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Abstract

The Cauchy problem in R™ for the Keller-Segel system

uy = Au — V- (uVv),
vy = Av — v+ u,

is considered for n > 3.

Using a basic theory of local existence and maximal extensibility of classical and spatially integrable
solutions as a starting point, the study provides a result on the occurrence of finite-time blow-up
within considerably large sets of radially symmetric initial data, and moreover verifies that any
such explosion exclusively occurs at the spatial origin.

The detection of blow-up is accomplished by analyzing a relative of the well-known Keller-Segel
energy inequality, involving a modification of the corresponding energy functional which, unlike
the latter, can be seen to be favorably controlled from below by the corresponding dissipation rate
through a certain functional inequality along trajectories.
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1 Introduction

The Keller-Segel system, in its most prototypical version coupling two parabolic equations according
to

(1.1)

up = Au — V- (uVv),
v = Av— v+ u,

plays an important role in the biomathematical literature, and its essential ingredients form the respec-
tive core in a growing number of increasingly complex macroscopic models for migration processes at
virtually all conceivable length scales. With applications ranging from paradigmatic cell aggregation
phenomena such as in populations of Dictyostelium discoideum or E. coli ([16]), over models for tumor
cell invasion ([3], [20]) for virus hotspot formation ([29]) or for socially interacting animal populations
([30]), up to the description of large-scale evolution in spatial ecology ([7], [33]), its relevance seems
closely connected with its ability to describe spontaneous emergence of spatial structures.

In fact, already shortly after its proposal in the 1970s the model (1.1) was conjectured to support
even the formation of singular structures in the mathematically extreme sense of finite-time blow-up
for some solutions ([25]; cf. also the historical remarks in [12]); however, rigorous analytical detections
of such explosions were accomplished only in the 1990s, and throughout a significantly long further
period remained limited to either certain parabolic-elliptic simplifications of (1.1) ([15], [22], [23], [1]),
to the construction of particular and possibly non-generic initial data enforcing blow-up ([10]), or
to statements on mere unboundedness without option to determine whether such phenomena indeed
occur in finite or only in infinite time ([13]). This seems to rather well reflect the circumstance that in
contrast to typical objects of parabolic blow-up analysis such as quite thoroughly understood scalar
reaction-diffusion equations with zero-order or first-order superlinear sources ([26]), directional effects
of the driving cross-diffusive nonlinearity in (1.1) follow substantially more complex mechanisms and
hence require accordingly subtle analysis.

Correspondingly, only in the recent few years some additional methodological developments fostered
further progress in this field. Here a first branch of novel activities concentrates on a fine analysis
of the dynamics near explicit singular steady states of the two-dimensional version of (1.1) ([28]),
and hence on the one hand remains somewhat local with respect to the choice of initia data, but
on the other hand can be considered quite constructive by namely providing considerable qualitative
information on the asymptotic behavior of the obtained solutions near their blow-up time. An inde-
pendent second recent development, though more destructive in the sense of simply confirming the
occurrence of explosions without significant further qualitative description, has been found capable of
identifying large sets of initial data which lead to finite-time blow-up in Neumann problems for (1.1)
in n-dimensional balls €2, in both cases n > 3 ([32]) and n = 2 ([21]). In such situations, namely, the
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known to constitute the natural energy inequality

d
Yr < D 1.4
g70s Do (1.4)

along reasonably regular solution curves of (1.1), could be shown to satisfy certain inequalities of the
form
Fo>—C-(Dh+1) with some C' > 0 and 6 € (0,1) (1.5)

throughout suitably large sets of radially symmetric functions (u,v) = (u(r),v(r)) over € which, in
particular, include radial trajectories of (1.1) ([32], [21]).

As several subsequent studies have revealed, functional inequalities of the flavor in (1.5) can be de-
rived for significantly larger classes of expressions generalizing those in (1.2) and (1.3), and can thus
be applied to corresponding Neumann problems for several generalizations of (1.1) ([4], [19], [18]).
In problems posed in the entire space R™, however, the use of inequalities in the form of (1.4) for
blow-up detection so far seems limited to situations in which the corresponding energy functional is
constituted by sums of integrals among which each can favorably be bounded in its negative part
by the associated dissipation rate in the style of e.g. (1.5). In particular, in the Cauchy problem for
(1.1) the quantities Fy and Dy from (1.2) and (1.3) in this sense apparently become inappropriate,
because in domains with infinite measure the expression fQ uInu need no longer be bounded from
below along trajectories when the only a priori information available for the first component thereof
seems to reduce to an L' bound obtained through mass conservation. Due to a corresponding lack
of suitable energy-based arguments, thus somewhat contrasting with the development of a small-data
solution theory in the special case Q@ = R? in which (1.4) can indeed be accompanied by moment
control techniques to establish results on global solvability for sucritical-mass data ([2]), already the
problem of verifying the mere existence of some non-global solutions to (1.1) on 2 = R"™ accordingly
seems open up to now.

As a further complication encountered when passing from bounded to unbounded domains, we note
that beyond such a basic finding on global nonexistence, the detection of blow-up in the spirit of
a genuine application-relevant aggregation moreover should most favorably be accompanied by some
statement on appropriate explosion localization, at least excluding the possibility that the correspond-
ing blow-up set be empty. As impressive caveats in this regard, we recall some classical precedents
which report on the appearance of so-called ”blow-up at space infinity” phenomena already in some
scalar parabolic problems ([17], [9], [27]).

Main results.  Henceforth concerned with (1.1) in Q = R"™, the present work accordingly addresses
two objectives: A first goal consists in making this problem accessible to virial-type methods of blow-
up detection, such as those introduced in [32] and [4] for bounded domains, by analyzing the evolution
of a relative of the functional in (1.2) which is no longer genuinely nonincreasing along trajectories,
but the possible growth of which can adequately be controlled, and which moreover enjoys favorable
lower bounds, thus inter alia allowing for functional inequalities of the form in (1.5). Hence set in the
position to verify the occurrence of finite-time blow-up throughout considerably large sets of initial
data, as a second purpose we will pursue the problem of determining the corresponding blow-up sets,
and thereby not only exclude the possibility of blow-up at space infinity, but actually even make sure
that blow-up exclusively occurs at the spatial origin at least in frameworks of radially symmetric so-
lutions.



To be more precise, for n > 3 we shall subsequently consider

u = Au—V-(uVo), reR™ t>0,
v = Av—v+u, x €R™ t>0, (1.6)
u(x,0) =up(z), v(x,0)=uvy(z), xr eR",

under the assumptions that with some ¢ > n,

(1.7)

ug € BUC(R™) N L*(R™) is nonnegative with ug # 0, and that
vp € WhHI(R™) N WEL(R") is nonnegative,

where as usual, BUC(R") denotes the Banach space of all bounded and uniformly continuous functions
on R™. In most places we will moreover require that

ug and vy are radially symmetric with respect to x = 0. (1.8)

Then an indispensable prerequisite not only for our analysis of the functional F below, but also for our
basic qualitative description of blow-up given in (1.14) and (1.15), is consituted by the following result
on local existence and uniqueness of smooth solutions enjoying appropriate spatial decay features.
As we predominantly intend to make use of this in the context of non-global solutions, besides the
uniqueness feature that will ensure radial symmetry whenever (1.8) holds, we particularly stress the
practically quite convenient extensibility criterion (1.10) here. Thanks to the choice of a fixed point
setting somewhat different from precedent approaches both to two- and to higher-dimensional versions
of (1.6) ([1], [2], [6], [5]), this criterion will, up to an additional minor argument on regularity implied
by L bounds on u (Lemma 2.7), actually result as a fairly straightforward by-product from our
construction of local solutions (Lemma 2.2); in view of its accordingly significant importance for
Theorem 1.2 below, for reasons of full rigorousness we include an essentially complete demonstration
of Proposition 1.1 in Section 2, although neither its outcome nor its derivation bear any considerable
surprise. We note that in its main part, it does not require the symmetry assumption (1.8), and we
may note that it actually extends quite immediately to the case n < 2 not further pursued in the
sequel.

Proposition 1.1 Let n > 3, and assume (1.7) with some q > n. Then there exist Tyq, € (0,00] and
precisely one pair of functions

u € C[0, Tynae); BUC(R™) N LYR™)) N C?1(R™ x (0, Tjnaz))  and
0 1 11 2.1 (1.9)
v e C[0, Thnaz); WHLR™) N WEHR™)) N C=HR™ x (0, Thnaz))
which solve (1.6) in the classical sense in R™ X (0, Tinaz), and which are such that
if Trnaz < 00,  then limsup [Ju(-, )| feo(mn) = 00. (1.10)

max

Moreover, u >0 and v > 0 in R™ x (0, Tynaz), and we have

/n u(-,t) = /n ug for all t € (0, Thnagz)- (1.11)

Finally, if in addition (1.8) holds, then u(-,t) and v(-,t) are radially symmetric with respect to x =0
for all t € (0, Trnaz)-



Now the core of our results restricts to the radial setting and, indeed, asserts occurrence of finite-time
blow-up, localized at the spatial origin, within sets of initial data enjoying a certain density property.
This will be achieved on the basis of an appropriate and rigorously verifiable relative of the identity

jt]-‘ = —/ |Av—v—|—u|2—/ —\/ITVU‘
R

B / Vu 1
Rn

u+1+2(u+1 ‘ +/ (HW)NW (1.12)

formally fulfilled by smooth solutions of (1.6) which decay suitably fast in space, where

1
]:::/ |Vo|? + / v —/ uv—l—/ uln(u + 1)
2 R n n n

(Section 3). According to a functional inequality favorably controling fRn uv in terms of the dissipated
quantities in (1.12) along radial trajectories (Section 4), thanks to the trivial fact that uln(u + 1) is
nonnegative it can be shown that F, along with some meaningful replacement of Dy, satisfies a lower
estimate of the form in (1.5), and hence ensures finite-time blow-up for all radial initial data with
suitably large negative energy (Section 5 and Section 6). Finally, a bootstrap-like regularity reasoning
will reveal boundedness of any such non-global radial solution outside arbitrary neighborhoods of the
spatial origin (Section 7).

u+1

In summary, we will obtain the following statement on blow-up in which, as throughout the sequel,
for R > 0 we abbreviate Br := Br(0) C R™.

Theorem 1.2 Suppose that n > 3 and that with some q > n the functions ug and vy satisfy (1.7)

and (1.8) and are positive on R™. Then for any choice of p € (1,%) one can find (uoj)jen C
BUC(R")NLY(R™) and (vo;)jen C WH(RM)NWEHR™) such that ug; and vo; are radially symmetric

and positive for all j € N, that
ug; — up in LP(R™)NL*(R™) and vo; — vo in WHA(R™)NWH(R™) as j — 0o, (1.13)

and that for each j € N the associated classical solution (uj,v;) of (1.6) from Proposition 1.1 blows
up in finite time at the spatial origin, in the sense that the corresponding mazximal existence time
Tnaz,j > 0 actually satisfies Trazj < 1, that

tlimsup [l (-5 ) | oo (mm) = 00, (1.14)
max,j
but that
sup  [lu; (5 1) || poe(mm\By) < 00 for all § > 0. (1.15)

te(omiaac,j)



2 Local existence, uniqueness and maximal extensibility. Proof of
Proposition 1.1

2.1 Local existence and regularity of mild solutions

To prepare our construction of local-in-time solutions, for p € |J LP(R™) we let
pell,o0]

"2 ¢](z) = . Gz —y,)p(y)dy, xR t>0,

n _ |z
with G(z,t) := (4wt)”"ze” 2t for z € R" and t > 0. Then the following lemma collects some essentially
well-known facts that can readily be derived using basic integrability and regularity properties of G,
and a proof of which is thus omitted here.

