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Abstract

The reaction-(cross-)diffusion system

{
ut = ∆(umφ(v)), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
(0.1)

is considered under no-flux boundary conditions in smoothly bounded convex domains Ω ⊂ R
n,

where m ≥ 1 and n ≥ 2, and where φ generalizes the prototype obtained on letting

φ(v) = a+ b(v + d)−α, v > 0,

with a ≥ 0, b > 0, d ≥ 0 and α ≥ 0.

In this framework, it is firstly seen that if

m >
n

2
, α <

nm− 2

n− 2
and α <

2(m+ 1)

n− 2
,

then finite-time blow-up is excluded in the sense that for all suitably regular initial data an asso-
ciated initial-boundary value problem admits a globally defined weak solution (u, v) with u being
locally bounded in Ω× [0,∞). Under the assumption that additionally

α <
(n+ 2)m− n+ 2

2(n− 2)
,

these solutions are moreover shown to be bounded throughout Ω× (0,∞) in both components.

In view of results known for the case m = 1, this particularly indicates that increasing m in (0.1)
goes along with a certain regularizing effect despite the circumstance that thereby both the diffusion
and the cross-diffusion mechanisms implicitly contained in (0.1) are simultaneously enhanced.
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1 Introduction

We consider the parabolic system {
ut = ∆(umφ(v)),

vt = ∆v − v + u,
(1.1)

with m ≥ 1 and a given parameter function φ : (0,∞) → (0,∞). In recent literature on biomathe-
matical modeling, systems of this form have been proposed as possible descriptions of the collective
behavior within bacterial populations in certain situations in which, according to experimental find-
ings, the ability to perform random diffusive movement is significantly influenced by a signal substance
secreted by the cells themselves, in essence particularly leading to reduced motility of individuals in
regions of large signal concentrations ([8], [19]).

Accordingly guided by the ambition to understand (1.1) in the presence of functions φ which de-
pend on the chemical concentration v = v(x, t) in a nonincreasing manner, e.g. by generalizing simple
functional laws of the form

φ(v) = a+ b(v + d)−α, v > 0, (1.2)

with a ≥ 0, b > 0, d ≥ 0 and α ≥ 0, the mathematical literature on (1.1) and close relatives has
as yet concentrated on the case m = 1 in which with regard to the population density u = u(x, t)
the considered diffusion process is essentially Brownian. In such settings and when posed along with
homogeneous no-flux boundary conditions in n-dimensional bounded domains, (1.1) indeed has been
found to admit global bounded classical solutions for widely arbitrary initial data when n = 2 and
φ is suitably regular and uniformly positive, which in the context of (1.2) essentially reduces to the
requirement that a be positive ([28]). In three- and higher-dimensional frameworks, such assumptions
on non-degeneracy of diffusion at large values of v are merely known to warrant global existence of weak
solutions, with a statement on smooth solvability and boundedness available only under appropriate
restrictions on the size of the initial data ([28]). In degenerate situations associated with the choice
a = 0 in (1.2), results on global existence of classical solutions seem limited to the case when n = 1
and α > 0 is arbitrary ([7]), whereas in multi-dimensional settings the literature is yet apparently
restricted to weak solution frameworks, and to corresponding findings exclusively in the cases when
either n = 2 and α < 2, or n = 3 and α < 4

3 ([7]).

In this case m = 1, farther-reaching information especially on boundedness properties seems available
only for variants of (1.1) either containing a simplified signal evolution mechanism, or additionally
including the dissipative action of logistic-type growth restrictions. For instance, in a simplified variant
of (1.1) in which the second equation therein is replaced with the elliptic equation 0 = ∆v − v + u,
global bounded classical solutions are known to exist for all reasonably regular initial data whenever
n ≥ 1 and φ satisfies (1.2) with a = 0, b > 0, d = 0 and α < 2

(n−2)+
([1]). If logistic terms of the form

ρu− µu2 with ρ > 0 and µ > 0 are added to the first equation in the fully parabolic model (1.1) with
m = 1, actually any choice of α > 0 in (1.2) leads to global existence of bounded smooth solutions when
n = 3 ([15], cf. also [30]), and even some statements on stabilization toward homogeneous equilibria
available if µ is suitably large ([15], [20]; cf. also [22], [23] and [21] for similar results on related systems
involving superquadratic degradation terms).

The case m > 1: Enhancement of diffusion and cross-diffusion in a Keller-Segel system.
The purpose of the present study is to provide a first step toward an understanding of how far an
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increase of the parameter m may regularize (1.1) in the sense of blow-up suppression, especially in
situations in which for the case m = 1 either only weak and possibly quite irregular solutions are
known to exist, or any result on global solvability is lacking at all.

To put this question into a slightly broader perspective, let us observe that (1.1) can be rewritten
according to {

ut = ∇ · (D(u, v)∇u)−∇ · (S(u, v)∇v),

vt = ∆v − v + u,
(1.3)

with
D(u, v) := mum−1φ(v) and S(u, v) := −umφ′(v) for (u, v) ∈ [0,∞)2, (1.4)

and that hence (1.1) formally corresponds to a Keller-Segel type cross-diffusion system with diffusion
and cross-diffusion rates which, besides depending on u whenever m > 1, are both explicitly influenced
by v. Now a rich literature indicates that with regard to the occurrence of singularity phenomena,
at least in some subclasses of (1.3) with more general ingredients the behavior of S(u, v) relative
to D(u, v) especially at large values of u plays a decisive role. Specifically, when D = D(u) and
S = S(u) are independent of the signal concentration, the corresponding Neumann problem for (1.3)
is known to admit globally bounded smooth solutions for all suitably regular initial data if D and
S, besides complying with some technical assumptions which in substance mainly reduce to the mere
requirement that D(u) neither grows nor decays faster than algebraically as u → ∞, satisfy the
subcriticality inequality

lim sup
u→∞

{
u−

2
n
+η S(u)

D(u)

}
<∞ for some η > 0. (1.5)

A certain optimality of this result ([27], [13], [14]), which has partially been extended to cases of expo-
nentially decaying D ([6], [35]), is indicated by several findings on the occurrence of some unbounded
radial solutions in balls under assumptions on D and S which essentially complement that in (1.4)

by supposing that, in different concrete flavors available in the literature, S(u)
D(u) grows somewhat faster

than u
2
n as u→ ∞ ([32], [5], [36], [34]).

In contrast to this quite comprehensive picture, only little seems known with respect to the obvi-
ous question to which extent features of the latter dichotomy-like flavor persist also in the presence
of signal dependencies in the migration rates entering (1.3), with the few examples available in the
literature mainly concentrating on the derivation of global existence and boundedness results in the
application-relevant special case when D ≡ 1 and S(u, v) = χu

v
with χ > 0 (cf. e.g. [18], [3], [33] and

also [10], for instance). In particular, the literature seems to have left widely unclarified how for the
ratio D

S
might retain relevance in this regard also when D and S depend on v.

Main results. When viewed against this background, the outcome of this work may be sum-
marized as indicating that in the special setup defined through (1.4), with regard to boundedness
properties of solutions the system (1.3) might exhibit features quite different from those known for the
signal-independent case in which (D,S) = (D,S)(u). Namely, we shall see that despite the fact that

then S(u,v)
D(u,v) = h(v)u with h(v) = −φ′(v)

mφ(v) for (u, v) ∈ (0,∞)2, and that thus the findings around (1.5)

suggest linear and hence explosion-supercritical growth of S
D

at large values of u, in the presence of
suitably large m > 1 the particular system structure in (1.1), and especially the precise link between
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D and S in (1.3) via (1.4), allows for the construction of global solutions with favorable boundedness
properties for arbitrarily large initial data, and under quite mild assumptions on φ which inter alia
include degenerate cases. Specifically, we shall consider





ut = ∆(umφ(v)), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂(umφ(v))

∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.6)

in a bounded domain Ω ⊂ R
n with smooth boundary, where n ≥ 2 and m > 1, and where φ generalizes

the prototypical choice from (1.2) in that

φ ∈ C3((0,∞)) is such that φ > 0 in (0,∞), (1.7)

that
sup
v>s0

{
φ(v) + |φ′(v)|

}
<∞ for all s0 > 0, (1.8)

and that
inf
v>1

vαφ(v) > 0 (1.9)

with a certain number α ≥ 0.

The first of our main results then asserts global existence of a solution locally bounded in Ω× [0,∞),
provided that m is suitably large and α is appropriately small:

Theorem 1.1 Let n ≥ 2 and Ω ⊂ R
n be a bounded convex domain with smooth boundary, and suppose

that
m >

n

2
, (1.10)

and that φ satisfies (1.7), (1.8) and (1.9) with some α ≥ 0 satisfying

α <
nm− 2

n− 2
(1.11)

and

α <
2(m+ 1)

n− 2
. (1.12)

Then for any pair (u0, v0) of initial data u0 ∈ W 1,∞(Ω) and v0 ∈ W 1,∞(Ω) fulfilling u0 ≥ 0, u0 6≡ 0
and v0 > 0 in Ω, the problem (1.6) admits at least one global weak solution (u, v), in the sense of
Definition 2.1 below, which has the additional properties that v ∈ C0(Ω × [0,∞)), and that for each
T > 0 one can find C(T ) > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C(T ) for a.e. t ∈ (0, T ) (1.13)

and
‖v(·, t)‖L∞(Ω) ≤ C(T ) for all t ∈ (0, T ). (1.14)
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Under a slightly stronger assumption on the parameter α, each of these solutions is bounded actually
throughout Ω× (0,∞).

Theorem 1.2 Suppose that beyond the assumptions from Theorem 1.1 we have

α <
(n+ 2)m− n+ 2

2(n− 2)
. (1.15)

Then there exists C > 0 such that the global weak solution of (1.6) from Theorem 1.1 additionally
satisfies

‖u(·, t)‖L∞(Ω) ≤ C for a.e. t > 0 (1.16)

and
‖v(·, t)‖L∞(Ω) ≤ C for all t > 0. (1.17)

Remark. i) We emphasize that in the particular case n = 2, any choice of m > 1 and α ≥ 0 is
admissible both in Theorem 1.1 and Theorem 1.2, hence implying that in this planar situation, any
superlinear porous medium type enhancement of diffusion and cross-diffusion considerably increases
the knowledge about global boundedness in comparison to the findings achieved in [7] only for α < 2
and only in contexts of possibly unbounded weak solutions.
ii) If α satisfies both (1.11) and (1.12), then necessarily α < 1

2 · (nm−2
n−2 + 2(m+1)

n−2 ) = (n+2)m
2(n−2) , so that

the hypotheses from Theorem 1.2 are indeed stronger than those underlying Theorem 1.1 whenever
n ≥ 3.
iii) In view of the diffusion degeneracy near points where u = 0 whenever m > 1, it seems that
classical solutions to (1.6) can in general not be expected, and that hence resorting to appropriately
generalized frameworks of solvability, such as done in Theorem 1.1, indeed appears in order.

