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Abstract

In a smoothly bounded domain Ω ⊂ R
n, n ≥ 1, the quasilinear Keller-Segel system

{

ut = ∇ ·
(

D(u)∇u
)

−∇ ·
(

S(u)∇v
)

,

vt = ∆v − v + u,
(⋆)

is considered under homogeneous no-flux boundary conditions.

It is firstly shown that if D and S, besides belonging to C2([0,∞)) with S(0) = 0, merely satisfy

D > 0 in [0, R] with some R > 0,

then for all K > 0 there exists ε⋆(K) ∈ (0, R
2 ) such that whenever 0 ≤ u0 ∈ W 1,∞(Ω) and

0 ≤ v0 ∈ W 1,∞(Ω) satisfy

‖u0‖L∞(Ω) ≤ ε⋆(K) and ‖v0‖W 1,∞(Ω) ≤ K,

a corresponding initial value problem for (⋆) admits a global bounded classical solution with
(u, v)|t=0 = (u0, v0).

Secondly, a more restrictive condition on the initial data, inter alia requiring appropriate smallness
of both ‖u0‖L∞(Ω) and ‖v0‖W 1,∞(Ω), is identified as sufficient to ensure exponential stabilization of

the correspondingly obtained solution toward the equilibrium ( 1
|Ω|

∫

Ω
u0,

1
|Ω|

∫

Ω
u0).

As a technical ingredient of crucial importance for the derivation of explicit pointwise bounds for
the respective first solution components, the analysis relies on a refinement of a Moser-type itera-
tive argument which, formulated here in a general context of parabolic inequalities, provides some
quantitative information about the dependence of L∞ estimates on bounds on the initial data and
L1 bounds.
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1 Introduction

This article studies the well-posedness for the following parabolic-parabolic Keller-Segel system



















ut = ∇ ·
(

D(u)∇u
)

−∇ ·
(

S(u)∇v
)

, x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω is a smoothly bounded domain in R
n with n ≥ 1, and where ∂

∂ν
denotes the derivative

with respect to the outer normal of ∂Ω. Problems of this form arise in the description of reinforced
chemotactic migration, that is, of processes in which cell, in (1.1) represented through the population
density u, migrate toward locations with a higher concentration of a chemical signal that is produced
by themselves, and which is denoted by v. By allowing deviations from the particular choices D ≡ 1
and S(u) = u, u ≥ 0, that determine the classical and thoroughly studied Keller-Segel model, the
system (1.1) appears to be well-adapted to situations in which both random diffusive and directed
cross-diffusive movement are subject to density-dependent influences, among which especially so-called
volume-filling effects seem to be of predominant relevance in applications ([15], [8]). In such contexts,
a natural focus is on choices of D and S which in comparison to the above appropriately reflect sat-
uration effects at large population densities, in particular leading to decreasing diffusion rates which
may give rise to considerable degeneracies of parabolicity near points where u is large.

In order to further illustrate the motivation for this study, especially with regard to mathematical
aspects, let first recall some known results that demonstrate effects exerted by the competing mech-
anisms of diffusion and taxis in (1.1). In fact, a certain setting-dependence in the solution behavior
can already be observed in the classical fully parabolic Keller-Segel system



















ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.2)

as forming the most prominent representative thereof: In the dimension n = 1, the dissipative effect
of diffusion is strong enough to ensure the global and classical solvability for the model (1.2) ([14]).
If n = 2, a critical mass phenomenon occurs in the radially symmetric setting: The model possesses
a global and bounded classical solution whenever

∫

Ω u0 < 8π [13] and there exist finite-time blow-up
solutions emanating from some initial data (u0, v0) with the property

∫

Ω u0 > 8π ([7]). For the case
when Ω ⊆ R

n is a ball with n ≥ 3, it has been shown in [23] that at arbitrarily small levels of
∫

Ω u0,
some solutions blow up in finite time, which inter alia indicates that smallness of the total population
mass is not sufficient to rule out chemotactic collapse in such higher-dimensional settings. After all,
global well-posedness can be inferred from alternative conditions on smallness of initial data which
involve norms more selective than L1: In fact, the work [1] revealed the existence of ε0 > 0 such that
if the initial data (u0, v0) satisfy ‖u0‖Ln

2 (Ω)
≤ ε0 and ‖∇v0‖Ln(Ω) ≤ ε0, then the system (1.2) admits a

classical and globally bounded solution (u, v) which approaches the steady state ( 1
|Ω|

∫

Ω u0,
1
|Ω|

∫

Ω u0)
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in the large time limit.

