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Abstract

A three-component reaction-diffusion system is considered which originates from an extension of
the classical May-Nowak model for viral infections to situations in which spatially heterogeneous
dynamics need to be accounted for. In accordance with recent developments in the modeling liter-
ature, a particular focus is on possible effects of taxis-type movement of uninfected toward infected
cells, where in contrast to setting addressed by standard Keller-Segel type systems, the evolution
of the considered attractant is influenced by an inherently nonlinear production mechanism.

Despite the accordingly increased mathematical challenges going along with an apparent lack of
favorable structural properties that have facilitated accessibility of such classical Keller-Segel mod-
els to various techniques from parabolic blow-up analysis, the present study attempts to develop
an approach capable of detecting taxis-driven aggregation phenomena in complex models of this
form. In the framework of radially symmetric solutions to associated Neumann-type initial bound-
ary value problems, through an analysis of a corresponding mass accumulation function a result on
the occurrence of finite-time blow-up in two- or three-dimensional balls is derived. This rigorously
confirms the potential of the considered model to describe the spontaneous emergence of locally
high densities, as known from experimental observations in contexts of virus hotspot formation
phenomena.
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1 Introduction

Virus is commonly thought to propagate through susceptible cells via a circulatory process. Viruses
attach, enter, and then infect target cells; the infected cells can release new virus particles due to
replication of virus, and these new viruses further infect other uninfected cells.

Various spatially homogeneous models for the dynamics of a virus were proposed (cf. [37], [25], [26] and
[27], for example). Both empirical data and mathematical analysis for such ODE models generally
indicate two types of asymptotic behaviors, one of which being determined by some persistence of
virus, while the other reflecting an eventual extinction of the virus population. The dependence of
the decision between these options on certain key mechanisms can be carved out in a particularly
clear manner already in the context of the simple May-Nowak model for the numbers u, v and w of
uninfected cells, infected cells, and virions, as given by





ut = −d1u− βuw + r,

vt = −d2v + βuw,

wt = −d3w + kv,

(1.1)

where indeed the size of the so-called basic reporoduction number R0 :=
βkr

d1d2d3
relative to the critical

value 1 is known to be accordingly determinant (see, e.g., [6], [26], [18], [30]).

An adequate description of virus dynamics in frameworks of phenomena involving spatial heterogeneity,
however, evidently requires the use of more sophisticated models which appropriately account for
respectively relevant migration mechanisms. Indeed, the ambition to understand the spatio-temporal
dynamics of viral infections in general, and particularly of striking experimental observations such as
the detection of certain virus infection hotspots ([12]), has stimulated efforts both on the experimental
and on the modeling side: The relevance of a diffusion process of target cells has been experimentally
found both in vitro and in vivo ([21], [13]), and some parabolic models for virus dynamics, essentially
of classical reaction-diffusion type in the sense of augmenting ODE systems of the form in (1.1) by
linear diffusion terms, were proposed and studied (cf. [17] and [31], for instance).

A chemotaxis model for virus infection. Apart from that, however, when virus (e.g. HIV)
attacks the immune systems, target T cells have been found to be directed by the high concentration
of cytokines from inflammations at spots of infection ([20], [13]), and an appropriate inclusion of
such directed movement mechanisms apparently requires a passage toward a model class substantially
more prone to instabilities: In fact, the authors in [32] suggest to accomplish this by means of the
chemotaxis-type extension of (1.1) given by





ut = Du∆u− χ∇ · (u∇v)− κ1u− κ2uw + λ,

τ1vt = Dv∆v − αv + κ3uw,

τ2wt = Dw∆w − κ4w + κ5v,

(1.2)

where Du, Dv and Dw denote the respective diffusion coefficients of the functions u = u(x, t), v =
v(x, t) and w = w(x, t), χ represents the strength of the cross-diffusive interaction, and τ1 ≥ 0 and
τ2 ≥ 0 are parameters related to the speed at which v and w equilibrate. In the above model, it is
assumed that healthy cells are produced at a rate λ and become infected at a rate κ2, that infected
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cells are produced at the rate κ3, that new viruses are produced by infected cells at a rate κ5, and
that all three populations undergo spontaneous death at rates κ1, α and κ4, respectively.

Numerical experiments now indicate that the introduction of the taxis term in (1.2) indeed goes along
with a considerable trend toward support of spatial heterogeneity. Already in one-dimensional settings
in which (1.2) is known to admit global bounded smooth solutions for arbitrarily large initial data
([43]), simulations reveal Turing-type instabilities for suitably large χ ([32]); beyond this, numerical
evidence suggest that when posed in two-dimensional domains, besides facilitating effects of the latter
flavor the system (1.2) may even enforce the spontaneous emergence of singularities ([32], [2]). Such
mathematically extreme expressions of structure formation have meanwhile been understood to a con-
siderable extent in frameworks of simpler taxis systems from the context of Keller-Segel models ([16],
[22], [40]), but even the mere detection of blow-up phenomena so far has, in virtually all successful
cases reported in the literature, relied on quite fragile structural properties of cross-diffusive interac-
tion which most commonly disappear upon extending and complexifying the respective model.

Accordingly, for the three-component system (1.2) and some close relatives, knowledge assured by
rigorous analysis seem yet limited to findings on global solvability in various particular settings. For
instance, variants of (1.2) involving suitably strong regularizations of either the infection term κ3uw

([36], [3], [9]), or the tactic contribution −χ∇ · (u∇v) ([15], [43]), have been found to possess global
bounded solutions for widely arbitrary initial data; for (1.2) in its original form, however, results
on global existence and boundedness are restricted to spatially one-dimensional settings ([43]), or to
situations in which |χ| is appropriately small, possibly in dependence on the initial data ([2]). To the
best of our knowledge, however, the literature by now does not provide any rigorous result on the
occurrence of explosions in two- or higher-dimensional versions of (1.2).

