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Abstract

The Cauchy problem in R
n for the Keller-Segel system

{
ut = ∆u−∇ · (u∇v),

vt = ∆v − v + u,

is considered for n ≥ 3.

Using a basic theory of local existence and maximal extensibility of classical and spatially integrable
solutions as a starting point, the study provides a result on the occurrence of finite-time blow-up
within considerably large sets of radially symmetric initial data, and moreover verifies that any
such explosion exclusively occurs at the spatial origin.

The detection of blow-up is accomplished by analyzing a relative of the well-known Keller-Segel
energy inequality, involving a modification of the corresponding energy functional which, unlike
the latter, can be seen to be favorably controlled from below by the corresponding dissipation rate
through a certain functional inequality along trajectories.

Key words: chemotaxis; blow-up
MSC (2010): 35B44 (primary); 35B40, 92C17, 35Q92 (secondary)

∗michael.winkler@math.uni-paderborn.de 1



1 Introduction

The Keller-Segel system, in its most prototypical version coupling two parabolic equations according
to {

ut = ∆u−∇ · (u∇v),

vt = ∆v − v + u,
(1.1)

plays an important role in the biomathematical literature, and its essential ingredients form the respec-
tive core in a growing number of increasingly complex macroscopic models for migration processes at
virtually all conceivable length scales. With applications ranging from paradigmatic cell aggregation
phenomena such as in populations of Dictyostelium discoideum or E. coli ([16]), over models for tumor
cell invasion ([3], [20]) for virus hotspot formation ([29]) or for socially interacting animal populations
([30]), up to the description of large-scale evolution in spatial ecology ([7], [33]), its relevance seems
closely connected with its ability to describe spontaneous emergence of spatial structures.

In fact, already shortly after its proposal in the 1970s the model (1.1) was conjectured to support
even the formation of singular structures in the mathematically extreme sense of finite-time blow-up
for some solutions ([25]; cf. also the historical remarks in [12]); however, rigorous analytical detections
of such explosions were accomplished only in the 1990s, and throughout a significantly long further
period remained limited to either certain parabolic-elliptic simplifications of (1.1) ([15], [22], [23], [1]),
to the construction of particular and possibly non-generic initial data enforcing blow-up ([10]), or
to statements on mere unboundedness without option to determine whether such phenomena indeed
occur in finite or only in infinite time ([13]). This seems to rather well reflect the circumstance that in
contrast to typical objects of parabolic blow-up analysis such as quite thoroughly understood scalar
reaction-diffusion equations with zero-order or first-order superlinear sources ([26]), directional effects
of the driving cross-diffusive nonlinearity in (1.1) follow substantially more complex mechanisms and
hence require accordingly subtle analysis.

Correspondingly, only in the recent few years some additional methodological developments fostered
further progress in this field. Here a first branch of novel activities concentrates on a fine analysis
of the dynamics near explicit singular steady states of the two-dimensional version of (1.1) ([28]),
and hence on the one hand remains somewhat local with respect to the choice of initia data, but
on the other hand can be considered quite constructive by namely providing considerable qualitative
information on the asymptotic behavior of the obtained solutions near their blow-up time. An inde-
pendent second recent development, though more destructive in the sense of simply confirming the
occurrence of explosions without significant further qualitative description, has been found capable of
identifying large sets of initial data which lead to finite-time blow-up in Neumann problems for (1.1)
in n-dimensional balls Ω, in both cases n ≥ 3 ([32]) and n = 2 ([21]). In such situations, namely, the
quantities

F0 :=
1

2

∫

Ω
|∇v|2 + 1

2

∫

Ω
v2 −

∫

Ω
uv +

∫

Ω
u lnu (1.2)

and

D0 :=

∫

Ω
|∆v − v + u|2 +

∫

Ω

∣∣∣
∇u√
u
−

√
u∇v

∣∣∣
2
, (1.3)
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known to constitute the natural energy inequality

d

dt
F0 ≤ −D0 (1.4)

along reasonably regular solution curves of (1.1), could be shown to satisfy certain inequalities of the
form

F0 ≥ −C · (Dθ
0 + 1) with some C > 0 and θ ∈ (0, 1) (1.5)

throughout suitably large sets of radially symmetric functions (u, v) = (u(r), v(r)) over Ω which, in
particular, include radial trajectories of (1.1) ([32], [21]).

As several subsequent studies have revealed, functional inequalities of the flavor in (1.5) can be de-
rived for significantly larger classes of expressions generalizing those in (1.2) and (1.3), and can thus
be applied to corresponding Neumann problems for several generalizations of (1.1) ([4], [19], [18]).
In problems posed in the entire space R

n, however, the use of inequalities in the form of (1.4) for
blow-up detection so far seems limited to situations in which the corresponding energy functional is
constituted by sums of integrals among which each can favorably be bounded in its negative part
by the associated dissipation rate in the style of e.g. (1.5). In particular, in the Cauchy problem for
(1.1) the quantities F0 and D0 from (1.2) and (1.3) in this sense apparently become inappropriate,
because in domains with infinite measure the expression

∫
Ω u lnu need no longer be bounded from

below along trajectories when the only a priori information available for the first component thereof
seems to reduce to an L1 bound obtained through mass conservation. Due to a corresponding lack
of suitable energy-based arguments, thus somewhat contrasting with the development of a small-data
solution theory in the special case Ω = R

2 in which (1.4) can indeed be accompanied by moment
control techniques to establish results on global solvability for sucritical-mass data ([2]), already the
problem of verifying the mere existence of some non-global solutions to (1.1) on Ω = R

n accordingly
seems open up to now.

As a further complication encountered when passing from bounded to unbounded domains, we note
that beyond such a basic finding on global nonexistence, the detection of blow-up in the spirit of
a genuine application-relevant aggregation moreover should most favorably be accompanied by some
statement on appropriate explosion localization, at least excluding the possibility that the correspond-
ing blow-up set be empty. As impressive caveats in this regard, we recall some classical precedents
which report on the appearance of so-called ”blow-up at space infinity” phenomena already in some
scalar parabolic problems ([17], [9], [27]).

Main results. Henceforth concerned with (1.1) in Ω = R
n, the present work accordingly addresses

two objectives: A first goal consists in making this problem accessible to virial-type methods of blow-
up detection, such as those introduced in [32] and [4] for bounded domains, by analyzing the evolution
of a relative of the functional in (1.2) which is no longer genuinely nonincreasing along trajectories,
but the possible growth of which can adequately be controlled, and which moreover enjoys favorable
lower bounds, thus inter alia allowing for functional inequalities of the form in (1.5). Hence set in the
position to verify the occurrence of finite-time blow-up throughout considerably large sets of initial
data, as a second purpose we will pursue the problem of determining the corresponding blow-up sets,
and thereby not only exclude the possibility of blow-up at space infinity, but actually even make sure
that blow-up exclusively occurs at the spatial origin at least in frameworks of radially symmetric so-
lutions.
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To be more precise, for n ≥ 3 we shall subsequently consider




ut = ∆u−∇ · (u∇v), x ∈ R
n, t > 0,

vt = ∆v − v + u, x ∈ R
n, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R
n,

(1.6)

under the assumptions that with some q > n,
{

u0 ∈ BUC(Rn) ∩ L1(Rn) is nonnegative with u0 6≡ 0, and that

v0 ∈ W 1,q(Rn) ∩W 1,1(Rn) is nonnegative,
(1.7)

where as usual, BUC(Rn) denotes the Banach space of all bounded and uniformly continuous functions
on R

n. In most places we will moreover require that

u0 and v0 are radially symmetric with respect to x = 0. (1.8)

Then an indispensable prerequisite not only for our analysis of the functional F below, but also for our
basic qualitative description of blow-up given in (1.14) and (1.15), is consituted by the following result
on local existence and uniqueness of smooth solutions enjoying appropriate spatial decay features.
As we predominantly intend to make use of this in the context of non-global solutions, besides the
uniqueness feature that will ensure radial symmetry whenever (1.8) holds, we particularly stress the
practically quite convenient extensibility criterion (1.10) here. Thanks to the choice of a fixed point
setting somewhat different from precedent approaches both to two- and to higher-dimensional versions
of (1.6) ([1], [2], [6], [5]), this criterion will, up to an additional minor argument on regularity implied
by L∞ bounds on u (Lemma 2.7), actually result as a fairly straightforward by-product from our
construction of local solutions (Lemma 2.2); in view of its accordingly significant importance for
Theorem 1.2 below, for reasons of full rigorousness we include an essentially complete demonstration
of Proposition 1.1 in Section 2, although neither its outcome nor its derivation bear any considerable
surprise. We note that in its main part, it does not require the symmetry assumption (1.8), and we
may note that it actually extends quite immediately to the case n ≤ 2 not further pursued in the
sequel.

Proposition 1.1 Let n ≥ 3, and assume (1.7) with some q > n. Then there exist Tmax ∈ (0,∞] and
precisely one pair of functions

{
u ∈ C0([0, Tmax);BUC(Rn) ∩ L1(Rn)) ∩ C2,1(Rn × (0, Tmax)) and

v ∈ C0([0, Tmax);W
1,q(Rn) ∩W 1,1(Rn)) ∩ C2,1(Rn × (0, Tmax))

(1.9)

which solve (1.6) in the classical sense in R
n × (0, Tmax), and which are such that

if Tmax < ∞, then lim sup
tրTmax

‖u(·, t)‖L∞(Rn) = ∞. (1.10)

Moreover, u > 0 and v > 0 in R
n × (0, Tmax), and we have

∫

Rn

u(·, t) =
∫

Rn

u0 for all t ∈ (0, Tmax). (1.11)

Finally, if in addition (1.8) holds, then u(·, t) and v(·, t) are radially symmetric with respect to x = 0
for all t ∈ (0, Tmax).
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Now the core of our results restricts to the radial setting and, indeed, asserts occurrence of finite-time
blow-up, localized at the spatial origin, within sets of initial data enjoying a certain density property.
This will be achieved on the basis of an appropriate and rigorously verifiable relative of the identity

d

dt
F = −

∫

Rn

|∆v − v + u|2 −
∫

Rn

∣∣∣
∇u√
u+ 1

−
√
u+ 1∇v

∣∣∣
2

−
∫

Rn

∣∣∣
∇u

u+ 1
+

∇v

2(u+ 1)

∣∣∣
2
+

∫

Rn

(
1 +

1

4(u+ 1)2

)
|∇v|2 (1.12)

formally fulfilled by smooth solutions of (1.6) which decay suitably fast in space, where

F :=
1

2

∫

Rn

|∇v|2 + 1

2

∫

Rn

v2 −
∫

Rn

uv +

∫

Rn

u ln(u+ 1)

(Section 3). According to a functional inequality favorably controling
∫
Rn uv in terms of the dissipated

quantities in (1.12) along radial trajectories (Section 4), thanks to the trivial fact that u ln(u + 1) is
nonnegative it can be shown that F , along with some meaningful replacement of D0, satisfies a lower
estimate of the form in (1.5), and hence ensures finite-time blow-up for all radial initial data with
suitably large negative energy (Section 5 and Section 6). Finally, a bootstrap-like regularity reasoning
will reveal boundedness of any such non-global radial solution outside arbitrary neighborhoods of the
spatial origin (Section 7).

In summary, we will obtain the following statement on blow-up in which, as throughout the sequel,
for R > 0 we abbreviate BR := BR(0) ⊂ R

n.

Theorem 1.2 Suppose that n ≥ 3 and that with some q > n the functions u0 and v0 satisfy (1.7)
and (1.8) and are positive on R

n. Then for any choice of p ∈ (1, 2n
n+2) one can find (u0j)j∈N ⊂

BUC(Rn)∩L1(Rn) and (v0j)j∈N ⊂ W 1,q(Rn)∩W 1,1(Rn) such that u0j and v0j are radially symmetric
and positive for all j ∈ N, that

u0j → u0 in Lp(Rn)∩L1(Rn) and v0j → v0 in W 1,2(Rn)∩W 1,1(Rn) as j → ∞, (1.13)

and that for each j ∈ N the associated classical solution (uj , vj) of (1.6) from Proposition 1.1 blows
up in finite time at the spatial origin, in the sense that the corresponding maximal existence time
Tmax,j > 0 actually satisfies Tmax,j ≤ 1, that

lim sup
tրTmax,j

‖uj(·, t)‖L∞(Rn) = ∞, (1.14)

but that
sup

t∈(0,Tmax,j)
‖uj(·, t)‖L∞(Rn\Bδ) < ∞ for all δ > 0. (1.15)
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2 Local existence, uniqueness and maximal extensibility. Proof of
Proposition 1.1

2.1 Local existence and regularity of mild solutions

To prepare our construction of local-in-time solutions, for ϕ ∈ ⋃
p∈[1,∞]

Lp(Rn) we let

[et∆ϕ](x) :=

∫

Rn

G(x− y, t)ϕ(y)dy, x ∈ R
n, t > 0,

with G(z, t) := (4πt)−
n
2 e−

|z|2

4t for z ∈ R
n and t > 0. Then the following lemma collects some essentially

well-known facts that can readily be derived using basic integrability and regularity properties of G,
and a proof of which is thus omitted here.

Lemma 2.1 i) If ϕ ∈ ⋃
p∈[1,∞]

W 1,p(Rn), then for each i ∈ {1, ..., n},

∂xi
et∆ϕ = et∆∂xi

ϕ in R
n for all t > 0.

ii) Whenever 1 ≤ p ≤ q ≤ ∞ and ω ∈ N
n
0 , one can find C(p, q, ω) > 0 with the property that given

any ϕ ∈ Lp(Rn) we have

‖Dω
x e

t∆ϕ‖Lq(Rn) ≤ C(p, q, ω)t
− |ω|

2
−n

2
( 1
q
− 1

p
)‖ϕ‖Lp(Rn) for all t > 0.

iii) If p ∈ [1,∞], q ∈ [1,∞], T > 0, λ ∈ R and ϕ ∈ L∞((0, T );Lq(Rn)), then

[0, T ] ∋ t 7→
∫ t

0
e(t−s)(∆+λ)ϕ(·, s)ds belongs to C0([0, T ];Lp(Rn)) if

1

p
<

1

q
+

2

n

and for all i ∈ {1, ..., n},

[0, T ] ∋ t 7→
∫ t

0
∂xi

e(t−s)(∆+λ)ϕ(·, s)ds lies in C0([0, T ];Lp(Rn)) if
1

p
<

1

q
+

1

n
.

Then the following statement on local existence of smooth solutions, along with a first though not
yet very convenient extensibility criterion, can be established by application of a contraction mapping
argument. In view of our eventual goal to achieve even (1.10), the function space setting chosen here
will differ from those underlying apparently all precedent relatives (see [1], [5] and [6] and also [14],
for instance).

