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Abstract

In a bounded planar domain Ω with smooth boundary, the initial-boundary value problem of
homogeneous Neumann type for the Keller-Segel-fluid system

{

nt+∇ · (nu) = ∆n−∇ · (n∇c), x ∈ Ω, t > 0,

0 = ∆c− c+ n, x ∈ Ω, t > 0,

is considered, where u is a given sufficiently smooth velocity field on Ω× [0,∞) that is tangential
on ∂Ω but not necessarily solenoidal.

It is firstly shown that for any choice of n0 ∈ C0(Ω) with
∫

Ω
n0 < 4π, this problem admits a

global classical solution with n(·, 0) = n0, and that this solution is even bounded whenever u is
bounded and

∫

Ω
n0 < 2π. Secondly, it is seen that for each m > 4π one can find a classical solution

with
∫

Ω
n(·, 0) = m which blows up in finite time, provided that Ω satisfies a technical assumption

requiring ∂Ω to contain a line segment.

In particular, this indicates that the value 4π of the critical mass for the corresponding fluid-free
Keller-Segel system is left unchanged by any fluid interaction of the considered type, thus marking
a considerable contrast to a recent result revealing some fluid-induced increase of critical blow-up
masses in a related Cauchy problem in the entire plane.
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1 Introduction

Understanding possible effects of fluid interaction on chemotaxis systems has been the objective of
considerable efforts in the mathematical literature during the past decade. Motivated by experimen-
tally obtained results reporting significant influences of corresponding transport mechanisms on the
structure-enhancing potential of aggregation due to attractive cross-diffusion ([23]), a noticeable lit-
erature has been concerned with various types of associated chemotaxis-fluid systems. Even in the
most complex case in which, according to the modeling approach presented in [23], the fluid velocity
itself is an unknown system variable according to buoyancy-induced feedback effects of cells on the
fluid flow, beyond establishing basic solution theories ([7], [27], [12], [4], [3], [24], [25] [29], [31], [21])
it has been possible to address aspects related to qualitative solution behavior in some situations ([4],
[28], [35], [30], [5], [14], [32], [33]).

While the latter class of findings seems yet limited to results identifying conditions under which spatial
homogeneity ultimately prevails due to dominance of various dissipative mechanisms, somewhat deeper
insight with regard to genuine structure formation could be gained upon renouncing any feedback of
the considered population on the fluid evolution, thus considering the fluid flow as an externally given
system ingredient. Examples in this direction address corresponding variants of classical Keller-Segel
systems which in their fluid-free two- and higher-dimensional versions are known to exhibit blow-up
phenomena due to the aggregation-enhancing interplay of chemotactic attraction to a signal produced
by the cells themselves ([10], [17], [1], [19]). The results reported in [11], for instance, indicate that in
two- and three-dimensional cases, any such explosion can be suppressed by an appropriately chosen,
and hence data-dependent, incompressible fluid velocity field.

Even a class of very simple and explicit fluid fields has recently been found to substantially influence
the critical mass phenomenon known as the probably most striking characteristic feature of the Cauchy
problem for the unperturbed parabolic-elliptic Keller-Segel system in the whole plane: Namely, it has
been shown in [9] that for each m ∈ (0, 16π) there exist A > 0 and some initial data n0 fulfilling
∫

R2 n0 = m such that with u(x) := A · (−x1, x2), x = (x1, x2) ∈ R
2, the problem











nt+∇ · (nu) = ∆n−∇ · (n∇c), x ∈ R
2, t > 0,

0 = ∆c+ n, x ∈ R
2, t > 0,

n(x, 0) = n0(x), x ∈ R
2,

(1.1)

possesses a globally defined smooth solution. As the corresponding fluid-free analogue with u ≡ 0
is well-known to allow for global solutions only when

∫

R2 n0 ≤ 8π, whereas any choice of reasonably
regular n0 with

∫

R2 n0 > 8π enforces finite-time blow-up of the associated solution ([19], [20]), this
demonstrates that fluid transport in fact can increase the value of the critical mass in this Cauchy
problem, which appears to be in quite good accordance with the predictions formulated as conclusions
from the numerical simulations in [16].