In contexts of more general ingredients for (1.1), existing results concerned with initial data of arbi-

trary size have indicated that it should essentially be the asymptotics of S(u)
D(u) at large values of u which

determines whether diffusion can overbalance the aggregation-enhancing effects of taxis. Indeed, when
S(u)
D(u) ≥ cu

2
n
+ε with ε > 0 for all u > 1, by utilizing the presence of a certain Lyapunov functional

that may become unbounded along trajectories, it was found in [22] that the problem (1.1) with Ω
being a ball possesses smooth solutions that blow up either in finite or infinite time; within some
parts of this parameter regime it could even be clarified whether these explosions occur within finite
([2], [3]) or infinite time ([24], [25]). On the other hand, a result on global existence and boundedness
of solutions emanating from widely arbitrary, and especially large, initial data was obtained in [18]

and [10] provided that S(u)
D(u) ≤ cu

2
n
−ε with ε > 0 for all u > 1 (cf. also [17] and [9] for some earlier

partial findings concerned with specific choices of D and S); however, as an assumption of apparently
crucial technical relevance all these latter approaches toward blow-up exclusion rely on the additional
hypothesis that D decays at rates which are at most algebraic, and only in very few exceptional cases
some boundedness results could be derived in the presence of exponentially decreasing diffusion rates
([4], [5]).

The methodological core of these shortcomings seems to be linked to the circumstance that in sharp
contrast to the situation in associated purely dissipative nonlinear diffusion problems of the form
ut = ∇ · (D(u)∇u), an apparent absence of any expedient maximum-principle based strategy toward
boundedness proofs for the full system (1.1) enforces resorting to alternative derivations of L∞ esti-
mates. In fact, approaches based on Moser-type iterations have turned out to provide powerful tools in
this direction, and their use in contexts of chemotaxis systems, also within considerably more complex
frameworks, has meanwhile become fairly common; however, in their original form such Moser-type
methods seem a priori limited in applicability, due to their mere nature, to situations in which the
action of diffusion can be controlled from below in an appropriate power-type manner (cf. e.g. [18,
Lemma A.1]).

Quite in line with this, also the analysis of small-data solutions to versions of (1.1) in supercritical
regimes of S

D
has so far been restricted to cases of at most algebraically decaying D; for an associated

result on the existence of global and bounded solutions within such aggregation-dominated parameter
ranges, involving a smallness condition on (u0, v0) in Lp ×W 1,q with suitably large p > 1 and q > 1,
we refer to [6]. In the presence of general diffusion rates functions D possibly exhibiting very rapid
decay as u → ∞, the question whether any nontrivial global bounded solutions to (1.1) exist at all
appears to be completely open, both for subcritical and for supercritical S.

Main results. Now the purpose of this paper is to present an approach capable of answering the
latter question in the affirmative under apparently minimal requirements on the model constituents.
To achieve this, as a tool of possibly independent interest we shall attempt to further develop Moser’s
method so as to provide, in contexts of fairly general parabolic inequalities, quite precise quantitative
information about the dependence of spatio-temporal L∞ estimates on uniform bounds for the initial
data on the one hand, and L1 bounds for the solution itself on the other (cf. Section 2). With this
tool at hand, we shall in fact be able to assert global classical solvability and boundedness in (1.1)
under model assumptions which essentially require nothing further than positivity of D near u = 0,
and for initial data which only in their first component need to be adequately small.
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More precisely, throughout the sequel we shall only need to assume that
{

D ∈ C2([0, R]) and S ∈ C2([0, R]) are such that

D > 0 in [0, R] and S(0) = 0
(1.3)

with some R > 0, and hence not only include positive D ∈ C2([0,∞)) which decay at arbitrarily fast
rates as u → ∞, but beyond this allow for diffusion degeneracies even at finite positive densities such
as those proposed in [27] and [28], and analyzed in the presence of correspondingly large initial data
in [19] and [20], for instance.

Within any such setting, the first of our main results makes sure that even in the presence of taxis
gradients of arbitrary size at the initial instant, an appropriate smallness assumption on the first
component of the initial data, in view of (1.3) quite naturally formulated in terms of L∞ norms,
ensures global existence and boundedness:

Theorem 1.1 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, and suppose that

D and S satisfy (1.3) with some R > 0. Then given any K > 0 one can find ε⋆ = ε⋆(K) ∈ (0, R) with
the property that whenever u0 ∈ W 1,∞(Ω) and v0 ∈ W 1,∞(Ω) are nonnegative with

‖u0‖L∞(Ω) ≤ ε⋆ and ‖v0‖W 1,∞(Ω) ≤ K, (1.4)

there exist functions
{

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) and

v ∈ ⋂

q>nC
0([0,∞);W 1,q(Ω)) ∩ L∞((0,∞);W 1,∞(Ω)) ∩ C2,1(Ω× (0,∞))

(1.5)

such that 0 ≤ u < R and v ≥ 0 in Ω× [0,∞), and that (u, v) solves (1.1) in the classical sense.