Lemma 2.2 Suppose that (1.7) holds with some q > n. Then there exist Tmax ∈ (0,∞] and at least
one classical solution (u, v) of (1.6) in R

n × (0, Tmax) fulfilling (1.9) which is such that

u(·, t) = et∆u0 −
∫ t

0
∇ · e(t−s)∆[u(·, s)∇v(·, s)]ds in R

n for all t ∈ (0, Tmax) (2.1)

and

v(·, t) = et(∆−1)v0 +

∫ t

0
e(t−s)(∆−1)u(·, s)ds in R

n for all t ∈ (0, Tmax), (2.2)
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and that

if Tmax < ∞, then lim sup
tրTmax

{
‖u(·, t)‖L∞(Rn) + ‖u(·, t)‖L1(Rn)

+‖v(·, t)‖L1(Rn) + ‖∇v(·, t)‖Lq(Rn) + ‖∇v(·, t)‖L1(Rn)

}
= ∞. (2.3)

Proof. According to Lemma 2.1, let us pick c1 > 0, c2 > 0 and c3 > 0 such that

‖∇et∆ϕ‖L∞(Rn) ≤ c1t
− 1

2
− n

2q ‖ϕ‖Lq(Rn) for all t > 0 and ϕ ∈ Lq(Rn) (2.4)

and
‖∇et∆ϕ‖L1(Rn) ≤ c2t

− 1
2 ‖ϕ‖L1(Rn) for all t > 0 and ϕ ∈ L1(Rn), (2.5)

as well as
‖∇et∆ϕ‖Lq(Rn) ≤ c3t

− 1
2 ‖ϕ‖Lq(Rn) for all t > 0 and ϕ ∈ Lq(Rn), (2.6)

and take T ∈ (0, 1) small enough fulfilling

max

{
nc1R

2T
1
2
− n

2q

1
2 − n

2q

, 2nc2R
2T

1
2 , RT , 2c3RT

1
2 , 2c2RT

1
2

}
≤ 1

5
(2.7)

and

max

{
2nc1RT

1
2
− n

2q

1
2 − n

2q

, 4nc2RT
1
2 , T , 2c3T

1
2 , 2c2T

1
2

}
≤ 1

10
, (2.8)

where
R := ‖u0‖L∞(Rn) + ‖u0‖L1(Rn) + ‖v0‖L1(Rn) + ‖∇v0‖Lq(Rn) + ‖∇v0‖L1(Rn) + 1. (2.9)

Then in the Banach space

X := C0

(
[0, T ];

(
BUC(Rn) ∩ L1(Rn)

)
×
(
W 1,q(Rn) ∩W 1,1(Rn)

))
,

equipped with the norm ‖ · ‖X defined by letting

‖(u, v)‖X := max
t∈[0,T ]

{
‖u(·, t)‖L∞(Rn) + ‖u(·, t)‖L1(Rn)

+‖v(·, t)‖L1(Rn) + ‖∇v(·, t)‖Lq(Rn) + ‖∇v(·, t)‖L1(Rn)

}
, (u, v) ∈ X,

we consider the closed set

S :=
{
(u, v) ∈ X

∣∣∣ (u, v)(·, 0) = (u0, v0) and ‖(u, v)‖X ≤ R
}
,

and for (u, v) ∈ S we set Φ(u, v) := (Φ1(u, v),Φ2(u, v)) with

Φ1(u, v)(·, t) := et∆u0 −
∫ t

0
∇ · e(t−s)∆[u(·, s)∇v(·, s)]ds, t ∈ [0, T ],
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and

Φ2(u, v)(·, t) := et(∆−1)v0 +

∫ t

0
e(t−s)(∆−1)u(·, s)ds, t ∈ [0, T ].

Since 0 ≤ t 7→ et∆u0 can easily be seen to belong to C0([0,∞);BUC(Rn)) due to (1.7), two applications
of Lemma 2.1 iii) then readily entail that Φ maps S into X. Moreover, recalling the well-known fact
that et∆ is nonexpansive on Lp(Rn) for all p ∈ [1,∞] and t > 0, for (u, v) ∈ S we can use the first
restriction contained in (2.7) to estimate

‖Φ1(u, v)(·, t)‖L∞(Rn) ≤ ‖u0‖L∞(Rn) + nc1

∫ t

0
(t− s)

− 1
2
− n

2q ‖u(·, s)∇v(·, s)‖Lq(Rn)ds

≤ ‖u0‖L∞(Rn) + nc1

∫ t

0
(t− s)

− 1
2
− n

2q ‖u(·, s)‖L∞(Rn)‖∇v(·, s)‖Lq(Rn)ds

≤ ‖u0‖L∞(Rn) +
nc1R

2T
1
2
− n

2q

1
2 − n

2q

≤ ‖u0‖L∞(Rn) +
1

5
for all t ∈ [0, T ],

because (2.4) clearly warrants that ‖∇ · et∆ϕ‖L∞(Rn) ≤ nc1t
− 1

2
− n

2q ‖ϕ‖Lq(Rn) for all t > 0 and each
ϕ ∈ Lq(Rn;Rn).
Likewise, relying on (2.5) and the second requirement entailed by (2.7) we see that

‖Φ1(u, v)(·, t)‖L1(Rn) ≤ ‖u0‖L1(Rn) + nc2

∫ t

0
(t− s)−

1
2 ‖u(·, s)∇v(·, s)‖L1(Rn)ds

≤ ‖u0‖L1(Rn) + nc2

∫ t

0
(t− s)−

1
2 ‖u(·, s)‖L∞(Rn)‖∇v(·, s)‖L1(Rn)ds

≤ ‖u0‖L1(Rn) + 2nc2R
2T

1
2

≤ ‖u0‖L1(Rn) +
1

5
for all t ∈ [0, T ],

while the third implication of (2.7) guarantees that

‖Φ2(u, v)(·, t)‖L1(Rn) ≤ ‖v0‖L1(Rn) +

∫ t

0
‖u(·, s)‖L1(Rn)ds

≤ ‖v0‖L1(Rn) +RT

≤ ‖v0‖L1(Rn) +
1

5
for all t ∈ [0, T ].

Since furthermore from (2.6) we know that due to the Hölder inequality and (2.7) we have

‖∇Φ2(u, v)(·, t)‖Lq(Rn) ≤ ‖∇v0‖Lq(Rn) + c3

∫ t

0
(t− s)−

1
2 ‖u(·, s)‖Lq(Rn)ds

≤ ‖∇v0‖Lq(Rn) + c3

∫ t

0
(t− s)−

1
2 ‖u(·, s)‖

q−1
q

L∞(Rn)‖u(·, s)‖
1
q

L1(Rn)
ds
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≤ ‖∇v0‖Lq(Rn) + 2c3RT
1
2

≤ ‖∇v0‖Lq(Rn) +
1

5
for all t ∈ [0, T ],

and since, again by (2.5), the condition (2.7) furthermore warrants that

‖∇Φ2(u, v)(·, t)‖L1(Rn) ≤ ‖∇v0‖L1(Rn) + c2

∫ t

0
(t− s)−

1
2 ‖u(·, s)‖L1(Rn)ds

≤ ‖∇v0‖L1(Rn) + 2c2RT
1
2

≤ ‖∇v0‖L1(Rn) +
1

5
for all t ∈ [0, T ],

from the definition of ‖ · ‖X it follows that

‖Φ(u, v)‖X ≤ ‖u0‖L∞(Rn) + ‖u0‖L1(Rn) + ‖v0‖L1(Rn) + ‖∇v0‖Lq(Rn) + ‖∇v0‖L1(Rn) + 1

= R for all (u, v) ∈ S. (2.10)

In quite a similar manner, given (u, v) ∈ S and (u, v) ∈ S we can use (2.4) and the first requirement
in (2.8) to estimate

∥∥∥Φ1(u, v)(·, t)− Φ1(u, v)(·, t)
∥∥∥
L∞(Rn)

=

∥∥∥∥∥

∫ t

0
∇ · e(t−s)∆

{
[u(·, s)− u(·, s)]∇v(·, s) + u(·, s)[∇v(·, s)−∇v(·, s)]

}
ds

∥∥∥∥∥
L∞(Rn)

≤ nc1

∫ t

0
(t− s)−

1
2
− n

2q

{
‖u(·, s)− u(·, s)‖L∞(Rn)‖∇v(·, s)‖Lq(Rn)

+‖u(·, s)‖L∞(Rn)‖∇v(·, s)−∇v(·, s)‖Lq(Rn)

}
ds

≤ 2nc1RT
1
2
− n

2q

1
2 − n

2q

‖(u, v)− (u, v)‖X

≤ 1

10
‖(u, v)− (u, v)‖X for all t ∈ [0, T ],

whereas (2.5) together with the second restriction in (2.8) ensures that

∥∥∥Φ1(u, v)(·, t)− Φ1(u, v)(·, t)
∥∥∥
L1(Rn)

≤ nc2

∫ t

0
(t− s)−

1
2

{
‖u(·, s)− u(·, s)‖L∞(Rn)‖∇v(·, s)‖L1(Rn)

+‖u(·, s)‖L∞(Rn)‖∇v(·, s)−∇v(·, s)‖L1(Rn)

}
ds

≤ 4nc2RT
1
2 ‖(u, v)− (u, v)‖X

≤ 1

10
‖(u, v)− (u, v)‖X for all t ∈ [0, T ].
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Apart from that, the three rightmost conditions contained in (2.8) imply that for (u, v) ∈ S and
(u, v) ∈ S we have

‖Φ2(u, v)(·, t)− Φ2(u, v)(·, t)‖L1(Rn) =

∥∥∥∥
∫ t

0
e(t−s)(∆−1)[u(·, s)− u(·, s)]ds

∥∥∥∥
L1(Rn)

≤
∫ t

0
‖u(·, s)− u(·, s)‖L1(Rn)ds

≤ T‖(u, v)− (u, v)‖X
≤ 1

10
‖(u, v)− (u, v)‖X for all t ∈ [0, T ]

and, by (2.6),

‖∇Φ2(u, v)(·, t)−∇Φ2(u, v)(·, t)‖Lq(Rn) ≤ c3

∫ t

0
(t− s)−

1
2 ‖u(·, s)− u(·, s)‖Lq(Rn)ds

≤ 2c3T
1
2 ‖(u, v)− (u, v)‖X

≤ 1

10
‖(u, v)− (u, v)‖X for all t ∈ [0, T ]

as well as

‖∇Φ2(u, v)(·, t)−∇Φ2(u, v)(·, t)‖L1(Rn) ≤ c2

∫ t

0
(t− s)−

1
2 ‖u(·, s)− u(·, s)‖L1(Rn)ds

≤ 2c2T
1
2 ‖(u, v)− (u, v)‖X

≤ 1

10
‖(u, v)− (u, v)‖X for all t ∈ [0, T ]

according to (2.5). In summary,

‖Φ(u, v)− Φ(u, v)‖X ≤ 5 · 1

10
‖(u, v)− (u, v)‖X for all (u, v) ∈ X and (u, v) ∈ X,

which combined with (2.10) enables us to invoke the Banach fixed point theorem to find an element
(u, v) of S such that Φ(u, v) = (u, v).

A standard argument (cf. e.g.[11, Lemma 3.3] for a detailed demonstration in a closely related setting)
thereafter shows that actually (u, v) belongs to (C2,1(Rn× (0, T ))2 and, since ∇· and et∆ commute on
C1(Rn;Rn)∩L1(Rn;Rn), solves (1.6) classically in R

n×(0, T ), and from our definition of T it becomes
clear through another standard reasoning that (u, v) can be extended up to a maximal Tmax ∈ (0,∞]
fulfilling (2.3), and that (2.1) and (2.2) actually hold throughout the entire interval (0, Tmax). �

As it directly refers to the integral identity (2.2) and to Lemma 2.1, let us include the following basic
integrability property of ∇v already here, although it will only be used in the course of our blow-up
argument in Lemma 4.1, and in the part identifying x = 0 as blow-up point (Lemma 7.1).

Lemma 2.3 There exists C > 0 such that if u0 and v0 satisfy (1.7), then

‖∇v(·, t)‖L1(Rn) ≤ ‖∇v0‖L1(Rn) + C‖u0‖L1(Rn) for all t ∈ (0, Tmax). (2.11)
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Proof. To the integral identity (2.2), we only need to once again apply Lemma 2.1 along with fact
that et∆ has Lipschitz constant 1 in L1(Rn). In view of (1.11), namely, this shows that with some
c1 > 0 we have

‖∇v(·, t)‖L1(Rn) ≤ e−t‖∇v0‖L1(Rn) + c1

∫ t

0
(t− s)−

1
2 e−(t−s)‖u(·, s)‖L1(Rn)ds

= e−t‖∇v0‖L1(Rn) + c1‖u0‖L1(Rn)

∫ t

0
σ− 1

2 e−σdσ for all t ∈ (0, Tmax),

from which (2.11) follows by finiteness of
∫∞
0 σ− 1

2 e−σdσ. �

2.2 Uniqueness

To prepare our subsequent localization arguments not only in this but also during the next sections,
we fix a nonincreasing cut-off function ξ ∈ C∞(R) fulfilling ξ ≡ 1 in (−∞, 0] and ξ ≡ 0 in [1,∞), and
for R > 0 we let

ζR(x) := ξ(|x| −R), x ∈ R
n. (2.12)

Then ζR is radially symmetric about the origin, with ζR ≡ 1 in BR and supp ζR ⊂ BR+1 as well as
supp∇ζR ⊂ BR+1 \BR, and moreover we have 0 ≤ ζR ≤ 1 in R

n.

A first use of the family (ζR)R>0 enables us to conclude uniqueness of classical solutions within spaces
of functions satisfying spatial decay conditions in the flavor of those from Lemma 2.2.