The intention of the present work is to show that this considerably changes when the considered
physical region is a bounded domain Ω ⊂ R

2 with smooth boundary, rather than the entire plane. For
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this purpose, let us recall that in the case u ≡ 0, the Neumann initial-boundary value problem



















nt+∇ · (nu) = ∆n−∇ · (n∇c), x ∈ Ω, t > 0,

0 = ∆c− c+ n, x ∈ Ω, t > 0,
∂n
∂ν

= ∂c
∂ν

= 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), x ∈ Ω,

(1.2)

still exhibits a critical mass phenomenon with respect to finite-time blow-up, but that this slightly
differs from the above in its nature: It is well-known, namely, that whenever n0 is sufficiently regular
with

∫

Ω n0 < mc := 4π, then (1.2) admits a global classical solution, while for anym > 4π it is possible
to find at least some smooth n0 such that

∫

Ω n0 = m, but that (1.2) possesses a solution blowing up
in finite time with respect to the spatial L∞ norm of the component n ([17], [1], [20]). Indeed, a role
of mc equally strict to that of the number 8π in the context of (1.1) cannot be expected in (1.2) due
to the presence of the constant steady states (n, c) ≡ ( m

|Ω| ,
m
|Ω|) at arbitrary mass levels m > 0.

As we shall see below, in this slightly modified form the criticality of mc = 4π remains untouched
when allowing for widely arbitrary u in (1.2), not even requiring solenoidality. To substantiate this,
throughout the sequel we shall assume that

u ∈ C2,1(Ω× [0,∞);R2) is such that u · ν = 0 on ∂Ω× (0,∞), (1.3)

and that
n0 ∈ C0(Ω) is nonnegative with n0 6≡ 0. (1.4)

Then the first of our main results shows that any such fluid interaction cannot decrease the critical
mass in the sense described above:

Theorem 1.1 Let Ω ⊂ R
2 be a bounded domain with smooth boundary, and suppose that u satisfies

(1.3). Then for any choice of n0 fulfilling (1.4) as well as
∫

Ω n0 < 4π, the problem (1.2) possesses a
uniquely determined global classical solution (n, c) such that

{

n ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) and

c ∈ C2,1(Ω× (0,∞)),

and that n > 0 and c > 0 in Ω× (0,∞).

All these solutions are even bounded whenever u is bounded and
∫

Ω n0 < 2π:

Theorem 1.2 Suppose that Ω ⊂ R
2 is a bounded domain with smooth boundary, and that u satisfies

(1.3) as well as
sup
t>0

‖u(·, t)‖L∞(Ω) <∞. (1.5)

Then for arbitrary n0 fulfilling (1.4) with
∫

Ω n0 < 2π, the global classical solution of (1.2) from
Theorem 1.1 is bounded in the sense that there exists C > 0 such that

‖n(·, t)‖L∞(Ω) ≤ C for all t > 0. (1.6)
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On the other hand, under the mere asumption (1.3) any such fluid flow does as well not increase the
critical mass in the following sense:

Theorem 1.3 Suppose that Ω ⊂ R
2 is a bounded domain, the smooth boundary of which contains a

line segment in the sense that
{

Ω ⊂
{

(x, y) ∈ R
2)

∣

∣

∣
y > 0

}

with

∂Ω ⊂ [−r, r]× {0}
(1.7)

for some r > 0, and that u satisfies (1.3). Then for all m > 4π one can find µ(m) > 0 with the
property that whenever n0 complies with (1.4) and is such that

∫

Ω n0 = m and

∫

Ω
|x|2n0(x)dx ≤ µ(m), (1.8)

the corresponding solution of (1.2) blows up in finite time in the sense that there exist T > 0 and
uniquely determined functions

{

n ∈ C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T )) and

c ∈ C2,1(Ω× (0, T )),
(1.9)

with n > 0 and c > 0 in Ω× (0, T ), which solve (1.2) in the classical sense in Ω× (0, T ) and for which
we have

‖n(·, t)‖L∞(Ω) → ∞ as tր Tmax. (1.10)

We remark that at the cost of additional technical efforts based on the refined analysis in [20, Chapter
5] it is possible to remove the restriction (1.7) on ∂Ω; in order to keep the presentation conveniently
simple, however, we refrain from detailing this here.

2 Preliminaries

2.1 Local existence and upper bounds for the increase of energy

To begin with, let us state a basic result on local existence and extensibility that can be obtained
by adapting standard arguments from the existence theories of parabolic-elliptic Keller-Segel type
systems to the present situation; we may therefore refrain from giving details here, and rather refer
to the literature (see [15], [13] or [6], for instance).

Lemma 2.1 Let Ω ⊂ R
2 be a bounded domain with smooth boundary, and assume (1.3) and (1.4).

