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Abstract

We consider the haptotaxis system





ut = ∆u−∇ · (u∇v),
vt = −(u+ w)v,

wt = Dw∆w − w + uz,

zt = Dz∆z − z − uz + βw,

which arises as a simplified version of a recently proposed model for oncolytic virotherapy. When
posed under no-flux boundary conditions in a smoothly bounded domain Ω ⊂ R

2, with positive
parameters Dw, Dz and β, and along with initial conditions involving suitably regular data, this
system is known to admit global classical solutions.

It is shown that with respect to infinite-time blow-up, this system exhibits a critical mass phe-
nomenon related to the quantity mc := 1

(β−1)+
: In fact, it is seen that each solution fulfilling

1
|Ω|

∫
Ω
u(·, 0) > mc must be unbounded, and this is complemented by a boundedness result which

inter alia asserts that for any choice of m < mc one can find a nontrivial set of solutions, par-
ticularly containing spatially heterogeneous solutions, each of which is bounded though satisfying
1
|Ω|

∫
Ω
u(·, 0) = m.
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1 Introduction

In a bounded domain Ω ⊂ R
2 and with positive parameters β,Dw and Dz, we consider the evolution

system 



ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

vt = −(u+ w)v, x ∈ Ω, t > 0,

wt = Dw∆w − w + uz, x ∈ Ω, t > 0,

zt = Dz∆z − z − uz + βw, x ∈ Ω, t > 0,

(1.1)

that can be viewed as a simplified version of a recently proposed model for a certain medical treatment
of tumor diseases, also known as oncolytic virotherapy, in the course of which cancerous tissue is
subject to virus particles selectively assaulting tumor cells. Indeed, as unknown quantities considering
the population densities u,w and z of uninfected and infected cancer cells and of virions, and the
distribution v of the so-called extracellular matrix (ECM) that represents yet uninvaded healthy
tissue, the authors in [1] introduce more comprehensive systems of the form





ut = Du∆u− ξu∇ · (u∇v) + µuu(1− u)− ρuuz, x ∈ Ω, t > 0,

vt = −(αuu+ αww)v + µvv(1− v), x ∈ Ω, t > 0,

wt = Dw∆w − ξw∇ · (w∇v)− δww + ρwuz, x ∈ Ω, t > 0,

zt = Dz∆z − δzz − ρzuz + βw, x ∈ Ω, t > 0,

(1.2)

to describe the spatio-temporal evolution during such processes. Particularly, in this approach it is
assumed that uninfected tumor cells, besides undergoing directed motion toward increasing levels of
the non-diffusible ECM, proliferate according to a logistic law and are diminished in number through
irreversible conversion into an infected state, and that the population of infected tumor cells performs
similar migration, is augmented due to infection, and is degraded according to spontaneous death
promoted by exhaustion due to virus production which in turn increases the number of virions. Apart
from that, (1.2) accounts for virus decrease caused by natural death and by binding to uninfected tumor
cells, for degradation of the ECM upon contact with tumor cells, and for a logistic-type remodeling
of the ECM in the sense of spontaneous renewal of healthy tissue.

Models of this flavor not only go beyond classical reaction-diffusion-based descriptions by containing
cross-diffusive contributions, but moreover also differ from related chemotaxis systems in that whenever
ξu > 0, the associated tactic migration is directed by a non-diffusible cue. Inter alia due to their
apparent relevance in several biological contexts ([3], [9], [5]), such haptotaxis mechanisms have been
the objective of considerable efforts in the analytical literature ([24], [6], [4], [11], [12], [29], [28],
[26], [27]), partially even in yet more intricate settings involving further processes such as additional
chemotactic interaction ([19], [15], [13], [18], [20], [25], [2], [10], [14], [17], [16], [21]). Apparently
reflecting an increased mathematical complexity going along with the introduction of such types
of cross-diffusion, however, most studies in this field mainly focus on basic issues from elementary
solution theory, hence concentrating on statements on global solvability in appropriate frameworks
([24], [17], [19], [15], [29], [26], [22]), and already the derivation of global boundedness features seems
to pose challenges that so far could successfully be coped with only in a comparatively small number
of cases ([18], [14], [2]); qualitative information beyond this, e.g. in the style of results on large time
asymptotics, is apparently yet limited to very few and quite simple settings, and especially effects
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related to unboundedness properties seem widely unaddressed ([20], [11] [13], [27], [8]).

Main results. The purpose of this study is to rigorously detect a phenomenon related to the
spontaneous emergence of large densities in (1.1), even up to the identification of critical parameter
ranges therefor. This will potentially capture a mathematical feature also inherent to the more complex
system (1.2) within appropriate constellations, because (1.2) can essentially be reduced to a normalized
version of (1.1) upon neglecting haptotactic cross-diffusion of infected tumor cells and renewal of ECM,
and upon considering the diffusive and haptotactic migration processes in (1.2) as the predominant
mechanisms relevant to the evolution of uninfected tumor cells; whereas the former two simplification
steps have already explicitly been discussed in the modeling literature ([1], [3]), the latter reduction
seems to provide a reasonable approximation at least in the presence of abundantly many uninfected
cells, and during a suitably short initial stage during which the correspondingly large number of
uninfected cells has not undergone significant changes due to the zero-order mechanisms in the first
equation from (1.2).