Lemma 2.4 Assume (1.7) with some q > n. Then for each T > 0, the problem (1.6) admits at most
one classical solution (u, v) in R

n × (0, T ) which is such that

{
u ∈ C0([0, T ];BUC(Rn) ∩ L1(Rn)) ∩ C2,1(Rn × (0, T )) and

v ∈ C0([0, T ];W 1,q(Rn) ∩W 1,1(Rn)) ∩ C2,1(Rn × (0, T )).
(2.13)

Proof. If (u, v) and (u, v) are two classical solutions in R
n × (0, T ) fulfilling the above regularity

assumptions, then w := u− u and z := v − v satisfy

wt = ∆w −∇ · (w∇v)−∇ · (u∇z) and zt = ∆z − z + w in R
n × (0, T ),

so that with (ζR)R>0 as defined in (2.12), for R > 0 we have

1

2

d

dt

∫

Rn

ζ2Rw
2 =

∫

Ω
ζ2Rw∇ ·

{
∇w − w∇v − u∇z

}

= −
∫

Ω
ζ2R|∇w|2 − 2

∫

Rn

ζRw∇ζR · ∇w

+

∫

Rn

ζ2Rw∇w · ∇v + 2

∫

Rn

ζRw
2∇ζR · ∇v

+

∫

Rn

ζ2Ru∇w · ∇z + 2

∫

Rn

ζRuw∇ζR · ∇z

≤ −
∫

Rn

ζ2R|∇w|2
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+
1

4

∫

Rn

ζ2R|∇w|2 + 4

∫

Rn

|∇ζR|2w2

+
1

4

∫

Rn

ζ2R|∇w|2 +
∫

Rn

ζ2Rw
2|∇v|2

+2

∫

Rn

ζRw
2∇ζR · ∇v

+
1

4

∫

Rn

ζ2R|∇w|2 +
∫

Rn

ζ2Ru
2|∇z|2

+2

∫

Rn

ζRuw∇ζR · ∇z

= −1

4

∫

Rn

ζ2R|∇w|2

+4

∫

Rn

|∇ζR|2w2 +

∫

Rn

ζ2Rw
2|∇v|2 +

∫

Rn

ζ2Ru
2|∇z|2

+2

∫

Rn

ζRw
2∇ζR · ∇v + 2

∫

Rn

ζRuw∇ζR · ∇z for all t ∈ (0, T ) (2.14)

and

1

2

d

dt

∫

Rn

ζ2R|∇z|2 =

∫

Rn

ζ2R∇z · (∇∆z −∇z +∇w)

=
1

2

∫

Rn

ζ2R∆|∇z|2 −
∫

Rn

ζ2R|D2z|2

−
∫

Rn

ζ2R|∇z|2 +
∫

Rn

ζ2R∇z · ∇w

= −2

∫

Rn

ζR∇ζR · (D2z · ∇z)−
∫

Rn

ζ2R|D2z|2

−
∫

Rn

ζ2R|∇z|2 +
∫

Rn

ζ2R∇z · ∇w

≤
∫

Rn

|∇ζR|2|∇z|2 + 1

4

∫

Rn

ζ2R|∇w|2 for all t ∈ (0, T ) (2.15)

according to the pointwise identity ∇z · ∇∆z = 1
2∆|∇z|2 − |D2z|2 and Young’s inequality.

Now in view of (2.13), the numbers c1 := supt∈(0,T ) ‖∇v(·, t)‖Lq(Rn) and c2 := supt∈(0,T ) ‖u(·, t)‖L∞(Rn)

are finite, so that on the right-hand side of (2.14), using the Hölder inequality and the fact that
0 ≤ ζR ≤ 1 we can further estimate

∫

Rn

ζ2Rw
2|∇v|2 ≤ c21‖ζRw‖2

L
2q
q−2 (Rn)

for all t ∈ (0, T ) (2.16)

and ∫

Rn

ζ2Ru
2|∇z|2 ≤ c22

∫

Rn

ζ2R|∇z|2 for all t ∈ (0, T ), (2.17)
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where thanks to our assumption that q > n and hence 2q
q−2 < 2n

n−2 , we may employ the Gagliardo-
Nirenberg inequality and Young’s inequality to find c3 > 0 and c4 > 0 such that

c21‖ζRw‖2
L

2q
q−2 (Rn)

≤ c3‖∇(ζRw)‖
2n
q

L2(Rn)
‖ζRw‖

2(q−n)
q

L2(Rn)

≤ 1

16
‖∇(ζRw)‖2L2(Rn) + c4‖ζRw‖2L2(Rn)

=
1

16

∫

Rn

|ζR∇w + w∇ζR|2 + c4

∫

Rn

ζ2Rw
2

≤ 1

8

∫

Rn

ζ2R|∇w|2 + 1

8

∫

Rn

|∇ζR|2w2 + c4

∫

Rn

ζ2Rw
2 for all t ∈ (0, T ). (2.18)

Next, further applications of the Hölder inequality show that abbreviating c5 := ‖∇ζ1‖L∞(Rn), c6 :=
supt∈(0,T ) ‖w(·, t)‖L∞(Rn) and c7 := supt∈(0,T ) ‖∇z(·, t)‖Lq(Rn) we can estimate

2

∫

Rn

ζRw
2∇ζR · ∇v ≤ 2c5

∫

BR+1\BR

w2|∇v|

≤ 2c5‖w‖
q+1
q

L∞(Rn)‖w‖
q−1
q

L1(BR+1\BR)
‖∇v‖Lq(Rn)

≤ 2c1c5c
q+1
q

6 ‖w‖
q−1
q

L1(BR+1\BR)
for all t ∈ (0, T )

and

2

∫

Rn

ζRuw∇ζR · ∇z ≤ 2c5

∫

BR+1\BR

uw|∇z|

≤ 2c5‖u‖L∞(Rn)‖w‖
1
q

L∞(Rn)‖w‖
q−1
q

L1(BR+1\BR)
‖∇z‖Lq(Rn)

≤ 2c2c5c
1
q

6 c7‖w‖
q−1
q

L1(BR+1\BR)
for all t ∈ (0, T )

as well as ∫

Rn

|∇ζR|2w2 ≤ c25

∫

BR+1\BR

w2 ≤ c25c6‖w‖L1(BR+1\BR) for all t ∈ (0, T )

and ∫

Rn

|∇ζR|2|∇z|2 ≤ c25

∫

BR+1\BR

|∇z|2

≤ c25‖∇z‖
q

q−1

Lq(Rn)‖∇z‖
q−2
q−1

L1(BR+1\BR)

≤ c25c
q

q−1

7 ‖∇z‖
q−2
q−1

L1(BR+1\BR)
for all t ∈ (0, T ).

On combining (2.14) with (2.15) and with (2.16)-(2.18), we hence infer that yR(t) :=
1
2

∫
Rn ζ

2
Rw

2(·, t)+
1
4

∫
Ω ζ2R|∇z(·, t)|2, t ∈ [0, T ], satisfies

y′R(t) ≤ 33

8

∫

Rn

|∇ζR|2w2 + c4

∫

Rn

ζ2Rw
2 + c22

∫

Rn

ζ2R|∇z|2 + c8‖w‖
q−1
q

L1(BR+1\BR)
+

1

2

∫

Rn

|∇ζR|2|∇z|2

≤ c9yR(t) + c8‖w‖
q−1
q

L1(BR+1\BR)
+ c10‖w‖L1(BR+1\BR) + c11‖∇z‖

q−2
q−1

L1(BR+1\BR)
for all t ∈ (0, T )
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with c8 := 2c1c5c
q−1
q

6 + 2c2c5c
1
q

6 c7, c9 := max{2c4, 4c22}, c10 := 33
8 c

2
5c6 and c11 := 1

2c
2
5c

q
q−1

7 . Since
yR(0) = 0, an integration thereof yields

yR(t) ≤
∫ t

0
ec9(t−s) ·

{
c8‖w(·, s)‖

q−1
q

L1(BR+1\BR)
+ c10‖w(·, s)‖L1(BR+1\BR) + c11‖∇z(·, s)‖

q−2
q−1

L1(BR+1\BR)

}
ds

for all t ∈ (0, T ), and that thus

yR(t) → 0 as R → ∞ for all t ∈ (0, T ), (2.19)

because due to (2.13) we have

sup
s∈(0,T )

{
‖w(·, s)‖L1(BR+1\BR) + ‖∇z(·, s)‖L1(BR+1\BR)

}
→ 0 as R → ∞.

But by definition of (yR)R>0, (2.19) means that w(·, t) ≡ 0 and ∇z(·, t) ≡ 0 in R
n for all t ∈ (0, T ),

and that hence (u, v) ≡ (u, v) in R
n × (0, T ). �

2.3 Positivity, mass conservation and the refined extensibility criterion (1.10)

As straightforward applications of well-known maximum and comparison principles ([26, Appendix
F]) seem unavailable in the present setting of unbounded domains and possibly unbounded system
ingredients, such as e.g. the coefficients b(x, t) := −∇v and c(x, t) := −∆v in ut = ∆u+ b(x, t) · ∇u+
c(x, t)u, we once more utilize a localization argument involving the functions from (2.12) to derive the
following statement on positivity.

Lemma 2.5 Assume (1.7) with some q > n. Then the solution (u, v) of (1.6) from Lemma 2.2
satisfies u > 0 and v > 0 in R

n × (0, Tmax).

Proof. In view of the strong maximum principle and (1.7), it is sufficient to make sure that both
u and v are nonnegative in R

n × (0, T ) for each T ∈ (0, Tmax). To verify this, for R > 0 we take ζR
from (2.12) and use the continuous differentiability of R ∋ s 7→ s2−, with s− := max{−s, 0} for s ∈ R,
to see that thanks to Young’s inequality,

1

2

d

dt

∫

Rn

ζ2Ru
2
− = −

∫

Rn

ζ2R|∇u−|2 +
∫

Rn

ζ2Ru−∇u− · ∇v

−2

∫

Rn

ζRu−∇ζR · ∇u− + 2

∫

Rn

ζRu
2
−∇ζR · ∇v

≤ −1

2

∫

Rn

ζ2R|∇u−|2 +
∫

Rn

ζ2Ru
2
−|∇v|2

+4

∫

Rn

|∇ζR|2u2− + 2

∫

Rn

ζRu
2
−∇ζR · ∇v for all t ∈ (0, Tmax). (2.20)

Here we may proceed similarly to the proof of Lemma 2.4 in employing the Hölder inequality and
the Gagliardo-Nirenberg inequality to see that since ∇v belongs to L∞((0, T );Lq(Rn)), with some
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c1 = c1(T ) > 0 and c2 = c2(T ) > 0 and for all R > 0 we have
∫

Rn

ζ2Ru
2
−|∇v|2 ≤ ‖∇v‖2Lq(Rn)‖ζRu−‖2

L
2q
q−2 (Rn)

≤ c1‖∇(ζRu−)‖
2n
q

L2(Rn)
‖ζRu−‖

2(q−n)
q

L2(Rn)

≤ 1

4
‖∇(ζRu−)‖2L2(Rn) + c2‖ζRu−‖2L2(Rn)

≤ 1

2

∫

Rn

ζR|∇u−|2 +
1

2

∫

Rn

|∇ζR|2u2− + c2

∫

Rn

ζ2Ru
2
− for all t ∈ (0, T ).

As, furthermore, using (2.12) we can find c3 > 0 and c4 = c4(T ) > 0 such that for all R > 0,

2

∫

Rn

ζRu
2
−∇ζR · ∇v ≤ c3

∫

BR+1\BR

u2−|∇v|

≤ c3‖u−‖2
L

2q
q−1 (BR+1\BR)

‖∇v‖Lq(Rn)

≤ c4‖u−‖2
L

2q
q−1 (BR+1\BR)

for all t ∈ (0, T ),

the inequality (2.20) therefore implies that yR(t) :=
∫
Rn ζ

2
Ru

2
−(·, t), t ∈ [0, T ], R > 0, satisfies

y′R(t) ≤ 2c2yR(t) + c5‖u−‖2L2(BR+1\BR) + 2c4‖u−‖2
L

2q
q−1 (BR+1\BR)

for all t ∈ (0, T )

with c5 := 9‖∇ζ1‖2L∞(Rn). When integrated over time, this entails that since yR(0) = 0,

yR(t) ≤
∫ t

0
e2c2(t−s) ·

{
c5‖u−(·, s)‖2L2(BR+1\BR) + 2c4‖u−‖2

L
2q
q−1 (BR+1\BR)

}
ds

for all t ∈ (0, T ) and each R > 0, whence observing that for all p ∈ (1,∞) we have

sup
s∈(0,T )

‖u−(·, s)‖Lp(BR+1\BR) ≤ sup
s∈(0,T )

‖u(·, s)‖Lp(BR+1\BR)

≤ sup
s∈(0,T )

{
‖u(·, s)‖

p−1
p

L∞(Rn)‖u(·, s)‖
1
p

L1(BR+1\BR)

}

→ 0 as R → ∞,

we conclude that yR(t) → 0 as R → ∞ for all t ∈ (0, T ).

Having thereby asserted nonnegativity of u in R
n× (0, T ), we can make use this to see that once more

due to Young’s inequality,

1

2

d

dt

∫

Rn

ζ2Rv
2
− = −

∫

Rn

ζ2R|∇v−|2 − 2

∫

Rn

ζRv−∇ζR · ∇v−

−
∫

Rn

ζ2Rv
2
− −

∫

Rn

ζ2Ruv−

≤
∫

Rn

|∇ζR|2v2−

≤ c6‖v−‖2L2(BR+1\BR) for all t ∈ (0, T ) and R > 0
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with c6 := ‖∇ζ1‖2L∞(Rn). Since

sup
s∈(0,T )

‖v−(·, s)‖2L2(BR+1\BR) ≤ sup
s∈(0,T )

{
‖v(·, s)‖

q
q−1

Lq(Rn)‖v(·, s)‖
q−2
q−1

L1(BR+1\BR)

}
→ 0 as R → ∞,

this implies that

∫

Rn

v2−(·, t) = lim
R→∞

∫

Rn

ζ2Rv
2
−(·, t)

≤ lim sup
R→∞

{
2c6

∫ t

0
‖v−(·, s)‖2L2(BR+1\BR)ds

}

= 0 for all t ∈ (0, T )

and hence completes the proof. �

Two further but now quite simple testing procedures involving (2.12) next allow for controling the
mass functionals of both components in quite an expected manner.

Lemma 2.6 Assume (1.7) with some q > n. Then the solution (u, v) of (1.6) from Lemma 2.2 enjoys
the mass conservation property (1.11), and moreover we have

‖v(·, t)‖L1(Rn) ≤ max
{
‖v0‖L1(Rn) , ‖u0‖L1(Rn)

}
for all t ∈ (0, Tmax). (2.21)

Proof. Again taking (ζR)R>0 from (2.12), we use (1.6) to see that for any T ∈ (0, Tmax),

∣∣∣∣
d

dt

∫

Rn

ζRu

∣∣∣∣ =

∣∣∣∣
∫

Rn

ζR∆u−
∫

Rn

ζR∇ · (u∇v)

∣∣∣∣

=

∣∣∣∣
∫

Rn

u∆ζR +

∫

Ω
u∇v · ∇ζR

∣∣∣∣
≤ c1‖u‖L1(BR+1\BR) + c2‖∇v‖L1(BR+1\BR) for all t ∈ (0, T )

with c1 := ‖∆ζ1‖L∞(Rn) and c2 := ‖∇ζ1‖L∞(Rn) · supt∈(0,T ) ‖u(·, t)‖L∞(Rn). Since

sup
s∈(0,T )

{
‖u(·, s)‖L1(BR+1\BR) + ‖∇v(·, s)‖L1(BR+1\BR)

}
→ 0 as R → ∞

by Lemma 2.2, this entails that

∣∣∣∣
∫

Rn

u(·, t)−
∫

Rn

u0

∣∣∣∣ = lim
R→∞

∣∣∣∣
∫

Rn

ζRu(·, t)−
∫

Rn

ζRu0

∣∣∣∣

≤ lim sup
R→∞

∫ T

0

{
c1‖u(·, s)‖L1(BR+1\BR) + c2‖∇v(·, s)‖L1(BR+1\BR)

}
ds

= 0 for all t ∈ (0, T )

and that thus (1.11) holds, for T ∈ (0, Tmax) was arbitrary.
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Likewise, for fixed T ∈ (0, Tmax) the second equation in (1.6) implies that due to (1.11),

d

dt

∫

Rn

ζRv +

∫

Rn

ζRv =

∫

Rn

ζR∆v +

∫

Rn

ζRu

=

∫

Rn

v∆ζR +

∫

Rn

ζRu

≤ c1‖v‖L1(BR+1\BR) +

∫

Rn

u0 for all t ∈ (0, T )

and hence
∫

Rn

ζRv(·, t) ≤ max

{∫

Rn

ζRv0 , c1 sup
s∈(0,T )

‖v(·, s)‖L1(BR+1\BR) +

∫

Rn

u0

}
for all t ∈ (0, T )

by an ODE comparison argument. Noting that Lemma 2.2 ensures that

sup
s∈(0,T )

‖v(·, s)‖L1(BR+1\BR) → 0 as R → ∞,

on taking R → ∞ we readily obtain (2.21) from this. �

With these preparations at hand, we can return to the mild formulation (2.2) to conclude that the
extensibility criterion (2.3) can be refined so as to actually reduce to (1.10).