Then there exist Tmax ∈ (0,∞] and a uniquely determined pair (n, c) of functions
{

n ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) and

c ∈ C2,1(Ω× (0, Tmax))
(2.1)

such that n > 0 and c > 0 in Ω×(0, Tmax), that (n, c) solves (1.2) in the classical sense in Ω×(0, Tmax),
and that

if Tmax <∞, then ‖n(·, t)‖L∞(Ω) → +∞ as tր Tmax. (2.2)
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Moreover, this solution has the property that

∫

Ω
n(x, t)dx =

∫

Ω
c(x, t)dx =

∫

Ω
n0(x)dx for all t ∈ (0, Tmax). (2.3)

The following observation provides some information on how the evolution of the natural Lyapunov
functional associated with the unperturbed Keller-Segel system is influenced by the presence of a
fluid flow. Here a control of the corresponding additional contribution will be achieved by making
appropriate use of the dissipation rate functional

∫

Ω |∇n√
n
− √

n∇c|2 which, due to its complicated

coupling of both solution components, is only trivially estimated in most places in the literature.

Lemma 2.2 Assume (1.3) and (1.4). Then the function F ∈ C1((0, Tmax)) defined by

F(t) :=
1

2

∫

Ω
|∇c(·, t)|2 + 1

2

∫

Ω
c2(·, t)−

∫

Ω
n(·, t)c(·, t) +

∫

Ω
n(·, t) lnn(·, t), t ∈ (0, Tmax), (2.4)

satisfies

F ′(t) ≤ 1

4
‖u(·, t)‖2L∞(Ω) ·

∫

Ω
n0 for all t ∈ (0, Tmax). (2.5)

Proof. We use (2.3) and integrate by parts in (1.2) to compute

F ′(t) =

∫

Ω
∇c · ∇ct +

∫

Ω
cct −

∫

Ω
nct −

∫

Ω
∇ · (∇n− n∇c− nu) c+

∫

Ω
∇ · (∇n− n∇c− nu) lnn

=

∫

Ω
ct(−∆c+ c)−

∫

Ω
nct

+

∫

Ω
∇n · ∇c−

∫

Ω
n|∇c|2 −

∫

Ω
n(u · ∇c)

−
∫

Ω

|∇n|2
n

+

∫

Ω
∇n · ∇c+

∫

Ω
u · ∇n

= −
∫

Ω

∣

∣

∣

∇n√
n
−
√
n∇c

∣

∣

∣

2
+

∫

Ω
u · (∇n− n∇c) for all t ∈ (0, Tmax).

Therefore, (2.5) follows upon observing that by Young’s inequality and (2.3),

∫

Ω
u · (∇n− n∇c) ≤

∫

Ω

∣

∣

∣

∇n√
n
−
√
n∇c

∣

∣

∣

2
+

1

4

∫

Ω
|u|2n

≤
∫

Ω

∣

∣

∣

∇n√
n
−
√
n∇c

∣

∣

∣

2
+

1

4
‖u‖2L∞(Ω)

∫

Ω
n

≤
∫

Ω

∣

∣

∣

∇n√
n
−
√
n∇c

∣

∣

∣

2
+

1

4
‖u‖2L∞(Ω)

∫

Ω
n0

for all t ∈ (0, Tmax). �
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2.2 Deriving L
∞ estimates from bounds in L logL

In order to substantiate our goals in connection with Theorem 1.1 and Theorem 1.2, let us next
perform a variant of a standard bootstrap procedure to make sure that similar to the situation in the
original parabolic-elliptic Keller-Segel system, also in the presence of a suitably regular fluid flow a
supposedly available bound for

∫

Ω n lnn already implies a corresponding L∞ estimate.

Lemma 2.3 Let B > 0. Then there exists C(B) > 0 with the property that if (1.3) and (1.4) hold
with ‖n0‖L∞(Ω) ≤ B, and if T ∈ (0, Tmax] is such that

∫

Ω
n(·, t) lnn(·, t) ≤ B and ‖u(·, t)‖L∞(Ω) ≤ B for all t ∈ (0, T ), (2.6)

then
‖n(·, t)‖L∞(Ω) ≤ C(B) for all t ∈ (0, T ). (2.7)

Proof. Proceeding in a standard manner, we first use n3 as a test function in the first equation
from (1.2) to see that since ∂n