Specifically, we shall consider (1.1) in a bounded domain Ω ⊂ R
2 with smooth boundary, along with

the boundary conditions

(∇u− u∇v) · ν =
∂w

∂ν
=
∂z

∂ν
= 0, x ∈ ∂Ω, t > 0, (1.3)

and the requirement that

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), z(x, 0) = z0(x), x ∈ Ω, (1.4)

where our hypotheses concerning the initial data will be that

{
u0, v0 and w0 are nonnegative functions from C2+ϑ(Ω) for some ϑ > 0,

with u0 6≡ 0, w0 6≡ 0, z0 6≡ 0,
√
v0 ∈W 1,2(Ω) and ∂u0

∂ν
= ∂v0

∂ν
= ∂w0

∂ν
= ∂z0

∂ν
= 0 on ∂Ω.

(1.5)

In this framework, namely, a recent result from [22] becomes applicable so as to assert global existence
of a unique classical solution (u, v, w, z) ∈ (C2,1(Ω× [0,∞)))4 such that u,w and z are positive and v
is nonnegative in Ω× (0,∞) (see also Lemma 2.1 below); in particular, this rules out any occurrence
of explosions within finite time.

With regard to the possibility of infinite-time blow-up, however, our subsequent analysis will discover
a genuine critical mass phenomenon in the following sense.

Firstly, whenever the virus replication rate satisfies β > 1, for all initial distributions which with
respect to the total mass in their first component exceed a certain value, the corresponding solution
must become unbounded in the large time limit. Here and below, for ϕ ∈ L1(Ω) we abbreviate
ϕ := 1

|Ω|

∫
Ω ϕ.

Theorem 1.1 Let Ω ⊂ R
2 be a bounded domain with smooth boundary, let β > 1, and suppose that

u0, v0, w0 and z0 satisfy (1.5) with

u0 >
1

β − 1
. (1.6)
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Then the global classical solution (u, v, w, z) ∈ (C2,1(Ω × [0,∞)))4 of (1.1), (1.3), (1.4) from Lemma
2.1 below satisfies

lim sup
t→∞

{
‖u(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω)

}
= ∞. (1.7)

Secondly, the mass level appearing in (1.6) indeed is critical with regard to the unboundedness feature
encountered above, as indicated by the next result which inter alia also justifies the restriction on β
made in Theorem 1.1.

Proposition 1.2 Let Ω ⊂ R
2 be a bounded domain with smooth boundary, and assume that β > 0

and that u0, v0, w0 and z0 satisfy (1.5) with v0 ≡ 0 and

u0 <
1

(β − 1)+
. (1.8)

Then the global classical solution (u, v, w, z) ∈ (C2,1(Ω×[0,∞)))4 of (1.1), (1.3), (1.4) has the property
that

sup
t>0

{
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω)

}
<∞,

and moreover we have

w(·, t) → 0 and z(·, t) → 0 in L∞(Ω) as t→ ∞.

An interesting topic left open here concerns the question how far the explicit condition (1.8) remains
sufficient to ensure boundedness also in contexts involving nontrivial haptoattractant components v.
While this indeed seems to be true in the case β < 1, widely unconditionally in not depending on
substantial further assumptions on the initial data ([23]), we suspect that the dynamics might be
significantly richer in the more delicate situation in which β ≥ 1; deeper analysis in this regard goes
beyond the scope of the present work, however.

Ideas. We shall prove Theorem 1.1 via a contradiction argument, supposing that (1.7) was false.
Such accordingly bounded solutions, namely, will be seen to necessarily satisfy u(·, t) → u0 and
v(·, t) → 0 in L1(Ω) as t → ∞ (Lemma 3.6 and Lemma 3.7). For initial data fulfilling (1.6), this will
enable us to choose b > 0 such that with some t0 > 0 and C > 0 we have

d

dt

{∫

Ω
lnw + b

∫

Ω
ln z

}
≥ C for all t > t0, (1.9)

which is incompatible with said boundedness assumption.

The complementing result from Proposition 1.2 will independetly be derived in Section 5 by means
of an argument based on the comparison principle for a suitably designed two-component cooperative
parabolic system.
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2 Preliminaries

Let us first recall from [22] the following basic result on unique global smooth solvability.