Main ideas. In order to suitably capture the structural information encoded in (1.6) and the
particular liaison between diffusion and cross-diffusion therein, in a first step we shall pursue the goal
of deriving some fundamental regularity information through a duality-based argument in the style of
reasonings which are quite well-established in the context of reaction-diffusion systems free of cross-
diffusion ([17], [4]), but quite a simple form of which has also been underlying the analysis performed
in [28] for the case m = 1. For general m ≥ 1 and φ satisfying (1.7) and (1.9) with some α ≥ 0, this
will firstly lead to an inequality of the form

d

dt

∫

Ω
|A− 1

2 (uε + 1)|2 +
1

C

∫

Ω
um+1
ε v−αε ≤ C

∫

Ω
|A−1(uε + 1)|m+1 + C (1.18)

with a certain C = C(m,φ) > 0, where A denotes the self-adjoint realization of −∆ + 1 under
homogeneous Neumann boundary conditions in L2(Ω), and where (uε, vε) denotes the global solution
of a suitably regularized variant of (1.6) for ε ∈ (0, 1) (Lemma 3.1). By means of suitable interpolation
arguments, for T > 0 this will be seen to imply estimates of the form

∫ t+1

t

∫

Ω
um+1
ε v−αε ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (1.19)

provided that α ≥ 0 satisfies (1.12) and the condition α < nm
n−2 slightly stronger than (1.11), with

K(T ) actually independent of T if additionally (1.15) holds (Lemma 3.5).
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Next relying on the hypotheses on α from Theorem 1.1 and Theorem 1.2 in their full strength, we
shall thereafter see that under the additional assumption m > n

2 it is possible to apply an iterative
Lp estimation procedure to the respective second equation in order to turn (1.19) into bounds for∫
Ω v

p
ε with arbitrary p > 1 (Corollary 4.4). Using that (1.19) thus actually implies corresponding

boundedness properties of uε in space-time Lp norms with arbitrary p ∈ (1,m + 1) (Corollary 4.5),
we can thereafter derive estimates for vε in W

1,q(Ω) with some q > n (Lemma 4.6), which will finally
be seen to entail L∞ bounds for uε (Lemma 5.3). Both Theorem 1.1 and Theorem 1.2 can hence be
verified on the basis of straightforward extraction procedures.

2 Preliminaries. Global approximate solutions

In order to substantiate our goal, let us begin by specifying the concept of solvability to be pursued
in the sequel.

Definition 2.1 Suppose that m > 0, that φ satisfies (1.7), and that u0 and v0 are nonnegative func-
tions from L1(Ω). Then a pair of functions

{
u ∈ L1

loc(Ω× [0,∞)) and

v ∈ L1
loc([0,∞);W 1,1(Ω))

(2.1)

will be called a global weak solution of (1.6) if u ≥ 0 and v > 0 a.e. in Ω× (0,∞), if

umφ(v) ∈ L1
loc(Ω× [0,∞)), (2.2)

and if

−

∫ ∞

0

∫

Ω
uϕt−

∫

Ω
u0ϕ(·, 0) =

∫ ∞

0

∫

Ω
umφ(v)∆ϕ for all ϕ ∈ C∞

0 (Ω× [0,∞)) such that ∂ϕ
∂ν

|∂Ω = 0

(2.3)
as well as

−

∫ ∞

0

∫

Ω
vϕt−

∫

Ω
v0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇v·∇ϕ−

∫ ∞

0

∫

Ω
vϕ+

∫ ∞

0

∫

Ω
uϕ for all ϕ ∈ C∞

0 (Ω× [0,∞)).

(2.4)

Our path toward the construction of a solution in this framework will be based on a regularization of
(1.6) which for convenience we plan to design in such a way that approaches well-known in the theory
of quasilinear Keller-Segel type systems become applicable so as to assert global smooth solvability
thereof. To this end, let us fix a number

M > m+ 1−
2

n
, (2.5)

and, for ε ∈ (0, 1), consider the problem




uεt = ε∆(uε + 1)M +∆
(
uε(uε + ε)m−1φ(vε)

)
, x ∈ Ω, t > 0,

vεt = ∆vε − vε + uε, x ∈ Ω, t > 0,
∂uε
∂ν

= ∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(2.6)
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in which apparently the degeneracy of cell diffusion at vanishing population densities, as present in
(1.6) wheneverm > 1, is removed. Apart from that, due to (2.5) and strength of diffusion enhancement
thereby induced, in each of these problems also finite-time blow-up phenomena can be ruled out, as
seen in Lemme 2.4 below on the basis of the following essentially well-known global solvability feature
of quite general quasilinear chemotaxis systems with subcritical sensitivities.

Lemma 2.2 Suppose that D ∈ C2([0,∞)2) and S ∈ C2([0,∞)2) are such that S(0, v) = 0 for all
v ≥ 0, that

kD(u+ 1)γ ≤ D(u, v) ≤ KD(u+ 1)Γ for all (u, v) ∈ [0,∞)2

with some kD > 0,KD > 0, γ ∈ R and Γ ∈ R, and that there exist C > 0 and η > 0 such that

|S(u, v)|

D(u, v)
≤ C(u+ 1)

2
n
−η for all (u, v) ∈ [0,∞)2.

Then for any nonnegative u0 ∈W 1,∞(Ω) and v0 ∈W 1,∞(Ω), the problem





ut = ∇ ·
(
D(u, v)∇u

)
−∇ ·

(
S(u, v)∇v

)
, x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(2.7)

possesses at least one global classical solution (u, v) with

{
u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) and

v ∈
⋂
q>nC

0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞)),
(2.8)

and such that both u and v are nonnegative in Ω× (0,∞).

Proof. Based on well-established theories of local existence and extensibility, as contained in [2]
for rather general second-order cross-diffusion systems and e.g. in [36] for a more specific setting close
to that in (2.7), this can be derived by performing evident minor adaptations to the a priori estimation
procedure applied to merely u-dependent functions D and S in [27], so that we may refrain from giving
details here. �

In order to make (2.6) accessible to the latter especially in cases when φ is irregular near v = 0, let us
reformulate a favorable a priori positivity property of externally forced linear heat equations even in
the presence of linear degradation, as implicitly contained in [37, Lemma 2.2] already but concretized
there in a slightly different setting. This is the only place where convexity of Ω is explicitly referred
to in this paper.

Lemma 2.3 There exists Λ(Ω) > 0 with the property that if T > 0, and if h ∈ C0(Ω × (0, T )) and
z ∈ C0(Ω× [0, T )) ∩ C2,1(Ω× (0,∞)) are nonnegative functions fulfilling

{
zt = ∆z − z + h(x, t), x ∈ Ω, t ∈ (0, T ),
∂z
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, T ),
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then

z(x, t) ≥ Λ(Ω) ·min

{
inf
y∈Ω

z(y, 0) , inf
s∈(0,T )

∫

Ω
h(·, s)

}
for all x ∈ Ω and t ∈ (0, T ). (2.9)

Proof. According to the convexity of Ω, we can find c1 > 0 such that for the Neumann heat
semigroup (et∆)t≥0 on Ω we have

et∆ϕ ≥ c1

∫

Ω
ϕ for all t > 1 and each nonnegative ϕ ∈ C0(Ω)

([9], [12]). By nonnegativity of h and the comparison principle, in the variation-of-constants represen-
tation

z(·, t) = et(∆−1)z(·, 0) +

∫ t

0
e(t−s)(∆−1)h(·, s)ds, t ∈ (0, T ), (2.10)

whenever T > 2 we can therefore estimate
∫ t

0
e(t−s)(∆−1)h(·, s)ds ≥ c1 ·

{∫ t

1
e−(t−s)ds

}
· inf
s∈(0,T )

∫

Ω
h(·, s)

= c1(1− e−(t−1)) · inf
s∈(0,T )

∫

Ω
h(·, s)

≥ c1(1− e−1) · inf
s∈(0,T )

∫

Ω
h(·, s) in Ω for all t ∈ [2, T ).

As furthermore, again by the comparison principle,

et(∆−1)z(·, 0) ≥ et(∆−1) · inf
y∈Ω

z(y, 0)

≥ e−t · inf
y∈Ω

z(y, 0)

≥ e−2 · inf
y∈Ω

z(y, 0) in Ω for all t ∈ (0,min{2, T}),

from (2.10) we infer (2.9) upon an evident choice of Λ(Ω). �

By suitably combining Lemma 2.3 with Lemma 2.2 we can now make sure that indeed (2.6) is globally
solvable for each ε ∈ (0, 1).

Lemma 2.4 If (2.5) holds and u0 ∈ W 1,∞(Ω) and v0 ∈ W 1,∞(Ω) are such that u0 ≥ 0, u0 6≡ 0 and
v0 > 0 in Ω, then for each ε ∈ (0, 1) one can find nonnegative functions

{
uε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) and

vε ∈
⋂
q>nC

0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞)),

such that (uε, vε) solves (2.6) classically in Ω× (0,∞). Moreover,
∫

Ω
uε(·, t) =

∫

Ω
u0 for all t > 0, (2.11)

and there exists C > 0 fulfilling

vε(x, t) ≥ C for all x ∈ Ω and any t > 0. (2.12)
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Proof. With Λ(Ω) > 0 taken from Lemma 2.3, we let

c1 := Λ(Ω) ·min

{
inf
Ω
v0 ,

∫

Ω
u0

}

and using that c1 is positive thanks to our hypotheses on u0 and v0 we may fix a positive function
φ̂ ∈ C3([0,∞)) such that φ̂ ≡ φ in [c1,∞), observing that then (1.8) ensures that both φ and φ′ are
bounded on [0,∞). Then for fixed ε ∈ (0, 1),

D(u, v) ≡ Dε(u, v) :=Mε(u+ 1)M−1 + (mu+ ε)(u+ ε)m−2φ̂(v), (u, v) ∈ [0,∞)2,

and

S(u, v) ≡ Sε(u, v) := u(u+ ε)m−1φ̂′(v), (u, v) ∈ [0,∞)2,

define functions D and S which belong to C2([0,∞)2) with S(0, v) = 0 for all v ≥ 0, and since m ≥ 1
and M ≥ m by (2.5), we can estimate

D(u, v) ≤ Mε(u+ 1)M−1 +m(u+ ε)m−1φ̂(v)

≤ Mε(u+ 1)M−1 +m(u+ 1)m−1‖φ̂‖L∞((0,∞))

≤
{
Mε+m‖φ̂‖L∞((0,∞))

}
· (u+ 1)M−1 for all (u, v) ∈ [0,∞)2,

whereas clearly

D(u, v) ≥Mε(u+ 1)M−1 for all (u, v) ∈ [0,∞)2.