Lemma 2.7 Under the assumption that (1.7) is satisfied with some q > n, the solution of (1.6) from
Lemma 2.2 has the property that (1.10) holds.

Proof. Let us assume on the contrary that Tmax < ∞, but that there exists c1 > 0 such that

‖u(·, t)‖L∞(Rn) ≤ c1 for all t ∈ (0, Tmax). (2.22)

Then since from Lemma 2.6 and the nonnegativity of u we know that

‖u(·, t)‖L1(Rn) = c2 := ‖u0‖L1(Rn) for all t ∈ (0, Tmax), (2.23)

by using the Hölder inequality we see that

‖u(·, t)‖Lq(Rn) ≤ ‖u(·, t)‖
q−1
q

L∞(Rn)‖u(·, t)‖
1
q

L1(Rn)
≤ c3 := c

q−1
q

1 c
1
q

2 for all t ∈ (0, Tmax).

As Lemma 2.2 ensures validity of (2.2), on applying Lemma 2.1 ii) to the latter identity we thus infer
the existence of c4 > 0 such that

‖∇v(·, t)‖Lq(Rn) ≤ ‖∇v0‖Lq(Rn) + c4

∫ t

0
(t− s)−

1
2 ‖u(·, s)‖Lq(Rn)ds

≤ ‖∇v0‖Lq(Rn) + 2c3c4T
1
2
max for all t ∈ (0, Tmax), (2.24)

while Lemma 2.1 ii) in conjunction with (2.23) shows that with some c5 > 0 we have

‖∇v(·, t)‖L1(Rn) ≤ ‖∇v0‖L1(Rn) + c5

∫ t

0
(t− s)−

1
2 ‖u(·, s)‖L1(Rn)ds

≤ ‖∇v0‖L1(Rn) + 2c2c5T
1
2
max for all t ∈ (0, Tmax). (2.25)
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As furthermore

‖v(·, t)‖L1(Rn) ≤ max
{
‖v0‖L1(Rn) , c2

}
for all t ∈ (0, Tmax) (2.26)

by Lemma 2.6, combining (2.23)-(2.26) with (2.3) reveals that in fact Tmax cannot be finite under the
assumption (2.22). �

Now our basic theory of local existence, uniqueness, extensibility and preservation of mass and of
radial symmetry is complete:

Proof of Proposition 1.1. Existence, uniqueness and validity of (2.1) and (2.2) have been found
Lemma 2.2 and Lemma 2.4, whereas positivity of u and v have been asserted by Lemma 2.5. Due to
Lemma 2.7, this solution satisfies the refined extensibility criterion (1.10), and the mass conservation
identity (1.11) is part of the statement from Lemma 2.6. Based on the uniqueness property, a standard
argument thereupon reveals the claimed radial symmetry feature under the additional hypothesis (1.8).
�

3 A quasi-energy functional bounded from below by −
∫
Rn uv

Next addressing the problem of detecting blow-up, motivated by (1.12) we shall perform one more
localized testing procedure using (ζR)R>0 from (2.12) to achieve the following counterpart of (1.12)
in which time differentiation is avoided due to possibly lacking regularity features, and in which
unfavorable contributions have already been estimated in a convenient manner.

Lemma 3.1 Assume (1.7) for some q > n, and let

F(t) :=
1

2

∫

Rn

|∇v(·, t)|2+ 1

2

∫

Rn

v2(·, t)−
∫

Rn

u(·, t)v(·, t)+
∫

Rn

u(·, t) ln
(
u(·, t)+1

)
, t ∈ [0, Tmax),

(3.1)
and

D(t) :=
1

2

∫

Rn

∣∣∣∆v(·, t)−v(·, t)+u(·, t)
∣∣∣
2
+

∫

Rn

∣∣∣
∇u(·, t)√
u(·, t) + 1

+
√
u(·, t) + 1∇v(·, t)

∣∣∣
2
, t ∈ (0, Tmax),

(3.2)
where (u, v) is the corresponding solution of (1.6) from Lemma 2.2. Then F ∈ C0([0, Tmax)) and
D ∈ L1

loc([0, Tmax)) with F(0) = 1
2

∫
Rn |∇v0|2 + 1

2

∫
Rn v

2
0 −

∫
Rn u0v0 +

∫
Rn u0 ln(u0 + 1), and we have

F(t) +

∫ t

0
D(s)ds ≤ F(0) + 4

∫ t

0
F(s)ds+ 4

∫ t

0

∫

Rn

uv for all t ∈ (0, Tmax). (3.3)

Proof. Since Proposition 1.1 clearly entails that v ∈ C0([0, Tmax);W
1,p(Rn)) for all p ∈ [1, q], from

the inequality q > 2 it follows that F (1)(t) := 1
2

∫
Rn |∇v(·, t)|2 and F (2)(t) := 1

2

∫
Rn v

2(·, t), t ∈ [0, Tmax),

define continuous functions fulfilling F (1)(0) = 1
2

∫
Rn |∇v0|2 and F (2)(0) = 1

2

∫
Rn v

2
0. As Proposition

1.1 apart from that ensures that u and hence also ln(u + 1) belong to C0([0, Tmax);L
∞(Rn)), from

the inclusion {u, v} ⊂ C0([0, Tmax);L
1(Rn)) we moreover obtain that also F (3)(t) := −

∫
Rn u(·, t)v(·, t)

and F (4)(t) :=
∫
Rn u(·, t) ln(u(·, t) + 1), t ∈ [0, Tmax), are continuous with F (3)(0) = −

∫
Rn u0v0 and

F (4)(0) =
∫
Rn u0 ln(u0 + 1).
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Having thus asserted continuity of F = F (1)+F (2)+F (3)+F (4) as well as its claimed initial behavior,
we are left with the verification of (3.3). To accomplish this, for R > 0 we once more take ζR as
defined in (2.12) and note that

FR(t) :=
1

2

∫

Rn

ζ2R|∇v(·, t)|2 + 1

2

∫

Rn

ζ2Rv
2(·, t)

−
∫

Rn

ζ2Ru(·, t)v(·, t) +
∫

Rn

ζ2Ru(·, t) ln
(
u(·, t) + 1

)
, t ∈ [0, Tmax),

is evidently continuous on [0, Tmax) and continuously differentiable on (0, Tmax), and satisfies

F ′
R(t) =

∫

Rn

ζ2R∇v · ∇vt +

∫

Rn

ζ2Rvvt −
∫

Rn

ζ2Ruvt −
∫

Rn

ζRutv

+

∫

Rn

ζ2R

(
ln(u+ 1) +

u

u+ 1

)
ut for all t ∈ (0, Tmax). (3.4)

Here integrating by parts and using Young’s inequality shows that due to the second equation in (1.6),
∫

Rn

ζ2R∇v · ∇vt +

∫

Rn

ζ2Rvvt −
∫

Rn

ζ2Ruvt

= −
∫

Rn

ζ2R∆vvt − 2

∫

Rn

ζRvt∇ζR · ∇v +

∫

Rn

ζ2Rvvt −
∫

Rn

ζ2Ruvt

= −
∫

Rn

ζ2Rv
2
t − 2

∫

Rn

ζRvt∇ζR · ∇v

≤ −1

2

∫

Rn

ζ2Rv
2
t + 2

∫

Rn

|∇ζR|2|∇v|2 for all t ∈ (0, Tmax), (3.5)

whereas from the first equation in (1.6) we obtain that

−
∫

Rn

ζ2Rutv =

∫

Rn

ζ2R∇u · ∇v −
∫

Rn

ζ2Ru|∇v|2

+2

∫

Rn

ζRv∇ζR · ∇u− 2

∫

Rn

ζRuv∇ζR · ∇v (3.6)

and
∫

Rn

ζ2R

(
ln(u+ 1) +

u

u+ 1

)
ut

= −
∫

Rn

ζ2R

( 1

u+ 1
+

1

(u+ 1)2

)
|∇u|2 +

∫

Rn

ζ2R

( u

u+ 1
+

u

(u+ 1)2

)
∇u · ∇v

−2

∫

Rn

ζR

(
ln(u+ 1) +

u

u+ 1

)
∇ζR · ∇u+ 2

∫

Rn

(
u ln(u+ 1) +

u2

u+ 1

)
∇ζR · ∇v (3.7)

for all t ∈ (0, Tmax). Using the identity

∇u · ∇v − u|∇v|2 −
( 1

u+ 1
+

1

(u+ 1)2

)
|∇u|2 +

( u

u+ 1
+

u

(u+ 1)2

)
∇u · ∇v

= −
∣∣∣

∇u√
u+ 1

−
√
u+ 1∇v

∣∣∣
2
− 1

(u+ 1)2
|∇u|2 + |∇v|2 − 1

(u+ 1)2
∇u · ∇v in R

n × (0, Tmax),
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from (3.6) and (3.7) we infer that

−
∫

Rn

ζ2Rutv +

∫

Rn

ζ2R

(
ln(u+ 1) +

u

u+ 1

)
ut

= −
∫

Rn

ζ2R

∣∣∣
∇u√
u+ 1

−
√
u+ 1∇v

∣∣∣
2
−
∫

Rn

ζ2R
|∇u|2

(u+ 1)2
+

∫

Rn

ζ2R|∇v|2

−
∫

Rn

ζ2R · 1

(u+ 1)2
∇u · ∇v

+2

∫

Rn

ζR

(
v − ln(u+ 1)− u

u+ 1

)
∇ζR · ∇u

−2

∫

Rn

ζR

(
uv − u ln(u+ 1)− u2

u+ 1

)
∇ζR · ∇v for all t ∈ (0, Tmax). (3.8)

Here by Young’s inequality and the elementary estimates 1
u+1 ≤ 1 and ln(u+ 1) ≤ u, we see that

−
∫

Rn

ζ2R · 1

(u+ 1)2
∇u · ∇v ≤ 1

2

∫

Rn

ζ2R
|∇u|2

(u+ 1)2
+

1

2

∫

Rn

ζ2R
|∇v|2

(u+ 1)2

≤ 1

2

∫

Rn

ζ2R
|∇u|2

(u+ 1)2
+

1

2

∫

Rn

ζ2R|∇v|2 for all t ∈ (0, Tmax)

and

2

∫

Rn

ζR

(
v − ln(u+ 1)− u

u+ 1

)
∇ζR · ∇u

≤ 1

2

∫

Rn

ζ2R
|∇u|2

(u+ 1)2
+ 2

∫

Rn

|∇ζR|2(u+ 1)2
(
v − ln(u+ 1)− u

u+ 1

)2

≤ 1

2

∫

Rn

ζ2R
|∇u|2

(u+ 1)2
+

∫

Rn

|∇ζR|2
(
6(u+ 1)2v2 + 6(u+ 1)2 ln2(u+ 1) + 6u2

)

≤ 1

2

∫

Rn

ζ2R
|∇u|2

(u+ 1)2
+

∫

Rn

|∇ζR|2
(
6(u+ 1)2v2 + 6u2(u+ 1)2 + 6u2

)
for all t ∈ (0, Tmax)

as well as

−2

∫

Rn

ζR

(
uv − u ln(u+ 1)− u2

u+ 1

)
∇ζR · ∇v

≤ 1

2

∫

Rn

ζ2R|∇v|2 + 2

∫

Rn

|∇ζR|2
(
uv − u ln(u+ 1)− u2

u+ 1

)2

≤ 1

2

∫

Rn

ζ2R|∇v|2 +
∫

Rn

|∇ζR|2
(
6u2v2 + 6u2 ln2(u+ 1) + 6

u4

(u+ 1)2

)

≤ 1

2

∫

Rn

ζ2R|∇v|2 +
∫

Rn

|∇ζR|2(6u2v2 + 12u4) for all t ∈ (0, Tmax).

Therefore, inserting (3.5) and (3.8) into (3.4) shows that abbreviating h = h(x, t) := 2|∇v|2 + 6(u +
1)2v2 + 6u2(u+ 1)2 + 6u2 + 6u2v2 + 12u4, for all R > 0 we have

F ′
R(t) +

1

2

∫

Rn

ζ2Rv
2
t +

∫

Rn

ζ2R

∣∣∣
∇u√
u+ 1

−
√
u+ 1∇v

∣∣∣
2
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≤ 2

∫

Rn

ζ2R|∇v|2 +
∫

Rn

|∇ζR|2h

= 4 ·
{
FR(t)−

1

2

∫

Rn

ζ2Rv
2 +

∫

Rn

ζ2Ruv −
∫

Rn

ζ2Ru ln(u+ 1)

}
+

∫

Rn

|∇ζR|2h

≤ 4FR(t) + 4

∫

Rn

ζ2Ruv +

∫

Rn

|∇ζR|2h for all t ∈ (0, Tmax),

because u ln(u + 1) is nonnegative. Upon integration, this implies that for all t ∈ (0, Tmax) and each
R > 0,

FR(t) +
1

2

∫ t

0

∫

Rn

ζ2Rv
2
t +

∫ t

0

∫

Rn

ζ2R

∣∣∣
∇u√
u+ 1

−
√
u+ 1∇v

∣∣∣
2

≤ FR(0) + 4

∫ t

0
FR(s)ds+ 4

∫ t

0

∫

Rn

ζ2Ruv +

∫ t

0

∫

Rn

|∇ζR|2h, (3.9)

where from Beppo Levi’s theorem and the continuity of F (i) for i ∈ {1, 2, 3, 4} it follows that as
R → ∞,

1

2

∫ t

0

∫

Rn

ζ2Rv
2
t +

∫ t

0

∫

Rn

ζ2R

∣∣∣
∇u√
u+ 1

−
√
u+ 1∇v

∣∣∣
2

→ 1

2

∫ t

0

∫

Rn

v2t +

∫ t

0

∫

Rn

∣∣∣
∇u√
u+ 1

−
√
u+ 1∇v

∣∣∣
2
=

∫ t

0
D(s)ds for all t ∈ (0, Tmax)

and

4

∫ t

0

∫

Rn

ζ2Ruv → 4

∫ t

0

∫

Rn

uv for all t ∈ (0, Tmax)

as well as

FR(t) → F(t) for all t ∈ [0, Tmax)

and

4

∫ t

0
FR(s)ds → 4

∫ t

0
F(s)ds for all t ∈ (0, Tmax).

Since furthermore another application of Proposition 1.1 readily reveals that h belongs to L1(Rn×(0, t))
for all t ∈ (0, Tmax), and since thus

∫ t

0

∫

Rn

|∇ζR|2h → 0 as R → ∞

by (2.12) and the dominated conergence theorem, the validity of (3.3) results from (3.9). �
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4 Dissipation controls superlinear powers of
∫
Rn uv: A functional

inequality along radial trajectories

Now inspired by the strategy from [32], as a key step toward revealing blow-up we shall establish a
link between the negative contribution −

∫
Rn uv to F and the dissipation rate functional D from (3.2).