If, beyond the above, suitable smallness conditions are satisfied by both components of the initial
data, then these solutions can furthermore be seen to stabilize toward homogeneous steady states
asymptotically. Indeed, on the basis of an auxiliary result ensuring a certain preservation of smallness
in the second solution component (Lemma 3.3), an expression of the form

∫

Ω

(

u− 1

|Ω|

∫

Ω
u0

)2
+

∫

Ω

(

v − 1

|Ω|

∫

Ω
u0

)2
, t > 0,

can be shown to play the role of a genuine Lyapunov functional along small-data trajectories. In
Section 4, this will reveal the second of our main results:

Theorem 1.2 Suppose that n ≥ 1 and Ω ⊂ R
n is a bounded domain with smooth boundary, and

(1.3) holds with some R > 0. Then there exists λ > 0 such that with ε⋆ = ε⋆(1) ∈ (0, R) taken
from Theorem 1.1, one can choose ε⋆⋆ ∈ (0,min{ε⋆, 1}] in such a way that if 0 ≤ u0 ∈ W 1,∞(Ω) and
0 ≤ v0 ∈ W 1,∞(Ω) satisfy

‖u0‖L∞(Ω) ≤ ε⋆⋆ and ‖v0‖W 1,∞(Ω) ≤ ε⋆⋆, (1.6)

the solution (u, v) of (1.1) obtained in Theorem 1.1 has the additional property that with some C =
C(u0, v0) > 0 we have

‖u(·, t)− u0‖L∞(Ω) ≤ Ce−λt for all t > 0 (1.7)
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and
‖v(·, t)− u0‖L∞(Ω) ≤ Ce−λt for all t > 0, (1.8)

where u0 :=
1
|Ω|

∫

Ω u0.

2 Quantitative dependencies in a parabolic Moser-type iteration

The goal of this preliminary section is to derive some quantitative information on how L∞ norms of
solutions to certain linear parabolic inequalities depend on the respective initial data and, yet more
importantly, on a supposedly present temporally uniform spatial L1 bound. This will be achieved
in Lemma 2.2 on the basis of a Moser-type iterative argument which makes use of the following
elementary observation.

Lemma 2.1 Let A ≥ 0 and B ≥ 1, and suppose that (Mk)k∈N0
⊂ [0,∞) is such that

Mk ≤ max
{

A2k , BkM2
k−1

}

for all k ≥ 1. (2.1)

Then

M
1

2k

k ≤ B2 ·max
{

A , M0

}

for all k ≥ 0. (2.2)

Proof. We let
µk := max

{

Mk , A
2kB− k+1

2

}

, k ∈ N0, (2.3)

and first claim that
µk ≤ Bkµ2

k−1 for all k ≥ 1. (2.4)

To verify this, we note that from (2.3) and (2.1) it follows since B− k+1
2 ≤ 1 for all k ≥ 1,

µk ≤ max

{

max
{

A2k , BkM2
k−1

}

, A2kB− k+1
2

}

= max
{

A2k , BkM2
k−1 , A

2kB− k+1
2

}

= max
{

A2k , BkM2
k−1

}

for all k ≥ 1. (2.5)

Here, again due to (2.3),

A2k = Bk ·
(

A2k−1

B− k
2

)2 ≤ Bkµ2
k−1 for all k ≥ 1

and

BkM2
k−1 ≤ Bkµ2

k−1 for all k ≥ 1.

Therefore, (2.5) indeed implies (2.4), which in turn, through a straightforward induction, entails that

µk ≤ B2k+1−k−2µ2k

0 for all k ≥ 1.
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Once more thanks to (2.3) and the inequality B ≥ 1, we thus infer that

M
1

2k

k ≤ µ
1

2k

k ≤ B
2k+1

−k−2

2k µ0 ≤ B2µ0 = B2 ·max
{

M0 , AB
− 1

2

}

≤ B2 ·max
{

M0 , A
}

for all k ≥ 1,

and conclude as intended. �

In fact, the latter will form the iterative core in our derivation of the following boundedness result
which we formulate in a setting slightly more general than actually needed in the sequel. Indeed, in
Lemma 3.4 below our application of Lemma 2.2 will exclusively refer to the particular choices q = ∞
and f ≡ 0 therein.

Lemma 2.2 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, and let q ∈ [2,∞]

be such that q > n. Then for all η > 0 and K > 0 one can find Λ(q, η,K) > 0 with the property
that whenever T ∈ (0,∞], a ∈ C1(Ω × (0, T )), b ∈ C1(Ω × (0, T );Rn), f ∈ C0(Ω × (0, T )) and
u ∈ C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T )) are such that

a(x, t) ≥ η for all (x, t) ∈ Ω× (0, T ), (2.6)

that
‖b(·, t)‖Lq(Ω) ≤ K for all t ∈ (0, T ), (2.7)

that
‖f(·, t)‖

L
q
2 (Ω)

≤ K for all t ∈ (0, T ), (2.8)

and that u is nonnegative with
{

ut ≤ ∇ ·
(

a(x, t)∇u
)

+∇ ·
(

b(x, t)u
)

+ f(x, t)u x ∈ Ω, t ∈ (0, T ),
(

a(x, t)∇u+ b(x, t)u
)

· ν ≤ 0, x ∈ ∂Ω, t ∈ (0, T ),
(2.9)

we have

‖u(·, t)‖L∞(Ω) ≤ Λ(q, η,K) ·max

{

‖u(·, 0)‖L∞(Ω) , sup
s∈(0,T )

‖u(·, s)‖L1(Ω)

}

for all t ∈ (0, T ). (2.10)