∂ν
= ∂c

∂ν
= u · ν = 0 on ∂Ω× (0, Tmax),

d

dt

∫

Ω
n4 +

∫

Ω
n4 = −12

∫

Ω
n2|∇n|2 + 12

∫

Ω
n3∇n · ∇c+ 12

∫

Ω
n3(u · ∇n) +

∫

Ω
n4

= −12

∫

Ω
n2|∇n|2 + 3

∫

Ω
n5 − 3

∫

Ω
n4c+ 12

∫

Ω
n3(u · ∇n) +

∫

Ω
n4

≤ −6

∫

Ω
n2|∇n|2 + 3

∫

Ω
n5 + 6

∫

Ω
n4|u|2 +

∫

Ω
n4

≤ −3

2

∫

Ω
|∇n2|2 + 10

∫

Ω
n5 +

{

6‖u‖10L∞(Ω) + 1
}

· |Ω| for all t ∈ (0, Tmax) (2.8)

due to Young’s inequality. Now assuming (2.6) as well as ‖n0‖L∞(Ω) ≤ B, we may invoke a well-known
variant of the Gagliardo-Nirenberg inequality ([2], [22, Lemma A.5]) to find C1 > 0 such that

16

∫

Ω
n5 = 16‖n2‖

5

2

L
5
2 (Ω)

≤ 3

2
· 1

2B + 4|Ω|
e

‖∇n2‖2L2(Ω)‖n2 ln2 n2‖
1

2

L
1
2 (Ω)

+ C1‖n2‖
5

2

L
1
2 (Ω)

+ C1

≤ 3

2
‖∇n2‖2L2(Ω) + C1B

5|Ω|5 + C1 for all t ∈ (0, T ),

because ‖n2‖
5

2

L
1
2 (Ω)

= ‖n0‖5L1(Ω) ≤ ‖n0‖5L∞(Ω)|Ω|5 for all t ∈ (0, Tmax), and because

‖n2 ln2 n2‖
1

2

L
1
2 (Ω)

= 2

∫

Ω
n| lnn| = 2

∫

Ω
n lnn− 4

∫

{n<1}
n lnn ≤ 2

∫

Ω
n lnn+

4|Ω|
e

for all t ∈ (0, Tmax)

according to the fact that ξ ln ξ ≥ −1
e
for all ξ > 0. As a consequence of (2.8), we thus obtain that

with some C2(B) > 0 we have

d

dt

∫

Ω
n4 +

∫

Ω
n4 ≤ C2(B) for all t ∈ (0, T )
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and hence, by an ODE comparison,
∫

Ω
n4 ≤ C3(B) := max

{

C2(B) , B4|Ω|
}

for all t ∈ (0, T ) (2.9)

thanks to the inequality
∫

Ω n
4
0 ≤ ‖n0‖4L∞(Ω)|Ω|.

Now since (2.9) together with standard elliptic regularity theory warrants the existence of C4(B) > 0
such that

‖∇c(·, t)‖L∞(Ω) ≤ C4(B) for all t ∈ (0, T ),

we may next invoke well-known smoothing estimates for the Neumann heat semigroup (et∆)t≥0 on Ω
([26]) to see that with some C5 > 0, once more due to (2.6) we have

‖n(·, t)‖L∞(Ω) =

∥

∥

∥

∥

et(∆−1)n0 −
∫ t

0
e(t−s)(∆−1)∇ ·

{

n(·, s)∇c(·, s)
}

ds

−
∫ t

0
e(t−s)(∆−1)∇ ·

{

n(·, s)u(·, s)
}

ds+

∫ t

0
e(t−s)(∆−1)n(·, s)ds

∥

∥

∥

∥

L∞(Ω)

≤ ‖n0‖L∞(Ω) + C5

∫ t

0

(

1 + (t− s)−
3

4

)

e−(t−s)‖n(·, s)∇c(·, s)‖L4(Ω)ds

+C5

∫ t

0

(

1 + (t− s)−
3

4

)

e−(t−s)‖n(·, s)u(·, s)‖L4(Ω)ds

+C5

∫ t

0

(

1 + (t− s)−
1

4

)

e−(t−s)‖n(·, s)‖L4(Ω)ds

≤ B + C3(B)C4(B)C5

∫ ∞

0
(1 + σ−

3

4 )e−σdσ

+C3(B)C5B

∫ ∞

0
(1 + σ−

3

4 )e−σdσ

+C3(B)C5

∫ ∞

0
(1 + σ−

1

4 )e−σdσ for all t ∈ (0, T ),

and conclude. �

2.3 Two functional inequalities resulting from the Moser-Trudinger inequality

Now in subsequently deriving estimates for
∫

Ω n lnn on the basis of Lemma 2.2, we shall rely on the
following consequence of the Moser-Trudinger inequality observed in [34, Lemma 2.2]:

Lemma 2.4 For all ε > 0 there exists M = M(ε,Ω) > 0 such that if 0 6≡ ϕ ∈ C0(Ω) is nonnegative
and ψ ∈W 1,2(Ω), then for each a > 0,

∫

Ω
ϕ|ψ| ≤ 1

a

∫

Ω
ϕ ln

ϕ

ϕ
+

(1 + ε)a

8π
·
{
∫

Ω
ϕ

}

·
∫

Ω
|∇ψ|2 +Ma ·

{
∫

Ω
ϕ

}

·
{
∫

Ω
|ψ|

}2

+
M

a

∫

Ω
ϕ, (2.10)

where ϕ := 1
|Ω|

∫

Ω ϕ.
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As a first and quite well-known consequence thereof, as usual we can make sure that the crucial
quantity

∫

Ω n lnn is essentially dominated by the energy functional from (2.4) whenever
∫

Ω n0 < 4π
(cf. also [18, Lemma3.4]).

Corollary 2.5 Assume (1.3) and (1.4) with
∫

Ω n0 < 4π. Then there exists C > 0 such that

F(t) ≥ 1

C

∫

Ω
n(·, t) lnn(·, t)− C for all t ∈ (0, Tmax). (2.11)

Proof. As our assumption on m :=
∫

Ω n0 warrants that 4π
m
> 1, we can pick some suitably ε > 0

such that a := 4π
(1+ε)m satisfies a > 1. An application of Lemma 2.4 then shows that withM =M(ε,Ω)

as accordingly provided there we have

F(t) ≥ 1

2

∫

Ω
|∇c|2 −

∫

Ω
nc+

∫

Ω
n lnn

≥ 1

2

∫

Ω
|∇c|2 −

{

1

a

∫

Ω
n ln

|Ω|n
m

+
(1 + ε)am

8π

∫

Ω
|∇c|2 +Mam

{

∫

Ω
c
}2

+
Mm

a

}

+

∫

Ω
n lnn

=
a− 1

a

∫

Ω
n lnn−Mam3 − Mm

a
+

1

a
m ln

m

|Ω| for all t ∈ (0, Tmax),

because of (2.3). As a > 1, this establishes (2.11) if we let C := max{ a
a−1 , Mam3+Mm

a
− 1

a
m ln m

|Ω|} >
0. �

As documented in [34, Lemma 2.3], Lemma 2.4 furthermore entails the following functional inequality,
to be used in Lemma 4.1, which solely involves a single function.

Lemma 2.6 Let 0 6≡ ϕ ∈ C0(Ω) be nonnegative. Then for any choice of ε > 0,

∫

Ω
ϕ ln(ϕ+ 1) ≤ 1 + ε

2π
·
{
∫

Ω
ϕ

}

·
∫

Ω

|∇ϕ|2
(ϕ+ 1)2

+ 4M ·
{
∫

Ω
ϕ

}3

+

{

M − ln
1

|Ω|

∫

Ω
ϕ

}

·
∫

Ω
ϕ, (2.12)

where M =M(ε,Ω) > 0 is as in Lemma 2.4.

3 Global existence when
∫

Ω n0 < 4π. Proof of Theorem 1.1

Now since the growth rate of F is favorably controlled on finite time intervals by Lemma 2.2, for
all subcritical-mass data we may rely on a combination of Corollary 2.5 and Lemma 2.3 to draw the
claimed conclusion on global existence:

Lemma 3.1 Assume (1.3) and (1.4) with
∫

Ω n0 < 4π. Then Tmax = ∞.

Proof. If Tmax was finite, then Lemma 2.2 together with (1.3) would entail the existence of C1 > 0
such that

F ′(t) ≤ C1 for all t ∈ (0, Tmax),

so that

F(t) ≤ F
(1

2
Tmax

)

+
C1

2
Tmax for all t ∈

(1

2
Tmax, Tmax

)

.
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In light of Corollary 2.5 and Lemma 2.1, this would imply that with some C2 > 0,

∫

Ω
n lnn ≤ C2 for all t ∈ (0, Tmax),

so that Lemma 2.3 would apply so as to provide C3 > 0 fulfilling

‖n(·, t)‖L∞(Ω) ≤ C3 for all t ∈ (0, Tmax),

which however contradicts (2.2). �

We have thereby already established the first of our main results:

Proof of Theorem 1.1. The statement directly results from Lemma 3.1 and Lemma 2.1. �

4 Boundedness for
∫

Ω n0 < 2π. Proof of Theorem 1.2

In order to next address the boundedness property claimed in Theorem 1.2, let us now make use of
the functional inequality from Lemma 2.6 in discovering a second quasi-dissipative structure under
the more restrictive assumption that

∫

Ω n0 < 2π. Here unlike our analysis of (2.5), our subsequent
exploitation of (4.1) will exclusively refer to the dissipation rate

∫

Ω n lnn appearing therein.

Lemma 4.1 Assume (1.5) and (1.4) with
∫

Ω n0 < 2π. Then there exists C > 0 such that

− d

dt

∫

Ω
ln(n+ 1) +

1

C

∫

Ω
n ln(n+ 1) ≤ C for all t > 0. (4.1)

Proof. We use (1.2) and integrate by parts to see that for all t > 0,

− d

dt

∫

Ω
ln(n+ 1) = −

∫

Ω

1

n+ 1
∇ ·

{

∇n− n∇c− nu
}

= −
∫

Ω

|∇n|2
(n+ 1)2

+

∫

Ω

n

(n+ 1)2
∇n · ∇c+

∫

Ω

n

(n+ 1)2
(u · ∇n), (4.2)

where another integration by parts shows that

∫

Ω

n

(n+ 1)2
∇n · ∇c =

∫

Ω
∇
{

ln(n+ 1) +
1

n+ 1

}

· ∇c

= −
∫

Ω

{

ln(n+ 1) +
1

n+ 1

}

∆c

≤
∫

Ω
n ln(n+ 1) +

∫

Ω

n

n+ 1

≤
∫

Ω
n ln(n+ 1) + |Ω| for all t > 0, (4.3)

because −∆c ≤ n by (1.2). Now since our hypotheses warrant that m :=
∫

Ω n0 satisfies m < 2π, we

can pick ε ∈ (0, 1) suitably small such that C1 :=
(1−ε)·2π

m
− 1 is positive, and apply Lemma 2.6 along
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with (2.3) to obtain C2 > 0 such that
∫

Ω
n ln(n+ 1) =

(1− ε) · 2π
m

∫

Ω
n ln(n+ 1)− C1

∫

Ω
n ln(n+ 1)

≤ (1− ε2)

∫

Ω

|∇n|2
(n+ 1)2

+ C2 − C1

∫

Ω
n ln(n+ 1) for all t > 0,

so that from (4.3) and (4.2) we infer that

− d

dt

∫

Ω
ln(n+ 1) + ε2

∫

Ω

|∇n|2
(n+ 1)2

+ C1

∫

Ω
n ln(n+ 1) ≤ C2+|Ω|+

∫

Ω

n

(n+ 1)2
(u · ∇n)

for all t > 0. As, by Young’s inequality,

∫

Ω

n

(n+ 1)2
(u · ∇n) ≤ ε2

∫

Ω

|∇n|2
(n+ 1)2

+
1

4ε2

∫

Ω

n2

(n+ 1)2
|u|2

≤ ε2
∫

Ω

|∇n|2
(n+ 1)2

+
|Ω|
4ε2

‖u‖2L∞(Ω) for all t > 0,

in view of the assumed boundedness property of u this establishes (4.1). �

Indeed, this implies a spatio-temporal L logL estimate for n:

Corollary 4.2 Assume (1.5) and (1.4) with
∫

Ω n0 < 2π. Then there exists C > 0 such that

∫ t+1

t

∫

Ω
n ln(n+ 1) ≤ C for all t > 0. (4.4)

Proof. This directly follows on integrating (4.1) in time and using that 0 ≤ ln(n+1) ≤
∫

Ω n =
∫

Ω n0
for all t > 0 by (2.3). �

As a consequence, under such smallness conditions the energy from (2.4) is bounded in its temporal
average in the following sense.