Lemma 2.1 Let Ω ⊂ R
2 be a bounded domain with smooth boundary, let β > 0, and suppose that

(u0, v0, w0, z0) satisfies (1.5). Then the problem (1.1), (1.3), (1.4) possesses a uniquely determined
classical solution (u, v, w, z) ∈ (C2,1(Ω× [0,∞)))4 for which v is nonnegative, and for which u,w and
z are positive in Ω× (0,∞). Moreover,

∫

Ω
u(·, t) =

∫

Ω
u0 for all t > 0, (2.1)

and for any choice of t0 ≥ 0 we have

‖v(·, t)‖L∞(Ω) ≤ ‖v(·, t0)‖L∞(Ω) for all t > t0. (2.2)

Following a variable substitution extensively used in studying of haptotaxis systems ([6], [7], [24] and
[17]), we set

a := ue−v (2.3)

and then we see that the crucial first sub-problem of (1.1), (1.3), (1.4) transforms to




at = e−v∇ · (ev∇a) + a(aev + w)v, x ∈ Ω, t > 0,
∂a
∂ν

= 0, x ∈ ∂Ω, t > 0,

a(x, 0) = u0(x)e
−v0(x), x ∈ Ω.

(2.4)

3 Decay properties of u− u0 and v for arbitrary bounded solutions

In order to prepare our contradiction-based strategy toward a verification of Theorem 1.1, in this
section we shall make sure that actually regardless of the size of β > 0, each global classical solution
(u, v, w, z) must satisfy (u(·, t), v(·, t)) → (u0, 0) in (L1(Ω))2. To avoid extensive notation, unless
otherwise stated we shall assume throughout this section that (u0, v0, w0, z0) complies with (1.5), and
that (u, v, w, z) is the global classical solution to (1.1), (1.3), (1.4) addressed in Lemma 2.1.

Some first information about such solutions can be gained through a standard testing procedure:

Lemma 3.1 Let β > 0. Then

∫

Ω
ev(·,t)a2(·, t) + 2

∫ t

0

∫

Ω
ev|∇a|2 ≤

∫

Ω
u20 + ‖u‖2L∞(Ω×(0,t)) ·

∫

Ω
v0 for all t > 0. (3.1)

Proof. On the basis of (2.4) and (2.3), we compute

d

dt

∫

Ω
eva2 = 2

∫

Ω
eva ·

{
e−v∇ · (ev∇a)− avt

}
+

∫

Ω
eva2vt

= −2

∫

Ω
ev|∇a|2 −

∫

Ω
eva2vt

= −2

∫

Ω
ev|∇a|2 −

∫

Ω
u2e−vvt for all t > 0, (3.2)
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where given t0 > 0 we may use the nonpositivity of vt in estimating

−
∫

Ω
u2e−vvt =

∫

Ω
u2e−v|vt|

≤ ‖u‖2L∞(Ω×(0,t0))

∫

Ω
|vt|

= −‖u‖2L∞(Ω×(0,t0))

∫

Ω
vt for all t ∈ (0, t0).

For any such t0, integrating (3.2) over t ∈ (0, t0) thus shows that

∫

Ω
ev(·,t0)a2(·, t0) + 2

∫ t0

0

∫

Ω
ev|∇a|2 ≤

∫

Ω
ev0a2(·, 0)− ‖u‖2L∞(Ω×(0,t0))

·
{∫

Ω
v(·, t0)−

∫

Ω
v0

}

≤
∫

Ω
ev0a2(·, 0) + ‖u‖2L∞(Ω×(0,t0))

·
∫

Ω
v0

=

∫

Ω
u20e

−v0 + ‖u‖2L∞(Ω×(0,t0))
·
∫

Ω
v0

and hence establishes the claim due to the inequality e−v0 ≤ 1. �

Now assuming the first solution component to be bounded, from the above we immediately obtain the
following basic stabilization feature of a:

Corollary 3.2 Let β > 0, and suppose that

sup
t>0

{
‖u(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω)

}
<∞. (3.3)

Then ∫ ∞

0

∫

Ω
|∇a|2 <∞ (3.4)

and ∫ ∞

0
‖a(·, t)− a(·, t)‖2L2(Ω)dt <∞. (3.5)

Proof. According to the hypotheses (3.3), we can find c1 > 0 such that

u(x, t) ≤ c1 for all x ∈ Ω and t > 0.

By nonnegativity of v, (3.1) therefore particularly implies that

2

∫ t

0

∫

Ω
|∇a|2 ≤ 2

∫ t

0

∫

Ω
ev|∇a|2 ≤

∫

Ω
u20 + c21

∫

Ω
v0 for all t > 0,

and that thus (3.4) holds. The property in (3.5) thereupon becomes a direct consequence of a Poincaré
inequality. �

In order to improve this yet quite weak decay information, we next intend to augment the above by
suitable further regularity properties in the course of a second testing procedure applied to (2.4), an
immediate outcome of which is the following.
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Lemma 3.3 Let β > 0. Then
∫ t

0

∫

Ω
eva2t +

∫

Ω
ev(·,t)|∇a(·, t)|2

≤
∫

Ω
ev0 |∇(u0e

−v0)|2 + 1

2
‖u‖2L∞(Ω×(0,t)) ·

{
‖u‖L∞(Ω×(0,t)) + ‖w‖L∞(Ω×(0,t))

}
·
∫

Ω
v20 (3.6)

for all t > 0.