Proof. Due to the boundedness of Ω, it is evidently sufficient to restrict our considerations to the
case when q is finite. In order to then prepare our definition of Λ(q, η,K), we abbreviate

c1 = c1(q, η,K) :=
K2

2η
+K + |Ω|

2
q (2.11)

and note that since q > n and q ≥ 2, writing

r = r(q) :=

{

+∞ if q = 2,
2q
q−2 if q > 2,

(2.12)

we have r > 2 and (n− 2)r < 2n, because if q = 2 then necessarily n = 1. Therefore, the Gagliardo-
Nirenberg inequality applies so as to yield c2 = c2(q) > 0 such that

‖ϕ‖2Lr(Ω) ≤ c2‖∇ϕ‖2κL2(Ω)‖ϕ‖
2(1−κ)
L1(Ω)

+ c2‖ϕ‖2L1(Ω) for all ϕ ∈ W 1,2(Ω) (2.13)
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with

κ = κ(q) :=

{

2n
n+2 = 2

3 if q = 2,
n(q+2)
(n+2)q if q > 2,

satisfying κ ∈ (0, 1). We thereupon define

c3 = c3(q, η,K) := (c1c2)
1

1−κ η
− κ

1−κ , c4 = c4(q, η,K) := c1c2 + c3 and c5 := max
{

|Ω| , 1
}

(2.14)
as well as

B = B(q, η,K) := 2
2

1−κ ·max
{

c4 , 1
}

, (2.15)

and to verify that the claimed conclusion holds if we let

Λ(q, η,K) := c5B
2, (2.16)

we suppose that T ∈ (0,∞], and that a, b, f and u have the listed regularoty properties and satisfy
(2.6), (2.7), (2.8) and (2.9). For nonnegative integers k, we then take pk := 2k and

Mk(T0) := sup
t∈(0,T0)

∫

Ω
upk(·, t), T0 ∈ (0, T ), (2.17)

and note that to derive (2.10) we only need to consider the case when both ‖u(·, 0)‖L∞(Ω) and M0 :=
supT0∈(0,T )M0(T0) ≡ sups∈(0,T ) ‖u(·, s)‖L1(Ω) are finite.

In such constellations, for k ≥ 1 we may multiply the first inequality in (2.9) by upk−1 and integrate
by parts to obtain from (2.6) and the nonpositivity of (a∇u+bu) ·ν on ∂Ω×(0, T ) that due to Young’s
inequality,

1

pk

d

dt

∫

Ω
upk + (pk − 1)η

∫

Ω
upk−2|∇u|2 ≤ 1

pk

d

dt

∫

Ω
upk + (pk − 1)

∫

Ω
aupk−2|∇u|2

≤ −(pk − 1)

∫

Ω
upk−1b · ∇u+

∫

Ω
fupk

≤ (pk − 1)η

2

∫

Ω
upk−2|∇u|2

+
pk − 1

2η

∫

Ω
|b|2upk +

∫

Ω
|f |upk for all t ∈ (0, T ),

so that

d

dt

∫

Ω
upk+η

∫

Ω
|∇u

pk
2 |2+

∫

Ω
upk ≤ p2k

2η

∫

Ω
|b|2upk+p2k

∫

Ω
|f |upk+p2k

∫

Ω
upk for all t ∈ (0, T ), (2.18)

because |∇u
pk
2 |2 =

p2
k

4 u
pk−2|∇u|2, and because 2(pk−1)η

pk
≥ η and pk(pk−1)

2η ≤ p2
k

2η as well as pk ≤ p2k and

1 ≤ p2k for any such k. Now thanks to the Hölder inequality and (2.12), we may utilize (2.7) and (2.8)
to see that since r−2

r
= 2

q
,

1

2η

∫

Ω
|b|2upk +

∫

Ω
|f |upk +

∫

Ω
upk ≤ 1

2η
‖b‖2Lq(Ω)‖u

pk
2 ‖2Lr(Ω) + ‖f‖

L
q
2 (Ω)

‖u
pk
2 ‖2Lr(Ω) + |Ω|

2
q ‖u

pk
2 ‖2Lr(Ω)

≤ c1‖u
pk
2 ‖2Lr(Ω) for all t ∈ (0, T )
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according to our definition (2.11) of c1. We can therefore draw on (2.13) to infer that by (2.17), and
once more by Young’s inequality, given any T0 ∈ (0, T ) we have

p2k
2η

∫

Ω
|b|2upk + p2k

∫

Ω
|f |upk + p2k

∫

Ω
upk

≤ c1c2p
2
k‖∇u

pk
2 ‖2κL2(Ω)‖u

pk
2 ‖2(1−κ)

L1(Ω)
+ c1c2p

2
k‖u

pk
2 ‖2L1(Ω)

≤ c1c2p
2
kM

2(1−κ)
k−1 (T0)‖∇u

pk
2 ‖2κL2(Ω) + c1c2p

2
kM

2
k−1(T0)

=

{

η

∫

Ω
|∇u

pk
2 |2

}κ

·
{

c1c2η
−κp2kM

2(1−κ)
k−1 (T0)

}

+ c1c2p
2
kM

2
k−1(T0)

≤ η

∫

Ω
|∇u

pk
2 |2 + c3p

2
1−κ

k M2
k−1(T0) + c1c2p

2
kM

2
k−1(T0)