Lemma 2.1 i) Ifpe |J WUYP(R"M), then for each i € {1,...,n},
pE[l,OO]

Op,ePp = e, 0 in R® for all t > 0.

ii) Whenever 1 < p < q < oo and w € N}, one can find C(p,q,w) > 0 with the property that given
any ¢ € LP(R™) we have

1

Wl _mnel 1
HngetA‘PHLQ(Rn) <C(p,qw)t 2 2 p)HtpHLp(Rn) for all t > 0.

iii) Ifp € [1,00], g € [1,00], T >0, A € R and ¢ € L*>*((0,T); L4Y(R")), then

' 11 2
0,T] >t / =BG s)ds  belongs to CO([0,T); LP(R™))  if 5 < g—i- -
0
and for all i € {1,...,n},
' A+ 1 1 1
0115t [ 0l Nples)ds s in COO.THLNRY) i 5 < 2 o
0

Then the following statement on local existence of smooth solutions, along with a first though not
yet very convenient extensibility criterion, can be established by application of a contraction mapping
argument. In view of our eventual goal to achieve even (1.10), the function space setting chosen here
will differ from those underlying apparently all precedent relatives (see [1], [5] and [6] and also [14],
for instance).

Lemma 2.2 Suppose that (1.7) holds with some q > n. Then there exist Tpq € (0,00] and at least
one classical solution (u,v) of (1.6) in R™ x (0, Tynaz) fulfilling (1.9) which is such that
t
u(-,t) = ePug — / V- et=98u(-, 5)Vo(-, s)lds  in R" for all t € (0, Thnaz) (2.1)
0

and

t
v(-,t) = A Dy + / =)A=y (. 8)ds  in R" for allt € (0, Thaz), (2.2)
0
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and that

if Tonaw < 00, then T sup { 1) | oy + 0, 0)] 21 ooy
t/‘Tma:t

oGOz + 1900 Dllzan) + V00 Dl } = 00 (23

PROOF.  According to Lemma 2.1, let us pick ¢; > 0,¢2 > 0 and ¢3 > 0 such that
1 n
HVetAcpHLoo(Rn) < Clt_i_z H(p”Lq(Rn) for all t > 0 and Y e Lq(Rn)

and
||v€tA(PHL1(Rn) < CQt_%HQOHLI(Rn) for all t > 0 and ¢ € L'(R™),

as well as )
||VetA<p||Lq(Rn) < st 2|l Larmy for all t > 0 and ¢ € LY(R"),

and take T' € (0,1) small enough fulfilling

_n
2

1
R?T? 1
max {”Cllnq 9mes R2T3 | RT, 2¢3RT? | 2cQRT%} <-
3% g
and .
9ne, RT2 2 1
max{ S AneyRTE, T, 2e5T2 , 26572 § < —,
3~ 2 10
q
where

R = [Juo|| oo (mry + [luoll 1 ey + lvoll 1 @ny + [ Vvoll Lamny + [V Vol L1 ny + 1.

Then in the Banach space
X =" <[o, T); (BUC(R") N Ll(R”)) X (leq(R") N Wl’l(}R”))>,
equipped with the norm || - || x defined by letting

(el = e {huCo Bl + G0l e

(2.4)

(2.8)

(2.9)

ol Ol + 1900l + V00Dl mgn b (o) €X,

we consider the closed set
§ = {(wv) € X | (1,0)(,0) = (uo, v0) and ||(u, )| x < R},

and for (u,v) € S we set ®(u,v) := (P1(u,v), Pa(u,v)) with

By (u,v)(-, 1) == ePug — /Ot V- BB (-, 5)Vo(-, s)]ds, te[0,T],



and

t

By (u,v)(- ) 1= A Dyy + / =)A=y (. s)ds,  te[0,T).
0

Since 0 < t — et can easily be seen to belong to C?([0, 00); BUC(R™)) due to (1.7), two applications

of Lemma 2.1 iii) then readily entail that ® maps S into X. Moreover, recalling the well-known fact

that €2 is nonexpansive on LP(R") for all p € [1,00] and t > 0, for (u,v) € S we can use the first

restriction contained in (2.7) to estimate

t _1l_n
[®1(u, v)(, ) |poo@n) < HUOHLoo(Rn)JrnCl/O(t—S) 2 2a|u(, $)Vo(, 8)|| La@n)ds
t _1l_n
< |’u0HL°°(R”)+ncl/o(t_3) 2724 |u(s, 8)|| poo (rr) V(s 8) || La(rnyds
1_n
neyR?T2 ™ 2
< ”UOHLOO(R")‘Fﬁ
2 2q
1
< Juol| oo mmy + s for all t € [0,T7,

1 n
because (2.4) clearly warrants that ||V - etAg0||Loo(Rn) < neit 2 2% ||@l|Lagny for all £ > 0 and each
v € LI(R™; R™).
Likewise, relying on (2.5) and the second requirement entailed by (2.7) we see that

t
_1
[@1(w,v)( ) Lr@n)y < Hu0||L1(R”)+nCQ/O(t_S) 2|, s)Vo(, s) | L1 @n)ds
t
_1
< HU0||L1(Rn)+nc2/0(t—S) 2||lu, )|l oo mmy [IVO (-, 8)| L1 (mm)ds
< ol pr gy + 2nea R2T2
1
< HUOHLI(RTL) + g for all t € [O,T],

while the third implication of (2.7) guarantees that

IN

t
H%(U,U)(‘J)HU(RH) HUOHLl(R“) +/0 Hu('7‘9)HL1(R”)d5

HU()”L1(Rn) + RT

A

1
< HUOHLI(Rn) + 5 for all ¢t € [O,T].

Since furthermore from (2.6) we know that due to the Holder inequality and (2.7) we have
t
_1
V@2 (u,v)(,t)||Lawny < Vool Lawny + 63/0 (t—s)"2||ul, 8)||Larnyds
q—1

t 1 q—1 1
< Vool o) + e /0 (t = )2 [ful, )] % oy 10 )| oy I

8



< ||Vl pagny + 263 RT2

1
< ||v1)0HLq(Rn) + g for all t € [O,T],

and since, again by (2.5), the condition (2.7) furthermore warrants that

IN

t
_1
IV®s(u, v) (- )] 1) IIVvo!\L1<Rn)+Cz/O(t—8) 2||u(-, 8)ll L @myds

IN

HV’U()HLl(Rn) + QCQRT%
1
< HV’U()HLl(Rn) + 5 for all t € [O,T],
from the definition of || - || x it follows that

[®(w,v)[lx < luollpeo(mny + ol rmny + llvoll 1 @wny + IVvoll pa(rny + [[Vvoll L1 @ny + 1

= R for all (u,v) € S. (2.10)

In quite a similar manner, given (u,v) € S and (@, 7) € S we can use (2.4) and the first requirement
in (2.8) to estimate

| @1, 0)(,0) = @u@ o))

¢ _1_n _
ney /O (t = 5)" 2 5 {u5) = T, ) | o) IV ) oy

Loo(R™)

/t V- e(t_s)A{[u(-, s) — (-, 8)|Vo(, s) + (-, 8)[Vo(-, s) — VB(-, s)]}ds
0

Lo (R™)

IA

2nci RT2 24 _
< 1 Iwv) = @)|x
2 2q
1
< EH(u,v) — (u,v)||x for all t € [0,T],

whereas (2.5) together with the second restriction in (2.8) ensures that

@1, 0)(, 1) = @1(@ D) (1)

L1 (Rm)
t
_1 _
< nex [ (6= 5 H{lules) = e 8) eV ) o e

I, )| (@ V0, 5) = VO, 8) | o) s

< 4anRT%H(u,fu) — (u,?)||x
1
< TOH(U,’U) - (U,@)”X for all t € [O,T].



Apart from that, the three rightmost conditions contained in (2.8) imply that for (u,v) € S and
(u,v) € S we have

t
@t 0) (-1 £) — Do, D) (1 1) |1y = H / B 5) — a(-, ))ds
L1 (R")
< / (s 8) = (-, )] 21 s
< THUU) (u, )HX
< %H(u,v)—(ﬂ,ﬁ)“x for all ¢ € [0, T]
and, by (2.6),
t
HVQQ(U,U)(‘,t)_v(pz(ﬂ,@)(-jt)||Lq(Rn) < Cg/o(t—s)é]u(.js)—u(-73)||Lq(Rn)dS
< 2¢3T3||(u,0) — (w,0)| x
< %H(u,v)—(ﬂ,@)”x for all £ € [0, ]
as well as
t
_1 _
[V ®a(u,v)(-,t) = VP2 (T, V) (-, )| L1 mny < 02/0(?5—8) 2|lu(-, s) — (-, s)|| 1 nyds
< 26973 |(u,v) — (0,0)| x
< ol ~@w)lx  forall i€ [0,7]

according to (2.5). In summary,
1
| (u,v) — ®(u,v)||x <5- 10“( v) — (u,v)|x for all (u,v) € X and (u,v) € X,
which combined with (2.10) enables us to invoke the Banach fixed point theorem to find an element

(u,v) of S such that ®(u,v) = (u,v).

A standard argument (cf. e.g.[11, Lemma 3.3] for a detailed demonstration in a closely related setting)
thereafter shows that actually (u,v) belongs to (C%(R™ x (0,T))? and, since V- and e!® commute on
CHR™ R")NLY(R™;R"), solves (1.6) classically in R x (0,T), and from our definition of 7" it becomes
clear through another standard reasoning that (u,v) can be extended up to a maximal T}, € (0, 00]
fulfilling (2.3), and that (2.1) and (2.2) actually hold throughout the entire interval (0, Tqz)- O

As it directly refers to the integral identity (2.2) and to Lemma 2.1, let us include the following basic
integrability property of Vv already here, although it will only be used in the course of our blow-up
argument in Lemma 4.1, and in the part identifying = 0 as blow-up point (Lemma 7.1).

Lemma 2.3 There exists C > 0 such that if ug and vg satisfy (1.7), then

HVU<'7t>HL1(R") S HV’U(]HLl(Rn) + CHUOHLl(R") fOT’ all t € (O,Tma@). (211)

10



PrOOF.  To the integral identity (2.2), we only need to once again apply Lemma 2.1 along with fact
that e has Lipschitz constant 1 in L'(R"). In view of (1.11), namely, this shows that with some
c1 > 0 we have

t
_ 1 (4
IVo(, )@y < e Vool Lin) +01/0 (t—9)72e” I lul, 5)| L myds
t
= e*tHVvo||L1(Rn) + Cl”uOHLl(Rn)/ o e %do for all t € (0, Tnaz),
0
from which (2.11) follows by finiteness of [ o e do. O

2.2 Uniqueness

To prepare our subsequent localization arguments not only in this but also during the next sections,
we fix a nonincreasing cut-off function £ € C*°(R) fulfilling £ =1 in (—o00,0] and £ =0 in [1,00), and
for R > 0 we let

Cr(x) :=&(|x| — R), x € R™. (2.12)

Then (g is radially symmetric about the origin, with (g = 1 in Br and supp (g C Bgy1 as well as
supp V¢r C Bgr+1 \ Br, and moreover we have 0 < (g < 1 in R".

A first use of the family ((r)r>0 enables us to conclude uniqueness of classical solutions within spaces
of functions satisfying spatial decay conditions in the flavor of those from Lemma 2.2.

Lemma 2.4 Assume (1.7) with some ¢ > n. Then for each T' > 0, the problem (1.6) admits at most
one classical solution (u,v) in R™ x (0,T) which is such that

(2.13)

u € C°[0,7T); BUC(R™) N LY(R")) N C*Y(R" x (0,T))  and
v e CO([0,T); W (R™) n WEL(R™)) N C2LR™ x (0,T)).

Proor. If (u,v) and (w,v) are two classical solutions in R" x (0,7") fulfilling the above regularity
assumptions, then w := u —u and z := v — U satisfy

wy=Aw—-V-(wVv) =V (aVz) and z=Az—z+w in R" x (0,7),
so that with ((r)r>0 as defined in (2.12), for R > 0 we have

Vd [ oLy [ o
5 7t RnCRw = /QCRwV {Vw wVv qu}
— - [ GIvuP -2 [ Ve o
Q R"

+ C?%wVw -Vo+2 Crw?Vig - Vo
R" R

+/ C%qu-Vz+2/ CruwV(r - Vz

IN

— | GIVu]?
Rn

11



1
45 [ vl +a [ VerPu?
Rn Rn
1
w3 [ vl + [ Gutioep
R™ R™
+2 [ (guw?Vig - Vv
Rn
1
i [ Givup+ [ Gatvap
R R
+2 (ruwV{Rr -Vz
Rn
1

= v - §%|Vw|2

+4/ |ng\2w2+/ CIQ%w2|VU\2+/ CEu?|Vz|?