As the latter moreover implies that

|S(u, v)|

D(u, v)
≤

u(u+ ε)m−1|φ̂′(v)|

Mε(u+ 1)M−1

≤
‖φ̂′‖L∞((0,∞))

Mε
· (u+ 1)m−M+1 for all (u, v) ∈ [0,∞)2,

using that (2.5) guarantees that m −M + 1 < 2
n
we may invoke Lemma 2.2 to infer the existence

of a global classical solution (u, v) = (uε, vε) to the accordingly obtained problem (2.7), enjoying the
regularity features in (2.8), and nonnegative in both its components.

An integration of the first equation in (2.7) thereafter shows that (2.11) holds, which in turn, through
Lemma 2.3, entails that thanks to our definition of c1 we have vε ≥ c1 in Ω × (0,∞). We therefore
conclude that actually φ̂(vε) ≡ φ(vε) throughout Ω× (0,∞), and that hence our definitions of D and
S warrant that indeed (uε, vε) solves (2.6) and satisfies (2.12) with C := c1. �

Without further explicit mentioning, throughout the sequel we shall assume that (1.7) and (1.8) be
satisfied, that u0 and v0 satisfy the requirements from Theorem 1.1, and that M is such that (2.5)
holds, and let ((uε, vε))ε∈(0,1) denote the family of approximate solutions obtained in Lemma 2.4.

Forming a last preliminary, let us formulate a rather straightforward consequence of (2.11) for a first
ε-independent regularity feature of the respective second solution components.
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Lemma 2.5 Let p ∈ [0, n
n−2). Then there exists C(p) > 0 such that

‖vε(·, t)‖Lp(Ω) ≤ C(p) for all t > 0 and ε ∈ (0, 1). (2.13)

Proof. Relying on (2.11), this can be seen by straightforward application of well-known smoothing
properties of the Neumann heat semigroup (et∆)t≥0 on Ω: In fact, without loss of generality assuming
that p > 1 we may invoke standard regularization estimates therefor ([31, Lemma 1.3]) to find c1(p) > 0
such that for all t > 0 and ε ∈ (0, 1),

‖vε(·, t)‖Lp(Ω) =

∥∥∥∥e
t(∆−1)v0 +

∫ t

0
e(t−s)(∆−1)uε(·, s)ds

∥∥∥∥
Lp(Ω)

≤ c1(p)e
−t‖v0‖W 1,∞(Ω) + c1(p)

∫ t

0
e−(t−s)

(
1 + (t− s)

−n
2
(1− 1

p
)
)
‖uε(·, s)‖L1(Ω)ds

= c1(p)e
−t‖v0‖W 1,∞(Ω) + c1(p)‖u0‖L1(Ω)

∫ t

0
e−σ(1 + σ

−n
2
(1− 1

p
)
)dσ

because of (2.11). Since
∫∞

0 e−σ(1 + σ
−n

2
(1− 1

p
))dσ is finite due to the fact that n

2 (1−
1
p
) < 1 thanks to

the assumption p < n
n−2 , this already establishes (2.13). �

3 Space-time L1 estimates for um+1
ε v−αε via a duality argument

Our next goal will consist in making appropriate use of the particular structure of the first equation in
(2.6) and the particular link between the diffusion and cross-diffusion mechanisms contained therein,
and our strategy in this regard will follow classical duality-based arguments (cf. e.g. [17] and [4] for
related reasonings in more general frameworks, and [28] for a precedent addressing a less degenerate
variant of (1.6)). To prepare an appropriate setup for our analysis in this direction, we let A denote
the realization of −∆+1 under homogeneous Neumann boundary conditions in L2(Ω), with its domain
thus given by D(A) = {ψ ∈ W 2,2(Ω) | ∂ψ

∂ν
|∂Ω = 0}, and recall that A is self-adjoint and possesses a

family (Aβ)β∈R of corresponding densely defined self-adjoint fractional powers.

Now a rather straightforward pursuit of duality-guided ideas leads to a first observation concerning
the time evolution of A− 1

2 (uε +1) which in its dissipated part contains a functional that with respect
to uε grows in a considerably superlinear manner.

Lemma 3.1 Assume that n ≥ 2 and m ≥ 1, and that (1.9) holds with some α ≥ 0. Then there exists
C > 0 such that

d

dt

∫

Ω
|A− 1

2 (uε + 1)|2 +
1

C

∫

Ω
um+1
ε v−αε ≤ C

∫

Ω
|A−1(uε + 1)|m+1 + C for all t > 0 and ε ∈ (0, 1).

(3.1)

Proof. Taking any p ∈ (1,M+1) such thatW 2,p(Ω) →֒ LM+1(Ω), from a corresponding embedding
inequality and standard elliptic regularity in Lp(Ω) ([11]) we obtain c1 > 0 and c2 > 0 such that

‖ψ‖M+1
LM+1(Ω)

≤ c1‖ψ‖
M+1
W 2,p(Ω)

≤ c2‖Aψ‖
M+1
Lp(Ω) for all ψ ∈W 2,p(Ω) such that ∂ψ

∂ν
|∂Ω = 0, (3.2)
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and thereafter we twice employ Young’s inequality to infer the existence of c3 > 0 such that

ξη ≤
1

2
ξ

M+1
M + c3η

M+1 for all ξ ≥ 0 and η ≥ 0, (3.3)

and that since M + 1 > p > 1 we may pick c4 > 0 such that

c2c3‖ψ‖
M+1
Lp(Ω) ≤

1

2
‖ψ‖M+1

LM+1(Ω)
+ c4‖ψ‖

M+1
L1(Ω)

for all ψ ∈ Lp(Ω). (3.4)

Next, as a consequence of (2.12), we can find c5 > 0 fulfilling

vε ≥ c5 in Ω× (0,∞) for all ε ∈ (0, 1),

and note that due to (1.8) this firstly implies that with some c6 > 0 we have

φ(vε) ≤ c6 in Ω× (0,∞) for all ε ∈ (0, 1), (3.5)

and that thanks to (1.9) and (1.7) this secondly entails the existence of c7 > 0 satisfying

φ(vε) ≥ c7v
−α
ε in Ω× (0,∞) for all ε ∈ (0, 1). (3.6)

As a final preparation, we once more draw on Young’s inequality to fix c8 > 0 such that

ξη ≤
1

2c
1
m

6

ξ
m+1
m + c8η

m+1 for all ξ ≥ 0 and η ≥ 0, (3.7)

and now make use of all these selections as follows: Since ∂t(uε + 1) = uεt, from (2.6) we obtain the
identity

∂tA
−1(uε + 1) + ε(uε + 1)M + uε(uε + ε)m−1φ(vε)

= A−1
{
ε(uε + 1)M + uε(uε + ε)m−1φ(vε)

}
in Ω× (0,∞) for all ε ∈ (0, 1),

which we test by uε + 1 to see by self-adjointness of A− 1
2 and of A−1,

1

2

d

dt

∫

Ω
|A− 1

2 (uε + 1)|2 + ε

∫

Ω
(uε + 1)M+1 +

∫

Ω
uε(uε + ε)m−1(uε + 1)φ(vε)

= ε

∫

Ω
(uε + 1)MA−1(uε + 1) +

∫

Ω
uε(uε + ε)m−1φ(vε)A

−1(uε + 1) (3.8)

for all t > 0 and ε ∈ (0, 1). Here due to (3.3), (3.2), (3.4) and (2.11),

ε

∫

Ω
(uε + 1)MA−1(uε + 1) ≤

ε

2

∫

Ω
(uε + 1)M+1 + c3ε

∫

Ω
|A−1(uε + 1)|M+1

≤
ε

2

∫

Ω
(uε + 1)M+1 + c2c3ε‖uε + 1‖M+1

Lp(Ω)

≤
ε

2

∫

Ω
(uε + 1)M+1 +

ε

2
‖uε + 1‖M+1

LM+1(Ω)
+ c4ε‖uε + 1‖M+1

L1(Ω)

= ε

∫

Ω
(uε + 1)M+1 + c9ε for all t > 0 and ε ∈ (0, 1) (3.9)

11



with c9 := c4‖u0 + 1‖M+1
L1(Ω)

. Furthermore, combining (3.7) with (3.5) we see that for all t > 0 and

ε ∈ (0, 1),
∫

Ω
uε(uε + ε)m−1φ(vε)A

−1(uε + 1)

≤
1

2c
1
m

6

∫

Ω

{
uε(uε + ε)m−1

}m+1
m
φ

m+1
m (vε) + c8

∫

Ω
|A−1(uε + 1)|m+1

≤
1

2

∫

Ω
u

m+1
m

ε (uε + ε)
m2

−1
m φ(vε) + c8

∫

Ω
|A−1(uε + 1)|m+1,

whence (3.8) and (3.9) entail that

d

dt

∫

Ω
|A− 1

2 (uε + 1)|2 + 2

∫

Ω
uε(uε + ε)m−1(uε + 1)φ(vε)−

∫

Ω
u

m+1
m

ε (uε + ε)
m2

−1
m φ(vε)

≤ 2c8

∫

Ω
|A−1(uε + 1)|m+1 + 2c9ε for all t > 0 and ε ∈ (0, 1).

Since finally estimating uε + 1 ≥ max{uε + ε, ε} and using (3.6) shows that

2

∫

Ω
uε(uε + ε)m−1(uε + 1)φ(vε)−

∫

Ω
u

m+1
m

ε (uε + ε)
m2

−1
m φ(vε)

≥

∫

Ω
um+1
ε φ(vε) ≥ c7

∫

Ω
um+1
ε v−αε for all t > 0 and ε ∈ (0, 1),

this establishes (3.1) if we let C := max{ 1
c7
, 2c8 , 2c9}, for instance. �

In order to appropriately estimate the integral on the right of (3.1) in terms of the second summand on
the left-hand side therein, to be accomplished in Lemma 3.3, but to furthermore prepare an argument
revealing dominance of the latter over the expression

∫
Ω |A− 1

2 (uε + 1)|2 (see Lemma 3.4), let us state
the following consequence of a simple interpolation based on the Hölder inequality.