≤ η

∫

Ω
|∇u

pk
2 |2 + c4p

2
1−κ

k M2
k−1(T0) for all t ∈ (0, T0),

in line with our selections of c3 and c4 in (2.14), and with the obvious fact that p2k ≤ p
2

1−κ

k . In
consequence, from (2.18) we obtain the autonomous ODI

d

dt

∫

Ω
upk +

∫

Ω
upk ≤ c4p

2
1−κ

k M2
k−1(T0) for all t ∈ (0, T0),

which upon a comparison argument implies that for any such T0 and k,

∫

Ω
upk(·, t) ≤ max

{
∫

Ω
upk(·, 0) , c4p

2
1−κ

k M2
k−1(T0)

}

for all t ∈ (0, T0),

and thus, since
∫

Ω upk(·, 0) ≤ |Ω| · ‖u(·, 0)‖pk
L∞(Ω),

Mk(T0) ≤ max

{

|Ω| · ‖u(·, 0)‖pk
L∞(Ω) , c4p

2
1−κ

k M2
k−1(T0)

}

for all T0 ∈ (0, T ) and k ≥ 1. (2.19)

By an induction relying on the presupposed finiteness of ‖u(·, 0)‖L∞(Ω) and of M0, this firstly ensures

that for each k ∈ N, Mk := supT0∈(0,T )Mk(T0) introduces a finite number, whereupon (2.19), secondly,
entails that these numbers satisfy

Mk ≤ max

{

|Ω| · ‖u(·, 0)‖pk
L∞(Ω) , c4p

2
1−κ

k M
2
k−1

}

for all k ≥ 1. (2.20)

To make this inequality accessible to the outcome of Lemma 2.1, we observe that by definition of c5
in (2.14),

|Ω|
1
pk · ‖u(·, 0)‖L∞(Ω) ≤ A := c5‖u(·, 0)‖L∞(Ω) for all k ≥ 1,

and that our choice of B in (2.15) guarantees that

(

c4p
2

1−κ

k

)
1
k = c

1
k

4 · 2
2

1−κ ≤ B for all k ≥ 1.
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Accordingly, from (2.20) we obtain that

Mk ≤ max
{

A2k , BkM
2
k−1

}

for all k ≥ 1,

which upon an application of Lemma 2.1 reveals that

M
1

2k

k ≤ B2 ·max
{

A , M0

}

= B2 ·max

{

c5‖u(·, 0)‖L∞(Ω) , sup
s∈(0,T )

‖u(·, s)‖L1(Ω)

}

≤ c5B
2 ·max

{

‖u(·, 0)‖L∞(Ω) , sup
s∈(0,T )

‖u(·, s)‖L1(Ω)

}

for all k ≥ 1

due to the fact that c5 ≥ 1. Taking k → ∞ here readily establishes (2.10) with Λ(q, η,K) as in (2.16).
�

3 Global existence. Proof of Theorem 1.1

In order to next construct global small-data solutions to (1.1) in the intended flavor, let us first
draw on approaches from standard theory to obtain the following basic statement on local existence,
extensibility and mass conservation:

Lemma 3.1 If n ≥ 1 and Ω ⊂ R
n is a bounded domain with smooth boundary, if D and S satisfy

(1.3) with some R > 0, and if
{

u0 ∈ W 1,∞(Ω) satisfies 0 ≤ u0 < R in Ω and

v0 ∈ W 1,∞(Ω) is nonnegative,
(3.1)

there exist Tm ∈ (0,∞] and nonnegative functions
{

u ∈ C0(Ω× [0, Tm)) ∩ C2,1(Ω× (0, Tm)) and

v ∈ ⋂

q>nC
0([0, Tm);W 1,q(Ω)) ∩ L∞

loc([0, Tm);W 1,∞(Ω)) ∩ C2,1(Ω× (0, Tm))

such that u < R in Ω× [0, Tm), that (u, v) solves (1.1) classically in Ω× (0, Tm), and that

if Tm = ∞, then lim sup
tրTm

‖u(·, t)‖L∞(Ω) = R or lim sup
tրTm

‖v(·, t)‖W 1,∞(Ω) = ∞. (3.2)

Moreover, this solution satisfies
∫

Ω
u(·, t) =

∫

Ω
u0 for all t ∈ (0, Tm). (3.3)

Proof. As this can be verified by straightforward adaptation of standard reasonings, instead of
repeating essentially well-known arguments here we may refer to the derivation detailed [11, Section
2] for a closely related framework. �

Now to provide a convenient tool for an appropriate control of the second solution component, and
particularly its gradient, we extract the following as a special case of a more general regularity property
documented in [26, Proposition 1.1].

9



Lemma 3.2 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, and let p > n.