This will be achieved in Lemma 4.5 below, and is to be prepared by four lemmata, each of which has
quite a close relative in [32], but in the derivation of each of which we need to adequately account
for the unboundedness of the domain on the one hand, and for the differences between (F ,D) and
(F0,D0) from (1.2) and (1.3) on the other. Here and below, whenever convenient we shall without
further explicit mentioning switch to the standard notation for functions radially symmetric about
the origin, thus writing e.g. u = u(r, t) for r = |x| ≥ 0.

We begin with a pointwise estimate for v gained upon combining Lemma 2.3 with (2.21) and making
essential use of radial symmetry.

Lemma 4.1 There exists C > 0 such that if with some q > n, u0 and v0 are such that besides (1.7)
the condition (1.8) holds, then the solution of (1.6) from Lemma 2.2 satisfies

v(x, t) ≤ CK · (1 + |x|1−n) for all x ∈ R
n \ {0} and each t ∈ (0, Tmax), (4.1)

where
K := ‖u0‖L1(Rn) + ‖v0‖L1(Rn) + ‖∇v0‖L1(Rn) + 1. (4.2)

Proof. We first recall that due to Lemma 2.3 and Lemma 2.6 there exists c1 > 0 such that
whenever (1.7) and (1.8) hold, with K ≥ 1 as accordingly defined by (4.2) we have

∫ ∞

0
rn−1|vr(r, t)|dr ≤ c1K for all t ∈ (0, Tmax) (4.3)

and
∫ ∞

0
rn−1v(r, t)dr ≤ K for all t ∈ (0, Tmax),

where the latter especially implies that for fixed (u0, v0) and each t ∈ (0, Tmax) we can pick r0(t) ∈ [1, 2]
fulfilling

v(r0(t), t) ≤ rn−1
0 (t)v(r0(t), t) =

∫ 2

1
rn−1v(r, t)dr ≤ K. (4.4)

Now fixing any such (u0, v0), for t ∈ (0, Tmax) and r ∈ (0, r0(t)] we can use (4.4) together with (4.3)
to see that

v(r, t) = v(r0(t), t)−
∫ r0(t)

r

vr(ρ, t)dρ

≤ K +

∫ r0(t)

r

|vr(ρ, t)|dρ

≤ K + r1−n

∫ r0(t)

r

ρn−1|vr(ρ, t)|dρ

≤ K + c1Kr1−n, (4.5)
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whereas if t ∈ (0, Tmax) and r ≥ r0(t), then similarly

v(r, t) ≤ K +

∫ r

r0(t)
|vr(ρ, t)|dρ

≤ K + r1−n
0 (t)

∫ r

r0(t)
ρn−1|vr(ρ, t)|dρ

≤ K + c1Kr1−n
0 (t)

≤ K + c1K, (4.6)

because r0(t) ≥ 1. In combination, (4.5) and (4.6) yield (4.1). �

By means of the previous lemma, we can next apply a standard testing procedure to the second
equation in (1.6), involving one specific among the cut-off functions from (2.12), to relate the integral
under consideration to a Dirichlet integral of v, up to a sublinear, and hence favorably small, power
of D.

Lemma 4.2 There exists C > 0 such that whenever (1.7) and (1.8) are valid with some q > n, for
the solution of (1.6) from Lemma 2.2 we have

∫

Rn

uv ≤ 3

∫

B2

|∇v|2 + CK2 + CK
4

n+4

∥∥∥∆v − v + u
∥∥∥

2n+4
n+4

L2(Rn)
for all t ∈ (0, Tmax), (4.7)

where K is as in (4.2).

Proof. We take ζ := ζ1 with ζ1 as defined in (2.12), and then observe that since Lemma 4.1
provides c1 > 0 fulfilling

v(r, t) ≤ c1K for all r ≥ 1 and t ∈ (0, Tmax), (4.8)

in the decomposition

∫

Rn

uv =

∫

Rn

ζ2uv +

∫

Rn

(1− ζ2)uv, t ∈ (0, Tmax), (4.9)

we may estimate

∫

Rn

(1− ζ2)uv ≤
∫

Rn\B1

uv ≤ c1K

∫

Rn

u = c1K

∫

Rn

u0 ≤ c1K
2 for all t ∈ (0, Tmax) (4.10)

according to (1.11). To appropriately handle the first integral on the right of (4.9), we write f :=
−∆v+v−u and test this defining identity by ζ2v to see that due to Young’s inequality and the Hölder
inequality,

∫

Rn

ζ2uv =

∫

Rn

ζ2|∇v|2 + 2

∫

Rn

ζv∇ζ · ∇v +

∫

Rn

ζ2v2 −
∫

Rn

ζ2fv

≤ 2

∫

Rn

ζ2|∇v|2 +
∫

Rn

|∇ζ|2v2 +
∫

Rn

ζ2v2 + ‖f‖L2(Rn)‖ζv‖L2(Rn) for all t ∈ (0, Tmax),(4.11)
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because 0 ≤ ζ ≤ 1. Since supp∇ζ ⊂ B2 \B1, we may once again rely on (4.8) in estimating
∫

Rn

|∇ζ|2v2 ≤ c2K
2 for all t ∈ (0, Tmax) (4.12)

with c2 := c21
∫
Rn |∇ζ|2, while invoking the Gagliardo-Nirenberg inequality and again Young’s inequal-

ity as well as (4.11) we can find positive constents c3, c4, c5 and c6 such that

‖f‖L2(Rn)‖ζv‖L2(Rn) ≤ c3‖f‖L2(Rn)‖∇(ζv)‖
n

n+2

L2(Rn)
‖ζv‖

2
n+2

L1(Rn)

≤ 1

4
‖∇(ζv)‖2L2(Rn) + c4‖f‖

2n+4
n+4

L2(Rn)
‖ζv‖

4
n+4

L1(Rn)

=
1

4

∫

Rn

|ζ∇v + v∇ζ|2 + c4‖f‖
2n+4
n+4

L2(Rn)

{∫

Rn

ζv

} 4
n+4

≤ 1

2

∫

Rn

ζ2|∇v|2 + 1

2

∫

Rn

|∇ζ|2v2 + c4‖f‖
2n+4
n+4

L2(Rn)

{∫

Rn

ζv

} 4
n+4

≤ 1

2

∫

Rn

ζ2|∇v|2 + 1

2
c2K

2 + c4K
4

n+2 ‖f‖
2n+4
n+4

L2(Rn)
for all t ∈ (0, Tmax)(4.13)

and that, similarly,
∫

Rn

ζ2v2 = ‖ζv‖2L2(Rn) ≤ c5‖∇(ζv)‖
2n
n+2

L2(Rn)
‖ζv‖

4
n+2

L1(Rn)

≤ 1

4
‖∇(ζv)‖2L2(Rn) + c6‖ζv‖2L1(Rn)

≤ 1

2

∫

Rn

ζ2|∇v|2 + 1

2

∫

Rn

|∇ζ|2v2 + c6

{∫

Rn

ζv

}2

≤ 1

2

∫

Rn

ζ2|∇v|2 + 1

2
c2K

2 + c6K
2 for all t ∈ (0, Tmax), (4.14)

as due to Lemma 2.6 we have
∫
Rn ζv ≤

∫
Rn v ≤ K for all t ∈ (0, Tmax).

It thus only remains to insert (4.12) and (4.13) into (4.11) and combine the latter with (4.10) to infer
(4.7) from (4.9). �

To appropriately estimate the crucial contribution
∫
B2

|∇v|2 to the right-hand side of (4.7), we sub-
divide the ball appearing therein and first concentrate on certain annuli with yet flexible radii. On
multiplying the second equation in (1.6) by the positive but sublinear power v

1
2 of v, by means of

another localization using (2.12) we can achieve the following estimate of the corresponding integral
against small portions of our original target object, as well as two summands explicitly containing
certain negative powers of the respective cutting radius.

Lemma 4.3 For each ε > 0 one can find C(ε) > 0 with the property that if (1.7) and (1.8) hold with
some q > n, then for any choice of r0 ∈ (0, 2), the solution of (1.6) from Lemma 2.2 satisfies
∫

B2\Br0

|∇v|2 ≤ ε

∫

Rn

uv+C(ε)K2r
−(n−1)
0 +C(ε)Kr

−n−1
2

0

∥∥∥∆v− v+u
∥∥∥
L2(Rn)

for all t ∈ (0, Tmax),

(4.15)
where again K is taken from (4.2).

24



Proof. We once more abbreviate f := −∆v + v − u, and we take ζ := ζ2 with ζ2 introduced in
(2.12). Then multiplying the equation −∆v = u − v + f by ζ2v

1
2 , upon an integration by parts we

obtain that thanks to Young’s inequality and the nonnegativity of ζ2v
3
2 ,

1

2

∫

Rn

ζ2v−
1
2 |∇v|2 = −2

∫

Rn

ζv
1
2∇ζ · ∇v +

∫

Rn

ζuv
1
2 −

∫

Rn

ζ2v
3
2 +

∫

Rn

ζ2fv
1
2

≤ 1

4

∫

Rn

ζ2v−
1
2 |∇v|2 + 4

∫

Rn

|∇ζ|2v 3
2 +

∫

Rn

uv
1
2 +

∫

Rn

|f |v 1
2 (4.16)

for all t ∈ (0, Tmax), where since supp∇ζ ⊂ B3\B2, Lemma 4.1 says that with some c1 > 0 independent
of (u0, v0) we have

4

∫

Rn

|∇ζ|2v 3
2 ≤ c1K

3
2 for all t ∈ (0, Tmax). (4.17)

Since (4.1) moreover states that with some c2 > 0, for any (u0, v0) fulfilling (1.7) and (1.8) we have

v(x, t) ≤ c2Kr1−n
0 for all x ∈ B2 \Br0 and t ∈ (0, Tmax),

and since thus for any choice of r0 ∈ (0, 2) the inequality

1

4

∫

Rn

ζ2v−
1
2 |∇v|2 ≥ 1

4
c
− 1

2
2 K− 1

2 r
n−1
2

0

∫

B2\Br0

|∇v|2

holds for all t ∈ (0, Tmax), from (4.16) and (4.17) we infer that for all t ∈ (0, Tmax) and each r0 ∈ (0, 2),

∫

B2\Br0

|∇v|2 ≤ 4c1c
1
2
2K

2r
1−n
2

0 + 4c
1
2
2K

1
2 r

1−n
2

0

∫

Rn

uv
1
2 + 4c

1
2
2K

1
2 r

1−n
2

0

∫

Rn

|f |v 1
2 . (4.18)

Here given ε > 0 we may again use Young’s inequality to see that

4c
1
2
2K

1
2 r

1−n
2

0

∫

Rn

uv
1
2 ≤ ε

∫

Rn

uv +
4c2Kr1−n

0

ε

∫

Rn

u

≤ ε

∫

Rn

uv +
4c2
ε

K2r1−n
0 for all t ∈ (0, Tmax) and r0 ∈ (0, 2), (4.19)

whereas employing the Cauchy-Schwarz inequality along with Lemma 2.6 we find that

4c
1
2
2K

1
2 r

1−n
2

0

∫

Rn

|f |v 1
2 ≤ 4c

1
2
2K

1
2 r

1−n
2

0 ‖f‖L2(Rn)‖v‖
1
2

L1(Rn)

≤ 4c
1
2
2Kr

1−n
2

0 ‖f‖L2(Rn) for all t ∈ (0, Tmax) and r0 ∈ (0, 2).

Together with (4.19), this shows that (4.18) entails the claimed inequality, because r
1−n
2

0 ≤ 2
n−1
2 r

−(n−1)
0

whenever r0 ∈ (0, 2). �

We finally follow an idea from [32, Lemma 4.4] in deriving an inequality for the associated inner
Dirichlet integral in terms of, essentially, the product of D with a factor that contains a positive power
of the dividing radius, and hence can be enforced to become conveniently small.
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Lemma 4.4 There exists C > 0 such that if (1.7) and (1.8) are satisfied with some q > n, and if
r0 ∈ (0, 2), then taking (u, v) from Lemma 2.2 and K from (4.2) we have
∫

Br0

|∇v|2 ≤ CK + Cr0

∥∥∥∆v − v + u
∥∥∥
2

L2(Rn)
+ C

√
K
∥∥∥

∇u√
u+ 1

−
√
u+ 1∇v

∥∥∥
L2(Rn)

+ C

∫

B2

v2 (4.20)

for all t ∈ (0, Tmax).