R™ R» Rn

+2 Crw?V (R - Vv + 2 (ruwV(Rr -Vz for all t € (0,T)
R™ R™

and

1d
/ CRIV2? = (3Vz- (VAz — Vz + Vw)
2dt R'n Rn

1
= 5 | Gawep- [ Gipp
R R”
— g§|w12+/ (3Vz-Vuw
Rn R
= 2| (rV(r-(D*2-V2)— [ (}|D?*z)?
R” NG

— | GV + | (V2 Vw
R" R"”

IN

1
/ |ng\2|v,z2+4/ C3|Vw?>  forall t € (0,T)
R™ R™

according to the pointwise identity Vz - VAz = %A’VZ‘Q —|D?z|? and Young’s inequality.

(2.14)

(2.15)

Now in view of (2.13), the numbers ¢ := supyc (o) V(- 1) || La(rn) and c2 1= supse o 1) [[a(-, )] Loo (mr)
are finite, so that on the right-hand side of (2.14), using the Holder inequality and the fact that

0 < (r <1 we can further estimate

CGGu?|Vol? < [ICrw|? 2 for all t € (0,7)
R® La-2(R")

and
/ Ut |Vz|* < cg/ CA|Vz|?  forallte (0,T),
Rn” R

12
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where thanks to our assumption that ¢ > n and hence q— < E 2, we may employ the Gagliardo-
Nirenberg inequality and Young’s inequality to find ¢3 > 0 and ¢4 > 0 such that

2n 2(qg—n)
2 2 a q

1
= 7HV<CR'LU)H%2(R7L)+C4H<RwH%2(Rn)
— 1 |C \V4 2,2
= rVw + wVCg|* + ¢4 Cpw
1
< / CR!Vw|2+/ IVCR!2w2+c4/ Gw?  forallt e (0,7). (2.18)
8 R~ 8 Rn Rn

Next, further applications of the Hélder inequality show that abbreviating cs := ||V (1| peowrny, 6 :=
supye (o) lw (s )| Loomny and c7 := supye(o,1) [V2(-, )| Larn) we can estimate

Crw?Vip - Vo < 265/ w2|Vv\
Br+1\Br

Rn
gq+1 g—1
< 265||w||Lgo(Rn)”wHL(lI(BRH\BR)HVUHL‘I(R")
q+1 g=1
< 2cie5¢4” ||wHL1 (Bria\Br) for all t € (0,7)
and
2/ (ruwV{g-Vz < 205/ uw|Vz|
n Bry1\Br
1 g=1
< 2cs][ull ooy 1wl Lo oy 1wl 1 5\ By 1V 2 Lo R
1 g—1

< 2cac5¢¢ C7HwHL1 (Brii\Br) for all t € (0,7)

as well as
/ \VCR\QwQ < cg/ w? < c%cﬁﬂwHy(BRH\BR) for all t € (0,7)
" Bry1\Br
and
[ovapwap < @) v
R™ BR+1\BR
q—2
< cguwum(w V205
q—2
< c5c7 ||Vz||L1 (Brai\Bp) for all t € (0,7).

On combining (2.14) with (2.15) and with (2.16)-(2.18), we hence infer that yz(t) := 3 fRn CRw (- 8)+
L CRIVz(-, 82, ¢ € [0,T], satisfies

33 1
) < 5 [ VPt e [ Guted [ IV + esllwl T o * 5 VeIV

g—1 q—2
< coyr(t) + CBHwHLLl](BRH\BR) + ClOHwHLl(BRH\BR) + cllHV'ZHZI(lBRH\BR) forall t € (0,T)
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a=1 1 _a_
with cg 1= 2cie5¢4? + 2c205¢d ¢, co = max{2cy,4c3}, c19 = EC%CG and c1; = %céc?il. Since

8
yr(0) = 0, an integration thereof yields
to -1 a=2
— —1
yr(t) < /0 e A esllwl ) L gy 0N )2Ba ) + et IV2C ) P8
for all t € (0,7), and that thus
yr(t) = 0 as R — oo for all t € (0,7), (2.19)

because due to (2.13) we have

S(lépT) {”w(, 3)|’L1(BR+1\BR) + HVZ(', S)HLl(BR+1\BR)} — 0 as R — oc.

se (0,

But by definition of (yg)gr>0, (2.19) means that w(-,t) = 0 and Vz(-,t) = 0 in R for all ¢ € (0,7,
and that hence (u,v) = (u,v) in R" x (0, 7). O

2.3 Positivity, mass conservation and the refined extensibility criterion (1.10)

As straightforward applications of well-known maximum and comparison principles (|26, Appendix
F]) seem unavailable in the present setting of unbounded domains and possibly unbounded system
ingredients, such as e.g. the coefficients b(z,t) := —Vwv and ¢(z,t) := —Av in u; = Au+b(z,t) - Vu+
¢(x, t)u, we once more utilize a localization argument involving the functions from (2.12) to derive the
following statement on positivity.

Lemma 2.5 Assume (1.7) with some ¢ > n. Then the solution (u,v) of (1.6) from Lemma 2.2
satisfies u > 0 and v > 0 in R™ x (0, Thaz)-

PROOF.  In view of the strong maximum principle and (1.7), it is sufficient to make sure that both
u and v are nonnegative in R™ x (0,7 for each T' € (0, Tyqz). To verify this, for R > 0 we take (g
from (2.12) and use the continuous differentiability of R 3 s — s2, with s_ := max{—s,0} for s € R,
to see that thanks to Young’s inequality,

1d

—— | G = — | GIVu P+ | Gu_Vu_-Vu

—2 | Cru_V<(gr -Vu_+2 | (ru’V(gr-Vu
Rn R™

1
5 | vl [ Gl vof
R" R"

+4/ \VCrIPu? +2 | CrulV(r-Vov  forallt € (0,Tmae). (2:20)
Rn Rn

IN

Here we may proceed similarly to the proof of Lemma 2.4 in employing the Hoélder inequality and
the Gagliardo-Nirenberg inequality to see that since Vv belongs to L*((0,T); L(R™)), with some

14



c1 =ci1(T) >0 and ¢z = c2(T") > 0 and for all R > 0 we have

[ Ga19of < Vel liCru- |
n LQ*Q(R’”)
2n 2(g—n)
< ClHV(CRu*)H[;(Rn)||CRU*||L2((IR71)
1
1 1
N CR’VU—’2+/ |VCR|2u2+CQ/ Chu? for all t € (0,7).
2 R 2 Rn Rn

As, furthermore, using (2.12) we can find ¢3 > 0 and ¢4 = c4(7") > 0 such that for all R > 0,

2 [ CrulVir-Vu < 03/ u? | Vo
Bry1\Br

RTL
< eallu—|? 2 Vo La(rn)
La=1(Br+1\Br)
< eyllu|? 5 for all t € (0,7,

La=1(Br+1\BRr)

the inequality (2.20) therefore implies that yr(t) := [p. (Ru® (-, 1), t € [0,T], R > 0, satisfies

Yp(t) < 2coyr(t) + c5”“—”%2(BR+1\BR) + 2calju_||* 24 for all ¢ € (0,7)
La=1(Br+1\BRr)

with ¢ := 9HVC1”%00(R71)- When integrated over time, this entails that since yr(0) = 0,

t
< [ et=9) Loy 5)|2 + 2¢4|u_||? ds

for all t € (0,T") and each R > 0, whence observing that for all p € (1,00) we have

Sup Huf(.?8)||Lp(BR+1\BR) S Sup Hu('7s)||LP(BR+1\BR)

s€(0,T) s€(0,T)
p—1 1
< . P . P
< s {1 ) S I M iy

— 0 as R — oo,

we conclude that yr(t) — 0 as R — oo for all t € (0,7)).

Having thereby asserted nonnegativity of u in R™ x (0,7"), we can make use this to see that once more
due to Young’s inequality,

1d
—— | GE o= — | GIVu ]P- 2/ Cru_V (R - Vu_
= CRv2 — Chuv_
R? R®
< / IV¢RI*0?
R’I’L
< CGH’U_H%Z(BRJrl\BR) forallt € (0,7) and R >0

15



with ¢g := ||VC1||%OO(Rn). Since

X 2
0 o=y < s {lot Mt o i ] 0 8 R

/ VE( 1) = lim/ Rt ()
n R—o0 n
< hmsup{206/ [lv—( ||L2 BR+1\BR)d }

= 0 forallte (0,7)

this implies that

and hence completes the proof. O

Two further but now quite simple testing procedures involving (2.12) next allow for controling the
mass functionals of both components in quite an expected manner.

Lemma 2.6 Assume (1.7) with some ¢ > n. Then the solution (u,v) of (1.6) from Lemma 2.2 enjoys
the mass conservation property (1.11), and moreover we have

[v(, Ol L1 gny < HlaX{HUOHLl(Rn) ; ||u0||L1(R”)} for all t € (0, Trnaz). (2.21)

PROOF.  Again taking ((g)gr>o from (2.12), we use (1.6) to see that for any T" € (0, Tynaz ),

g Loowl = | [ cwsu- [ av-@ww
= /nUACR+/§2UVU‘VCR
< alullysra\sr) T 2llVollLipe,, )  forallt e (0,T)
with ¢ := [|AG || Lo gn) and ¢z := |V (1|00 ®n) - SUPre 0,7y |u:,8) [ oo (mr)- Since

sup { (s )|t B\ + V008 |t (asiim ) 0 as R— oo
s€(0,T)

by Lemma 2.2, this entails that

/nu(-,t)—/nuo

= lim
R—o0 Rn

Cru(-,t) — /n CRruo

T
< timswp [ {erlules) o mgen e + IV 1 (55 s
R—oo JO

=0 for all t € (0,7)

and that thus (1.11) holds, for T' € (0, T)qe) was arbitrary.
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Likewise, for fixed T' € (0, T)nqz) the second equation in (1.6) implies that due to (1.11),

d
— Crv + CrRv = CrRAV + Cru
dt R"L R" R"L R"L

= /UACR+ Cru
n RTL

< calvlpiBe,\Bg) +/ () for all t € (0,T)
Rn
and hence

Crv(,t) < max{ Crvy, €1 sup ||U('>5)HL1(BR+1\BR) —1—/]R uo} for all t € (0,7)

R~ R~ s€(0,T)

by an ODE comparison argument. Noting that Lemma 2.2 ensures that

sup |lv(, $)ll21(Brsr\Br) — 0 as R — oo,
s€(0,T)

on taking R — oo we readily obtain (2.21) from this. O

With these preparations at hand, we can return to the mild formulation (2.2) to conclude that the
extensibility criterion (2.3) can be refined so as to actually reduce to (1.10).

Lemma 2.7 Under the assumption that (1.7) is satisfied with some q > n, the solution of (1.6) from
Lemma 2.2 has the property that (1.10) holds.

PROOF.  Let us assume on the contrary that 7;,,, < co, but that there exists ¢; > 0 such that
[u(-, )| oo (mry < 1 for all t € (0, Thaz)- (2.22)
Then since from Lemma 2.6 and the nonnegativity of v we know that
[u( Ol ey = €2 := [luoll L1 @) for all t € (0, Trnaz), (2.23)

by using the Holder inequality we see that
g—1 g—1

g=1 1 1
s )l gy < -, )] e gy e Dl sy < 03 = ¢,7 c§ for all ¢ € (0, o).