Then writing θ(p) := (n−1)p
n(p−1) , for each δ ∈ (0, 1 − θ(p)) one can find C(p, δ) > 0 such that whenever

T ∈ (0,∞], any ϕ ∈ C0(Ω× [0, T )) ∩C2,1(Ω× (0, T )) with ϕt −∆ϕ ∈ L1
loc(Ω× [0, T )) and ∂ϕ

∂ν
= 0 on

∂Ω× (0, T ) has the property that

‖ϕ(·, t)‖W 1,∞(Ω)

≤ C(p, δ)‖ϕ(·, 0)‖W 1,∞(Ω)

+C(p, δ) ·
{

sup
s∈(0,t)

∥

∥

∥
(ϕt −∆ϕ+ ϕ)(·, s)

∥

∥

∥

Lp(Ω)

}θ(p)+δ

×

×
{

sup
s∈(0,t)

∥

∥

∥
(ϕt −∆ϕ+ ϕ)(·, s)

∥

∥

∥

L1(Ω)

}1−θ(p)−δ

for all t ∈ (0, T ).

In fact, this quantitative a priori information enables us to derive the following from the second
equation in (1.1) in quite a straightforward manner.

Lemma 3.3 There exists Γ > 0 with the property that given any K > 0 one can find ε0 = ε0(K) ∈
(0, R4 ) such that whenever u0 and v0 satisfy (3.1) with

‖u0‖L∞(Ω) ≤ ε0 and ‖v0‖W 1,∞(Ω) ≤ K, (3.4)

then for the solution (u, v) of (1.1) from Lemma 3.1 we have

‖v(·, t)‖L∞(Ω) + ‖∇v(·, t)‖L∞(Ω) ≤ ΓK for all t ∈ (0, Tm). (3.5)

Proof. Fixing an arbitrary p > n, we let θ := (n−1)p
n(p−1) and pick any δ ∈ (0, 1 − θ), and then

infer from Lemma 3.2 that there exists c1 > 0 with the property that for arbitrary T ∈ (0,∞], each
ϕ ∈ C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T )) fulfilling ϕt −∆ϕ ∈ L1

loc(Ω× [0, T )) and ∂ϕ
∂ν

= 0 on ∂Ω× (0, T )
satisfies

‖ϕ(·, t)‖L∞(Ω) + ‖∇ϕ(·, t)‖L∞(Ω)

≤ c1‖ϕ(·, 0)‖W 1,∞(Ω)

+c1 ·
{

sup
s∈(0,t)

∥

∥

∥
(ϕt −∆ϕ+ ϕ)(·, s)

∥

∥

∥

Lp(Ω)

}θ+δ

×

×
{

sup
s∈(0,t)

∥

∥

∥
(ϕt −∆ϕ+ ϕ)(·, s)

∥

∥

∥

L1(Ω)

}1−θ−δ

for all t ∈ (0, T ). (3.6)

To see that this implies the claim if we let

Γ := 2c1, (3.7)

given K > 0 we choose ε0 = ε0(K) ∈ (0, R4 ) small enough such that

(

R|Ω|
1
p
)θ+δ ·

(

ε0|Ω|
)1−θ−δ ≤ K, (3.8)
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and henceforth assume that u0 and v0 satisfy (3.1) and (3.4), and that Tm ∈ (0,∞] and (u, v) are as
accordingly provided by Lemma 3.1. Then (3.3) together with (3.4) asserts that

‖u(·, t)‖L1(Ω) =

∫

Ω
u0 ≤ ε0|Ω| for all t ∈ (0, Tm), (3.9)

whereas from the characterization of Tm contained in Lemma 3.1 we know that u ≤ R in Ω× (0, Tm)
and hence

‖u(·, t)‖Lp(Ω) ≤ R|Ω|
1
p for all t ∈ (0, Tm)

thanks to the Hölder inequality. When combined with (3.9) and (3.6), and again with (3.4), in view
of (3.6) and (3.7) this ensures that indeed

‖v(·, t)‖L∞(Ω) + ‖∇v(·, t)‖L∞(Ω) ≤ c1‖v0‖W 1,∞(Ω)

+c1 ·
{

sup
s∈(0,t)

‖u(·, s)‖Lp(Ω)

}θ+δ

·
{

sup
s∈(0,t)

‖u(·, s)‖L1(Ω)

}1−θ−δ

≤ c1K + c1 ·
(

R|Ω|
1
p
)θ+δ ·

(

ε0|Ω|
)1−θ−δ

≤ c1K + c1K = ΓK for all t ∈ (0, Tm),

as intended. �

Thanks to our preparatory efforts undertaken to derive Lemma 2.2, the control of ∇v thereby particu-
larly achieved can now quite unpretentiously be seen to imply the following statement on preservation
of spatially uniform smallness enjoyed by u, provided that a second and possibly more restrictive
smallness hypothesis is met.