Proof. On multiplying the first equation in (2.4) by evat and integrating by parts, we see that
∫

Ω
eva2t =

∫

Ω
at∇ · (ev∇a)−

∫

Ω
evaatvt

= −
∫

Ω
ev∇a · ∇at −

∫

Ω
evaatvt for all t > 0, (3.7)

where by nonpositivity of vt,

−
∫

Ω
ev∇a · ∇at = −1

2

∫

Ω
ev∂t|∇a|2

= −1

2

d

dt

∫

Ω
ev|∇a|2 + 1

2

∫

Ω
ev|∇a|2vt

≤ −1

2

d

dt

∫

Ω
ev|∇a|2 for all t > 0. (3.8)

Moreover, relying on Young’s inequality and once again on the identity vt = −(u+w)v we obtain that
for each t0 > 0 and any t ∈ (0, t0),

−
∫

Ω
evaatvt ≤ 1

2

∫

Ω
eva2t +

1

2

∫

Ω
eva2v2t

=
1

2

∫

Ω
eva2t +

1

4

∫

Ω
u2e−v(u+ w)|∂tv2|

≤ 1

2

∫

Ω
eva2t −

1

4
‖u‖2L∞(Ω×(0,t0))

·
{
‖u‖L∞(Ω×(0,t0)) + ‖w‖L∞(Ω×(0,t0))

}
· d
dt

∫

Ω
v2.

Together with (3.8) inserted into (3.7), after a time integration this shows that

1

2

∫ t0

0

∫

Ω
eva2t +

1

2

∫

Ω
ev(·,t0)|∇a(·, t0)|2

≤ 1

2

∫

Ω
ev0 |∇a(·, 0)|2

−1

4
‖u‖2L∞(Ω×(0,t0))

·
{
‖u‖L∞(Ω×(0,t0)) + ‖w‖L∞(Ω×(0,t0))

}
·
{∫

Ω
v2(·, t0)−

∫

Ω
v20

}

for all t0 > 0. Rewriting ∇a(·, 0) = ∇(u0e
−v0) according to (2.3), since

∫
Ω v

2(·, t0) ≥ 0 for all t0 > 0
we immediately obtain (3.6) from this. �

Again, the right-hand side herein can be appropriately controlled whenever our solution is assumed
to be bounded, hence implying the following conclusion for any such solution:
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Corollary 3.4 If β > 0 and (3.3) holds, then
∫ ∞

0

∫

Ω
a2t <∞ (3.9)

and

sup
t>0

∫

Ω
|∇a(·, t)|2 <∞. (3.10)

Proof. Assuming (3.3), we can fix c1 > 0 and c2 > 0 such that

u(x, t) ≤ c1 and w(x, t) ≤ c2 for all x ∈ Ω and t > 0,

whence (3.6) entails that
∫ t

0

∫

Ω
a2t +

∫

Ω
|∇a(·, t)|2 ≤

∫ t

0

∫

Ω
eva2t +

∫

Ω
ev(·,t)|∇a(·, t)|2

≤
∫

Ω
ev0 |∇(u0e

v0)|2 + 1

2
c21(c1 + c2)

∫

Ω
v20 for all t > 0,

and that thus both (3.9) and (3.10) are valid. �

Now combining Corollary 3.2 with the compactness properties implicitly entailed by Corollary 3.4
yields the following stabilization feature of a whenever the solution is bounded.

Lemma 3.5 Let β > 0, and assume that (3.3) holds. Then

a(·, t)− a(·, t) → 0 in L2(Ω) as t→ ∞. (3.11)

Proof. If the claim was false, then we could find (tk)k∈N ⊂ (0,∞) such that tk → ∞ as k → ∞,
and such that for ψ(x, t) := a(x, t)− a(·, t), (x, t ∈ Ω× (0,∞), we have

inf
k∈N

‖ψ(·, tk)‖L2(Ω) > 0.