Lemma 3.2 If n ≥ 2,m ≥ 1 and (1.9) holds with some α ≥ 0, then for all p > 0 fulfilling

p <
n(m+ 1)

n+ (n− 2)α
, (3.10)

one can find C(p) > 0 such that

∫

Ω

(
uε(·, t)+1

)p
≤ C(p) ·

{∫

Ω
um+1
ε (·, t)v−αε (·, t)

} p

m+1

+C(p) for all t > 0 and ε ∈ (0, 1). (3.11)

Proof. We first note that due to (3.10), we particularly have p < m+ 1, so that setting

q :=
pα

m− p+ 1

defines a nonnegative number which, by making full use of (3.10) now, can be seen to satisfy

(m+ 1− p) ·
{
(n− 2)q − n

}
= (n− 2) · pα− n(m+ 1− p) =

{
n+ (n− 2)α

}
· p− n(m+ 1) < 0

12



and hence q < n
n−2 . Therefore, Lemma 2.5 applies so as to yield c1 > 0 such that

∫

Ω
vqε ≤ c1 for all t > 0 and ε ∈ (0, 1),

which we combine with the Hölder inequality, applicable since, still, p < m+ 1, to estimate

∫

Ω
upε =

∫

Ω
(um+1
ε v−αε )

p

m+1 · v
pα

m+1
ε

≤

{∫

Ω
um+1
ε v−αε

} p

m+1

·

{∫

Ω
v

pα

m+1−p
ε

}m+1−p

m+1

≤ c
m+1−p

m+1

1 ·

{∫

Ω
um+1
ε v−αε

} p

m+1

for all t > 0 and ε ∈ (0, 1).

Since
∫
Ω(uε + 1)p ≤ 2p

∫
Ω u

p
ε + 2p|Ω| for all t > 0 and ε ∈ (0, 1) by Young’s inequality, this already

entails (3.11). �

In fact, under assumptions on α actually less restrictive than those in Theorem 1.1 the latter can be
combined with adequate embedding properties to suitably bound the right-hand side in (3.1).

Lemma 3.3 If n ≥ 2,m ≥ 1 and (1.9) is satisfied with some α ≥ 0 fulfilling (1.12) as well as

α <
nm

n− 2
, (3.12)

then for all η > 0 there exists C(η) > 0 such that

∫

Ω

∣∣∣A−1
(
uε(·, t) + 1

)∣∣∣
m+1

≤ η

∫

Ω
um+1
ε (·, t)v−αε (·, t) + C(η) for all t > 0 and ε ∈ (0, 1). (3.13)

Proof. According to (3.12), we have (n− 2)α < nm and hence

n(m+ 1)

n+ (n− 2)α
> 1,

whereas (1.12) ensures that (n− 2)α < 2m+ 2 and thus

n(m+ 1)

n+ 2m+ 2
<

n(m+ 1)

n+ (n− 2)α
.

Combining these two inequalities we see that we can firstly fix a number p0 > 1 fulfilling

n(m+ 1)

n+ 2m+ 2
< p0 <

n(m+ 1)

n+ (n− 2)α
, (3.14)

and thereupon take some p > p0 such that still

p <
n(m+ 1)

n+ (n− 2)α
. (3.15)
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Then the left inequality in (3.14) guarantees that 2− n
p0
> − n

m+1 and that hence W 2,p0(Ω) is continu-

ously embedded into Lm+1(Ω), whence again relying on standard elliptic regularity theory we obtain
c1 > 0 and c2 > 0 satisfying

‖ψ‖Lm+1(Ω) ≤ c1‖ψ‖W 2,p0 (Ω) ≤ c2‖Aψ‖Lp0 (Ω) for all ψ ∈W 2,p0(Ω) such that ∂ψ
∂ν

|∂Ω = 0. (3.16)

Apart from that, from Lemma 3.2 we infer that due to (3.15) there exist c3 > 0 and c4 > 0 such that

‖uε + 1‖m+1
Lp(Ω) ≤ c3

∫

Ω
um+1
ε v−αε + c4 for all t > 0 and ε ∈ (0, 1), (3.17)

while a simple application of Young’s inequality shows that since 1 < p0 < p, given η > 0 we can find
c5(η) > 0 in such a way that

cm+1
2 ‖ψ‖m+1

Lp0 (Ω) ≤
η

c3
‖ψ‖m+1

Lp(Ω) + c5(η)‖ψ‖
m+1
L1(Ω)

for all ψ ∈ Lp(Ω). (3.18)

We now employ (3.16) with ψ := A−1(uε+1) to see that thanks to (3.18) and (3.17), for all t > 0 and
ε ∈ (0, 1) we have

‖A−1(uε + 1)‖m+1
Lm+1(Ω)

≤ cm+1
2 ‖uε + 1‖m+1

Lp0 (Ω)

≤
η

c3
‖uε + 1‖m+1

Lp(Ω) + c5(η)‖uε + 1‖m+1
L1(Ω)

≤
η

c3
·

{
c3

∫

Ω
um+1
ε v−αε + c4

}
+ c5(η)‖uε + 1‖m+1

L1(Ω)
,

which due to (2.11) indeed leads to (3.13). �

A second application of Lemma 3.2 will eventually enable us to turn (3.1) into an autonomous ODI
containing a linear absorption, provided that the stronger hypotheses on α from Theorem 1.2 are met.

Lemma 3.4 Assume that n ≥ 2 and m ≥ 1, and that (1.9) is satisfied with some α ≥ 0 such that
(1.15) holds. Then there exists C > 0 such that

∫

Ω

∣∣∣A− 1
2

(
uε(·, t) + 1

)∣∣∣
2
≤

∫

Ω
um+1
ε (·, t)v−αε (·, t) + C for all t > 0 and ε ∈ (0, 1). (3.19)

Proof. We first note that (1.15) ensures that

2n+ 2(n− 2)α < 2n+
{
(n+ 2)m− n+ 2

}
= (n+ 2)(m+ 1),

and that thus 2n
n+2 <

n(m+1)
n+(n−2)α , to pick p > 1 such that

2n

n+ 2
< p <

n(m+ 1)

n+ (n− 2)α
. (3.20)

Here the first inequality warrants that p′ := p
p−1 satisfies − n

p′
< 2 − n

p
and that hence W 2,p(Ω) →֒

Lp
′

(Ω), so that once more invoking elliptic regularity we can fix c1 > 0 fulfilling

‖ψ‖Lp′ (Ω) ≤ c1‖Aψ‖Lp(Ω) for all ψ ∈W 2,p(Ω) such that ∂ψ
∂ν

|∂Ω = 0. (3.21)
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Moreover, the second inequality in (3.20) enables us to infer from Lemma 3.2 that with some c2 > 0
we have

‖uε + 1‖2Lp(Ω) ≤ c2 ·

{∫

Ω
um+1
ε v−αε

} 2
m+1

+ c2 for all t > 0 and ε ∈ (0, 1), (3.22)

whereupon we use that m > 1 in choosing c3 > 0 such that

c1c2ξ
2

m+1 ≤ ξ + c3 for all ξ ≥ 0. (3.23)

Now by self-adjointness of A− 1
2 , the Hölder inequality and (3.21),

∫

Ω
|A− 1

2 (uε + 1)|2 =

∫

Ω
(uε + 1)A−1(uε + 1)

≤ ‖uε + 1‖Lp(Ω)‖A
−1(uε + 1)‖Lp′ (Ω)

≤ c1‖uε + 1‖2Lp(Ω) for all t > 0 and ε ∈ (0, 1),

where due to (3.22) and (3.23),

c1‖uε + 1‖2Lp(Ω) ≤ c1c2 ·

{∫

Ω
um+1
ε v−αε

} 2
m+1

+ c1c2

≤

∫

Ω
um+1
ε v−αε + c3 + c1c2 for all t > 0 and ε ∈ (0, 1),

so that the claim follows. �

When combined with Lemma 3.1, the previous two lemmata now enable us to derive the main result
of this section.

Lemma 3.5 If n ≥ 2,m ≥ 1 and (1.9) is valid with some α ≥ 0 fulfilling (1.12) and (3.12), then
there exists K : (0,∞) → (0,∞) such that for all T > 0,

∫ t+1

t

∫

Ω
um+1
ε v−αε ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (3.24)

and such that
sup
T>0

K(T ) <∞ if (1.15) holds. (3.25)

Proof. Using Lemma 3.1 as a starting point, we take c1 > 0 and c2 > 0 such that

d

dt

∫

Ω
|A− 1

2 (uε + 1)|2 + c1

∫

Ω
um+1
ε v−αε ≤ c2

∫

Ω
|A−1(uε + 1)|m+1 + c2 for all t > 0 and ε ∈ (0, 1),

and relying on our hypotheses that (1.12) and (3.12) be satisfied, we invoke Lemma 3.3 to find c3 > 0
fulfilling

c2

∫

Ω
|A−1(uε + 1)|m+1 ≤

c1

2

∫

Ω
um+1
ε v−αε + c3 for all t > 0 and ε ∈ (0, 1).
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Therefore,

d

dt

∫

Ω
|A− 1

2 (uε + 1)|2 +
c1

2

∫

Ω
um+1
ε v−αε ≤ c2 + c3 for all t > 0 and ε ∈ (0, 1), (3.26)

so that given T > 0 we may infer upon an integration that for all t ∈ (0, T ) and ε ∈ (0, 1),

c1

2

∫ t+1

t

∫

Ω
um+1
ε v−αε ≤

∫

Ω
|A− 1

2 (u0 + 1)|2 + (c2 + c3) · (T + 1). (3.27)

If additionally (1.15) holds, then Lemma 3.4 provides c4 > 0 such that
∫

Ω
|A− 1

2 (uε + 1)|2 ≤

∫

Ω
um+1
ε v−αε + c4 for all t > 0 and ε ∈ (0, 1),

so that in this case from (3.26) we obtain that

d

dt

∫

Ω
|A− 1

2 (uε + 1)|2 +
c1

4

∫

Ω
|A− 1

2 (uε + 1)|2 +
c1

4

∫

Ω
um+1
ε v−αε

≤ c5 := c2 + c3 +
c1c4

4
for all t > 0 and ε ∈ (0, 1). (3.28)

Through an ODE comparison argument, this firstly entails that then
∫

Ω
|A− 1

2 (uε + 1)|2 ≤ c6 := max

{∫

Ω
|A− 1

2 (u0 + 1)|2 ,
4c5
c1

}
for all t > 0 and ε ∈ (0, 1),

whereafter a direct integration of (3.28) shows that for such choices of φ we actually have

c1

4

∫ t+1

t

∫

Ω
um+1
ε v−αε ≤

∫

Ω

∣∣∣A− 1
2

(
uε(·, t+ 1)

)∣∣∣
2
+ c5

≤ c6 + c5 for all t > 0 and ε ∈ (0, 1),

which in conjunction with (3.27) readily yields a positive function K on (0,∞) fulfilling both (3.24)
and (3.25). �

4 Bounds for vε in W 1,q(Ω) with some q > n

4.1 Estimating vε in Lp(Ω) for arbitrary finite p

We next intend to turn the weighted Lm+1 estimate for uε provided by Lemma 3.5 into bounds for
vε suitably improving those from Lemma 2.5. In view of the particular structure of the integrand in
(3.24), and especially its dependence on vε, for an efficient exploitation thereof it seems promising to
act, at a first stage, in the context of standard Lp testing procedures. The information thereby gained,
consisting in Lp bounds for vε in arbitrary Lp spaces not only in the case n = 2 (see Lemma 2.5)
but also when n ≥ 3, will finally enable us to essentially neglect the factor v−αε in (3.24), and to use
the resulting version thereof in the derivation of gradient bounds for vε through more straightforward
semigroup estimates.