As Lemma 2.2 ensures validity of (2.2), on applying Lemma 2.1 ii) to the latter identity we thus infer
the existence of ¢4 > 0 such that

IN

t
1
V(- )l L Vvol| Larny + 04/0 (t — )2 |lu(-, 8) || pa(rmyds

1
< Vol Lamny + 2c3c4Tinan for all t € (0, Thnaz), (2.24)
while Lemma 2.1 ii) in conjunction with (2.23) shows that with some c5 > 0 we have
t
_1
IVo(, O)llr@ny < Vool prwny + 05/0 (t—s)"2||ul, 8)|l L1 @mnyds

1
Vol 1 mny + 2c2¢5Tinan for all t € (0, Trnaz)- (2.25)

IN
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As furthermore
o, )2y < max { ol eey s 2} for all £ € (0, Trne) (2.26)

by Lemma 2.6, combining (2.23)-(2.26) with (2.3) reveals that in fact T},q, cannot be finite under the
assumption (2.22). O

Now our basic theory of local existence, uniqueness, extensibility and preservation of mass and of
radial symmetry is complete:

PROOF of Proposition 1.1. Existence, uniqueness and validity of (2.1) and (2.2) have been found
Lemma 2.2 and Lemma 2.4, whereas positivity of v and v have been asserted by Lemma 2.5. Due to
Lemma 2.7, this solution satisfies the refined extensibility criterion (1.10), and the mass conservation
identity (1.11) is part of the statement from Lemma 2.6. Based on the uniqueness property, a standard

argument thereupon reveals the claimed radial symmetry feature under the additional hypothesis (1.8).
O

3 A quasi-energy functional bounded from below by — fRn uv

Next addressing the problem of detecting blow-up, motivated by (1.12) we shall perform one more
localized testing procedure using ((g)gr=o from (2.12) to achieve the following counterpart of (1.12)
in which time differentiation is avoided due to possibly lacking regularity features, and in which
unfavorable contributions have already been estimated in a convenient manner.

Lemma 3.1 Assume (1.7) for some q > n, and let

F(t) = ;/ |vv(.,t)y2+;/n v2(-,t)—/nu(-,t)v(-,t)—i-/nu(-,t)ln (w0 +1). L€ [0, Do)

(3.1)
and
1 2 Vu(-
Dt) = 2/n Av(- 1) o, 1) +u(- 1) +/n Al IV O]t (0, T ).
! (3.2)

where (u,v) is the corresponding solution of (1.6) from Lemma 2.2. Then F € C°([0, Thaz)) and
D e Lloc([O,TmaI)) with F(0) = %fR” |Vug|? + %fR" v — fRn UQUy + f]R" uo In(ug + 1), and we have

+ /OtD(s)ds < F(0) + 4/: F(s)ds + 4/0t /n uv  for allt € (0, Thaz)- (3.3)

PROOF.  Since Proposition 1.1 clearly entails that v € C([0, Thnax); Wl’p(R")) for all p € [1,q], from

the inequality ¢ > 2 it follows that F( ) 2 fR" |Vo(-,t)|? and F (2) =3 f]R" ,t €0, Thaz),
define continuous functions fulfilling .7-" ( ) =3 fRn \Vvolz and F( )(O) =3 f " v%. As Proposition
1.1 apart from that ensures that u and hence also In(u + 1) belong to C° ([0 T max) LOO(]R")) from
the inclusion {u v} C CO([O Trnaz); LY(R™)) we moreover obtain that also F®)(¢) := — [o, u(- . t)
and ]:(4 = Jgnu(- (u(-,t) + 1), t € [0, Tynae), are continuous with ]:( )( 0) = _fRn QU and
FH(0 fRn up In(ug + 1).
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Having thus asserted continuity of F = F() 4 F@) 4 FO) 4 F(4) a5 well as its claimed initial behavior,
we are left with the verification of (3.3). To accomplish this, for R > 0 we once more take (r as
defined in (2.12) and note that

Falt) = 5 [ GIVoC.OF+3 [ Gt

— G-, t)v(-,t) + CEu(-,t)In (u(-,t) + 1), t €10, Traz),
R Rn

is evidently continuous on [0, T),4.) and continuously differentiable on (0, 7},4.), and satisfies

Frt) = (EVv - Vo, + Chove — Chuvy — CRULV

+/ g;(ln(w ) )ut for all £ € (0, Tas)- (3.4)
Rn u + 1

Here integrating by parts and using Young’s inequality shows that due to the second equation in (1.6),

CRVv Vo + | Chov— | CRuwy
R™ R™ R™
= [ G-z [ GV ot [ Gou [ G
R7 R7 R" R™
= —| Gui-2[ CguVir-Vu
R7 R
1 2.2 29,2
< D) Crui +2 |VCRr|*| V| for all t € (0, Thnaz), (3.5)
R" R7
whereas from the first equation in (1.6) we obtain that
— CGugw = CAVu - Vo —/ Chu|Vu)?
R" R” R7
+2 CrvV(Rr - Vu—2 CruvV{iR - Vv (3.6)
R™ R™

and

9 U
/nCR<ln(u+1)+u+1)ut
1 1 U U
_ 2 2 2 .
B /HCR(qul * (u+1)2)|v“‘ +/RHCR(u—|—1 + (u+1)2>v” Ve
w 2
for all t € (0, Tjnaz). Using the identity

(umn(u+ 1)+ =) V- Vo (37)

u—+1

n

1 1 U U
o 2 2 .
Vu- Vo —u|Vu (u—l— 1 + (0t 1)2)|Vu| + (u—l— 1 + (0t 1)2)Vu Vo
— _‘ Vu —MV@‘Q—;WuF—FWUF—;VU Vo inR™ x (0, Tas)
I NoE (u+1)2 (u+1)2 s
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from (3.6) and (3.7) we infer that

U
_ Rn(%utv+/RnC]2%<ln(u+1)+u_i_l)ut

Vu 2 |Vul?
[ 201 Y= 1 o 2 VY / 2 2
/n CR \/m v Vv Rn CR(U+1)2+ RnC.R‘V/U’
1
2 - — .
[ G

/nCR<v —In(u+1)— ﬁ>VCR Yu

_2/Rn CR<uv—uln(u+1) —

Here by Young’s inequality and the elementary estimates u%rl <1 and In(u+1) < u, we see that

2

u+1

)ng Vo forall £ € (0, Tonas)- (3.8)

1 1 |Vul? 1 5 |Vol?
——=Vu-Vu < -
~ LR Ve Ve < g L Chre Y L SR e
1 |Vul? 9
<
< nCR(U+1 /CR]VU| for all t € (0, Thnaz)
and
/ CR(vfln(qul)f?)VCR Vu
1 |Vul 9 2 u 2
< 1 —1 1) —
< 5[ G e [ venl 12 (o -+ 1 - )
1 [Vul? 2 2,2 21,2 2
1
< . ncR(uH) o [ 196 (8-t 170+ 6u+ D+ 1) + 60
< CR( |Vu]) /Rn |VCR|2(6(U +1)%0% + 6u(u + 1) + 6u2> for all ¢ € (0, Trnaz)
as well as
2
_2/1Rn CR(uv—uln(u—l—l)— u+1>VCR-Vv

1 2 2 2 u? N2
2/Rn 2|Vl +2/Rn|ng\ (uv wln(u + 1) u—|—1>
4

1 2 2 2 2 2 27 2 u
2/RH<R’W| —i—/Rn|VCR| <6uv + 6u”In (u+1)+6(u+1)2)

1
< 2/ Ch|Vu)? +/ \VCr2(6u*v? + 12ut) for all t € (0, Trnaz)-
R7 R™

IN

IN

Therefore, inserting (3.5) and (3.8) into (3.4) shows that abbreviating h = h(z,t) := 2|Vv|* + 6(u +
1)20? 4+ 6u?(u + 1)% + 6u? + 6u?v? + 12u?, for all R > 0 we have

/Cth / 2\/7 \/FVU
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< g%awu / IV CR[2h
= {]—"R - - CEu? + Chuv — gguln(u+1)}+/ IV¢r|*h
n Rn Rn R"
< AFR(t) +4 / G + / VCal2h  for all £ € (0, Tonas),
Rn Rn

because uIn(u + 1) is nonnegative. Upon integration, this implies that for all ¢ € (0, 7},4,) and each

R >0,
//nCRUt //nCR _\/FVU‘
< fR(0)+4/O fR(s)ds+4/0 /Rngﬁuv+/0 /Rn|v<Rth, (3.9)

where from Beppo Levi’s theorem and the continuity of F@ for i € {1,2,3,4} it follows that as
R — o0,

[ [ f e
2/0 /n”t2+/() / \/t%—\/valzz/otD(s)ds for all ¢ € (0, Tyas)

and
¢ t
4/ Chuv — 4/ / uv for all t € (0, Trnaz)
0 Jrn 0 Jrn
as well as
Fr(t) — F(t) for all ¢t € [0, Thnaz)
and

t t
4/ Fr(s)ds — 4/ F(s)ds for all t € (0, Trnaz)-
0 0

Since furthermore another application of Proposition 1.1 readily reveals that h belongs to L' (R™x (0, 1))
for all t € (0, Tynaz), and since thus

t
/ / |VCr[*h — 0 as R — oo
0 n

by (2.12) and the dominated conergence theorem, the validity of (3.3) results from (3.9). O
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4 Dissipation controls superlinear powers of fRn uv: A functional

inequality along radial trajectories

Now inspired by the strategy from [32], as a key step toward revealing blow-up we shall establish a
link between the negative contribution — [, uv to F and the dissipation rate functional D from (3.2).
This will be achieved in Lemma 4.5 below, and is to be prepared by four lemmata, each of which has
quite a close relative in [32], but in the derivation of each of which we need to adequately account
for the unboundedness of the domain on the one hand, and for the differences between (F,D) and
(F0,Dp) from (1.2) and (1.3) on the other. Here and below, whenever convenient we shall without
further explicit mentioning switch to the standard notation for functions radially symmetric about
the origin, thus writing e.g. u = u(r,t) for r = |z| > 0.

We begin with a pointwise estimate for v gained upon combining Lemma 2.3 with (2.21) and making
essential use of radial symmetry.

Lemma 4.1 There exists C' > 0 such that if with some ¢ > n, ug and vy are such that besides (1.7)
the condition (1.8) holds, then the solution of (1.6) from Lemma 2.2 satisfies

v(z,t) <CK - (14 |z|'™™)  for allz € R\ {0} and each t € (0, Taz), (4.1)

where
K = HUOHLl(R”) + H'U()”LI(Rn) + HVUOHLl(R”) + 1. (4.2)

PRrROOF. We first recall that due to Lemma 2.3 and Lemma 2.6 there exists ¢; > 0 such that
whenever (1.7) and (1.8) hold, with K > 1 as accordingly defined by (4.2) we have

/ "o (r,t)|dr < K for all t € (0, Trnaz) (4.3)
0
and
/ " lo(r, t)dr < K for all t € (0, Thnaz),
0

where the latter especially implies that for fixed (ug, v9) and each ¢t € (0, Tjpqz) We can pick 7o(t) € [1, 2]
fulfilling

2
v(ro(t), t) < rd Y (t)v(ro(t), ) = /1 " lo(r, t)dr < K. (4.4)

Now fixing any such (ug, vg), for ¢ € (0, Tynas) and r € (0,79(t)] we can use (4.4) together with (4.3)
to see that

ro(t)
v(r,t) = v(ro(t),t)—/ vr(p, t)dp

To(t)
< K+/ lur(p,t)|dp
To(t)
< K+7‘1"/ P o (p, t)]dp
< K+ Krl, (4.5)
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whereas if ¢t € (0, Tynaz) and r > ro(t), then similarly

o(rnt) < K+ / lor (0, 0)|dp
To(t)

< Kani® [ o enlp0ldp
ro(t)
< K+caKry ™)
< K+ak, (4.6)
because ro(t) > 1. In combination, (4.5) and (4.6) yield (4.1). O

By means of the previous lemma, we can next apply a standard testing procedure to the second
equation in (1.6), involving one specific among the cut-off functions from (2.12), to relate the integral
under consideration to a Dirichlet integral of v, up to a sublinear, and hence favorably small, power
of D.

Lemma 4.2 There exists C > 0 such that whenever (1.7) and (1.8) are valid with some q > n, for
the solution of (1.6) from Lemma 2.2 we have

2n+4
n+4

/ uv§3/ |Vv|2+CK2+CK%+4 Av—v+u for allt € (0, Trnaz), (4.7)
n 32

L2(R™)
where K is as in (4.2).