As our hypothesis on validity of (3.3) warrants applicability of Corollary 3.4, from the latter along with
(2.1) we readily infer that (ψ(·, t))t>0 is bounded in W 1,2(Ω) and thus relatively compact in L2(Ω),
whence on passing to a subsequence if necessary we may assume that with some 0 6≡ ψ∞ ∈ L2(Ω),

ψ(·, tk) → ψ∞ in L2(Ω) as k → ∞. (3.12)

We now observe that as a second consequence of Corollary 3.4, c1 :=
∫∞
0

∫
Ω a

2
t is finite, so that since

∣∣∣∂ta(·, t)
∣∣∣
2
=

1

|Ω|2
∣∣∣∣
∫

Ω
at

∣∣∣∣
2

≤ 1

|Ω|

∫

Ω
a2t for all t > 0

by the Cauchy-Schwarz inequality, it follows that
∫ ∞

0

∫

Ω
ψ2
t ≤ 2

∫ ∞

0

∫

Ω

{
a2t +

∣∣∣∂ta(·, t)
∣∣∣
2}

≤ 4

∫ ∞

0

∫

Ω
a2t

≤ 4c1. (3.13)
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Therefore, the mean value theorem together with the Cauchy-Schwarz inequality shows that

‖ψ(·, t)− ψ(·, tk)‖2L2(Ω) =

∫

Ω

∣∣∣∣
∫ t

tk

ψt(x, s)ds

∣∣∣∣
2

dx

≤
∫

Ω

{∫ t

tk

ψ2
t (x, s)ds

}
· (t− tk)dx

≤ (t− tk)

∫ ∞

tk

∫

Ω
ψ2
t

≤
∫ ∞

tk

∫

Ω
ψ2
t for all t ∈ (tk, tk + 1) and each k ∈ N,

whence (3.13) ensures that

∫ tk+1

tk

‖ψ(·, t)− ψ(·, tk)‖2L2(Ω)dt→ 0 as k → ∞

and that thus, by (3.12),

∫ tk+1

tk

‖ψ(·, t)− ψ∞‖2L2(Ω)dt ≤ 2

∫ tk+1

tk

‖ψ(·, t)− ψ(·, tk)‖2L2(Ω)dt+ 2‖ψ(·, tk)− ψ∞‖2L2(Ω)

→ 0 as k → ∞. (3.14)

Apart from this, from Corollary 3.2 we know that

∫ tk+1

tk

‖ψ(·, t)‖2L2(Ω)dt ≤
∫ ∞

tk

‖ψ(·, t)‖2L2(Ω)dt→ 0 as k → ∞

and that hence

‖ψ∞‖2L2(Ω) =

∫ tk+1

tk

∥∥∥(ψ(·, t)− ψ∞)− ψ(·, t)
∥∥∥
2

L2(Ω)
dt

≤ 2

∫ tk+1

tk

‖ψ(·, t)− ψ∞‖2L2(Ω)dt+ 2

∫ tk+1

tk

‖ψ(·, t)‖2L2(Ω)dt

→ 0 as k → ∞

thanks to (3.14). This contradiction to the nontriviality of ψ∞ confirms that a sequence (tk)k∈N with
the indicated properties in fact cannot exist, and that accordingly (3.11) must be satisfied. �

Making strong use of the fact that the quantity a entering (3.11) is bounded from below due to our
overall assumption that u0 6≡ 0, thanks to the downward monotonicity of v we can already derive the
announced decay property of v from Lemma 3.5.

Lemma 3.6 Let β > 0, and assume (3.3). Then

v(·, t) → 0 in L1(Ω) as t→ ∞. (3.15)
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Proof. Since v is nonnegative with d
dt

∫
Ω v ≤ 0 for all t > 0 by (1.1) and (1.3), it is sufficient to

make sure that

lim inf
t→∞

∫

Ω
v(·, t) = 0. (3.16)

To achieve this, using that u ≥ a by (2.3) and that w ≥ 0, according to (1.1) and (1.3) we estimate

d

dt

∫

Ω
v = −

∫

Ω
(u+ w)v ≤ −

∫

Ω
av for all t > 0, (3.17)

where we note that

−
∫

Ω
a(·, t)v(·, t) = −a(·, t)

∫

Ω
v(·, t)−

∫

Ω

(
a(·, t)− a(·, t)

)
v(·, t)

≤ −a(·, t)
∫

Ω
v(·, t) + ‖a(·, t)− a(·, t)‖L2(Ω)‖v(·, t)‖L2(Ω) for all t > 0

due to the Cauchy-Schwarz inequality. Since v ≤ c1 := ‖v0‖L∞(Ω) in Ω × (0,∞) by (2.2), and since

thus ‖v(·, t)‖L2(Ω) ≤ c1|Ω|
1
2 for all t > 0 and

a(·, t) = 1

|Ω|

∫

Ω
u(·, t)e−v(·,t) ≥ e−c1 · 1

|Ω|

∫

Ω
u(·, t) = c2 := e−c1u0 for all t > 0

thanks to (2.1), this shows that

−
∫

Ω
a(·, t)v(·, t) ≤ −c2

∫

Ω
v(·, t) + f(t) for all t > 0,

with f(t) := c1|Ω|
1
2 · ‖a(·, t) − a(·, t)‖L2(Ω), t > 0. Accordingly, from (3.17) we obtain that y(t) :=∫