The following outcome of [25, Lemma 3.4] will be needed in our first step in this direction, to be
established in Lemma 4.2.
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Lemma 4.1 Let T > 1, and let y : [0, T ) → [0,∞) be absolutely continuous and such that

y′(t) + λy(t) ≤ h(t) for a.e. t ∈ (0, T )

with some λ > 0 and some nonnegative h ∈ L1
loc([0, T )) fo which there exists κ > 0 fulfilling

∫ t+1

t

h(s)ds ≤ κ for all t ∈ (0, T − 1).

Then

y(t) ≤ max
{
y(0) + κ ,

κ

λ
+ 2κ

}
for all t ∈ (0, T ).

By means of the latter and an appropriate testing procedure, we can derive the following core of an
iterative step potentially improving our regularity information on vε. Here our assumption (4.2) on
uε is formulated in such a way that both alternatives possible in (3.25) can conveniently be included
without explicit reference to requirements on α which are actually not needed in this part.

Lemma 4.2 Assume that n ≥ 3, that m ≥ 1, and that (1.9) be valid with some α ≥ 0, and suppose
that p⋆ ≥ 1 and Li : (0,∞) → (0,∞), i ∈ {1, 2}, are such that for all T > 0 we have

∫

Ω
vp⋆ε (·, t) ≤ L1(T ) for all t ∈ (0, T ) and ε ∈ (0, 1) (4.1)

as well as ∫ t+1

t

∫

Ω
um+1
ε v−αε ≤ L2(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (4.2)

Then given any p > p0 fulfilling

(n− 2m− 2)p < (n− 2)(m+ 1− α) (4.3)

and

p < m+ 1− α+
2m

n
· p⋆, (4.4)

one can find K(p) : (0,∞) → (0,∞) with the properties that for all T > 0,

∫

Ω
vpε(·, t) ≤ K(p)(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (4.5)

and that
sup
T>0

K(p)(T ) <∞ if sup
T>0

(L1(T ) + L2(T )) <∞. (4.6)

Proof. We abbreviate

fε(t) :=

∫

Ω
um+1
ε (·, t)v−αε (·, t) for t > 0 and ε ∈ (0, 1),
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and given p > p⋆ satisfying (4.3) and (4.4) we first test the second equation in (2.6) by vp−1
ε to see

that due to Young’s inequality,

1

p

d

dt

∫

Ω
vpε +

4(p− 1)

p2

∫

Ω
|∇v

p

2
ε |

2 +

∫

Ω
vpε

=

∫

Ω
uεv

p−1
ε

=

∫

Ω
(um+1
ε v−αε )

1
m+1 · v

(m+1)(p−1)+α

m+1
ε

≤ fε(t) +

∫

Ω
v

(m+1)(p−1)+α

m
ε for t > 0 and ε ∈ (0, 1). (4.7)

Here in the case when incidentally (m+1)(p−1)+α
m

≤ p⋆, again by means of Young’s inequality we can
utilize (4.1) to obtain that for each fixed T > 0,

∫

Ω
v

(m+1)(p−1)+α

m
ε ≤

∫

Ω
vp⋆ε + |Ω| ≤ L1(T ) + |Ω| for all t ∈ (0, T ) and ε ∈ (0, 1). (4.8)

If, conversely,
(m+ 1)(p− 1) + α

m
> p⋆, (4.9)

then the number

a :=
np · [(m+ 1)(p− 1) + α−mp⋆]

(np− np⋆ + 2p⋆) · [(m+ 1)(p− 1) + α]
, (4.10)

clearly well-defined since p > 1 and np − np⋆ + 2p⋆ > 2p⋆ > 0 due to our restriction p > p⋆, satisfies
a > 0 by (4.9). As furthermore, by (4.3),

np ·
[
(m+ 1)(p− 1) + α−mp⋆

]
− (np− np⋆ + 2p⋆) ·

[
(m+ 1)(p− 1) + α

]

=
[
(n− 2m− 2)p− (n− 2)(m+ 1− α)

]
·p⋆ < 0

and hence a < 1, we may invoke the Gagliardo-Nirenberg inequality to find c1 > 0 such that

∫

Ω
v

(m+1)(p−1)+α

m
ε = ‖v

p

2
ε ‖

2
p
·
(m+1)(p−1)+α

m

L
2
p ·

(m+1)(p−1)+α
m (Ω)

≤ c1‖∇v
p

2
ε ‖

2
p
·
(m+1)(p−1)+α

m
·a

L2(Ω)
‖v

p

2
ε ‖

2
p
·
(m+1)(p−1)+α

m
·(1−a)

L
2p⋆
p (Ω)

+c1‖v
p

2
ε ‖

2
p
·
(m+1)(p−1)+α

m

L
2p⋆
p (Ω)

for t > 0 and ε ∈ (0, 1). (4.11)

Since given T > 0 we can use (4.1) to estimate

‖v
p

2
ε ‖

2p⋆
p

L
2p⋆
p (Ω)

=

∫

Ω
vp⋆ε ≤ L1(T ) for all t ∈ (0, T ) and ε ∈ (0, 1),
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and since (4.10) along with (4.4) asserts that

θ :=
2

2
p
· (m+1)(p−1)+α

m
· a

satisfies

θ − 1 =
m(np− np⋆ + 2p⋆)− n · [(m+ 1)(p− 1) + α−mp⋆]

n · [(m+ 1)(p− 1) + α−mp⋆]

=
nmp− (n− 2)mp⋆ − n(m+ 1)p+ n(m+ 1− α) + nmp⋆

n · [(m+ 1)(p− 1) + α−mp⋆]

=
−np+ n(m+ 1− α) + 2mp⋆
n · [(m+ 1)(p− 1) + α−mp⋆]

=
−p+m+ 1− α+ 2m

m
· p⋆

(m+ 1)(p− 1) + α−mp⋆

> 0

and thus θ > 1, by using Young’s inequality we infer from (4.11) that there exist Ki = K
(p)
i : (0,∞) →

(0,∞), i ∈ {1, 2}, such that for all T > 0,

∫

Ω
v

(m+1)(p−1)+α

m
ε ≤ K1(T )‖∇v

p

2
ε ‖

2
θ

L2(Ω)
+K1(T )

≤
4(p− 1)

p2
‖v

p

2
ε ‖

2
L2(Ω) +K2(T ) for all t ∈ (0, T ) and ε ∈ (0, 1),

and that
sup
T>0

K2(T ) <∞ if sup
T>0

L1(T ) <∞. (4.12)

In conjunction with (4.7), this implies that for all T > 0,

1

p

d

dt

∫

Ω
vpε +

∫

Ω
vpε ≤ fε(t) +K2(T ) for all t ∈ (0, T ) and ε ∈ (0, 1),

so that an application of Lemma 4.1 shows that due to (4.2), given any T > 0 we have

∫

Ω
vpε ≤ max

{∫

Ω
v
p
0 + p(K2(T ) + L2(T )) , (2p+ 1)(K2(T ) + L2(T ))

}
for all t ∈ (0, T ) and ε ∈ (0, 1),

which in view of (4.12) comletes the proof also for such values of p. �

Now an iterative argument based on the preceding lemma indeed yields substantial improvement
of knowledge if the factor 2m

n
multiplied to p⋆ in (4.4) exceeds 1, and if α is such that at least the

admissible upper bound for p in (4.4) is compatible with (4.3). While the former enforces an additional
requirement on m, the latter condition is covered by our previous assumptions on α already.
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Lemma 4.3 Assume that n ≥ 3, that

m >
n

2
, (4.13)

and that (1.9) holds with some α ≥ 0 satisfying (1.11), and suppose that L : (0,∞) → (0,∞) is such
that for all T > 0,

∫ t+1

t

∫

Ω
um+1
ε v−αε ≤ L(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (4.14)

Then for each p ≥ 1 one can find K(p) : (0,∞) → (0,∞) such that for all T > 0,

∫

Ω
vpε(·, t) ≤ K(p)(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (4.15)

and that
sup
T>0

K(p)(T ) <∞ if sup
T>0

L(T ) <∞. (4.16)

Proof. We let

p0 := 0, p1 :=
n

n− 2
and pj+1 := m+ 1− α+

2m

n
· pj for integers j ≥ 1, (4.17)

and observe that our hypothesis that (4.13) and (1.11) be valid ensures that whenever j ≥ 1 is such
that pj ≥

n
n−2 , we have

pj+1 − pj =
2m− n

n
· pj +m+ 1− α ≥

2m− n

n− 2
+m+ 1− α >

2m− n

n− 2
+m+ 1−

nm− 2

n− 2
= 0,

from which it readily follows by induction that (pj)j≥0 is strictly increasing, with pj → +∞ as j → ∞
according to (4.17).

In order to recursively show that

for each j ≥ 0 and p ∈ [pj , pj+1) one can find K(p) : (0,∞) → (0,∞)

such that (4.16) holds and that (4.15) is valid for all T > 0, (4.18)

we first recall Lemma 2.5 to see that for each p ∈ [0, n
n−2) we can find c1(p) > 0 fulfilling

∫

Ω
vpε ≤ c1(p) for all t > 0 and ε ∈ (0, 1),

which clearly establishes the claim in (4.18) for j = 0 if we let K(p)(T ) := c1(p) for T > 0 and
p ∈ [p0, p1) ≡ [0, n

n−2).