Lemma 3.4 For each K > 0 there exists ε⋆ = ε⋆(K) ∈ (0, R4 ) such that if (3.1) holds with u0 6≡ 0 as
well as

‖u0‖L∞(Ω) ≤ ε⋆ and ‖v0‖W 1,∞(Ω) ≤ K, (3.10)

then with Tm and u taken from Lemma 3.1 we have

‖u(·, t)‖L∞(Ω) ≤
R

2
for all t ∈ (0, Tm). (3.11)

Proof. Given K > 0, we fix ε0 = ε0(K) as provided by Lemma 3.3, and choosing c1 > 0 and
c2 > 0 such that in accordance with (1.3) we have D(ξ) ≥ c1 and |S(ξ)| ≤ c2ξ for all ξ ∈ [0, R], we
let Λ := Λ(∞, c1, c2ΓK) > 0 be as correspondingly provided by Lemma 2.2, with Γ > 0 taken from
Lemma 3.3. We now choose ε⋆ = ε⋆(K) ∈ (0, R4 ) small enough such that both ε⋆ ≤ ε0 and

Λ ·max
{

|Ω| , 1
}

· ε⋆ ≤
R

2
, (3.12)

and assuming 0 6≡ u0 and v0 to satisfy (3.1) and (3.10) we then firstly observe that since ε⋆ ≤ ε0,
Lemma 3.3 applies so as to ensure that |∇v| ≤ ΓK in Ω× (0, Tm). Therefore, the function b(x, t) :=
S(u(x,t))
u(x,t) ∇v(x, t), (x, t) ∈ Ω × (0, Tm), well-defined as an element of C1(Ω × (0, Tm);Rn) due to the
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fact that u > 0 in Ω × (0, Tm) by the strong maximum principle, satisfies |b(x, t)| ≤ c2ΓK for all
(x, t) ∈ Ω × (0, Tm), so that since furthermore for a(x, t) := D(u(x, t)), (x, t) ∈ Ω × (0, Tm), we have
a ∈ C1(Ω × (0, Tm)) with a(x, t) ≥ c1 for all (x, t) ∈ Ω × (0, Tm), in view of (1.1) we may rely on
Lemma 2.2 to infer that

‖u(·, t)‖L∞(Ω) ≤ Λ ·max

{

‖u0‖L∞(Ω) , sup
s∈(0,Tm)

‖u(·, s)‖L1(Ω)

}

≤ Λ ·max
{

ε⋆ , |Ω|ε⋆
}

for all t ∈ (0, Tm),

because ‖u‖L1(Ω) =
∫

Ω u0 ≤ |Ω|ε⋆ for all t ∈ (0, Tm) by (3.3) and (3.10). The claim therefore results
from (3.12). �

Our main result on global smooth solvability in (1.1) thereby becomes fairly evident:

Proof of Theorem 1.1. For fixed K > 0, we take ε⋆(K) as given by Lemma 3.4 and then obtain the
claimed conclusion as a direct consequence of Lemma 3.4 and Lemma 3.3 when combined with Lemma
3.1, because the corresponding statement concerning global existence is trivial in the case u0 ≡ 0 not
explicitly covered by Lemma 3.4. �

4 Large time behavior. Proof of Theorem 1.2

When next concerned with the large time behavior of the obtained solutions under a possibly yet
stronger restriction on their initial size, in view of the bounds already known from Theorem 1.1,
along with interpolation options thereby provided, we may reduce the essence of our argument to
a convenient L2 setting in which two quite basic testing procedures can easily be combined with a
standard Poincaré inequality:

Proof of Theorem 1.2. We again use (1.3) to pick c1 > 0 and c2 > 0 such that D(ξ) ≥ c1 and
|S(ξ)| ≤ c2ξ for all ξ ∈ [0, R], and employ a Poincaré inequality to fix c3 > 0 fulfilling

∫

Ω
|∇ϕ|2 ≥ c3

∫

Ω

∣

∣

∣

∣

ϕ− 1

|Ω|

∫

Ω
ϕ

∣

∣

∣

∣

2

for all ϕ ∈ W 1,2(Ω). (4.1)

With Γ > 0 taken from Lemma 3.3, we then abbreviate

K :=
c1
√
c3

2c2Γ
(4.2)

and take ε0(K) ∈ (0, R4 ) and ε⋆(K) ∈ (0, R) as accordingly provided by Lemma 3.3 and Theorem 1.1,
respectively, and writing

κ :=
c1c3

4
, (4.3)

we fix ε⋆⋆ ∈ (0,min{ε⋆(1), 1}] small enough such that ε⋆⋆ ≤ min{K , ε0(K) , ε⋆(K)} and

c22
c1
ε2⋆⋆ ≤ κ. (4.4)

Now given any 0 ≤ u0 ∈ W 1,∞(Ω) and 0 ≤ v0 ∈ W 1,∞(Ω) such that (1.6) holds, relying on the
inequality ε⋆⋆ ≤ min{K, ε⋆(K)} we take the global classical solution (u, v) of (1.1) from Theorem 1.1

12



and first integrate by parts in (1.1) to obtain, using Young’s inequality along with our selections of c1
and c2, that

1

2

d

dt

∫

Ω
(u− u0)

2 = −
∫

Ω
D(u)|∇u|2 +

∫

Ω
S(u)∇u · ∇v

≤ −1

2

∫

Ω
D(u)|∇u|2 + 1

2

∫

Ω

S2(u)

D(u)
|∇v|2

≤ −c1

2

∫

Ω
|∇u|2 + c22

2c1

∫

Ω
u2|∇v|2 for all t > 0,

so that in line with (4.1),

d

dt

∫

Ω
(u− u0)