PRrROOF. We take ¢ := (3 with (1 as defined in (2.12), and then observe that since Lemma 4.1
provides ¢; > 0 fulfilling

v(r,t) <K forallr>1andt € (0, Thaz), (4.8)

in the decomposition

/ uy = Cuv —|—/ (1 —¢Huw, t € (0, Trmaz), (4.9)
n Rn n

we may estimate
/ (1—¢Huw < / uv < 1 K u=c1K [ ug<erK? for all t € (0, Trnaz) (4.10)
n Rn\Bl Rn Rn

according to (1.11). To appropriately handle the first integral on the right of (4.9), we write f :=
—Av+v—u and test this defining identity by ¢?v to see that due to Young’s inequality and the Holder
inequality,

Cuv = ngwy?+2/ gvvg-vwr/ o= | Cfu

Rn

IN

2 e C2|V’U|2 +/R |V<|2U2 +/R C2U2 + ”fHLZ(Rn)||CU||L2(Rn) for all t € (O,Malgl)
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because 0 < ¢ < 1. Since supp V¢ C Bs \ By, we may once again rely on (4.8) in estimating
/ IVC20? < K2 forall t € (0, Trnae) (4.12)
Rn

with ¢g 1= ¢2 fR" |V¢|?, while invoking the Gagliardo-Nirenberg inequality and again Young’s inequal-
ity as well as (4.11) we can find positive constents cs, ¢4, ¢5 and c¢g such that

[flle2@mllCvll L2@ny < CBHfHL2 R IIV(Cv)IIZz”Rn IICval“Rn
2n+4

< ||V(CU)”L2 R7) +C4Hf||fz*ﬁ‘Rn)lle|!£T(‘Rn

1 9 2n+44 ﬁ
= 1 [ v oversedifign | [ o}

2172 4+ 2.2 ey =
< / ol +3 [ 1P+ el i {/R <v}
1 2n+4
< 2 C2|Vv\2+202K2+C4Kn+2HfHL"2+%n for all t € (0, Tpnad#.13)

and that, similarly,

IN

2n
/R 2o = [Colagry < IV R ICoN T
n

IN

VO 22y + eoll ol gy

1 1 2
< 5| GVl + / |vcw2v2+cﬁ{/ <v}
Rn n n

1 1

< 3 ¢Vl + 5CQKQ +cgK?  forallt € (0, Tnaz), (4.14)
RTL

as due to Lemma 2.6 we have [p, (v < [p, v < K for all t € (0, Tinaa)-

It thus only remains to insert (4.12) and (4.13) into (4.11) and combine the latter with (4.10) to infer

(4.7) from (4.9). O

To appropriately estimate the crucial contribution || By |Vo|? to the right-hand side of (4.7), we sub-
divide the ball appearing therein and first concentrate on certain annuli with yet flexible radii. On
multiplying the second equation in (1.6) by the positive but sublinear power v of v, by means of
another localization using (2.12) we can achieve the following estimate of the corresponding integral
against small portions of our original target object, as well as two summands explicitly containing
certain negative powers of the respective cutting radius.

Lemma 4.3 For each £ > 0 one can find C(g) > 0 with the property that if (1.7) and (1.8) hold with
some q > n, then for any choice of ro € (0,2), the solution of (1.6) from Lemma 2.2 satisfies

n—1

/ |Vol? < e/ uv+C’(5)K2r0_(n_1) +C(e)Kry 2
BQ\BTO n

Av—v+u‘

- for all t € (0, Thaz),

(4.15)
where again K is taken from (4.2).
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ProOF.  We once more abbreviate f := —Av + v — u, and we take ¢ := (o with (3 introduced in
(2.12). Then multiplying the equation —Av = u — v + f by C2112, upon an integration by parts we

obtain that thanks to Young’s inequality and the nonnegativity of (21)2,

Co 2| Vo2 = 2 V(e -Vo+ | CwE— | v+ [ (CPfuz
2 Rn Rn R" ]Rn RTL

1
< / sz_§]Vv|2+4/ \VC|2U% +/ uv§+/ ]f\v% (4.16)

for all t € (0, Tynaz), Where since supp V¢ C B3\ By, Lemma 4.1 says that with some ¢; > 0 independent
of (up,vp) we have

4/ V(202 < K2 for all t € (0, Thnas). (4.17)

R

Since (4.1) moreover states that with some ¢y > 0, for any (ug, vp) fulfilling (1.7) and (1.8) we have
v(z,t) < 02K7"1 " for all z € By \ By, and t € (0, Tynaz),

and since thus for any choice of rg € (0,2) the inequality

1 1 -1 1 nol
g%—ayvm? ~cy PK 27,2 |Vol?
4 he 0
BQ\BT‘O

holds for all ¢ € (0, Tynaz), from (4.16) and (4.17) we infer that for all ¢ € (0, T}a.) and each o € (0,2),

—n

/ Vo2 < 401022K27"0 +4622K2r0 /uv? +4022K2r0 / |f|v2 (4.18)
B2\B n

Here given € > 0 we may again use Young’s inequality to see that

1-n
1 1 lon 1 4eo K
4ey K2ry? uvz < g w + ——90 Uu
n n 6 n

4
< 5/ uv + ﬂKzré_” for all ¢t € (0, Tnaz) and 79 € (0,2), (4.19)
n €

whereas employing the Cauchy-Schwarz inequality along with Lemma 2.6 we find that

1
s kT [ vt < 4G KT ol ey
< 402 Kro ”f”L2(]Rn for all ¢t € (0, Tynas) and 79 € (0,2).
lon n—1 _(p—
Together with (4.19), this shows that (4.18) entails the claimed inequality, because r,? < 2T17“0 (n=1)
whenever rg € (0, 2). O

We finally follow an idea from [32, Lemma 4.4] in deriving an inequality for the associated inner
Dirichlet integral in terms of, essentially, the product of D with a factor that contains a positive power
of the dividing radius, and hence can be enforced to become conveniently small.
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Lemma 4.4 There exists C > 0 such that if (1.7) and (1.8) are satisfied with some q¢ > n, and if
ro € (0,2), then taking (u,v) from Lemma 2.2 and K from (4.2) we have

2 Vu
Vo> < CK +Cr HAU—U—i—uH —I—C\/?H u+1 ‘ +C v? (4.20
/Bm| | : o — o T [ @20
for all t € (0, Trnaz)-
PrROOF.  Letting f = f(r,t) := —Av+v —wu and g = g(r,t) == 2= — Vu+ lv, for r > 0 and

Vu+1
€ (0, Tynaz), following [32] we multiply the identity r!="(r" 1v,), = —u +v — f by 2r?"~2v, and
apply Young’s inequality to see that since uv, = u, — v, — Vu + 1g,

Or(rn 202y = =272y, + 292 2y, — 2922 o,
= =22y, 4 2P 2y, 4+ 272U+ 1g + 20 200, — 20272 fu,
1

< =22y, 4 207 20, 4 2022 g + 207 20w, + (n— 1) 2R 4 — r2n=2 2
n—

for all » > 0 and t € (0, T)q4z), Thus, by integration,
T
r? P t) < / eln=D=). { = 20" Pup(p,t) + 20" Pue(p, 1) + 207" 2V ulp, ) + 1g(p, 1)
0

n— 1 .
+20""u(p, t)or(p, ) + ——p” 2f2(p,t)}dp (4.21)

for all > 0 and t € (0, T)4z), where three integrations by parts show that if we restrict our consid-
erations to the range 0 < r < 2, then for any such r and ¢ € (0, Tinaz),

/ D=0 f 9220, (p, 1) 4 2070, (p, ) + 20" 20(p, )0 (9, ) b
0

p=r
_ D) { — 207" 2u(p, t) + 202" 20 (p, t) + p*" 202 (p, t )}

p=0

+ /0 Op{ e 22 Lou(p, ) = 20(p,1) — v*(p, ) b
= 2P 2y t) 4+ 2% 20 (r, t) + 2202 (1 t)

[
+(n_1)/ e(nfl)(r p) 2n— 3 {2 _21) p7 ) (p,t)}d,o
0
< 2T2n_2v(r,t)+7’2n_2 2(7’,t)+2(n—1)/ (n—1)(r—p) 2"_3(2—p)u(p,t)dp
0

<202 20, ) 4 1220 (r, ) + A(n — 1)) /O PP u(p,t)dp. (4.22)

Since within this range of » we may furthermore use the Cauchy-Schwarz inequality along with (1.11)
to find ¢; > 0 such that

2 /0 DU 202 Su(p, 1) + 1g(p, t)dp
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< 262("‘1)7””‘1/0 P ulp,t) + 1g(p, t)|dp
r 3 r 3
< 262(n1)rn1{/ p"1<u(p,t)+1>dp} {/ o 1 2( )dp}
0 0
1
3
< cl\/ﬁrnl{/ PP (pt )dp} for all 7 € (0,2) and ¢ € (0, Trnaz),
0

and since clearly

2(n71)

/0 IR 2, t)dp < ——— 7“”‘1/0 P 2 (p. t)dp

for all » € (0,2) and ¢ € (0, Tynaz), from (4.21) and (4.22) we conclude upon another integration that
whenever rg € (0,2),

70 0 0
/ T”flvf(r, t)ydr < 2/ el v(r, t)dr —|—/ rly 2(r t)dr
0

—|—477,—1 nl/ 1n/ 2n3 p7 d,OdT‘

+c1fro{/0 PP (pt )dp}

eZ(n—l)

1
n—1

+

n—1

T / P2 (p,t)dp  for all t € (0, Thax)- (4.23)
0

Here by the Fubini theorem and our overall assumption that n > 3,

(n— 1)/ / 2n— 3 p7 dpd’l"
= 4(n—1)2D / {/ 1= "dr} 0" Bu(p, t)dp
0 p

4(n — 1)e2(n=1)  rro n Znn on—
) 5 / (P =15 ™M) Pulp, tydp
n-— 0
4(n —1)e2n=

(n—1) pro
— / P tu(p, t)dp for all t € (0, T)qz) and any ro € (0,2),
- 0

so that recalling (2.21) and (1.11) we obtain that with some co > 0,

T ro r
2/ r"Lo(r, t)dr + 4(n — 1)e2"D / 7“1”/ p*"Pu(p, t)dpdr
0 0 0

< K for all ¢ € (0, Trnaz) and each rg € (0, 2).

In view of the definitions of f and g, (4.20) therefore immediately results from (4.23) upon trivially
estimating ro < 2 in the second last summand therein. U

Indeed, appropriate choices of € and 7y in the above preparations enable us to bound fRn uv by a
sublinear power of D and a lower order expression:
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Lemma 4.5 There exist 0 € (3,1) and C > 0 such that if (1.7) and (1.8) hold with some q > n, then
the solution of (1.6) from Lemma 2.2 has the property that

260

/nuUSCKz-{HAU—U—FU‘LQ(R”)—FHW

va“ Rn) + 1} forallt e (Omiaa:)v

(4.24)
where again K is as in (4.2).