Proof. Letting f ≡ f(r, t) := −∆v + v − u and g ≡ g(r, t) := ur√
u+1

−
√
u+ 1vr for r ≥ 0 and

t ∈ (0, Tmax), following [32] we multiply the identity r1−n(rn−1vr)r = −u + v − f by 2r2n−2vr and
apply Young’s inequality to see that since uvr = ur − vr −

√
u+ 1g,

∂r(r
2n−2v2r ) = −2r2n−2uvr + 2r2n−2vvr − 2r2n−2fvr

= −2r2n−2ur + 2r2n−2vr + 2r2n−2
√
u+ 1g + 2r2n−2vvr − 2r2n−2fvr

≤ −2r2n−2ur + 2r2n−2vr + 2r2n−2
√
u+ 1g + 2r2n−2vvr + (n− 1)r2n−2v2r +

1

n− 1
r2n−2f2

for all r > 0 and t ∈ (0, Tmax), Thus, by integration,

r2n−2v2r (r, t) ≤
∫ r

0
e(n−1)(r−ρ) ·

{
− 2ρ2n−2ur(ρ, t) + 2ρ2n−2vr(ρ, t) + 2ρ2n−2

√
u(ρ, t) + 1g(ρ, t)

+2ρ2n−2v(ρ, t)vr(ρ, t) +
1

n− 1
ρ2n−2f2(ρ, t)

}
dρ (4.21)

for all r > 0 and t ∈ (0, Tmax), where three integrations by parts show that if we restrict our consid-
erations to the range 0 < r < 2, then for any such r and t ∈ (0, Tmax),

∫ r

0
e(n−1)(r−ρ) ·

{
− 2ρ2n−2ur(ρ, t) + 2ρ2n−2vr(ρ, t) + 2ρ2n−2v(ρ, t)vr(ρ, t)

}
dρ

= e(n−1)(r−ρ) ·
{
− 2ρ2n−2u(ρ, t) + 2ρ2n−2v(ρ, t) + ρ2n−2v2(ρ, t)

}∣∣∣∣∣

ρ=r

ρ=0

+

∫ r

0
∂ρ

{
e(n−1)(r−ρ)ρ2n−2

}
·
{
2u(ρ, t)− 2v(ρ, t)− v2(ρ, t)

}
dρ

= −2r2n−2u(r, t) + 2r2n−2v(r, t) + r2n−2v2(r, t)

+(n− 1)

∫ r

0
e(n−1)(r−ρ)ρ2n−3(2− ρ) ·

{
2u(ρ, t)− 2v(ρ, t)− v2(ρ, t)

}
dρ

≤ 2r2n−2v(r, t) + r2n−2v2(r, t) + 2(n− 1)

∫ r

0
e(n−1)(r−ρ)ρ2n−3(2− ρ)u(ρ, t)dρ

≤ 2r2n−2v(r, t) + r2n−2v2(r, t) + 4(n− 1)e2(n−1)

∫ r

0
ρ2n−3u(ρ, t)dρ. (4.22)

Since within this range of r we may furthermore use the Cauchy-Schwarz inequality along with (1.11)
to find c1 > 0 such that

2

∫ r

0
e(n−1)(r−ρ)ρ2n−2

√
u(ρ, t) + 1g(ρ, t)dρ
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≤ 2e2(n−1)rn−1

∫ r

0
ρn−1

√
u(ρ, t) + 1|g(ρ, t)|dρ

≤ 2e2(n−1)rn−1

{∫ r

0
ρn−1

(
u(ρ, t) + 1

)
dρ

} 1
2
{∫ r

0
ρn−1g2(ρ, t)dρ

} 1
2

≤ c1
√
Krn−1

{∫ ∞

0
ρn−1g2(ρ, t)dρ

} 1
2

for all r ∈ (0, 2) and t ∈ (0, Tmax),

and since clearly

1

n− 1

∫ r

0
e(n−1)(r−ρ)ρ2n−2f2(ρ, t)dρ ≤ e2(n−1)

n− 1
rn−1

∫ ∞

0
ρn−1f2(ρ, t)dρ

for all r ∈ (0, 2) and t ∈ (0, Tmax), from (4.21) and (4.22) we conclude upon another integration that
whenever r0 ∈ (0, 2),

∫ r0

0
rn−1v2r (r, t)dr ≤ 2

∫ r0

0
rn−1v(r, t)dr +

∫ r0

0
rn−1v2(r, t)dr

+4(n− 1)e2(n−1)

∫ r0

0
r1−n

∫ r

0
ρ2n−3u(ρ, t)dρdr

+c1
√
Kr0

{∫ ∞

0
ρn−1g2(ρ, t)dρ

} 1
2

+
e2(n−1)

n− 1
r0

∫ ∞

0
ρn−1f2(ρ, t)dρ for all t ∈ (0, Tmax). (4.23)

Here by the Fubini theorem and our overall assumption that n ≥ 3,

4(n− 1)e2(n−1)

∫ r0

0
r1−n

∫ r

0
ρ2n−3u(ρ, t)dρdr

= 4(n− 1)e2(n−1)

∫ r0

0

{∫ r0

ρ

r1−ndr

}
· ρ2n−3u(ρ, t)dρ

=
4(n− 1)e2(n−1)

n− 2

∫ r0

0
(ρ2−n − r2−n

0 )ρ2n−3u(ρ, t)dρ

≤ 4(n− 1)e2(n−1)

n− 2

∫ r0

0
ρn−1u(ρ, t)dρ for all t ∈ (0, Tmax) and any r0 ∈ (0, 2),

so that recalling (2.21) and (1.11) we obtain that with some c2 > 0,

2

∫ r0

0
rn−1v(r, t)dr + 4(n− 1)e2(n−1)

∫ r0

0
r1−n

∫ r

0
ρ2n−3u(ρ, t)dρdr

≤ c2K for all t ∈ (0, Tmax) and each r0 ∈ (0, 2).

In view of the definitions of f and g, (4.20) therefore immediately results from (4.23) upon trivially
estimating r0 ≤ 2 in the second last summand therein. �

Indeed, appropriate choices of ε and r0 in the above preparations enable us to bound
∫
Rn uv by a

sublinear power of D and a lower order expression:
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Lemma 4.5 There exist θ ∈ (12 , 1) and C > 0 such that if (1.7) and (1.8) hold with some q > n, then
the solution of (1.6) from Lemma 2.2 has the property that

∫

Rn

uv ≤ CK2 ·
{∥∥∥∆v − v + u

∥∥∥
2θ

L2(Rn)
+
∥∥∥

∇u√
u+ 1

−
√
u+ 1∇v

∥∥∥
L2(Rn)

+ 1

}
for all t ∈ (0, Tmax),

(4.24)
where again K is as in (4.2).

Proof. Fixing any α ∈ (0, 2
n−1), given (u0, v0) such that (1.7) and (1.8) hold we define f :=

−∆v + v − u and g := ∇u√
u+1

−
√
u+ 1∇v and let

r0 ≡ r0(t) := min
{
1 , ‖f(·, t)‖−α

L2(Rn)

}
, t ∈ (0, Tmax). (4.25)

Then application of Lemma 4.2, Lemma 4.3 and Lemma 4.4 to these values of r0 and to ε := 1
12

provide positive constants c1, c2 and c3 independent of (u0, v0) such that

∫

Rn

uv ≤ 3

∫

B2

|∇v|2 + c1K
2 + c1K

4
n+4 ‖f‖

2n+4
n+4

L2(Rn)
for all t ∈ (0, Tmax) (4.26)

and
∫

B2\Br0

|∇v|2 ≤ 1

12

∫

Rn

uv + c2K
2r

−(n−1)
0 + c2Kr

−n−1
2

0 ‖f‖L2(Rn) for all t ∈ (0, Tmax) (4.27)

as well as
∫

Br0

|∇v|2 ≤ c3K + c3r0‖f‖2L2(Rn) + c3K
1
2 ‖g‖L2(Rn) + c3

∫

B2

v2 for all t ∈ (0, Tmax). (4.28)

Here by compactness of the embedding W 1,2(B2) →֒ L2(B2), an associated Ehrling-type lemma in
conjunction with Lemma 2.6 shows that with some c4 > 0, again independent of u0 and v0, we have

c3

∫

B2

v2 ≤ 1

2

∫

B2

|∇v|2 + c4

{∫

B2

v

}2

≤ 1

2

∫

B2

|∇v|2 + c4K
2 for all t ∈ (0, Tmax),

whence combining (4.27) with (4.28) firstly shows that

1

2

∫

B2

|∇v|2 ≤ 1

12

∫

Rn

uv + c2K
2r

−(n−1)
0 + c2Kr

−n−1
2

0 ‖f‖L2(Rn)

+c3K + c3r0‖f‖2L2(Rn) + c3K
1
2 ‖g‖L2(Rn) + c4K

2 for all t ∈ (0, Tmax),

and therefore, secondly, implies that due to (4.26),

1

2

∫

Rn

uv ≤ 6c2K
2r

−(n−1)
0 + 6c2Kr

−n−1
2

0 ‖f‖L2(Rn) + 6c3K + 6c3r0‖f‖2L2(Rn) + 6c3K
1
2 ‖g‖L2(Rn)

+6c4K
2 + c1K

2 + c1K
4

n+4 ‖f‖
2n+4
n+4

L2(Rn)
for all t ∈ (0, Tmax). (4.29)
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Now if t ∈ (0, Tmax) is such that ‖f(·, t)‖L2(Rn) > 1, then (4.25) means that r0(t) = ‖f(·, t)‖−α
L2(Rn)

and

that thus, by (4.29), writing θ := max{ (n−1)α
2 , 1

2 + (n−1)α
4 , 2−α

2 , n+2
n+4} we have

1

2

∫

Rn

uv ≤ 6c2K
2‖f‖(n−1)α

L2(Rn)
+ 6c2K‖f‖1+

(n−1)α
2

L2(Rn)
+ 6c3K + 6c3‖f‖2−α

L2(Rn)
+ 6c3K

1
2 ‖g‖L2(Rn)

+6c4K
2 + c1K

2 + c1K
4

n+4 ‖f‖
2n+4
n+4

L2(Rn)

≤ (6c2K
2 + 6c2K + 6c3 + c1K

4
n+4 ) · (‖f‖2θL2(Rn) + 1) + 6c3K

1
2 ‖g‖L2(Rn)

+6c3K + 6c4K
2 + c1K

2

≤ (12c2 + 6c3 + c1)K
2 · (‖f‖2θL2(Rn) + 1) + 6c3K

2‖g‖L2(Rn) + (6c3 + 6c4 + c1)K
2 (4.30)

according to Young’s inequality and the fact that K ≥ 1. If, conversely, t ∈ (0, Tmax) is such that
‖f‖L2(Rn) ≤ 1, then (4.29) directly entails that again since K ≥ 1,

1

2

∫

Rn

uv ≤ 6c2K
2 + 6c2K‖f‖L2(Rn) + 6c3K + 6c3‖f‖L2(Rn) + 6c3K

1
2 ‖g‖L2(Rn)

+6c4K
2 + c1K

2 + c1K
4

n+4 ‖f‖
2n+4
n+4

L2(Rn)

≤ 6c2K
2 + 6c2K + 6c3K + 6c3 + 6c3K

1
2 ‖g‖L2(Rn) + 6c4K

2 + c1K
2 + c1K

4
n+4

≤ 6c3K
2‖g‖L2(Rn) + (12c2 + 12c3 + 6c4 + 2c1)K

2. (4.31)

Upon an evident defintion of C, a combination of (4.30) and (4.31) yields (4.24), with the exponent θ

indeed fulfilling θ ∈ (12 , 1) due to the inequalities (n−1)α
2 < 1 and 1

2 +
(n−1)α

4 < 1 ensured by our initial
restriction on α. �

5 Blow-up of low-energy radial solutions

As a last ingredient for our analysis of the inequaliy (3.3), let us add a Gronwall-type statement
on blow-up in an integral inequality that can be viewed as a counterpart of a superlinearly forced
differential inequality.

Lemma 5.1 Suppose that a > 0, b > 0 and β > 1, and that for some T > 0, a nonnegative function
y ∈ C0([0, T )) satisfies

y(t) ≥ a+ b

∫ t

0
yβ(s)ds for all t ∈ (0, T ). (5.1)

Then

T ≤ 1

(β − 1)aβ−1b
. (5.2)

Proof. For ε ∈ (0, a), the function yε ∈ C1([0, Tε)) defined by

yε(t) :=
{
(a− ε)1−β − (β − 1)bt

}− 1
β−1

, 0 ≤ t < Tε :=
1

(β − 1)(a− ε)β−1b
, (5.3)
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satisfies y′ε = by
β
ε on (0, Tε) and yε(0) = a− ε, so that

yε(t) = a− ε+ b

∫ t

0
yβε (s)ds for all t ∈ [0, Tε). (5.4)

Now if (5.2) was false, then since Tε ց T0 := 1
(β−1)aβ−1b

as ε ց 0, it would be possible to find

ε0 ∈ (0, a) such that for any ε ∈ (0, ε0), y would belong to C0([0, Tε]) and the number tε := sup{t̃ ∈
(0, Tε) | y > yε on [0, t̃]} would be well-defined, because y(0) ≥ a > a− ε = yε(0). To see that actually
tε = Tε for any such ε, assuming on the contrary that tε ∈ (0, Tε) we could use the continuity of y and
yε to infer that y > yε on (0, tε) but y(tε) = yε(tε), by monotonicity of 0 < σ 7→ σβ implying that

yε(tε) = y(tε) ≥ a+ b

∫ tε

0
yβ(s)ds ≥ a+ b

∫ tε

0
yβε (s)ds > a− ε+ b

∫ tε

0
yβε (s)ds = yε(tε)

according to (5.1) and (5.4). As thus indeed y > yε throughout [0, Tε) for all ε ∈ (0, ε0), from the

observation that yε(T0) = {(a − ε)1−β − a1−β}−
1

β−1 → +∞ as ε ց 0 it follows that y could not be
bounded on [0, T0], in contradiction to our hypothesis on T . �

We are thereby prepared to combine Lemma 3.1 with Lemma 4.5 in order to reveal a criterion on
radial initial data as sufficient for finite-time blow-up:

Lemma 5.2 There exist M > 0 and γ > 0 with the property that if for some q > n, u0 and v0 comply
with (1.7) and (1.8) and are such that the corresponding solution of (1.6) satisfies

F(0) ≤ −M ·
{
‖u0‖L1(Rn) + ‖v0‖L1(Rn) + ‖∇v0‖L1(Rn) + 1

}γ

, (5.5)

with F taken from (3.1), then
Tmax ≤ 1. (5.6)

Proof. According to Lemma 4.5, we can find θ ∈ (12 , 1) and c1 > 0 such that whenever (1.7) and
(1.8) hold, taking D and K as defined in (3.2) and (4.2) we have

∫

Rn

uv ≤ c1K
2(Dθ(t) + 1) for all t ∈ (0, Tmax). (5.7)

Using that θ < 1, we may employ Young’s inequality here to find c2 > 0 such that for any such solution
we moreover have ∫

Rn

uv ≤ 1

8
D(t) + c2K

2
1−θ for all t ∈ (0, Tmax), (5.8)

whereupon we abbreviate

c3 := 2−
θ+1
θ c

− 1
θ

1 (5.9)

and fix c4 > 0 large enough fulfilling both

c4 > 2c1 + 4c2 (5.10)

and

c4 ≥ 4c2 +
( 2θ

(1− θ)c3

) θ
1−θ

. (5.11)
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Then assuming (1.7) and (1.8) to hold for some (u0, v0) which is such that for the corresponding
solution we have

F(0) ≤ −c4K
2

1−θ (5.12)

with K as accordingly defined through (4.2), we claim that necessarily (5.6) must be valid. To verify
this, we suppose for contradiction that Tmax > 1, and then first observe that by the continuity property
of F asserted by Lemma 3.1,

t0 := sup
{
t̃ ∈ (0, 1)

∣∣∣ F(t) < −2c1K
2 for all t ∈ (0, t̃)

}

would be a well-defined element of (0, 1], because since 2
1−θ

> 2 and K ≥ 1, from (5.12) and (5.10) we

especially know that F(0) < −(2c1 + 4c2)K
2

1−θ < −2c1K
2. To see that actually

t0 = 1, (5.13)

we note that the converse assumption t0 < 1 implies that, again by continuity of F ,

F(t) < −2c1K
2 for all t ∈ (0, t0) and F(t0) = −2c1K

2. (5.14)

In view of Lemma 3.1 and (5.8), this particularly entails that

F(t) ≤ −
∫ t

0
D(s)ds+ F(0) + 4

∫ t

0
F(s)ds+ 4

∫ t

0

∫

Rn

uv

≤ −
∫ t

0
D(s)ds+ F(0) + 4

∫ t

0

{1

8
D(s) + c2K

2
1−θ

}
ds

≤ −1

2

∫ t

0
D(s)ds+ F(0) + 4c2K

2
1−θ for all t ∈ (0, t0), (5.15)

because t0 ≤ 1. Therefore, by (5.14), the nonnegativity of D, (5.12) and (5.10),

−2c1K
2 = F(t0) ≤ F(0) + 4c2K

2
1−θ ≤ (−c4 + 4c2)K

2
1−θ < −2c1K

2
1−θ ≤ −2c1K

2,

which is absurd and hence confirms that indeed t0 = 1. But since, on the other hand, by definition
(3.1) of F and (5.7) we have

F(t) ≥ −
∫

Rn

uv ≥ −c1K
2(Dθ(t) + 1) for all t ∈ (0, Tmax)

and hence

Dθ(t) ≥ −F(t)

c1K2
− 1 ≥ −F(t)

2c1K2
for all t ∈ (0, t0)

according to the fact that 1 ≤ −F(t)
2c1K2 for all t ∈ (0, t0), from (5.15) we infer that

−F(t) ≥ 1

2

∫ t

0

(−F(t)

2c1K2

) 1
θ
ds−F(0)− 4c2K

2
1−θ

= c3K
− 2

θ

∫ t

0
(−F(s))

1
θ ds−F(0)− 4c2K

2
1−θ for all t ∈ (0, t0). (5.16)
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As, by (5.11),

−F(0)− 4c2K
2

1−θ ≥ (c4 − 4c2)K
2

1−θ ≥
( 2θ

(1− θ)c3

) θ
1−θ

K
2

1−θ ,

however, we may invoke Lemma 5.1 to conclude from (5.16) that

t0 ≤
1

(
1
θ
− 1

)
·
{(

2θ
(1−θ)c3

) θ
1−θ

K
2

1−θ

} 1
θ
−1

· c3K− 2
θ

=
1

2
,

which is incompatible with (5.13) and thus shows that in fact our hypothesis that Tmax > 1 must have
been wrong, and that hence the claimed implication holds with M := c4 and γ := 2

1−θ
. �

6 A density property of blow-up enforcing radial data

In order to complete our argument ensuring blow-up within large sets of initial data, we now only
need to resort to a known and essentially explicit construction of explosion-enforcing initial data in
arbitrarily small neighbourhoods of any prescribed pair of positive functions fulfilling (1.7) and (1.8).