If the property in (4.18) has already been asserted for any integer up to j−1 with some j ≥ 1, however,
then we note that by (4.17) and the inequalities n− 2m− 2 < 0 and pj+1 >

n
n−2 we have

(n− 2m− 2)pj+1 − (n− 2)(m+ 1− α)
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= (n− 2m− 2) ·
(
m+ 1− α+

2m

n
· pj

)
− (n− 2)(m+ 1− α)

< (n− 2m− 2) ·
(
m+ 1− α+

2m

n− 2

)
− (n− 2)(m+ 1− α)

= −2m(m+ 1− α) + (n− 2m− 2) ·
2m

n− 2

= 2m ·
(
α−

nm

n− 2

)
< 0,

because α < nm
n−2 by (1.11). By means of an argument based on continuous dependence, we can

therefore pick p̂j+1 ∈ (pj , pj+1) such that

(n− 2m− 2)p < (n− 2)(m+ 1− α) for all p ∈ (p̂j+1, pj+1),

whence in view of the assumed validity of the statement in (4.18) for j−1, Lemma 4.2 applies so as to
show that for any such p we can find K(p) : (0,∞) → (0,∞) satisfying (4.15) for all T > 0, as well as
(4.16). Since Ω is bounded, this already implies the property claimed in (4.18) throughout the entire
interval [pj , pj+1), and hence completes the verification of (4.18).

It remains to observe that ∪j≥0[pj , pj+1) = [1,∞) to infer that the infinite collection of statements
contained in (4.18) entails the intended conclusion. �

In light of Lemma 3.5 and Lemma 2.5, from the latter we obtain the intended main result concerning
integral estimates for vε.

Corollary 4.4 Let n ≥ 2, m > n
2 and φ be such that (1.9) is valid with some α ≥ 0 satisfying (1.11)

and (1.12). Then for any p ≥ 0 there exists K(p) : (0,∞) → (0,∞) such that for all T > 0,
∫

Ω
vpε(·, t) ≤ K(p)(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (4.19)

and such that
sup
T>0

K(p)(T ) <∞ if (1.15) holds. (4.20)

Proof. If n ≥ 3, this readily results upon combining Lemma 4.3 with Lemma 3.5, whereas in the
case n = 2 we only need to recall Lemma 2.5. �

4.2 An estimate including ∇vε

Having Corollary 4.4 at hand, from Lemma 3.5 we can immediately draw the following conclusion
concerning space-time integrability properties of uε without the appearance of weight functions.

Corollary 4.5 Assume that n ≥ 2, that m > n
2 , and that (1.9) holds with some α ≥ 0 such that

(1.11) and (1.12) are satisfied. Then for all p ∈ [1,m + 1) one can find K(p) : (0,∞) → (0,∞) such
that for all T > 0,

∫ t+1

t

∫

Ω
upε(·, t) ≤ K(p)(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (4.21)

and that
sup
T>0

K(p)(T ) <∞ if (1.15) holds. (4.22)
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Proof. Given p ∈ [1,m+ 1), we use Young’s inequality to estimate

∫ t+1

t

∫

Ω
upε =

∫ t+1

t

∫

Ω
(um+1
ε v−αε )

p

m+1 · v
pα

m+1
ε

≤

∫ t+1

t

∫

Ω
um+1
ε v−αε +

∫ t+1

t

∫

Ω
v

pα

m+1−p
ε for all t > 0 and ε ∈ (0, 1).

Therefore, the conclusion is a direct consequence of Lemma 3.5 when followed by an application of
Corollary 4.4 to the nonnegative finite integrability exponent pα

m+1−p . �

Through the latter, integrability properties of ∇vε become amenable to quite well-established argu-
ments from parabolic regularity theory.

Lemma 4.6 Let n ≥ 2 and m > n
2 , and assume (1.9) to be satisfied with some α ≥ 0 complying with

(1.11) and (1.12). Then there exist q > n and K : (0,∞) → (0,∞) such that for all T > 0,

‖vε(·, t)‖W 1,q(Ω) ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (4.23)

and that
sup
T>0

K(T ) <∞ if (1.15) holds. (4.24)

Proof. Again explicitly using that m > n
2 , we observe that

m+ 1

m
·
{1

2
−
n

2
·
( 1

m+ 1
−

1

n

)}
=

n

2m
< 1,

whence it is possible to fix q > n suitably close to n such that

m+ 1

m
·
{1

2
−
n

2
·
( 1

m+ 1
−

1

q

)}
< 1,

and thereafter choose some p ∈ [1,m+ 1) in an appropriately small neighborhood of m+ 1 such that
still

p

p− 1
·
{1

2
−
n

2
·
(1
p
−

1

q

)}
< 1, (4.25)

where since q > n ≥ 2 and hence q
q−1 · 1

2 < 1, we can clearly achieve that also p ≤ q. Then due to

well-known smoothing properties of the Neumann heat semigroup (et∆)t≥0 on Ω ([31, Lemma 1.3]),
we can find positive constants c1, c2 and c3 such that

‖et∆ψ‖W 1,q(Ω) ≤ c1‖ψ‖W 1,∞(Ω) for all t ∈ (0, 1) and ψ ∈W 1,∞(Ω) (4.26)

and
‖e∆ψ‖W 1,q(Ω) ≤ c2‖ψ‖L1(Ω) for all t ∈ (0, 1) and ψ ∈ C0(Ω) (4.27)

as well as

‖et∆ψ‖W 1,q(Ω) ≤ c3t
− 1

2
−n

2
( 1
p
− 1

q
)
‖ψ‖Lp(Ω) for all t ∈ (0, 1) and ψ ∈ C0(Ω), (4.28)
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which we use in the context of a Duhamel representation associated with the second equation in (2.6),
according to which we have

‖vε(·, t)‖W 1,q(Ω) =

∥∥∥∥e
(t−(t−1)+)(∆−1)vε

(
·, (t− 1)+

)
+

∫ t

(t−1)+

e(t−s)(∆−1)uε(·, s)ds

∥∥∥∥
W 1,q(Ω)

≤
∥∥∥e(t−(t−1)+)∆vε

(
·, (t− 1)+

)∥∥∥
W 1,q(Ω)

+

∫ t

(t−1)+

‖e(t−s)∆uε(·, s)‖W 1,q(Ω)ds for all t > 0 and ε ∈ (0, 1). (4.29)

Here, namely, if t ≤ 1 then by (4.26),
∥∥∥e(t−(t−1)+)∆vε

(
·, (t− 1)+

)∥∥∥
W 1,q(Ω)

= ‖et∆v0‖W 1,q(Ω) ≤ c1‖v0‖W 1,∞(Ω) for all ε ∈ (0, 1), (4.30)

while if t > 1, then by (4.27),
∥∥∥e(t−(t−1)+)∆vε

(
·, (t− 1)+

)∥∥∥
W 1,q(Ω)

= ‖e∆vε(·, t− 1)‖W 1,q(Ω)

≤ c2‖vε(·, t− 1)‖L1(Ω)

≤ c4 for all ε ∈ (0, 1) (4.31)

with c4 := c2 supε∈(0,1) sups>0 ‖vε(·, s)‖L1(Ω) being finite due to Lemma 2.5. Furthermore, using (4.28)
and the Hölder inequality we see that for all t > 0 and ε ∈ (0, 1),

∫ t

(t−1)+

‖e(t−s)∆uε(·, s)‖W 1,q(Ω)ds

≤ c3

∫ t

(t−1)+

(t− s)
− 1

2
−n

2
( 1
p
− 1

q
)
‖uε(·, s)‖Lp(Ω)ds

≤ c3 ·

{∫ t

(t−1)+

‖uε(·, s)‖
p
Lp(Ω)ds

} 1
p

·

{∫

(t−1)t+

(t− s)−
p

p−1
·[ 1
2
+n

2
( 1
p
− 1

q
)]
ds

} p−1
p

.

Since
∫ t

(t−1)+

(t− s)−
p

p−1
·[ 1
2
+n

2
( 1
p
− 1

q
)]
ds ≤ c5 :=

∫ 1

0
σ
−

p

p−1
·[ 1
2
+n

2
( 1
p
− 1

q
)]
dσ for all t > 0,

and since (4.25) entails finiteness of c5, in view of the boundedness properties of 0 < t 7→
∫ t+1
t

∫
Ω u

p
ε

asserted by Corollary 4.5 due to the inequality p < m + 1 the claim therefore results from (4.29),
(4.30) and (4.31). �

5 L∞ estimates for uε

Strongly relying on the possibility to choose the exponent in Lemma 4.6 to satisfy q > n, we can next
achieve estimates for uε with respect to the norms in Lp(Ω), firstly for arbitrary finite p (Lemma 5.2)
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and then for p = ∞ (Lemma 5.3), on the basis of a rather straightforward and again variational-type
procedure. This will be launched by the standard computation underlying the following basic step
toward this, which will independently be used also in our deduction of regularity features enjoyed by
spatial and temporal derivatives of uε (cf. Lemma 6.1 and Lemma 6.2).

Lemma 5.1 Let p > 0 and ψ ∈ C∞(Ω). Then

1

p

∫

Ω
∂t(uε + ε)p · ψ = −(p− 1)Mε

∫

Ω
(uε + ε)p−2(uε + 1)M−1|∇uε|

2ψ

−(p− 1)

∫

Ω
(muε + ε)(uε + ε)m+p−4φ(vε)|∇uε|

2ψ

−(p− 1)

∫

Ω
uε(uε + ε)m+p−3φ′(vε)(∇uε · ∇vε)ψ

−Mε

∫

Ω
(uε + ε)p−1(uε + 1)M−1∇uε · ∇ψ

−

∫

Ω
(muε + ε)(uε + ε)m+p−3φ(vε)∇uε · ∇ψ

−

∫

Ω
uε(uε + ε)m+p−2φ′(vε)∇vε · ∇ψ for all t > 0 and ε ∈ (0, 1). (5.1)

Proof. This can be verified by straightforward computation based on several integrations by parts
in the first equation from (2.6). �

Due to Lemma 4.6, for arbitrary p > 1 the identity obtained from (5.1) on taking ψ ≡ 1 can be turned
into the following information on Lp regularity of (uε)ε∈(0,1).

Lemma 5.2 Let n ≥ 2 and m > n
2 , and assume (1.9) with some α ≥ 0 fulfilling (1.11) and (1.12).