PROOF. Fixing any o € (0,%) given (ug,vg) such that (1.7) and (1.8) hold we define f :=
—Av+v—wandg: _\/W vu + 1Vv and let

ro=ro(t) = min {1, [0 5w b £ € (0, Tonaa): (4.25)

Then application of Lemma 4.2, Lemma 4.3 and Lemma 4.4 to these values of ry and to ¢ := 1—12
provide positive constants ¢, co and c3 independent of (ug, vg) such that

2n+4

/ uv < 3/ Vo> + 1 K2 + clKn+4 HfHL"j%n for all t € (0, Trnaz) (4.26)
n 32

and
1 (- _n—1
/B . |Vol? < 12/ uv + CQKQ'I“O( gt calrg * || fllr2mny for all t € (0, Tnaz)  (4.27)
2 0

as well as

1
/ |Vo|? < 3K + 037"0HfH%2(Rn) + 3 K2 ||g| L2 mny + 03/ v? for all t € (0, Thnaz).  (4.28)
. B

0 2

Here by compactness of the embedding W12(By) «— L?(B3), an associated Ehrling-type lemma in
conjunction with Lemma 2.6 shows that with some ¢4 > 0, again independent of ug and vy, we have

1 21
03/ v < 2/ ]Vv|2 —1—04{/ v} < 2/ ]Vv|2 + K2 for all t € (0, Thnaz ),
By Bs Bs By

whence combining (4.27) with (4.28) firstly shows that

1 1 —(n— _n—1
2/3 L A S 2
2 n

1
+es K+ 03T0||f||2Lg(Rn) + 3 K2 ||g||L2(Rn) + ey K? for all t € (0, Thnax),

and therefore, secondly, implies that due to (4.26),

1 A _n=1 1
B /n w < 6eaK’r, =D 4 6caKry ° [|fllL2@mny + 6e3 K + 603r0||f||%2(Rn) + 6c3K 2 ||gll L2 (mm)
2n+4
16csK? + e K2+ el K || f| Loy forallt € (0, Tnaz)- (4.29)
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Now if t € (0, Tinaz) is such that || f(-,?)[ 2rn) > 1, then (4.25) means that ro(t) = || f(-,t
that thus, by (4.29), writing 6 := max{ (n_;)a A4 (n_41)a , 5o B2 we have

)75t and

2 ) n+4
1 9 +(n 21)<:z 1
3 w < 6K ||f||L2 R" +602K||fHL2(Rn +603K+663||f||L2 (®R") +6c3K 2|9l 2 (mm)
2n+4
164 K2 + 1 K2 + ¢ Kt 1115 ey

IN

(62K + 662K + 6c3 + e K1) - (|| f113 gy + 1) + 6 > g1l 2

+60c3K + 6¢, K% + ¢ K?
< (12¢2+ 63+ 1) K2 - (|| I 7% (gny + 1) + 6c3K | gll L2 + (63 + 6cq + c1) K* (4.30)

according to Young’s inequality and the fact that K > 1. If, conversely, t € (0,Tqz) is such that
[ £l z2(mny < 1, then (4.29) directly entails that again since K > 1,

1 1
2/ uwv < 662K2+662K||f||L2(Rn) +663K+663||f||L2(Rn) +6C3K2||g||L2(Rn)

2n+4

16csK? + e K2 + e Ko ||f] Lan)

IN

GCQK + 6¢co K 4 6¢3 K + 6¢3 + 603K§ ||g||L2(Rn) + 664K2 + 61K2 + ClK%ﬂ
< 6c3K?|gllp2ny + (12¢2 + 12¢3 + 6y + 2¢1) K2 (4.31)

Upon an evident defintion of C, a combination of (4.30) and (4. 31) yields (4.24), with the exponent 6

indeed fulfilling 6 € (3,1) due to the inequalities (n=ba ) <land i+ (n=l)a ) < 1 ensured by our initial
restriction on a. OJ

5 Blow-up of low-energy radial solutions

As a last ingredient for our analysis of the inequaliy (3.3), let us add a Gronwall-type statement
on blow-up in an integral inequality that can be viewed as a counterpart of a superlinearly forced
differential inequality.

Lemma 5.1 Suppose that a > 0,b > 0 and 5 > 1, and that for some T > 0, a nonnegative function
y € C%[0,T)) satisfies

y(t) > a+ b/t yP(s)ds forallt € (0,T). (5.1)
0

Then )

PrROOF. For ¢ € (0,a), the function y. € C*([0,7.)) defined by

y(t) == {(a (g 1)bt}*ﬂ, 0St<Ti= po— gy (5.3)
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satisfies y. = by on (0,7%) and y.(0) = a — €, so that
t
ye(t) =a—e+ b/ v (s)ds for all t € [0,T%). (5.4)
0

Now if (5.2) was false, then since T, \, Ty := Wlaffﬂb as € N\, 0, it would be possible to find
o0 € (0,a) such that for any ¢ € (0,2¢), y would belong to C%([0,7:]) and the number t. := sup{t €

(0,T¢) | y > y- on [0,t]} would be well-defined, because y(0) > a > a—e = y-(0). To see that actually
te = T for any such e, assuming on the contrary that ¢. € (0,7;) we could use the continuity of y and
ye to infer that y > y. on (0,t.) but y(t.) = y.(t.), by monotonicity of 0 < ¢ +— ¢ implying that

te te te
lt) =it z b [ Pedszarh [ yieds>a—s b [Ty s)ds = e
0 0 0

according to (5.1) and (5.4). As thus indeed y > y. throughout [0,7}) for all € € (0,ep), from the

observation that y.(Tp) = {(a — &)' =% — al_ﬁ}_ﬁ — +o00 as € \, 0 it follows that y could not be
bounded on [0, 7p], in contradiction to our hypothesis on T'. O

We are thereby prepared to combine Lemma 3.1 with Lemma 4.5 in order to reveal a criterion on
radial initial data as sufficient for finite-time blow-up:

Lemma 5.2 There exist M > 0 and v > 0 with the property that if for some ¢ > n, ug and vy comply
with (1.7) and (1.8) and are such that the corresponding solution of (1.6) satisfies

N
F(0) <M - {HUOHLl(R”) + [lvoll i ey + [IVvoll L1 (mny + 1} ; (5.5)

with F taken from (3.1), then
Tonaz < 1. (5.6)

PROOF.  According to Lemma 4.5, we can find 6 € (1,1) and ¢; > 0 such that whenever (1.7) and
(1.8) hold, taking D and K as defined in (3.2) and (4.2) we have

/ w < e KAH(DO(t) + 1) for all t € (0, Thnaz)- (5.7)

Using that # < 1, we may employ Young’s inequality here to find co > 0 such that for any such solution
we moreover have

1
/ uv < §D(t) + CQKﬁ for all t € (0, Thnaz), (5.8)
whereupon we abbreviate
o4+1 —1
c3:=2" 96 ¢ "’ (5.9)
and fix ¢4 > 0 large enough fulfilling both
cq > 2c1 + 4eo (510)
and .
20 -0
>4 <7> . 11
c4 > 4ey + 1= 0y (5.11)
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Then assuming (1.7) and (1.8) to hold for some (ug,vo) which is such that for the corresponding

solution we have )
F(0) < —c, K19 (5.12)

with K as accordingly defined through (4.2), we claim that necessarily (5.6) must be valid. To verify
this, we suppose for contradiction that T;,4, > 1, and then first observe that by the continuity property
of F asserted by Lemma 3.1,

to := sup {?e (0,1) ‘ F(t) < —2e, K% for all t € (0,?)}
would be a well-defined element of (0, 1], because since 12; > 2 and K > 1, from (5.12) and (5.10) we
especially know that F(0) < —(2¢; + 462)Kﬂ < —201K2. To see that actually
to=1, (5.13)

we note that the converse assumption tg < 1 implies that, again by continuity of F,

F(t) < —2c1 K% forallt € (0,tg) and  F(tp) = —2c1 K> (5.14)
In view of Lemma 3.1 and (5.8), this particularly entails that
F(it) < /D )ds + F(0 +4/]: d8—|—4// uv
1
< /D )ds + F(0 )+4/ { D(s) + e, K10 0}ds
o L8
< —2/ D(s)ds + F(0) + 402Km for all t € (0, o), (5.15)
0

because tg < 1. Therefore, by (5.14), the nonnegativity of D, (5.12) and (5.10),
26 K2 = Flty) < F(0) + 4ea K79 < (—cq + 4eo) K79 < 20, KT8 < —2¢1 K2,

which is absurd and hence confirms that indeed ¢ty = 1. But since, on the other hand, by definition
(3.1) of F and (5.7) we have

F(t) > —/ w > —c KX(DP(t)+1)  for all t € (0, Thnae)

and hence

—F() | —F()

for all ¢ t
61K2 - 261K2 ora < (0’ 0)

according to the fact that 1 < o ( ) for all t € (0, ), from (5.15) we infer that

1/t —J-"(t) g 2
_ > - _ _ =
Fit) = 5 /O ( 261](2) ds — F(0) — dea K T-0

t
— K3 / (“F(s)bds — F(0) — 4es K27 for all £ € (0, ). (5.16)
0
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As, by (5.11),
F(0) — 4es K77 > (¢4 — den) K77 > (— 2 iy
_ _ T— _ — = —
“ cRe = ((1 - 9)03) ’
however, we may invoke Lemma 5.1 to conclude from (5.16) that

1 1
to < = —

1 20 % 2 %_1 _2 2’
() {3 R

which is incompatible with (5.13) and thus shows that in fact our hypothesis that T}, > 1 must have

been wrong, and that hence the claimed implication holds with M := ¢4 and v := %_9. O

6 A density property of blow-up enforcing radial data

In order to complete our argument ensuring blow-up within large sets of initial data, we now only
need to resort to a known and essentially explicit construction of explosion-enforcing initial data in
arbitrarily small neighbourhoods of any prescribed pair of positive functions fulfilling (1.7) and (1.8).

Lemma 6.1 Assume that with some q > n, ug and vy satisfy (1.7) and (1.8) with uy > 0 and
vop > 0 in R™. Then there exist radially symmetric positive functions ug; € BUC(R™) N LY(R™) and
vo; € WH(R™) N WHL(R™), j € N, such that (1.13) holds, and that for the corresponding solutions
(uj,vj) of (1.6), mazimally extended up to ey € (0,00] according to Proposition 1.1, we have
Tnaz; <1 for all j € N.

Proor.  Following the construction from [32, Lemma 6.1], we take any (r;)jen C (0,1) such that
r; N\, 0 as j — oo, and use that fol o Hp? + 5)_%dp 400 as e N\, 0 to fix (n;)jeny C (0,1) such
that r7 fol o (p? + %)_%dp > j for all j € N. Next, picking any x € (n — 2, "T_Q), given positive
functions wy and vy fulfilling (1.7) and (1.8) we let (ug;,v0;) = (u0;(r),v0;(r)) be defined by

uo(r), r>Tj, vo(r), r >y,
(6.1)
with a; = (rj2 + ;)2 uo(r;) and bj := (r? +1;)3vo(r;) for j € N. Then clearly ug; and vp; have the
claimed regularity properties, and the argument in [32, Lemma 6.1] precisely shows that

(12 N5 . b: 2 N5 c [0, r;
oy (r) ::{ aj(re+mn;)" 2,  rel0,r], and vy () ::{ i(r?+n)"2,  rel0,r],

up; — ug in LP(By) and wvo; = vp in Wl’Q(Bl) as j — 0o, (6.2)
that moreover
sup{;/ |VUOj2+;/ v§j+/ uojlnuoj} < 00, (6.3)
JEN By By By
and that
/B UQjVoj — OO as j — 00. (6.4)
1
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Now in view of the identities ug; = up and vp; = vp in R™ \ By, (6.2) immediately implies (1.13) and
thus furthermore especially entails that

Kj = luojllpr@ny + llvojllor ey + 1Vvosll oy +1
— ||U0”L1(]Rn) + HUOHLl(R") + HVUOHLl(]Rn) +1=K as ] — 00. (65)

Apart from that, the validity of In(1 + o) < o for all 0 > 0 implies that

1
/ upj In(ug; +1) = / uo; Inugp; + / up; In (1 + 7)
B B B Uoj

< / ug; Inug; + | B for all j € N,
By

whence (6.3) along with (6.4) and, again, (6.1) ensures that for the corresponding solutions (u;,v;) of
(1.6) we have

F;(0) = —o0 as j — 0o, (6.6)
where Fj(t) == & fun V05 (002 4 3 fan 02(18) = fin w0y, 005 (,8) + fn s, ) In(uy(,8) + 1), t €
[0, Trmaa,j)- Therefore, if we take M > 0 and v > 0 as provided by Lemma 5.2, then according to the
convergence statements in (6.5) and (6.6) we can pick jo € N large enough such that 7;(0) < —M K;Y
for all 7 > jg, whence upon replacing j with j — jg if necessary we can achieve the claimed conclusion
as a consequence of (5.6). O

7 Localization of blow-up points: Bounds for u outside the origin

Our final objective consists in establishing the inequality (1.15) for a radial solution that is already
known to blow up within finite time. Although our final result in this direction will essentially parallel
knowledge on behavior in Neumann problems for (1.1) on planar disks ([24]), its derivation here will
need to considerably deviate from that in the corresponding precedent, inter alia due to unboundedness
of the physical domain. To accomplish uniform bounds outside the origin through several steps on
the basis of arguments from parabolic regularity theory, for localization procedures different from
those previously performed let us choose a family (X;)se(0,1) of cut-off functions X5 € C5°(R) fulfilling
0<%s; <1onRaswell as Ys =1 on [0,1] and suppxs C (—3,2) for all § € (0,1), and let

Xsr(r) ==Xs(r—R), reR, (7.1)
for 6 € (0,1) and R > §. Then

Xsk =1 on [R,R+1] and supp xsr C (R — g,R+ 2) for all 0 € (0,1) and R > 6, (7.2)
and furthermore
%‘i%{”m””(m + Xl | < o0 for each fixed 6 € (0,1). (7.3)
Assuming (1.7) and (1.8), we next observe that with x = x5z we have

(xw)e = (xt)rr + (al(r, t)u)r Fas(r,thu, >0, t€ (0, Tnas), (7.4)
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and

(xv)t = (x0)rr + b(r, 1), r >0, t € (0, Tmaz), (7.5)
where 1
n J—
ay(r,t) == TX — 2Xr — XUr, r >0, t€(0,Taz), (7.6)
and
X n—1
as(r,t) = —(n—1) - (;) ¥ 4 (XT - TX)UT, r>0, t € (0, Thaz), (7.7)
T
as well as
n —
b(r,t) := =2x,v, + T XUr = Xrr¥ = XV + xu, r >0, te (0, Tha)- (7.8)

Then Lemma 2.3 and (1.11) entail some temporally uniform L' control over b in intervals not touching
the point r = 0, which in the context of the one-dimensional inhomogeneous heat equation is already
sufficient to warrant corresponding LP bounds for the gradient v, with arbitrary finite p.