2 + c1c3

∫

Ω
(u− u0)

2 ≤ c22
c1

∫

Ω
u2|∇v|2 for all t > 0. (4.5)

Here on the right-hand side we utilize that ε⋆⋆ ≤ ε0(K) in employing Lemma 3.3 to see that since
thus

‖∇v(·, t)‖L∞(Ω) ≤ ΓK =
c1
√
c3

2c2
for all t > 0

due to (4.2), we have

c22
c1

∫

Ω
u2|∇v|2 =

c22
c1

∫

Ω
(u− u0 + u0)

2|∇v|2

≤ 2c22
c1

∫

Ω
(u− u0)

2|∇v|2 + 2c22u
2
0

c1

∫

Ω
|∇v|2

≤ 2c22
c1

‖∇v‖2L∞(Ω)

∫

Ω
(u− u0)

2 +
2c22u

2
0

c1

∫

Ω
|∇v|2

≤ 2c22
c1

·
(c1

√
c3

2c2

)2
∫

Ω
(u− u0)

2 +
2c22u

2
0

c1

∫

Ω
|∇v|2

=
c1c3

2

∫

Ω
(u− u0)

2 +
2c22u

2
0

c1

∫

Ω
|∇v|2 for all t > 0,

so that recalling that u0 ≤ ‖u0‖L∞(Ω) ≤ ε⋆⋆ by (1.6), from (4.5) it follows that

d

dt

∫

Ω
(u− u0)

2 +
c1c3

2

∫

Ω
(u− u0)

2 ≤ 2c22ε
2
⋆⋆

c1

∫

Ω
|∇v|2 for all t > 0. (4.6)

Next, on the basis of the second equation in (1.1), and again Young’s inequality, we find that

1

2

d

dt

∫

Ω
(v − u0)

2 = −
∫

Ω
|∇v|2 +

∫

Ω
(v − u0) · (−v + u)

= −
∫

Ω
|∇v|2 −

∫

Ω
(v − u0)

2 +

∫

Ω
(u− u0) · (v − u0)

≤ −
∫

Ω
|∇v|2 − 1

2

∫

Ω
(v − u0)

2 +
1

2

∫

Ω
(u− u0)

2 for all t > 0,
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and that hence

d

dt

∫

Ω
(v − u0)

2 + 2

∫

Ω
|∇v|2 +

∫

Ω
(v − u0)

2 ≤
∫

Ω
(u− u0)

2 for all t > 0,

which combined with (4.6) implies that thanks to our restriction on ε⋆⋆ in (4.4), in view of our definition
of κ in (4.3) we have

d

dt

{
∫

Ω
(u− u0)

2 + κ

∫

Ω
(v − u0)

2

}

+
c1c3

2

∫

Ω
(u− u0)

2 + 2κ

∫

Ω
|∇v|2 + κ

∫

Ω
(v − u0)

2

≤ 2c22ε
2
⋆⋆

c1

∫

Ω
|∇v|2 + κ

∫

Ω
(u− u0)

2

≤ 2κ

∫

Ω
|∇v|2 + c1c3

4

∫

Ω
(u− u0)

2 for all t > 0.

Accordingly, writing y(t) :=
∫

Ω

(

u(·, t)− u0
)2

+ κ
∫

Ω

(

v(·, t)− u0
)2
, t ≥ 0, and λ1 := min

{

1 , c1c3
4

}

, we
infer that

y′(t) + λ1y(t) ≤ 0 for all t > 0,

and that thus with c4 = c4(u0, v0) := y(0) we have

y(t) ≤ c4e
−λ1t for all t > 0,

meaning that

‖u(·, t)− u0‖L2(Ω) ≤
√
c4e

−
λ1
2
t for all t > 0 (4.7)

as well as

‖v(·, t)− u0‖L2(Ω) ≤
√

c4

κ
e−

λ1
2
t for all t > 0. (4.8)

Apart from that, in view of the bounds asserted by Theorem 1.1 we may invoke standard parabolic
regularity theory ([16], [12]) along with Lemma 3.3 to fix c5 = c5(u0, v0) > 0 such that

‖u(·, t)− u0‖W 1,∞(Ω) + ‖v(·, t)− u0‖W 1,∞(Ω) ≤ c5 for all t ≥ 1,

so that a straightforward Gagliardo-Nirenberg type interpolation shows that with some c6 > 0,

‖u(·, t)− u0‖L∞(Ω) ≤ c6‖u(·, t)− u0‖
n

n+2

W 1,∞(Ω)
‖u(·, t)− u0‖

2
n+2

L2(Ω)

≤ c
1

n+2

4 c
n

n+2

5 c6e
−

λ1
n+2

t for all t ≥ 1,

and that, similarly,

‖v(·, t)− u0‖L∞(Ω) ≤
(c4

κ

)
1

n+2
c

n
n+2

5 c6e
−

λ1
n+2

t for all t ≥ 1.

As u and v are bounded in Ω × (0, 1), this implies (1.7) and (1.8) with some suitably large C > 0 if
we let λ := λ1

n+2 . �
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