Then for all p > 1 there exists K(p) : (0,∞) → (0,∞) such that for all T > 0,

∫

Ω
upε(·, t) ≤ K(p)(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (5.2)

and that
sup
T>0

K(p)(T ) <∞ if (1.15) holds. (5.3)

Proof. From Lemma 4.6 we infer the existence of θ ∈ (1, n
n−2) and K1 : (0,∞) → (0,∞) such that

for all T > 0,
‖∇vε(·, t)‖

L
2θ
θ−1 (Ω)

≤ K1(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (5.4)

and that
sup
T>0

K1(T ) <∞ if (1.15) holds, (5.5)

whereas (2.12) in conjunction with Lemma 4.6 and (1.7) provides Ki : (0,∞) → (0,∞), i ∈ {2, 3},
such that for all T > 0,

φ(vε) ≥ K2(T ) in Ω× (0, T ) for all ε ∈ (0, 1) (5.6)
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and
φ′2(vε)

φ(vε)
≤ K3(T ) in Ω× (0, T ) for all ε ∈ (0, 1), (5.7)

with
sup
T>0

Ki(T ) <∞ for i ∈ {2, 3} if (1.15) holds. (5.8)

Then in the identity

1

p

d

dt

∫

Ω
(uε + ε)p + (p− 1)Mε

∫

Ω
(uε + ε)p−2(uε + 1)M−1|∇uε|

2

+(p− 1)

∫

Ω
(muε + ε)(uε + ε)m+p−4φ(vε)|∇uε|

2 +

∫

Ω
(uε + ε)p

= −(p− 1)

∫

Ω
uε(uε + ε)m+p−3φ′(vε)∇uε · ∇vε +

∫

Ω
(uε + ε)p, (5.9)

as implied for t > 0 and ε ∈ (0, 1) by Lemma 5.1, we first use thatm ≥ 1 in estimatingmuε+ε ≥ uε+ε
and hence

(p− 1)

∫

Ω
(muε + ε)(uε + ε)m+p−4φ(vε)|∇uε|

2

≥ (p− 1)

∫

Ω
(uε + ε)m+p−3φ(vε)|∇uε|

2 for all t > 0 and ε ∈ (0, 1). (5.10)

Next, relying on Young’s inequality and the Hölder inequality we can use (5.4) and (5.7) to see that
for all T > 0,

−(p− 1)

∫

Ω
uε(uε + ε)m+p−3φ′(vε)∇uε · ∇vε

≤
p− 1

2

∫

Ω
(uε + ε)m+p−3φ(vε)|∇uε|

2 +
p− 1

2

∫

Ω
(uε + ε)m+p−1φ

′2(vε)

φ(vε)
|∇vε|

2

≤
p− 1

2

∫

Ω
(uε + ε)m+p−3φ(vε)|∇uε|

2 +
(p− 1)K3(T )

2

∫

Ω
(uε + ε)m+p−1|∇vε|

2

≤
p− 1

2

∫

Ω
(uε + ε)m+p−3φ(vε)|∇uε|

2

+
(p− 1)K3(T )

2
·

{∫

Ω
(uε + ε)(m+p−1)θ

} 1
θ

·

{∫

Ω
|∇vε|

2θ
θ−1

} θ−1
θ

≤
p− 1

2

∫

Ω
(uε + ε)m+p−3φ(vε)|∇uε|

2

+
(p− 1)K3(T )

2
K2

1 (T )‖(uε + ε)
m+p−1

2 ‖2L2θ(Ω) for all t ∈ (0, T ) and ε ∈ (0, 1), (5.11)

and that
∫

Ω
(uε+ε)

p ≤

∫

Ω
(uε+ε)

m+p−1+|Ω| = ‖(uε+ε)
m+p−1

2 ‖2L2(Ω)+|Ω| for all t > 0 and ε ∈ (0, 1). (5.12)
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Here since 2θ < 2n
n−2 and hence W 1,2(Ω) is continuously embedded into L2θ(Ω) and into L2(Ω),

combining an Ehrling-type inequality with (2.11) we obtain Ki : (0,∞) → (0,∞), i ∈ {4, 5}, such that

sup
T>0

Ki(T ) <∞ for i ∈ {4, 5} if (1.15) holds,

and that for all T > 0,

(p− 1)K3(T )

2
K2

1 (T )‖(uε + ε)
m+p−1

2 ‖2L2θ(Ω) + ‖(uε + ε)
m+p−1

2 ‖2L2(Ω)

≤
2(p− 1)K2(T )

(m+ p− 1)2
‖∇(uε + ε)

m+p−1
2 ‖2L2(Ω) +K4(T )‖(uε + ε)

m+p−1
2 ‖2

L
2

m+p−1 (Ω)

≤
2(p− 1)K2(T )

(m+ p− 1)2
‖∇(uε + ε)

m+p−1
2 ‖2L2(Ω) +K5(T ) for all t ∈ (0, T ) and ε ∈ (0, 1).

As

p− 1

2

∫

Ω
(uε + ε)m+p−3φ(vε)|∇uε|

2 ≥
2(p− 1)K2(T )

(m+ p− 1)2
‖∇(uε + ε)

m+p−1
2 ‖2L2(Ω) for all t > 0 and ε ∈ (0, 1)

by (5.6), from (5.9), (5.10), (5.11) and (5.12) we infer on dropping a favorably signed summand that
for all T > 0,

1

p

d

dt

∫

Ω
(uε + ε)p +

∫

Ω
(uε + ε)p ≤ K5(T ) + |Ω| for all t ∈ (0, T ) and ε ∈ (0, 1),

and that thus, by a comparison argument,

∫

Ω
(uε + ε)p ≤ max

{∫

Ω
(u0 + 1)p , K5(T ) + |Ω|

}
for all t ∈ (0, T ) and ε ∈ (0, 1),

which yields the claimed conclusion. �

The extension of the latter result to the case p = ∞ is now rather straightforward:

Lemma 5.3 Suppose that n ≥ 2 and m > n
2 , and that φ is such that (1.9) is valid with some α ≥ 0

satisfying (1.11) and (1.12). Then there exists K : (0,∞) → (0,∞) such that for all T > 0,

‖uε(·, t)‖L∞(Ω) ≤ K(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (5.13)

and that
sup
T>0

K(T ) <∞ if (1.15) holds. (5.14)

Proof. By means of well-known gradient estimates for the Neumann heat semigroup ([31, Lemma
1.3]), an application of Lemma 5.2 to suitably large p firstly shows that given any q > 1 one can find
K(q) : (0,∞) → (0,∞) such that

sup
T>0

K(q)(T ) <∞ if (1.15) holds,
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and that for all T > 0,

‖∇vε‖Lq(Ω) ≤ K(q)(T ) for all t ∈ (0, T ) and ε ∈ (0, 1).

Since (2.12) together with (1.7) and (1.8) provides c1 > 0 and c2 > 0 such that

φ(vε) ≥ c1 in Ω× (0,∞) for all ε ∈ (0, 1)

and

|φ′(vε)| ≤ c2 in Ω× (0,∞) for all ε ∈ (0, 1),

the claimed boundedness property can readily be derived on the basis of Lemma 5.2 through a Moser-
type iteration ([27, Lemma A.1]). �

6 First-order regularity properties of uε

In view of the nonlinear nature of the diffusion process in the first equation from (1.6), and the
accordingly nonlinear manner in which u appears in (2.3), it seems in order to supplement the bounds
for uε provided through Lemma 5.3 by some further ε-independent regularity information capable of
implying at least some pointwise convergence properties of (uε)ε∈(0,1) along subsequences. This will be
the objective of the next two lemmata which, again on the basis of Lemma 5.1, prepare an argument
based on an application of an Aubin-Lions type lemma to (uε + ε)β with suitably chosen β > 0 in
Lemma 7.1 below.

We first concentrate on the spatial gradient, for which we obtain the following.

Lemma 6.1 Let n ≥ 2 and m > n
2 , and assume that φ satisfies (1.9) with some α ≥ 0 fulfilling (1.11)

and (1.12). Then for all T > 0 there exists C(T ) > 0 such that

∫ T

0

∫

Ω
(uε + ε)m+p−3|∇uε|

2 ≤ C(T ) for all ε ∈ (0, 1) (6.1)

and

ε

∫ T

0

∫

Ω
(uε + ε)p−2(uε + 1)M−1|∇uε|

2 ≤ C(T ) for all ε ∈ (0, 1). (6.2)

Proof. Relying on our assumptions of φ and α, we may combine the outcomes of Lemma 5.3 and
Lemma 4.6 with (1.7) and (1.8) to see that given T > 0 we can fix c1(T ) > 0, c2 > 0, c3 > 0 and
c4(T ) > 0 such that

uε ≤ c1(T ), φ(vε) ≥ c2 and |φ′(vε)| ≤ c3 in Ω× (0, T ) for all ε ∈ (0, 1), (6.3)

and that ∫

Ω
|∇vε|

2 ≤ c4(T ) for all t ∈ (0, T ) and each ε ∈ (0, 1), (6.4)
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where the first inequality in (6.3) warrants that in order to prove the lemma it will be sufficient to
consider the case p ∈ (0, 1) only. For such p, an application of Lemma 5.1 to ψ ≡ 1 shows that for all
t > 0 and ε ∈ (0, 1),

1

p

d

dt

∫

Ω
(uε + ε)p = (1− p)Mε

∫

Ω
(uε + ε)p−2(uε + 1)M−1|∇uε|

2

+(1− p)

∫

Ω
(muε + ε)(uε + ε)m+p−4φ(vε)|∇uε|

2

+(1− p)

∫

Ω
uε(uε + ε)m+p−3φ′(vε)∇uε · ∇vε, (6.5)

where by Young’s inequality, (6.3) and (6.4),

∣∣∣∣(1− p)

∫

Ω
uε(uε + ε)m+p−3φ′(vε)∇uε · ∇vε

∣∣∣∣

≤
1− p

2

∫

Ω
(muε + ε)(uε + ε)m+p−4φ(vε)|∇uε|

2

+
1− p

2

∫

Ω

u2ε
muε + ε

(uε + ε)m+p−2φ
′2(vε)

φ(vε)
|∇vε|

2

≤
1− p

2

∫

Ω
(muε + ε)(uε + ε)m+p−4φ(vε)|∇uε|

2

+
1− p

2m

∫

Ω
(uε + ε)m+p−1φ

′2(vε)

φ(vε)
|∇vε|

2

≤
1− p

2

∫

Ω
(muε + ε)(uε + ε)m+p−4φ(vε)|∇uε|

2

+
1− p

2m
· (c1(T ) + 1)m+p−1 ·

c23
c2

· c4(T ) for all t ∈ (0, T ) and ε ∈ (0, 1).