Lemma 7.1 Assume that (1.7) and (1.8) hold with some q > n, and that Tyee < co. Then for all
p > 1 and each 6 € (0,1) there exists C(p,d) > 0 such that the solution of (1.6) from Lemma 2.2
satisfies

R+1
/ or(r, )Pdr < C(p,8)  for allt € (Anass Tias) and R > 6. (7.9)
R
PrROOF. We first recall Lemma 2.3 to fix ¢; > 0 such that
[ee)
/ Yo (r, t)|dr < ¢ for all t € (0, Trnaz),
0
and note that (1.11) and Lemma 2.6 provide ¢y > 0 and ¢35 > 0 fulfilling
/ " ru(r,t)dr < co  and / " Lo(r, t)dr < c3 for all t € [0, Trnaz)-
0 0

Given 0 € (0, 1), we thereby see that
R+2 1—n 0

[, matar < (R=3)"" [~ ot ojar
R_g 2 R—

o\1-n
< <7) c1 for all t € (0, Typaz) and R > 0,

and that, similarly,

R+2 6 1—n R+2 5 1—n
/ u(r, t)dr < (7> co and / v(r,t)dr < <7) c3 for all t € [0, Thnaz) and R > 4.
R-% 2 R-4 2

(7.10)
In view of (7.3) and the second relation in (7.2), we thus readily obtain ¢4(d) > 0 such that the

accordingly defined function b from (7.8), extended by zero to all of R x (0, Tj,qz) if necessary, satisfies

160, )1 (7)< €al9) for all € (0, T)nae) and R > 0, (7.11)
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where we have set Jg := (R — %, R+ 2). To make appropriate use of this, we note that by translation
invariance of the one-dimensional heat equation and known smoothing properties of the Neumann
heat semigroup (e'“7);>o over open bounded intervals J C R ([31]), given p > 1 we can fix c5(p, §) > 0
such that for any choice of R € R,

IS
HaretA"RtpHLp(JR) < cs(p, 0)t T2 lell L) for all t > 0 and any ¢ € L'(Jg). (7.12)

Then using that with x = x5, and once more with a trivial extension if appropriate, we have (xv), = 0
on 0Jg by (7.2), we may apply (7.12) to a variation-of-constants representation associated with (7.5)
to see that again thanks to (7.10),

t
000 Oy = [ore ot 0+ [ 0relt=8smi )
0 Lr(JR)
1+ ! 143
< cs(p o)t 2p|XU('a0)||L1(JR)+C5(pa5)/0(t_s) 2[16(-, 8) || L1 (75 ds
1 ~l4g, ! L
< 05(p76)'(§Tmax) 2p|U('70)||L1((R—3,R+2))+C4(5)C5(P,5)/0 (t—s)"T2ds
o\1-n 1 144 L
< (= (= v
>~ <2) C3Cp (p, 5) (2Tmax) + 2]364(5)05 (p7 5)Tmaz

for all t € (3T maw, Tinaz) and R > 6. As (xv), = v, in (R, R+ 1) x (0, Tinaz) C Jr X (0, Tnaz) by
(7.2), this establishes (7.9). O

By tracking suitably localized versions of [ w0 with some sublinear py > 0, as a first consequence of

Lemma 7.1 we can derive an integrability property of u involving arbitrary subcubic powers.

Lemma 7.2 Assume that (1.7) and (1.8) hold with some g > n, and that Tyee < co. Then for all
p € (2,3) and any ¢ € (0,1) one can find C(p,d) > 0 such that for the solution of (1.6) from Lemma
2.2 we have

max R+1
/ uP(r,t)dr < C(p,9) for all R > 0. (7.13)
R

1
§Tmaa:

PrROOF.  Given p € (2,3) we set pg = po(p) :=p—2 € (0,1), and for 6 € (0,1) and R > § we let
X = Xxsr and use (7.4) to see that with a; and ag as defined through (7.6) and (7.7) we have

Ld [>

oo o0 oo
— 2uPo (r t)dr = / P (xw),pdr + / xuP N ayu), dr + / xuP b agudr
po dt Jo 0 0 0

o0 [e.9] o0
= —/ (Xupo_l)r~(xu)rd7"—/ (Xupo_l)r-aludr—i—/ xaguPOdr
0 0 0
o0 o0
= (1—po)/ x2up0_2u72nd7"+(1—po)/ X dr
0 0
o0 [e.9]
—/ erupo_lurdr—/ qumdr
0 0

o0 o0 (e 9]
+(1 —po)/ xaruP . dr — / Xra1uPodr + / xaguPdr
0 0 0
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oo
(1 —pg)/ X2up°_2u$dr
0

o
+/ { —poxr + (1 —po)al}xupo_lurdr
0

o
/ (X? + xra1 — xaz)ufdr for all t € (0, Thnax)-
0

Since by Young’s inequality,

o
‘ / { —poxr + (1 — po)al}xupo’lurdr
0

IN

for all t € (0, Tynaz), and since supp x C (R —

that
R+1
A

1d [=
po dt Jo

1 _
Y2uPo (r,t)dr > Po

R+2
upo*zugdr — /

(7.14)

1 —po
2

oo
/ X2uPo " 2u2dr
0
1

2
RN —poxr + (1 —po)a1} uldr
2(1 - po) /suppx { '

1 _ o0
Po / qupoduzdr
0

_|_

2

2
+/ {1p70)<3 +(1- po)a%}umdr
supp x — Po

%, R+2)and x? = 1in [R, R+ 1], from (7.14) we obtain

; h(r,t)uPodr for all ¢t € (0, Trnaz),
R—3

(7.15)

where due to Young’s inequality, (7.6), (7.7) and (7.1),

2
h(r,t) := T Po

X2+ (1= po)al + X2 + |xr| - la1] + xlazl,

r>0,te€ 0, Tha),

has the property that for some ¢;(p,d) > 0 and any R > 4,

nrol < (5 po)ad +laal + (

1—p0 2

2
3
Do _'_7) %

—1)2
< 33 -p) (U r a2 ae)
2 r
X n—1 I 3\ 2
) et o (2 )
=1 (), [+ Dol P = T2 el + (25 )
< c(p,d)(v?+1)  forall r> g and t € (0, Tynaz)-

Accordingly, in view of Young’s inequality and (1.11), an application of Lemma 7.1 to the summability
power ﬁ reveals the existence of ca(p,d) > 0 such that for all R > ¢, writing 7 := %Tmax we have

IN

R+2
‘/ S h(r,t)uP°dr
—3

R—3

R+2
c1(p, 5)/ S (v2 + 1)uPodr
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o

R+2 I
< m@&/ <ﬁ+nhmm+qmaﬁ udr

)
R—3 2

1 R+2 2 S\1-n [ 1
< 2T-r0¢(p, 6)/ (lvp|*=P0 + 1)dr + c1(p,9) - <f) / r" " tudr
R— 2 g

(S0

< ca(p,9) for all t € (1, Thnaz),

because for any such R we know that R — g > g.
Therefore, a further integration of (7.15) shows that again by (7.2), Young’s inequality and (1.11),

1 —po T rR+1 P 1 00 ) 1 0o )
uPO Tt usdrdt < — X“uPo(r, T)dr — — X“uPO(r,T)dr + ca(p,6) - (T — 1)
2 Jr Jr Po Jo Po Jo

1 R+2

< = uPo (r, T)dr + c2(p, 0) Tinax
DPo Jr-3
1 R+1

< — (u(r, T)+ 1) dr + c2(p, 6) Tmax
DPo Jr-3

< —.(Z n— i _ _2

< <2) /5 r u(r,T)dT—i—pO {(R—l—2) (R 2)}

2

+ca(p, 6) Tmax for all T € (7, Tinas) and R > 0,

so that since (R +2) — (R — g) < 5 for arbitrary R € R, once more thanks to (1.11) we can find
c3(p,0) > 0 such that

Tma;c
/ 1) (022 sy dt < cs(p,6)  for all R > 6. (7.16)

As the one-dimensional Gagliardo-Nirenberg inequality provides c4(p) > 0 fulfilling

2p 4 2p
2B < ¢ 2 =2 +e p—2
Ie! LA (RR+1) sOler om0 2y gy AN 22,

for all R € R and each ¢ € Wh2((R, R + 1)),

recalling that pop = p — 2 and using that, again by (1.11), with some ¢5(J) > 0 we have

; L R+1 o0
0% O R =y 20 <877 [l < e
LP=2 ((R,R+1)) R 6

for all R > § and t € (0, Tjqz), from (7.16) we infer that

Tmaz R+1 Tmaz PQ 2p
/ / uP(r,t)drdt = / w2 (-, 8)]|" 5, dt
T R T

LP=2((R,R+1))
4

Tmaz
Po 2 Po P
c w2 )p(-,t w2 (-t dt
4(P)/T (w2 ) ( )”L2((R,R+1))H ( )||L$((R’R+l))

IN
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2p

Tmaz Pl iy
tea(p) / 1% (017 dt
- L7 (R,R+1))

IN

Trmaz PO 1
a@E®) [ 10O gyt + 501 I s
1
< (P, 0)ea(p)e3(p) + 5ea(P)E(0) T for all B>,

and that thus indeed (7.13) holds. O

The above two integrability properties are sufficient to ensure applicability of LP-L? estimates for
one-dimensional heat semigroups to achieve bounds for u actually in arbitrary LP spaces.