Lemma 4.3 Assume (1.5) and (1.4) with
∫

Ω n0 < 2π. Then there exists C > 0 such that

∫ t+1

t

F(s)ds ≤ C for all t > 0. (4.5)

Proof. As from (1.2) we know that
∫

Ω
|∇c|2 +

∫

Ω
c2 =

∫

Ω
nc for all t > 0

and that hence

F(t) = −1

2

∫

Ω
nc+

∫

Ω
n lnn ≤

∫

Ω
n ln(n+ 1) for all t > 0,

this is an immediate consequence of Corollary 4.2. �

Along with Lemma 2.2, this shows that in fact F must remain bounded for large times:
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Lemma 4.4 Assume (1.5) and (1.4) with
∫

Ω n0 < 2π. Then there exists C > 0 such that

F(t) ≤ C for all t > 1. (4.6)

Proof. Relying on (1.5), from Lemma 2.2 we infer the existence of C1 > 0 such that

F ′(t) ≤ C1 for all t > 0, (4.7)

whereas Lemma 4.3 asserts that

∫ t+1

t

F(s)ds ≤ C2 for all t > 0

with some C2 > 0. Therefore, given any t > 1 we can find t⋆(t) ∈ (t − 1, t) such that F(t⋆(t)) ≤ C2,
and that thus, by (4.7), indeed

F(t) ≤ F(t⋆(t)) + C1 · (t− t⋆(t)) ≤ C2 + C1 · (t− t⋆(t)) ≤ C2 + C1,

because t− t⋆(t) < 1. �

Again thanks to Corollary 2.5 and Lemma 2.3, this implies our main result on boundedness under the
assumption that

∫

Ω n0 < 2π:

Proof of Theorem 1.2. We first combine Lemma 4.4 with Corollary 2.5 and Lemma 2.1 to find
C1 > 0 such that

∫

Ω
n lnn ≤ C1 for all t > 0,

whereupon once more relying on (1.5) we may employ Lemma 2.3 to obtain (1.6). �

5 Occurrence of blow-up when
∫

Ω n0 > 4π. Proof of Theorem 1.3

Finally concerned with the blow-up result announced in Theorem 1.3, we shall see that the present
framework involving a given fluid flow in fact allows for an appropriate adaptation of the classical
argument from [17] based on the analysis of functionals that can be viewed as certain localized variants
of second moments. In order to keep our presentation compact here, let us import from [17] two
preparatory observations, the first of which summarizes some elementary features of said localization
procedure.

Lemma 5.1 Let r1 > 0, r2 > r1 and

Φ(x) ≡ Φ(r1,r2)(x) :=











|x|2 if |x| < r1,

− r1
r2−r1

|x|2 + 2r1r2
r2−r1

|x| − r2
1
r2

r2−r1
if r1 ≤ |x| ≤ r2,

r1r2 if |x| > r2.

(5.1)

Then Φ ∈W 2,∞(R2) with 0 ≤ Φ(x) ≤ |x|2 and |∇Φ(x)| ≤ 2
√

Φ(x) for all x ∈ R
2.
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Proof. Noting that ϕ(r) := − r1
r2−r1

+ 2r1r2
r2−r1

· 1
r
− r2

1
r2

r2−r1
· 1
r2
, r ∈ [r1, r2], is nonincreasing with

ϕ(r1) = 1 and ϕ(r2) =
r1
r2

∈ (0, 1), we readily verify the inequalities Φ(x) ≤ |x|2 and Φ(x) ≥ 0 for all

x ∈ R
2. The observations concerning regularity and the estimate |∇Φ| ≤ 2

√
Φ have been documented

in [17, p.41] already. �

We next recall some information on the behavior of the diffusive and cross-diffusive contributions to
the first equation in (1.2) when tested against one particular among these functions, with the latter
being chosen in such a way that, inter alia, its center of symmetry is located at the line segment of
the boundary of Ω addressed in the hypothesis (1.7) from Theorem 1.3.

Lemma 5.2 Suppose that Ω satisfies (1.7) for some r > 0. Then there exists K(r) > 0 with the
property that if Φ ≡ Φ( r

4
, r
2
) is as defined in (5.1) with r1 :=

r
4 and r2 :=

r
2 , whenever u and n0 satisfy

(1.3) and (1.4), the corresponding solution of (1.2) has the property that

∫

Ω
Φ∆n−

∫

Ω
Φ∇ · (n∇c) ≤ 2

∫

Ω
n0 −

1

2π
·
{
∫

Ω
n0

}2

+K(r) ·
{
∫

Ω
n0

}

·
∫

Ω
Φn+K(r) ·

{
∫

Ω
n0

}
3

2

·
{
∫

Ω
Φn

}
1

2

(5.2)

for all t ∈ (0, Tmax).