Since, as further consequences of (6.3), we have

1− p

2

∫

Ω
(muε + ε)(uε + ε)m+p−4φ(vε)|∇uε|

2

≥
(1− p)c2

2

∫

Ω
(uε + ε)m+p−3|∇uε|

2 for all t > 0 and ε ∈ (0, 1),

and

1

p

∫

Ω

(
uε(·, T ) + ε

)p
≤

1

p
· (c1(T ) + 1)p|Ω| for all ε ∈ (0, 1),

an integration of (6.5) over t ∈ (0, T ) yields both claimed estimates. �

Again through the identity from Lemma 5.1, the latter also entails some regularity feature of the
corresponding time derivatives:
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Lemma 6.2 Let n ≥ 2 and m > n
2 , and let φ satisfy (1.9) with some α ≥ 0 satisfying (1.11) and

(1.12). Then for each k ∈ N satisfying k > n
2 , any p > 0 and all T > 0 one can find C(k, p, T ) > 0

such that ∫ T

0

∥∥∥∂t
(
uε(·, t) + ε

)p∥∥∥
(W k,2(Ω))⋆

dt ≤ C(k, p, T ) for all ε ∈ (0, 1). (6.6)

Proof. Given T > 0, let us once more recall Lemma 5.3, Lemma 4.6, (1.7) and (1.8) to find positive
constants c1(T ), c2, c3 and c4(T ) such that

uε ≤ c1(T ), φ(vε) ≤ c2 and |φ′(vε)| ≤ c3 in Ω× (0, T ) for all ε ∈ (0, 1) (6.7)

and ∫

Ω
|∇vε|

2 ≤ c4(T ) for all t ∈ (0, T ) and ε ∈ (0, 1), (6.8)

and moreover rely on the continuity of the embedding W k,2(Ω) →֒ L∞(Ω) to choose c5 > 0 fulfilling
‖ψ‖L∞(Ω) ≤ c5‖ψ‖W k,2(Ω) for all ψ ∈ C∞(Ω).

For fixed ψ ∈ C∞(Ω) satisfying ‖ψ‖W k,2(Ω) ≤ 1, from Lemma 5.1 we then obtain that due to (6.7),

∣∣∣∣
1

p

∫

Ω
∂t(uε + ε)pψ

∣∣∣∣

≤ |p− 1|Mc5ε

∫

Ω
(uε + ε)p−2(uε + 1)M−1|∇uε|

2

+|p− 1|mc2c5

∫

Ω
(uε + ε)m+p−3|∇uε|

2

+|p− 1|c3c5

∫

Ω
(uε + ε)m+p−2|∇uε| · |∇vε|

+Mε

∫

Ω
(uε + ε)p−1(uε + 1)M−1|∇uε|

+mc2

∫

Ω
(uε + ε)m+p−2|∇uε|

+c3

∫

Ω
(uε + ε)m+p−1|∇vε| for all t ∈ (0, T ) and ε ∈ (0, 1). (6.9)

Since herein Young’s inequality together with (6.7) and (6.8) ensures that for all t ∈ (0, T ) and
ε ∈ (0, 1) we have

∫

Ω
(uε + ε)m+p−2|∇uε| · |∇vε| ≤

∫

Ω
(uε + ε)m+p−3|∇uε|

2+
1

4

∫

Ω
(uε + ε)m+p−1|∇vε|

2

≤

∫

Ω
(uε + ε)m+p−3|∇uε|

2 +
1

4
· (c1(T ) + 1)m+p−1c4(T )

and

ε

∫

Ω
(uε + ε)p−1(uε + 1)M−1|∇uε| ≤ ε

∫

Ω
(uε + ε)p−2(uε + 1)M−1|∇uε|

2 +
ε

4

∫

Ω
(uε + ε)p(uε + 1)M−1

≤ ε

∫

Ω
(uε + ε)p−2(uε + 1)M−1|∇uε|

2 +
ε

4
· (c1(T ) + 1)p+M−1|Ω|
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as well as
∫

Ω
(uε + ε)m+p−1|∇vε| ≤

∫

Ω
(uε + ε)2(m+p−1) +

1

4

∫

Ω
|∇vε|

2

≤ (c1(T ) + 1)2(m+p−1) +
1

4
c4(T ),

from (6.9) we infer the existence of c6(k, p, T ) > 0 fulfilling
∥∥∥∂t(uε + ε)p

∥∥∥
(W k,2(Ω))⋆

≤ c6(k, p, T )ε

∫

Ω
(uε + ε)p−2(uε + 1)M−1|∇uε|

2

+c6(k, p, T )

∫

Ω
(uε + ε)m+p−3|∇uε|

2 + c6(p, k, T ) for all t ∈ (0, T ) and ε ∈ (0, 1).

In view of Lemma 6.1, the claimed statement therefore results upon an integration over (0, T ). �

7 Passing to the limit. Proof of Theorem 1.1 and Theorem 1.2

We now only need to appropriately combine our estimates collected above, and the compacntess
properties thus implied, to accomplish the main step toward our main results by suitably passing to
the limit εց 0.

Lemma 7.1 Let n ≥ 2, m > n
2 and φ be such that (1.9) holds with some α ≥ 0 satisfying (1.11) and

(1.12). Then there exist (εj)j∈N ⊂ (0, 1) as well as nonnegative functions
{
u ∈ L∞

loc(Ω× [0,∞)) and

v ∈ C0(Ω× [0,∞)) ∩ L2
loc([0,∞);W 1,2(Ω))

(7.1)

such that εj ց 0 as j → ∞, and that as ε = εj ց 0 we have

uε → u in
⋂

p≥1

L
p
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (7.2)

vε → v in C0
loc(Ω× [0,∞)) and (7.3)

∇vε ⇀ ∇v in L2
loc(Ω× [0,∞)). (7.4)

Moreover, v > 0 in Ω×[0,∞), and (u, v) forms a global weak solution of (1.6) in the sense of Definition
2.1.

Proof. We fix any β > m−1
2 and k ∈ N such that k > n

2 , and then infer from Lemma 6.1, (2.11)
and Lemma 6.2 that for all T > 0,

(
(uε + ε)β

)
ε∈(0,1)

is bounded in L2((0, T );W 1,2(Ω)),

and that
(
∂t(uε + ε)β

)
ε∈(0,1)

is bounded in L1((0, T ); (W k,2(Ω))⋆).
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Apart from that, thanks to Lemma 4.6 and Lemma 5.3 we may invoke standard theory on Hölder
regularity in scalar parabolic equations ([24]) to see that given any T > 0 we can find ϑ = ϑ(T ) ∈ (0, 1)
such that

(vε)ε∈(0,1) is bounded in Cϑ,
ϑ
2 (Ω× [0, T ]),

and that

(uε)ε∈(0,1) is bounded in L∞(Ω× (0, T ))

and

(∇vε)ε∈(0,1) is bounded in L2(Ω× (0, T )).

An application of an Aubin-Lions type lemma ([29]) and the Arzelà-Ascoli theorem therefore readily
yields nonnegative functions u and v fulfilling (7.1), as well as a sequence (εj)j∈N ⊂ (0, 1) such that
εj ց 0 as j → ∞ and that (7.2)-(7.4) hold as ε = εj ց 0.

Positivity of v in Ω × [0,∞) is therefore immediate from (2.12) and (7.3), and a verification of the
identities in (2.3) and (2.4) can be achieved in a straightforward manner on the basis of (7.2), (7.3)
and (7.4) in view of the fact that due to the continuity of φ and φ′ on (0,∞), from (7.3) we also know
that φ(vε) → φ(v) and φ′(vε) → φ′(v) in C0

loc(Ω× [0,∞)) as ε = εj ց 0. �

Thanks to the additional information on the respective functions K provided by (5.14) and (4.24),
under the stronger assumption on α in (1.15) the additional boundedness statement from Theorem
1.2 actually reduces to a by-product:

Lemma 7.2 Let n ≥ 2 and m > n
2 , and assume that (1.9) holds with some α ≥ 0 which beyond (1.11)

and (1.12) also satisfies (1.15) Then the global weak solution of (1.6) obtained in Lemma 7.1 has the
additional property that with some C > 0 we have

‖u(·, t)‖L∞(Ω) ≤ C for a.e. t > 0 (7.5)

and
‖v(·, t)‖L∞(Ω) ≤ C for all t > 0. (7.6)

Proof. The boundedness feature in (7.5) is a consequence of (5.13) and (5.14) when combined
with (7.2), whereas that in (7.6) can similarly be obtained from (4.23), (4.24) and (7.3), because
W 1,q(Ω) →֒ L∞(Ω) when q > n. �

To finally obtain our main results, we only need to summarize:

Proof of Theorem 1.1. All statements have been asserted by Lemma 7.1 already. �

Proof of Theorem 1.2. We only need to apply Lemma 7.2. �
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[18] Lankeit, J.: A new approach toward boundedness in a two-dimensional parabolic chemotaxis
system with singular sensitivity. Math. Meth. Appl. Sci. 39, 394-404 (2016)

[19] Liu, C., et al.: Sequential establishment of stripe patterns in an expanding cell population.
Science 334, 238 (2011)

[20] Liu, Z., Xu, J.: Large time behavior of solutions for density-suppressed motility system in higher
dimensions. J. Math. Anal. Appl. 475, 1596-1613 (2019)

[21] Lv, W., Wang, Q.: Global existence for a class of chemotaxis systems with signal-dependent
motility, indirect signal production and generalized logistic source. Z. Angew. Math. Physik 71,
53 (2020)

[22] Lv, W., Wang, Q.: Global existence for a class of Keller-Segel model with signal-dependent
motility and general logistic term. Preprint

[23] Lv, W., Wang, Q.: A n-dimensional chemotaxis system with signal-dependent motility and
generalized logistic source: Global existence and asymptotic stabilization. Preprint

[24] Porzio, M.M., Vespri, V.: Holder estimates for local solutions of some doubly nonlinear
degenerate parabolic equations. J. Differential Equations 103 (1), 146-178 (1993)

[25] Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system
modeling multiscale cancer cell invasion. SIAM Journal of Mathematical Analysis 46 (3), 1969-
2007 (2014)

[26] Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular
sensitivity. Nonlinear Analysis: Real World Applications 12, 3727-3740 (2011)

[27] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system
with subcritical sensitivity. J. Differential Equations 252, 692-715 (2012)

[28] Tao, Y., Winkler, M.: Effects of signal-dependent motilities in a Keller-Segel-type reaction-
diffusion system Math. Mod. Meth. Appl. Sci. 27, 1645-1683 (2017)

[29] Temam, R.: Navier-Stokes equations. Theory and numerical analysis. Studies in Mathematics
and its Applications. Vol. 2. North-Holland, Amsterdam, 1977

[30] Wang, J., Wang, M.: Boundedness in the higher-dimensional Keller-Segel model with signal-
dependent motility and logistic growth. J. Math. Phys. 60, 011507 (2019)

[31] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel
model. J. Differential Equations 248, 2889-2905 (2010)

33



[32] Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Mathematical
Methods in the Applied Sciences 33, 12-24 (2010)

[33] Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity.
Math. Meth. Appl. Sci. 34, 176-190 (2011)

[34] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel
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