Lemma 6.1 Assume that with some q > n, u0 and v0 satisfy (1.7) and (1.8) with u0 > 0 and
v0 > 0 in R

n. Then there exist radially symmetric positive functions u0j ∈ BUC(Rn) ∩ L1(Rn) and
v0j ∈ W 1,q(Rn) ∩ W 1,1(Rn), j ∈ N, such that (1.13) holds, and that for the corresponding solutions
(uj , vj) of (1.6), maximally extended up to Tmax,j ∈ (0,∞] according to Proposition 1.1, we have
Tmax,j ≤ 1 for all j ∈ N.

Proof. Following the construction from [32, Lemma 6.1], we take any (rj)j∈N ⊂ (0, 1) such that

rj ց 0 as j → ∞, and use that
∫ 1
0 ρn−1(ρ2 + ε)−

n
2 dρ ր +∞ as ε ց 0 to fix (ηj)j∈N ⊂ (0, 1) such

that rnj
∫ 1
0 ρn−1(ρ2 +

ηj
r2j
)−

n
2 dρ ≥ j for all j ∈ N. Next, picking any κ ∈ (n − n

p
, n−2

2 ), given positive

functions u0 and v0 fulfilling (1.7) and (1.8) we let (u0j , v0j) ≡ (u0j(r), v0j(r)) be defined by

u0j(r) :=

{
aj(r

2 + ηj)
−n−κ

2 , r ∈ [0, rj ],

u0(r), r > rj ,
and v0j(r) :=

{
bj(r

2 + ηj)
−κ

2 , r ∈ [0, rj ],

v0(r), r > rj ,

(6.1)

with aj := (r2j + ηj)
n−κ
2 u0(rj) and bj := (r2j + ηj)

κ
2 v0(rj) for j ∈ N. Then clearly u0j and v0j have the

claimed regularity properties, and the argument in [32, Lemma 6.1] precisely shows that

u0j → u0 in Lp(B1) and v0j → v0 in W 1,2(B1) as j → ∞, (6.2)

that moreover

sup
j∈N

{
1

2

∫

B1

|∇v0j |2 +
1

2

∫

B1

v20j +

∫

B1

u0j lnu0j

}
< ∞, (6.3)

and that ∫

B1

u0jv0j → ∞ as j → ∞. (6.4)
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Now in view of the identities u0j ≡ u0 and v0j ≡ v0 in R
n \ B1, (6.2) immediately implies (1.13) and

thus furthermore especially entails that

Kj := ‖u0j‖L1(Rn) + ‖v0j‖L1(Rn) + ‖∇v0j‖L1(Rn) + 1

→ ‖u0‖L1(Rn) + ‖v0‖L1(Rn) + ‖∇v0‖L1(Rn) + 1 =: K as j → ∞. (6.5)

Apart from that, the validity of ln(1 + σ) ≤ σ for all σ ≥ 0 implies that
∫

B1

u0j ln(u0j + 1) =

∫

B1

u0j lnu0j +

∫

B1

u0j ln
(
1 +

1

u0j

)

≤
∫

B1

u0j lnu0j + |B1| for all j ∈ N,

whence (6.3) along with (6.4) and, again, (6.1) ensures that for the corresponding solutions (uj , vj) of
(1.6) we have

Fj(0) → −∞ as j → ∞, (6.6)

where Fj(t) := 1
2

∫
Rn |∇vj(·, t)|2 + 1

2

∫
Rn v

2
j (·, t) −

∫
Rn uj(·, t)vj(·, t) +

∫
Rn uj(·, t) ln(uj(·, t) + 1), t ∈

[0, Tmax,j). Therefore, if we take M > 0 and γ > 0 as provided by Lemma 5.2, then according to the
convergence statements in (6.5) and (6.6) we can pick j0 ∈ N large enough such that Fj(0) ≤ −MK

γ
j

for all j ≥ j0, whence upon replacing j with j − j0 if necessary we can achieve the claimed conclusion
as a consequence of (5.6). �

7 Localization of blow-up points: Bounds for u outside the origin

Our final objective consists in establishing the inequality (1.15) for a radial solution that is already
known to blow up within finite time. Although our final result in this direction will essentially parallel
knowledge on behavior in Neumann problems for (1.1) on planar disks ([24]), its derivation here will
need to considerably deviate from that in the corresponding precedent, inter alia due to unboundedness
of the physical domain. To accomplish uniform bounds outside the origin through several steps on
the basis of arguments from parabolic regularity theory, for localization procedures different from
those previously performed let us choose a family (χδ)δ∈(0,1) of cut-off functions χδ ∈ C∞

0 (R) fulfilling

0 ≤ χδ ≤ 1 on R as well as χδ ≡ 1 on [0, 1] and suppχδ ⊂ (− δ
2 , 2) for all δ ∈ (0, 1), and let

χδR(r) := χδ(r −R), r ∈ R, (7.1)

for δ ∈ (0, 1) and R > δ. Then

χδR ≡ 1 on [R,R+ 1] and suppχδR ⊂
(
R− δ

2
, R+ 2

)
for all δ ∈ (0, 1) and R > δ, (7.2)

and furthermore

sup
R>δ

{
‖χ′

δR‖L∞(R) + ‖χ′′
δR‖L∞(R)

}
< ∞ for each fixed δ ∈ (0, 1). (7.3)

Assuming (1.7) and (1.8), we next observe that with χ ≡ χδR we have

(χu)t = (χu)rr +
(
a1(r, t)u

)

r
+ a2(r, t)u, r > 0, t ∈ (0, Tmax), (7.4)
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and
(χv)t = (χv)rr + b(r, t), r > 0, t ∈ (0, Tmax), (7.5)

where

a1(r, t) :=
n− 1

r
χ− 2χr − χvr, r > 0, t ∈ (0, Tmax), (7.6)

and

a2(r, t) := −(n− 1) ·
(χ
r

)

r
+ χrr +

(
χr −

n− 1

r
χ
)
vr, r > 0, t ∈ (0, Tmax), (7.7)

as well as

b(r, t) := −2χrvr +
n− 1

r
χvr − χrrv − χv + χu, r > 0, t ∈ (0, Tmax). (7.8)

Then Lemma 2.3 and (1.11) entail some temporally uniform L1 control over b in intervals not touching
the point r = 0, which in the context of the one-dimensional inhomogeneous heat equation is already
sufficient to warrant corresponding Lp bounds for the gradient vr with arbitrary finite p.

Lemma 7.1 Assume that (1.7) and (1.8) hold with some q > n, and that Tmax < ∞. Then for all
p > 1 and each δ ∈ (0, 1) there exists C(p, δ) > 0 such that the solution of (1.6) from Lemma 2.2
satisfies ∫ R+1

R

|vr(r, t)|pdr ≤ C(p, δ) for all t ∈ (12Tmax, Tmax) and R > δ. (7.9)

Proof. We first recall Lemma 2.3 to fix c1 > 0 such that
∫ ∞

0
rn−1|vr(r, t)|dr ≤ c1 for all t ∈ (0, Tmax),

and note that (1.11) and Lemma 2.6 provide c2 > 0 and c3 > 0 fulfilling

∫ ∞

0
rn−1u(r, t)dr ≤ c2 and

∫ ∞

0
rn−1v(r, t)dr ≤ c3 for all t ∈ [0, Tmax).

Given δ ∈ (0, 1), we thereby see that

∫ R+2

R− δ
2

|vr(r, t)|dr ≤
(
R− δ

2

)1−n
∫ ∞

R− δ
2

rn−1|vr(r, t)|dr

≤
(δ
2

)1−n

c1 for all t ∈ (0, Tmax) and R > δ,

and that, similarly,

∫ R+2

R− δ
2

u(r, t)dr ≤
(δ
2

)1−n

c2 and

∫ R+2

R− δ
2

v(r, t)dr ≤
(δ
2

)1−n

c3 for all t ∈ [0, Tmax) and R > δ.

(7.10)
In view of (7.3) and the second relation in (7.2), we thus readily obtain c4(δ) > 0 such that the
accordingly defined function b from (7.8), extended by zero to all of R× (0, Tmax) if necessary, satisfies

‖b(·, t)‖L1(JR) ≤ c4(δ) for all ∈ (0, Tmax) and R > δ, (7.11)
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where we have set JR := (R− 1
2 , R+2). To make appropriate use of this, we note that by translation

invariance of the one-dimensional heat equation and known smoothing properties of the Neumann
heat semigroup (et∆J )t≥0 over open bounded intervals J ⊂ R ([31]), given p > 1 we can fix c5(p, δ) > 0
such that for any choice of R ∈ R,

‖∂ret∆JRϕ‖Lp(JR) ≤ c5(p, δ)t
−1+ 1

2p ‖ϕ‖L1(JR) for all t > 0 and any ϕ ∈ L1(JR). (7.12)

Then using that with χ = χδR, and once more with a trivial extension if appropriate, we have (χv)r = 0
on ∂JR by (7.2), we may apply (7.12) to a variation-of-constants representation associated with (7.5)
to see that again thanks to (7.10),

‖(χv)r(·, t)‖Lp(JR) =

∥∥∥∥∂re
t∆JR [χv(·, 0)] +

∫ t

0
∂re

(t−s)∆JR b(·, s)ds
∥∥∥∥
Lp(JR)

≤ c5(p, δ)t
−1+ 1

2p ‖χv(·, 0)‖L1(JR) + c5(p, δ)

∫ t

0
(t− s)

−1+ 1
2p ‖b(·, s)‖L1(JR)ds

≤ c5(p, δ) ·
(1
2
Tmax

)−1+ 1
2p ‖v(·, 0)‖L1((R− δ

2
,R+2)) + c4(δ)c5(p, δ)

∫ t

0
(t− s)

−1+ 1
2pds

≤
(δ
2

)1−n

c3c5(p, δ) ·
(1
2
Tmax

)−1+ 1
2p

+ 2pc4(δ)c5(p, δ)T
1
2p
max

for all t ∈ (12Tmax, Tmax) and R > δ. As (χv)r ≡ vr in (R,R + 1) × (0, Tmax) ⊂ JR × (0, Tmax) by
(7.2), this establishes (7.9). �

By tracking suitably localized versions of
∫
up0 with some sublinear p0 > 0, as a first consequence of

Lemma 7.1 we can derive an integrability property of u involving arbitrary subcubic powers.

Lemma 7.2 Assume that (1.7) and (1.8) hold with some q > n, and that Tmax < ∞. Then for all
p ∈ (2, 3) and any δ ∈ (0, 1) one can find C(p, δ) > 0 such that for the solution of (1.6) from Lemma
2.2 we have ∫ Tmax

1
2
Tmax

∫ R+1

R

up(r, t)dr ≤ C(p, δ) for all R > δ. (7.13)

Proof. Given p ∈ (2, 3) we set p0 ≡ p0(p) := p − 2 ∈ (0, 1), and for δ ∈ (0, 1) and R > δ we let
χ ≡ χδR and use (7.4) to see that with a1 and a2 as defined through (7.6) and (7.7) we have

1

p0

d

dt

∫ ∞

0
χ2up0(r, t)dr =

∫ ∞

0
χup0−1(χu)rrdr +

∫ ∞

0
χup0−1(a1u)rdr +

∫ ∞

0
χup0−1 · a2udr

= −
∫ ∞

0
(χup0−1)r · (χu)rdr −

∫ ∞

0
(χup0−1)r · a1udr +

∫ ∞

0
χa2u

p0dr

= (1− p0)

∫ ∞

0
χ2up0−2u2rdr + (1− p0)

∫ ∞

0
χχru

p0−1urdr

−
∫ ∞

0
χχru

p0−1urdr −
∫ ∞

0
χ2
ru

p0dr

+(1− p0)

∫ ∞

0
χa1u

p0−1urdr −
∫ ∞

0
χra1u

p0dr +

∫ ∞

0
χa2u

p0dr
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= (1− p0)

∫ ∞

0
χ2up0−2u2rdr

+

∫ ∞

0

{
− p0χr + (1− p0)a1

}
χup0−1urdr

−
∫ ∞

0
(χ2

r + χra1 − χa2)u
p0dr for all t ∈ (0, Tmax). (7.14)

Since by Young’s inequality,

∣∣∣∣
∫ ∞

0

{
− p0χr + (1− p0)a1

}
χup0−1urdr

∣∣∣∣ ≤ 1− p0

2

∫ ∞

0
χ2up0−2u2rdr

+
1

2(1− p0)

∫

suppχ

{
− p0χr + (1− p0)a1

}2
up0dr

≤ 1− p0

2

∫ ∞

0
χ2up0−2u2rdr

+

∫

suppχ

{ p20
1− p0

χ2
r + (1− p0)a

2
1

}
up0dr

for all t ∈ (0, Tmax), and since suppχ ⊂ (R− δ
2 , R+2) and χ2 ≡ 1 in [R,R+1], from (7.14) we obtain

that

1

p0

d

dt

∫ ∞

0
χ2up0(r, t)dr ≥ 1− p0

2

∫ R+1

R

up0−2u2rdr −
∫ R+2

R− δ
2

h(r, t)up0dr for all t ∈ (0, Tmax),

(7.15)
where due to Young’s inequality, (7.6), (7.7) and (7.1),

h(r, t) :=
p20

1− p0
χ2
r + (1− p0)a

2
1 + χ2

r + |χr| · |a1|+ χ|a2|, r > 0, t ∈ (0, Tmax),

has the property that for some c1(p, δ) > 0 and any R > δ,

|h(r, t)| ≤
(3
2
− p0

)
a21 + |a2|+

( p20
1− p0

+
3

2

)
χ2
r

≤ 3
(3
2
− p0

)
·
{(n− 1)2

r2
+ 4χ2

r + v2r

}

+(n− 1) ·
∣∣∣
(χ
r

)

r

∣∣∣+ |χrr|+
∣∣∣χr −

n− 1

r
χ
∣∣∣ · |vr|+

( p20
1− p0

+
3

2

)
χ2
r

≤ c1(p, δ)(v
2
r + 1) for all r >

δ

2
and t ∈ (0, Tmax).

