj ց 0
as j → ∞, and with some null set N ⊂ (0,∞), the corresponding solutions (uε, vε) of (2.1) indeed satisfy
(1.5)-(1.7) with some pair (u, v) which complies with (5.28)-(5.35) if we let

φ(s) := (s+ 1)−r, Φ(s) := −2

√

r + 1

r
(s+ 1)−

r

2 and ψ(s) := e−θs, s ≥ 0, s ≥ 0, (5.36)

and herein firstly take r > 0 suitably small and then θ > 0 adequately large such that

{

d− (D + d)2

4D
· r

r + 1

}

· θ2 − (D − d)χr

2D
· θ − r(r + 1)

4D
> 0.
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