Ω v(·, t), t ≥ 0, satisfies
y′(t) ≤ −c2y(t) + f(t) for all t > 0, (3.18)

which due to Lemma 3.5 indeed entails (3.16): Namely, assuming on the contrary that (3.16) be false,
we could find t0 > 0 and c3 > 0 such that y(t) ≥ c3 for all t > t0. On the other hand, from Lemma
3.5 we know that f(t) → 0 as t → ∞, and that thus there exists t1 > t0 fulfilling f(t) ≤ 1

2c2c3 for all
t > t1. For such large t, (3.18) would thus entail that

y′(t) ≤ −c2c3 +
1

2
c2c3 for all t > t1,

and thereby clearly contradicts the nonnegativity of v on Ω× (0,∞). The proof is thus complete. �

In view of the latter, the intended stabilization feature of u can now be obtained in quite a straight-
forward manner from Lemma 3.5, (2.3) and (2.2).

Lemma 3.7 Let β > 0, and suppose that (1.5) and (3.3) are satisfied. Then

u(·, t) → u0 in L1(Ω) as t→ ∞. (3.19)
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Proof. Recalling that u = eva, for t > 0 we estimate
∫

Ω
|u(·, t)− u0| =

∫

Ω

∣∣∣ev(·,t)a(·, t)− u0

∣∣∣

=

∫

Ω

∣∣∣ev(·,t)
(
a(·, t)− a(·, t)

)
+ ev(·,t)

(
a(·, t)− u0

)
+ (ev(·,t) − 1)u0

∣∣∣

≤
∫

Ω
ev(·,t)|a(·, t)− a(·, t)|+

∫

Ω
ev(·,t)|a(·, t)− u0|+ u0

∫

Ω
|ev(·,t) − 1|, (3.20)

where according to the Cauchy-Schwarz inequality, (2.2) and Lemma 3.5,

∫

Ω
ev(·,t)|a(·, t)− a(·, t)| ≤

{∫

Ω
e2v(·,t)

} 1
2

· ‖a(·, t)− a(·, t)‖L2(Ω)

≤ e‖v0‖L∞(Ω) |Ω| 12 · ‖a(·, t)− a(·, t)‖L2(Ω)

→ 0 as t→ ∞. (3.21)

Furthermore, we note that since 0 ≤ 1 − e−s ≤ s for all s ≥ 0 we can utilize Lemma 3.6 to see that,
again by (2.2),

u0

∫

Ω
|ev(·,t) − 1| = u0

∫

Ω
ev(·,t) · |1− e−v(·,t)|

≤ u0e
‖v0‖L∞(Ω)

∫

Ω
v(·, t)

→ 0 as t→ ∞ (3.22)

and that, similarly and additionally due to (2.1),
∫

Ω
ev(·,t)|a(·, t)− u0| =

{
1

|Ω|

∫

Ω
ev(·,t)

}
·
∣∣∣∣
∫

Ω
u(·, t)(e−v(·,t) − 1)

∣∣∣∣

≤ e‖v0‖L∞(Ω)‖u(·, t)‖L∞(Ω)

∫

Ω
|e−v(·,t) − 1|

→ 0 as t→ ∞, (3.23)

because we are yet assuming that u is bounded in Ω × (0,∞). In conclusion, combining (3.20) with
(3.21)-(3.23) we arrive at (3.19). �

4 Blow-up of supercritical-mass solutions. Proof of Theorem 1.1

Guided by the stabilization result from Lemma 3.7, a natural strategy toward describing the large time
behavior of w and z for a given bounded solution (u, v, w, z) seems to consist in making sure that in
an appropriate sense, the action of u in the third and fourth equations from (1.1) can be compared to
that of the constant u0. Lemma 4.2 will reveal that an argument based on this naive idea can indeed
be successfully performed upon suitably passing to the variables lnw and ln z and hence aiming at
an inequality of the form in (1.9). Since u will enter the corresponding integration procedure only
through the quantity

∫
Ω

√
u, the L1 topology appearing in Lemma 3.7 in fact is sufficient to justify

said approximation, as confirmed by the following auxiliary statement.
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Lemma 4.1 Let (ϕk)k∈N ⊂ L1(Ω; [0,∞)) be such that

ϕk → ϕ∞ in L1(Ω) as k → ∞ (4.1)

with some ϕ∞ ∈ L1(Ω). Then
∫

Ω

√
ϕk →

∫

Ω

√
ϕ∞ as k → ∞. (4.2)

Proof. If this was false, then there would exist c1 > 0 and a subsequence (ϕkj )j∈N of (ϕk)k∈N such
that ∣∣∣∣

∫

Ω

√
ϕkj −

∫

Ω

√
ϕ∞

∣∣∣∣ ≥ c1 for all j ∈ N. (4.3)

According to (4.1) and a well-known result on a.e. pointwise approximation properties of L1-convergent
sequences, with some further subsequence (ϕkji

)i∈N of (ϕkj )j∈N we then moreover had ϕkji
→ ϕ∞

a.e. in Ω and hence also √
ϕkji

→ √
ϕ∞ a.e. in Ω as i→ ∞. Since √

ϕkji
≤ 1

2ϕkji
+ 1

2 in Ω by Young’s
inequality for all i ∈ N, again in view of (4.1) we may invoke a dominated convergence theorem to see
that along this subsequence,

∫

Ω

√
ϕkji

→
∫

Ω

√
ϕ∞ as i→ ∞,

which contradicts (4.3) and thereby proves (4.2). �

Indeed, we can thereby make Lemma 3.7 accessible to find b > 0 such that the functional in (1.9)
enjoys the property announced there.