Lemma 7.3 Assume that (1.7) and (1.8) hold with some q > n, and that Ty < co. Then for all
p > 3 and arbitrary § € (0,1) there exists C(p,d) > 0 such that with (u,v) taken from Lemma 2.2 we
have

R+1
/ uP (r,t)dr < C(p,9) for all t € (3T maz, Tiaz) and R > 6. (7.17)
R

3

PROOF.  Since p > 3, we can fix pg = po(p) € (2,3) such that pg > -2, which ensures that p;%l > =

p+1°
and hence 1 + % - }%O > p%’ and thus enables us to choose some A = A(p) € (1, po) fulfilling

1 1 2
RN [ N—— 7.18
A P Do (7.18)

Then using that A < pg, we may recall Lemma 7.1 to see that in view of (7.2), for each § € (0,1) we
can find ¢;(p,0) > 0 such that for any choice of R > ¢, the functions a; and ag, as defined in (7.6)
and (7.7) and trivially extended to all of R x (0,T},,4.) if necessary, satisfy

lar(-,t)]]  wor <ci(p,d) and |az(-,t)]| wor < c1(p,9) for all t € (1, Tinaz), (7.19)
LP0—X (Jg) LPo=* (JR)

where 7 := %Tmaz and Jp := (R — %, R+ 2) for R € R. Apart from that, thanks to the restriction
that po € (2,3) we may invoke Lemma 7.2 to fix ca(p,d) > 0 such that

Trmax R+2
/ / ; uP (r, t)drdt < ca(p,0) for all R > ¢, (7.20)
T —3

and to make adequate use of this in the framework of the inhomogeneous linear heat equation (7.4) for
xu, we employ known smoothing properties of the Neumann heat semigroup (etAJR)tZO on Jgr ([31])

to see that once more due to translation invariance, we can find c3(p) > 0 and c4(p) > 0 such that for
all R € R,

HetAJRQOrHLp(JR) < Cg(p)tiéié(%ii)H(IDHL)\(‘]R) for all t > 0 and ¢ € C1(JR) with ¢|ss, =0 (7.21)

and )

450 oy < a2 57 lllacgy  forall £ >0 and ¢ € LA (Jp). (7.22)
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An application of (7.21), (7.22) and the maximum principle to a Duhamel representation of xu on the
basis of (7.4) thus shows that for all 6 € (0,1) and R > 9,

t
Ixul Ollrn) = e(t_T)AJR[XU(-,T)H/ MBI, far (-, s)u(-, 5)]ds

+ / e =%k ay(-, s)u(-, s)]ds

LP(JR)

IN

HXU('vT)HLP(JR)
t 1111
tes(p) / (t = ) 336 Djay (- 8)ul-, ) g ds
t
+ea(p) / (t = )2 G D Jas(c, s)ul, 8) | prpds  for all ¢ € (7, Tonaz), (7.23)
where by the Holder inequality, (7.2), (7.19) and (7.20),

t _1o1(1_1y
es(p) / (t = 97530 Dllay (- s)ul-, )| ds

t
< esp) / (t=9 70 a6l o5 peayds

LPo=2(Jr)

t _1_ 1.1 1
< a(p,8)es(p) / (t— )72 2570 [u(-, 8)|| Lo (R_é,mz))ds

t flyl(l_1y._ro o
S Cl(p7(5)03(p){/ (t—s) [2""2()\ p)} Po— lds} {/ Hu LPO(R 6R+2))d8} 0

1 po—1

< c1(p,0)es’ (p,0)es(p)es™ (p) for all t € (7, Trnaz),

with ¢5(p) := me‘”” 4 _[ T2 Gl gt do being finite due to the fact that by (7.18),

0
1 1,1 1 11 2
B3GR <302
2 2\A p/l p-1 12 2 po/d po—1

Since, similarly,

po—1

11y _Po PO
p’ po—1(sg for all t € (T, Tmax)v

AN
—
=
(%)
SN—
—
—
=
[«
N—
—~
=
S~—
—N—
ﬂ\él
—~
o~
|
[Va)
N—
|
ol
>

and since (7.18) clearly entails that also (5 — I%) - PO <1, in view of the finiteness of sup,..qu(r, 7)
asserted by Proposition 1.1 we infer from (7.23) that for all § € (0,1) there exists cg(p,d) > 0 such
that for all R > ¢,

HXU(’at)HLP(JR) < 06(]77 5) for all t € (7—7 Tmax)7
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which by (7.2) and our definition of 7 establishes (7.17). O

In a last bootstrap step, this information can quite similarly be turned into a genuine pointwise bound
in the intended flavor.

Lemma 7.4 Assume that (1.7) and (1.8) are satisfied for some q > n, and that Tpes < co. Then
given any § € (0,1) one can find C(6) > 0 with the property that for the corresponding solution of
(1.6) we have

u(r, t) < C(6) for allr > 6 and t € (0, Thnag)- (7.24)

PrROOF.  We fix an arbitrary p > 1 and then infer from (7.2), Lemma 7.1 and Lemma 7.3 that for
all 6 € (0,1) there exist ¢1(d) > 0 and c2(d) > 0 such that whenever R > §, with x = xsr, a1 and
as from (7.1), (7.6) and (7.7) extended by zero to (0,00) X (0, Tnqez), and again with 7 := 37,4, and
J:=(R— 1, R+2), we have

la1(-, 8)[|2p(g) < c1(0) and  |laa(:, 8)|[p2p(yy) < €e1(0)  forall t € (7, Tinax)
as well as
Hu(-7t)||L2p((R7%7R+2)) < 2(9) for all t € (7, Tnaz)-

Then proceeding similarly to the argument in Lemma 7.3, by means of (7.4), of known regularization
features of the Neumann heat semigroup (e!*/z);>¢ on Jx ([8]), and of the Holder inequality we see
that with some c¢3 > 0 and ¢4 > 0, for any choice of 4 € (0,1) and R > ¢ we have

t 11
[xu(, Ol zee () < HXU('77')HL°°(JR)+C3/(t_s) 22 lar (- 8)uls, )l Lr(sg)ds

! 1
ber [ (697 s 9)ulc5) sy

t 1
S ALt R YO0 PP Y D1 PP
t _a
ber [ 0= aate )i e ) g s
T (Tonaz = 7)2 7
mazx — T P
< HXU(',T)HLOO(JR) +c1(0)e2(d)cs - 11
2 2p
Tmax B 2
Fer(8)ea(d)es - -
1=5
for all t € (7, Tynaz). According to (7.2) and the fact that u is bounded in R" x [0, 7] by Proposition
1.1, this already entails (7.24). O

8 Proof of Theorem 1.2

The proof of our main result on blow-up in (1.6) now reduces to collecting actually completed pieces
only:

40



Proor of Theorem 1.2.  To construct a sequence ((uo;, vo;));jen which fulfils the claimed regularity
and approximation properties and which is such that the corresponding solutions of (1.6) satisfy
Tnaz,; < 1 as well as (1.14), we only need to combine the outcome of Lemma 6.1 with the extensibility
criterion (1.10). The boundedness feature (1.15) thereafter immediately results from Lemma 7.4. [

Acknowledgement. The author thanks the anonymous reviewers for several helpful remarks.
He furthermore acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the
projects Analysis of chemotactic cross-diffusion in complex frameworks and Emergence of structures
and advantages in cross-diffusion systems (No. 411007140, GZ: WI 3707/5-1).

References

[1] BILER, P.: Local and global solvability of some parabolic systems modelling chemotazis. Adv.
Math. Sci. Appl. 8, 715-743 (1998)

[2] CALVEZ, V., CORRIAS, L.: The parabolic-parabolic Keller-Segel model in R?. Comm. Math. Sci.
6, 417-446 (2008)

[3] CHAPLAIN, M.A.J., LoLAs, G.: Mathematical modelling of cancer invasion of tissue: The role of
the urokinase plasminogen activation system. Math. Mod. Meth. Appl. Sci. 15, 1685-1734 (2005)

[4] CiESLAK, T., STINNER, C.: Finite-time blowup and global-in-time unbounded solutions to a
parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Eq. 252 (10),
5832-5851 (2012)

[5] Corrias, L., ESCOBEDO, M., MATOS, J.: Ezxistence, uniqueness and asymptotic behavior of the
solutions to the fully parabolic Keller-Segel system in the plan. J. Differential Eq. 257, 1840-1878
(2014)

[6] CORRIAS,L., PERTHAME, B.: Asymptotic decay for the solutions of the parabolic-parabolic Keller-
Segel chemotazis system in critical spaces. Mathematical and Computer Modelling 47, 755-764
(2008)

[7] COSNER, C.: Reaction-diffusion-advection models for the effects and evolution of dispersal.
Discr. Cont. Dyn. Syst. 34, 1701-1745 (2014)

[8] FuJig, K., ITo, A., WINKLER, M., YOKOTA, T.: Stabilization in a chemotazis model for tumor
invasion. Discr. Cont. Dyn. Syst. 36, 151-169 (2016)

9] Gica, Y., UMEDA, N.: On blow-up at space infinity for semilinear heat equations. Acta
Math. Univ. Comenianae 76, 63-76 (2007)

[10] HERRERO, M. A., VELAZQUEZ, J. J. L.: A blow-up mechanism for a chemotazis model.
Ann. Scuola Normale Superiore Pisa 24, 633-683 (1997)

[11] HiLLEN, T., PAINTER, K.J., WINKLER, M.: Global solvability and explicit bounds for non-local
adhesion models. Eur. J. Appl. Math. 29, 645-684 (2018)

41



[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

HORSTMANN, D.: From 1970 until present: The Keller-Segel model in chemotaxis and its con-
sequences I. Jahresberichte DMV 105 (3), 103-165 (2003)

HorsTMANN, D., WANG, G.: Blow-up in a chemotaxis model without symmetry assumptions.
Eur. J. Appl. Math. 12, 159-177 (2001)

HORSTMANN, D., WINKLER, M.: Boundedness vs. blow-up in a chemotazis system. J. Differen-
tial Equations 215, 52-107 (2005)

JAGER, W., LUCKHAUS, S.: On explosions of solutions to a system of partial differential equa-
tions modelling chemotaxis. Trans. Am. Math. Soc. 329, 819-824 (1992)

KELLER, E.F., SECGEL, L.A.: Initiation of slime mold aggregation viewed as an instability. J.
Theor. Biol. 26, 399-415 (1970)

LACEY, A.A.: The form of blow-up for nonlinear parabolic equations. Proc. Roy. Soc. Edinburgh
Sect. A 98, 183-202 (1984)

LAURENGOT, PH., Mi1zocucHI, N.: Finite time blowup for the parabolic-parabolic KellerSegel
system with critical diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 197-220 (2017)

L1, Y., L1, Y.: Finite-time blow-up in higher dimensional fully-parabolic chemotazis system for
two species. Nonlin. Anal. 109, 72-84 (2014)

MERAL, G., STINNER, C., SURULESCU, C.: On a multiscale model involving cell contractivity
and its effects on tumor invasion. Discr. Cont. Dyn. Syst. B 20, 198-213 (2015)

MizocucHi, N., WINKLER, M.: Finite-time blow-up in the two-dimensional parabolic Keller-
Segel system. Preprint

Nacar, T.: Blow-up of radially symmetric solutions to a chemotaxis system.
Adv. Math. Sci. Appl. 5, 581-601 (1995)

Nacai, T.: Blowup of Nonradial Solutions to Parabolic-Elliptic Systems Modeling Chemotazis
in Two-Dimensional Domains. J. Inequal. Appl. 6, 37-55 (2001)

Nacgal, T., SENBA, T., Suzuki, T.: Chemotactic collapse in a parabolic system of mathematical
biology. Hiroshima Math. J. 30, 463-497 (2000)

NANJUNDIAH, V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42,
63-105 (1973)

QUITTNER, P., SOUPLET, PH.: Superlinear Parabolic Problems. Blow-up, Global Fxistence and
Steady States. Birkh&user Advanced Texts, Basel/Boston/Berlin, 2007

SATO, S.: Blow-up at space infinity of a solution with a moving singularity for a semilinear
parabolic equation. Comm. Pure Appl. Anal. 10, 1225-1237 (2011)

SCHWEYER, R.: Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model.
arXiv:1403.4975

42



[29]

[30]

STANCEVIC, O., ANGSTMANN, C.N., MURRAY, J.M., HENRY, B.I.: Turing patterns from
dynamics of early HIV infection. Bull. Math. Biol. 75, 774-795 (2013)

TANIA, N., VANDERLEIL, B., HEATH, J.P., EDELSTEIN-KESHET, L.: Role of social interactions
in dynamic patterns of resource patches and forager aggregation. Proc. Nat. Acad. Sci. USA 109,
11228-11233 (2012)

WINKLER, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel
model. J. Differential Equations 248, 2889-2905 (2010)

WINKLER, M: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel sys-
tem. J. Math. Pures Appl. 100, 748-767 (2013), arXiv:1112.4156v1

Wu, S., SHi, J., Wu, B.: Global existence of solutions and uniform persistence of a diffusive
predator-prey model with prey-taxis. J. Differential Eq. 260, 5847-5874 (2016)

43