Accordingly, in view of Young’s inequality and (1.11), an application of Lemma 7.1 to the summability
power 2

1−p0
reveals the existence of c2(p, δ) > 0 such that for all R > δ, writing τ := 1

2Tmax we have

∣∣∣∣
∫ R+2

R− δ
2

h(r, t)up0dr

∣∣∣∣ ≤ c1(p, δ)

∫ R+2

R− δ
2

(v2r + 1)up0dr
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≤ c1(p, δ)

∫ R+2

R− δ
2

(v2r + 1)
1

1−p0 dr + c1(p, δ)

∫ ∞

δ
2

udr

≤ 2
1

1−p0 c1(p, δ)

∫ R+2

R− δ
2

(|vr|
2

1−p0 + 1)dr + c1(p, δ) ·
(δ
2

)1−n
∫ ∞

δ
2

rn−1udr

≤ c2(p, δ) for all t ∈ (τ, Tmax),

because for any such R we know that R− δ
2 > δ

2 .
Therefore, a further integration of (7.15) shows that again by (7.2), Young’s inequality and (1.11),

1− p0

2

∫ T

τ

∫ R+1

R

up0−2u2rdrdt ≤ 1

p0

∫ ∞

0
χ2up0(r, T )dr − 1

p0

∫ ∞

0
χ2up0(r, τ)dr + c2(p, δ) · (T − τ)

≤ 1

p0

∫ R+2

R− δ
2

up0(r, T )dr + c2(p, δ)Tmax

≤ 1

p0

∫ R+1

R− δ
2

(
u(r, T ) + 1

)
dr + c2(p, δ)Tmax

≤ 1

p0
·
(δ
2

)1−n
∫ ∞

δ
2

rn−1u(r, T )dr +
1

p0
·
{
(R+ 2)−

(
R− δ

2

)}

+c2(p, δ)Tmax for all T ∈ (τ, Tmax) and R > δ,

so that since (R + 2) − (R − δ
2) ≤ 5

2 for arbitrary R ∈ R, once more thanks to (1.11) we can find
c3(p, δ) > 0 such that

∫ Tmax

τ

‖(u
p0
2 )r(·, t)‖2L2((R,R+1))dt ≤ c3(p, δ) for all R > δ. (7.16)

As the one-dimensional Gagliardo-Nirenberg inequality provides c4(p) > 0 fulfilling

‖ϕ‖
2p
p−2

L
2p
p−2 ((R,R+1))

≤ c4(p)‖ϕr‖2L2((R,R+1))‖ϕ‖
4

p−2

L
2

p−2 ((R,R+1))
+ c4(p)‖ϕ‖

2p
p−2

L
2

p−2 ((R,R+1))

for all R ∈ R and each ϕ ∈ W 1,2((R,R+ 1)),

recalling that p0 = p− 2 and using that, again by (1.11), with some c5(δ) > 0 we have

‖u
p0
2 (·, t)‖

2
p−2

L
2

p−2 ((R,R+1))
=

∫ R+1

R

u(r, t)dr ≤ δ1−n

∫ ∞

δ

rn−1u(r, t)dr ≤ c5(δ)

for all R > δ and t ∈ (0, Tmax), from (7.16) we infer that

∫ Tmax

τ

∫ R+1

R

up(r, t)drdt =

∫ Tmax

τ

‖u
p0
2 (·, t)‖

2p
p−2

L
2p
p−2 ((R,R+1))

dt

≤ c4(p)

∫ Tmax

τ

‖(u
p0
2 )r(·, t)‖2L2((R,R+1))‖u

p0
2 (·, t)‖

4
p−2

L
2

p−2 ((R,R+1))
dt
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+c4(p)

∫ Tmax

τ

‖u
p0
2 (·, t)‖

2p
p−2

L
2

p−2 ((R,R+1))
dt

≤ c4(p)c
2
5(p)

∫ Tmax

τ

‖(u
p0
2 )r(·, t)‖2L2((R,R+1))dt+

1

2
c4(p)c

p
5(δ)Tmax

≤ c3(p, δ)c4(p)c
2
5(p) +

1

2
c4(p)c

p
5(δ)Tmax for all R > δ,

and that thus indeed (7.13) holds. �

The above two integrability properties are sufficient to ensure applicability of Lp-Lq estimates for
one-dimensional heat semigroups to achieve bounds for u actually in arbitrary Lp spaces.

Lemma 7.3 Assume that (1.7) and (1.8) hold with some q > n, and that Tmax < ∞. Then for all
p > 3 and arbitrary δ ∈ (0, 1) there exists C(p, δ) > 0 such that with (u, v) taken from Lemma 2.2 we
have ∫ R+1

R

up(r, t)dr ≤ C(p, δ) for all t ∈ (12Tmax, Tmax) and R > δ. (7.17)

Proof. Since p > 3, we can fix p0 = p0(p) ∈ (2, 3) such that p0 >
3p
p+1 , which ensures that p+1

p
> 3

p0

and hence 1 + 1
p
− 2

p0
> 1

p0
, and thus enables us to choose some λ = λ(p) ∈ (1, p0) fulfilling

1

λ
< 1 +

1

p
− 2

p0
. (7.18)

Then using that λ < p0, we may recall Lemma 7.1 to see that in view of (7.2), for each δ ∈ (0, 1) we
can find c1(p, δ) > 0 such that for any choice of R > δ, the functions a1 and a2, as defined in (7.6)
and (7.7) and trivially extended to all of R× (0, Tmax) if necessary, satisfy

‖a1(·, t)‖
L

p0λ
p0−λ (JR)

≤ c1(p, δ) and ‖a2(·, t)‖
L

p0λ
p0−λ (JR)

≤ c1(p, δ) for all t ∈ (τ, Tmax), (7.19)

where τ := 1
2Tmax and JR := (R − 1

2 , R + 2) for R ∈ R. Apart from that, thanks to the restriction
that p0 ∈ (2, 3) we may invoke Lemma 7.2 to fix c2(p, δ) > 0 such that

∫ Tmax

τ

∫ R+2

R− δ
2

up0(r, t)drdt ≤ c2(p, δ) for all R > δ, (7.20)

and to make adequate use of this in the framework of the inhomogeneous linear heat equation (7.4) for
χu, we employ known smoothing properties of the Neumann heat semigroup (et∆JR )t≥0 on JR ([31])
to see that once more due to translation invariance, we can find c3(p) > 0 and c4(p) > 0 such that for
all R ∈ R,

‖et∆JRϕr‖Lp(JR) ≤ c3(p)t
− 1

2
− 1

2
( 1
λ
− 1

p
)‖ϕ‖Lλ(JR) for all t > 0 and ϕ ∈ C1(JR) with ϕ|∂JR = 0 (7.21)

and
‖et∆JRϕ‖Lp(JR) ≤ c4(p)t

− 1
2
( 1
λ
− 1

p
)‖ϕ‖Lλ(JR) for all t > 0 and ϕ ∈ Lλ(JR). (7.22)
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An application of (7.21), (7.22) and the maximum principle to a Duhamel representation of χu on the
basis of (7.4) thus shows that for all δ ∈ (0, 1) and R > δ,

‖χu(·, t)‖Lp(JR) =

∥∥∥∥e
(t−τ)∆JR [χu(·, τ)] +

∫ t

τ

e(t−s)∆JR∂r[a1(·, s)u(·, s)]ds

+

∫ t

τ

e(t−s)∆JR [a2(·, s)u(·, s)]ds
∥∥∥∥
Lp(JR)

≤ ‖χu(·, τ)‖Lp(JR)

+c3(p)

∫ t

τ

(t− s)
− 1

2
− 1

2
( 1
λ
− 1

p
)‖a1(·, s)u(·, s)‖Lλ(JR)ds

+c4(p)

∫ t

τ

(t− s)
− 1

2
( 1
λ
− 1

p
)‖a2(·, s)u(·, s)‖Lλ(JR)ds for all t ∈ (τ, Tmax), (7.23)

where by the Hölder inequality, (7.2), (7.19) and (7.20),

c3(p)

∫ t

τ

(t− s)
− 1

2
− 1

2
( 1
λ
− 1

p
)‖a1(·, s)u(·, s)‖Lλ(JR)ds

≤ c3(p)

∫ t

τ

(t− s)
− 1

2
− 1

2
( 1
λ
− 1

p
)‖a1(·, s)‖

L

p0λ
p0−λ (JR)

‖u(·, s)‖Lp0 ((R− δ
2
,R+2))ds

≤ c1(p, δ)c3(p)

∫ t

τ

(t− s)
− 1

2
− 1

2
( 1
λ
− 1

p
)‖u(·, s)‖Lp0 ((R− δ

2
,R+2))ds

≤ c1(p, δ)c3(p)

{∫ t

τ

(t− s)
−[ 1

2
+ 1

2
( 1
λ
− 1

p
)]· p0

p0−1ds

} p0−1
p0 ·

{∫ t

τ

‖u(·, s)‖p0
Lp0 ((R− δ

2
,R+2))

ds

} 1
p0

≤ c1(p, δ)c
1
p0
2 (p, δ)c3(p)c

p0−1
p0

5 (p) for all t ∈ (τ, Tmax),

with c5(p) :=
∫ Tmax−τ

0 σ
−[ 1

2
+ 1

2
( 1
λ
− 1

p
)]· p0

p0−1dσ being finite due to the fact that by (7.18),

[1
2
+

1

2

( 1
λ
− 1

p

)]
· p0

p0 − 1
<

[1
2
+

1

2

(
1− 2

p0

)]
· p0

p0 − 1
= 1.

Since, similarly,

c4(p)

∫ t

τ

(t− s)
− 1

2
( 1
λ
− 1

p
)‖a2(·, s)u(·, s)‖Lλ(JR)ds

≤ c1(p, δ)c4(p)

∫ t

τ

(t− s)
− 1

2
( 1
λ
− 1

p
)‖u(·, s)‖Lp0 (R− δ

2
,R+2))ds

≤ c1(p, δ)c
1
p0
2 (p, δ)c4(p) ·

{∫ t

τ

(t− s)
− 1

2
( 1
λ
− 1

p
)· p0

p0−1ds

} p0−1
p0

for all t ∈ (τ, Tmax),

and since (7.18) clearly entails that also 1
2(

1
λ
− 1

p
) · p0

p0−1 < 1, in view of the finiteness of supr>0 u(r, τ)
asserted by Proposition 1.1 we infer from (7.23) that for all δ ∈ (0, 1) there exists c6(p, δ) > 0 such
that for all R > δ,

‖χu(·, t)‖Lp(JR) ≤ c6(p, δ) for all t ∈ (τ, Tmax),

39



which by (7.2) and our definition of τ establishes (7.17). �

In a last bootstrap step, this information can quite similarly be turned into a genuine pointwise bound
in the intended flavor.

Lemma 7.4 Assume that (1.7) and (1.8) are satisfied for some q > n, and that Tmax < ∞. Then
given any δ ∈ (0, 1) one can find C(δ) > 0 with the property that for the corresponding solution of
(1.6) we have

u(r, t) ≤ C(δ) for all r > δ and t ∈ (0, Tmax). (7.24)

Proof. We fix an arbitrary p > 1 and then infer from (7.2), Lemma 7.1 and Lemma 7.3 that for
all δ ∈ (0, 1) there exist c1(δ) > 0 and c2(δ) > 0 such that whenever R > δ, with χ ≡ χδR, a1 and
a2 from (7.1), (7.6) and (7.7) extended by zero to (0,∞)× (0, Tmax), and again with τ := 1

2Tmax and
J := (R− 1

2 , R+ 2), we have

‖a1(·, s)‖L2p(JR) ≤ c1(δ) and ‖a2(·, s)‖L2p(JR) ≤ c1(δ) for all t ∈ (τ, Tmax)

as well as

‖u(·, t)‖L2p((R− δ
2
,R+2)) ≤ c2(δ) for all t ∈ (τ, Tmax).

Then proceeding similarly to the argument in Lemma 7.3, by means of (7.4), of known regularization
features of the Neumann heat semigroup (et∆JR )t≥0 on JR ([8]), and of the Hölder inequality we see
that with some c3 > 0 and c4 > 0, for any choice of δ ∈ (0, 1) and R > δ we have

‖χu(·, t)‖L∞(JR) ≤ ‖χu(·, τ)‖L∞(JR) + c3

∫ t

τ

(t− s)
− 1

2
− 1

2p ‖a1(·, s)u(·, s)‖Lp(JR)ds

+c4

∫ t

τ

(t− s)
− 1

2p ‖a2(·, s)u(·, s)‖Lp(JR)ds

≤ ‖χu(·, τ)‖L∞(JR) + c3

∫ t

τ

(t− s)
− 1

2
− 1

2p ‖a1(·, s)‖L2p(JR)‖u(·, s)‖L2p((R− δ
2
,R+2))ds

+c4

∫ t

τ

(t− s)
− 1

2p ‖a2(·, s)‖L2p(JR)‖u(·, s)‖L2p((R− δ
2
,R+2))ds

≤ ‖χu(·, τ)‖L∞(JR) + c1(δ)c2(δ)c3 ·
(Tmax − τ)

1
2
− 1

2p

1
2 − 1

2p

+c1(δ)c2(δ)c4 ·
(Tmax − τ)

1− 1
2p

1− 1
2p

for all t ∈ (τ, Tmax). According to (7.2) and the fact that u is bounded in R
n × [0, τ ] by Proposition

1.1, this already entails (7.24). �

8 Proof of Theorem 1.2

The proof of our main result on blow-up in (1.6) now reduces to collecting actually completed pieces
only:
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Proof of Theorem 1.2. To construct a sequence ((u0j , v0j))j∈N which fulfils the claimed regularity
and approximation properties and which is such that the corresponding solutions of (1.6) satisfy
Tmax,j ≤ 1 as well as (1.14), we only need to combine the outcome of Lemma 6.1 with the extensibility
criterion (1.10). The boundedness feature (1.15) thereafter immediately results from Lemma 7.4. �
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