Lemma 4.2 Let β > 1 and (u0, v0, w0, z0) be such that (1.5) as well as (1.6) hold, and assume that the
solution of (1.1), (1.3), (1.4) from Lemma 2.1 is such that (3.3) holds. Then there exist b > 0, t0 > 0
and C > 0 such that

d

dt

{∫

Ω
lnw + b

∫

Ω
ln z

}
≥ C for all t > t0. (4.4)

Proof. Since our assumptions on β and u0 particularly ensure that 2βu0 − u0 > (β − 1)u0 > 1,
the number

b :=
2βu0 − u0 − 1

(u0 + 1)2

is positive. Moreover,
{
1 + b+ bu0

}2
−
{
2
√
bβ ·

√
u0

}2
=

{
1 + b2 + b2u20 + 2b+ 2bu0 + 2b2u0

}
− 4bβu0

= (u20 + 2u0 + 1) · b2 − (4βu0 − 2u0 − 2) · b+ 1

= (u0 + 1)2 ·
{
b2 − 2 · 2βu0 − u0 − 1

(u0 + 1)2
· b+ 1

(u0 + 1)2

}

= (u0 + 1)2 ·
{
− (2βu0 − u0 − 1)2

(u0 + 1)4
+

1

(u0 + 1)2

}

= 1−
(2βu0 − u0 − 1

u0 + 1

)2

< 0
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due to the fact that

2βu0 − u0 − 1

u0 + 1
− 1 =

2βu0 − u0 − 1− u0 − 1

u0 + 1
= 2 · (β − 1)u0 − 1

u0 + 1
> 0

by (1.6). Accordingly,

2
√
bβ ·

√
u0 > 1 + b+ bu0,

so that we can pick δ > 0 small enough such that

c1 := 2
√
bβ · (

√
u0 − δ)− (1 + b+ bu0) > 0. (4.5)

To conclude our selection process, we finally combine Lemma 3.7 with Lemma 4.1 to see that thanks
to our assumption (3.3) we have

∫

Ω

√
u(·, t) →

∫

Ω

√
u0 =

√
u0 · |Ω| as t→ ∞,

whence, in particular, we can find t0 > 0 fulfilling
∫

Ω

√
u(·, t) ≥ (

√
u0 − δ) · |Ω| for all t > t0. (4.6)

Now going back to (1.1) and (1.3), we use the positivity of w and z in Ω × (0,∞), as asserted by
Lemma 2.1, to compute

d

dt

∫

Ω
lnw =

∫

Ω

1

w
·
{
Dw∆w − w + uz

}

= Dw

∫

Ω

|∇w|2
w2

− |Ω|+
∫

Ω

uz

w
for all t > 0

and

d

dt

∫

Ω
ln z =

∫

Ω

1

z
·
{
Dz∆z − z − uz + βw

}

= Dz

∫

Ω

|∇z|2
z2

− |Ω| − u0|Ω|+ β

∫

Ω

w

z
for all t > 0

according to (2.1). On dropping two nonpositive summands, we thus infer that

d

dt

{∫

Ω
lnw + b

∫

Ω
ln z

}
≥ −|Ω|+

∫

Ω

uz

w
+ b ·

{
− |Ω| − u0|Ω|+ β

∫

Ω

w

z

}

= −(1 + b+ bu0) · |Ω|+
∫

Ω

uz

w
+ bβ

∫

Ω

w

z
for all t > 0, (4.7)

where the validity of A+B ≥ 2
√
AB for all A ≥ 0 and B ≥ 0 entails that

∫

Ω

uz

w
+ bβ

∫

Ω

w

z
=

∫

Ω

(uz
w

+ bβ
w

z

)

≥
∫

Ω
2

√
uz

w
· bβw

z

= 2
√
bβ

∫

Ω

√
u for all t > 0.
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As a consequence of (4.6), from (4.7) we therefore obtain that

d

dt

{∫

Ω
lnw + b

∫

Ω
ln z

}
≥ −(1 + b+ bu0) · |Ω|+ 2

√
bβ · (

√
u0 − δ) · |Ω|

= c1|Ω| for all t > t0,

and that hence the claimed property results from the positivity feature of c1 stated in (4.5). �

According to the positivity of both b and C in (4.4), our main result on unboundedness of arbitrary
supercritical-mass solutions thereby becomes rather evident:

Proof of Theorem 1.1. If (1.7) was not satisfied, then (3.3) would hold and hence, by Lemma 4.2,
we could find b > 0, t0 > 0 and c1 > 0 such that

d

dt

{∫

Ω
lnw + b

∫

Ω
ln z

}
≥ c1 for all t > t0,

and that thus
∫

Ω
lnw(·, t) + b

∫

Ω
ln z(·, t) ≥ c1 · (t− t0) +

∫

Ω
lnw(·, t0) + b

∫

Ω
ln z(·, t0) for all t > t0.