Proof. This has been shown in [17, Lemma 3.1 and Proof of Theorem 3.2]. �

As a consequence of this and an adequate estimation of the respective contribution due to the fluid
field, the evolution of the corresponding moment-type functional can be described as follows.

Lemma 5.3 Assume that Ω satisfies (1.7) with some r > 0, and let Φ ≡ Φ( r
4
, r
2
) be taken from (5.1)

and K(r) be as accordingly provided by Lemma 5.2. Then whenever (1.3) and (1.4) hold, the function
y ∈ C0([0, Tmax)) ∩ C1((0, Tmax)) defined by letting

y(t) :=

∫

Ω
Φ(x)n(x, t)dx, t ∈ [0, Tmax), (5.3)

has the property that for any choice of ε > 0,

y′(t) ≤ (2 + ε)m− m2

2π

+
{

K(r)m+
1

ε
‖u(·, t‖2L∞(Ω)

}

· y(t) +K(r)m
3

2 y
1

2 (t) for all t ∈ (0, Tmax), (5.4)

where m :=
∫

Ω n0.

Proof. As u · ν = 0 on ∂Ω× (0,∞), using (1.2) and (5.2) and integrating by parts we see that

y′(t) =

∫

Ω
Φ∆n−

∫

Ω
Φ∇ · (n∇c) +

∫

Ω
nu · ∇Φ

≤ 2m− m2

2π
+K(r)my(t) +K(r)m

3

2 y
1

2 (t) +

∫

Ω
nu · ∇Φ for all t ∈ (0, Tmax). (5.5)
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Since |∇Φ| ≤ 2
√
Φ by Lemma 5.1, and since thus for all ε > 0 we can estimate

∫

Ω
nu · ∇Φ ≤ 2‖u‖L∞(Ω)

∫

Ω

√
Φn

≤ ε

∫

Ω
n+

1

ε
‖u‖2L∞(Ω)

∫

Ω
Φn

= εm+
1

ε
‖u‖2L∞(Ω)y(t) for all t ∈ (0, Tmax)

due to Young’s inequality and (2.3), from (5.5) we directly obtain (5.4). �

Now since the mere assumption (1.3) enables us to favorably control the effect of the fluid flow on (5.4),
by straightforward ODE comparison we readily arrive at the claimed result on finite-time blow-up at
arbitrary mass levels beyond 4π:

Proof of Theorem 1.3. Given m > 4π, we fix ε > 0 small enough such that C1 :=
m2

2π − (2 + ε)m

is positive, and we claim that then the intended conclusion holds if we fix Φ ≡ Φ( r
4
, r
2
) and K(r) > 0

as in Lemma 5.2 and take µ(m) > 0 suitably small fulfilling
{

K(r)m+
1

ε
‖u‖2L∞(Ω×(0,1))

}

· µ(m) ≤ C1

4
(5.6)

and

K(r)m
3

2µ
1

2 (m) ≤ C1

4
(5.7)

as well as
2

C1
· µ(m) < 1. (5.8)

To verify this, we assume on the contrary that for some n0 satisfying (1.4) and (1.8) with
∫

Ω n0 =
m, we have Tmax = ∞. Then, in particular, the function y introduced in (5.3) would belong to
C0([0, 1]) ∩ C1((0, 1)) with

y′(t) ≤ −C1 +
{

K(r)m+
1

ε
‖u‖2L∞(Ω×(0,1))

}

· y(t) +K(r)m
3

2 y
1

2 (t) for all t ∈ (0, 1) (5.9)

by (5.4), and

y(0) =

∫

Ω
Φ(x)n0(x)dx ≤

∫

Ω
|x|2n0(x)dx ≤ µ(m) (5.10)

due to (1.8) and the fact that Φ(x) ≤ |x|2 for all x ∈ R
2 by Lemma 5.1. From (5.6) and (5.7) we

would thus obtain that at t = 0 we have

−C1 +
{

K(r)m+
1

ε
‖u‖2L∞(Ω×(0,1))

}

· y(t) +K(r)m
3

2 y
1

2 (t) ≤ −C1 +
C1

4
+
C1

4
= −C1

2
, (5.11)

so that a first comparison argument applied to (5.9) would show that y(t) ≤ y(0) for all t ∈ (0, 1) and
that therefore (5.11) actually holds for all t ∈ [0, 1]. But then (5.9) would entail that y′ ≤ −C1

2 for all

t ∈ (0, 1) and hence 0 ≤ y(1) ≤ y(0)− C1

2 , which in view of (5.10) and (5.8) is absurd. �
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