Since, again by Lemma 2.1, w(·, t0) and z(·, t0) are positive throughout Ω and hence
∫
Ω lnw(·, t0) +

b
∫
Ω ln z(·, t0) > −∞, this is incompatible with the boundedness properties of w and z particularly

contained in (3.3). �

5 Boundedness in subcritical cases. Proof of Proposition 1.2

Let us finally complement Theorem 1.1 by means of a parabolic comparison argument, applicable to
small-mass solutions with trivial second component, in the announced manner:

Proof of Proposition 1.2. Using that 1− (β − 1)u0 is positive, we can fix δ ∈ (0, u0) such that

1− (β − 1)u0 > (β + 1)δ,

which ensures that

1 + u0 − δ > βu0 + βδ

and that thus, by a comparison argument, we can find η ∈ (0, 1) suitably small fulfilling

(1− η)(1 + u0 − δ − η) ≥ β · (u0 + δ). (5.1)

Thereupon, relying on the fact that v ≡ 0 by (1.1), (1.4) and (1.3) and our assumption on v0, we
observe that thus actually being a solution of ut = ∆u under homogeneous Neumann boundary
conditions, according to well-known asymptotic properties of the heat equation the component u
satisfies u(·, t) → u0 in L∞(Ω) as t→ ∞, so that there exists t0 > 0 such that

u0 − δ ≤ u(x, t) ≤ u0 + δ for all x ∈ Ω and t > t0. (5.2)
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Keeping this value of t0 fixed, we firstly use the boundedness of w(·, t0) and z(·, t0) in defining the
numbers

B := max
{
‖z(·, t0)‖L∞(Ω) ,

β

1 + u0 − δ − η
· ‖w(·, t0)‖L∞(Ω)

}
and A :=

1 + u0 − δ − η

β
B, (5.3)

and introduce

ŵ(x, t) := Ae−η(t−t0) and ẑ(x, t) := Be−η(t−t0), x ∈ Ω, t ≥ t0. (5.4)

To see that then
w ≤ ŵ and z ≤ ẑ in Ω× (t0,∞), (5.5)

we note that by (1.1) and (5.2),

wt = Dw∆w − w + uz

≤ Dw∆w − w + (u0 + δ)z in Ω× (t0,∞) (5.6)

and

zt = Dz∆z − z − uz + βw

≤ Dz∆z − (1 + u0 − δ)z + βw in Ω× (t0,∞), (5.7)

whereas by (5.4),

ŵt −Dw∆ŵ + ŵ − (u0 + δ)ẑ = −ηAe−η(t−t0) +Ae−η(t−t0) − (u0 + δ)Be−η(t−t0)

=
{
(1− η)A− (u0 + δ)B

}
· e−η(t−t0) in Ω× (t0,∞)

and

ẑt −Dz∆ẑ + (1 + u0 − δ)ẑ − βŵ = −ηBe−η(t−t0) + (1 + u0 − δ)Be−η(t−t0) − βAe−η(t−t0)

=
{
(1 + u0 − δ − η)B − βA

}
· e−η(t−t0) in Ω× (t0,∞).

Since the definition of A in (5.3) ensures that

(1 + u0 − δ − η)B − βA = 0

and that

(1− η)A− (u0 + δ)B =
(1− η)(1 + u0 − δ − η)

β
B − (u0 + δ)B ≥ 0

thanks to (5.1), it hence follows that

ŵt ≥ Dw∆ŵ − ŵ + (u0 + δ)ẑ in Ω× (t0,∞) (5.8)

and
ẑt = Dz∆ẑ − ẑ − (1 + u0 − δ)ẑ + βŵ in Ω× (t0,∞). (5.9)
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As furthermore ŵ(x, t0) = A = 1+u0−δ−η
β

B ≥ 1+u0−δ−η
β

· β
1+u0−δ−η

‖w(·, t0)‖L∞(Ω) ≥ w(x, t0) and
ẑ(x, t0) = B ≥ z(x, t0) for all x ∈ Ω by (5.4) and (5.2), relying on an evident cooperativity property
of the parabolic system addressed in (5.6)-(5.9) we conclude from an associated comparison principle
that in fact (5.5) holds, which in turn readily implies the claimed statements. �
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