Main results. A key obstacle to be adequately coped with by any expedient strategy toward
addressing this latter issue seems to be linked to the circumstance that in sharp contrast to classical
Keller-Segel type systems, the tactically directing signal in (1.2) is produced in a nonlinear manner, as
becoming manifest in the contribution +κ3uw to the second equation therein. Indeed, the occurrence
of the additional factor w apparently rules out any persistence of the gradient-like structure that is
known to go along with Keller-Segel type chemotactic interaction involving linear signal production
([23]), and that has formed an indispensable basis for blow-up detections in parabolic versions thereof
([19], [40]).

In order to nevertheless develop an approach capable of discovering singularity formation in (1.2), we
recall from biological data that the migration speed is significantly increased upon infection: Indeed,
the experiments reported in [44] that infected cells secrete some effector interacting with host proteins
that regulate motility of cells, and thus this effector actually promotes motility of infected cells and ac-
celerates the spread of infection; another experimental finding indicates that the translocated receptor
in infected cells recruits other signalling proteins into a large protein complex leading to cell motility
and invasive growth ([1]). In line with this and classical precedents concerned with corresponding
parabolic-elliptic model limits in Keller-Segel systems ([16], [28]), we shall henceforth consider (1.2) in
the borderline case τ1 = 0 that relates to a quasi-steady-state approximation of the equation describ-
ing the evolution of infected cells. In order to suitably carve out those properties of the zero-order
terms in (1.2) that are genuinely required for our analysis, we shall subsequently be concerned with
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the generalization of the corresponding parabolic-elliptic-parabolic version of (1.2) given by




ut = Du∆u− χ∇ · (u∇v) + f(u, v, w), x ∈ Ω, t > 0,

0 = Dv∆v − αv + ug(u,w), x ∈ Ω, t > 0,

wt = Dw∆w + h(u, v, w), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.3)

in a ball Ω = BR(0) ⊂ R
n with n ∈ {2, 3} and R > 0. Here, Du, Dv, Dw, α and χ are given positive

constants, and throughout this paper the parameter functions f, g and h are assumed to satisfy the
regularity assumptions

f ∈ C1([0,∞)3), g ∈ C1([0,∞)2) and h ∈ C1([0,∞)3) (1.4)

as well as the two-sided estimates

f(u, v, w) ≥ −uf0(w) for all (u, v, w) ∈ [0,∞)3 with some nondecreasing f0 : [0,∞) → [0,∞)
(1.5)

and
f(u, v, w) ≤ λ for all (u, v, w) ∈ [0,∞)3 with some λ > 0 (1.6)

and

g(u,w) ≥ g0(w) for all (u,w) ∈ [0,∞)2 with some nondecreasing g0 : [0,∞) → R

fulfilling g0 > 0 on (0,∞) (1.7)

as well as

g(u,w) ≤ g1(w) for all (u,w) ∈ [0,∞)2 with some nondecreasing g1 : [0,∞) → [0,∞) (1.8)

and

h(u, v, w) ≥ −h0(w) for all (u, v, w) ∈ [0,∞)3 with some nondecreasing h0 : [0,∞) → [0,∞)

such that h0(0) = 0 (1.9)

and
h(u, v, w) ≤ β · (v + 1) for all (u, v, w) ∈ [0,∞)3 with some β > 0. (1.10)

We shall moreover concentrate on radial solutions by supposing that
{

u0 ∈ C0(Ω) is radially symmetric and nonnegative, and that

w0 ∈ C0(Ω) is radially symmetric and positive in Ω,
(1.11)

and we remark that by appropriate modification of the reasoning in [2], it is possible to show that
within this setup, for suitably small values of |χ| a global and bounded solution can be found. In stark
contrast to this, the main result of the present study now asserts that when χ > 0 is appropriately
large, then indeed some such initial data can be found which evolve into certain infinite densities within
finite time, hence reflecting hotspot formation, as observed in [12], in the sharp sense of singularity
formation.
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Theorem 1.1 Let Ω = BR(0) ⊂ R
n with n ∈ {2, 3} and some R > 0, and suppose that Du > 0, Dv >

0, Dw > 0 and α > 0, and that f, g and h satisfy (1.4) as well as (1.5)-(1.10). Then given any
radially symmetric and positive w0 ∈ C0(Ω), for each m > 0 one can find r⋆ = r⋆(m,w0) ∈ (0, R)
and χ⋆ = χ⋆(m,w0) > 0 such that whenever χ > χ⋆ and u0 ∈ C0(Ω) is a radially symmetric and
nonnegative function fulfilling ∫

Ω
u0 ≤ m (1.12)

and ∫

Br⋆ (0)
u0 ≥

m

2
, (1.13)

the problem (1.3) possesses a classical solution which blows up in finite time; more precisely: There
exist T ∈ (0,∞) and uniquely determined nonnegative functions





u ∈ C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T )),

v ∈ C2,0(Ω× (0, T )) and

w ∈ C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T ))

(1.14)

such that (u, v, w) solves (1.3) in the classical sense in Ω× (0, T ), but that

lim sup
tրT

{
‖u(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω)

}
= ∞. (1.15)

The statement in (1.15) can be sharpened under the further assumption that the function in (1.8)
satisfies

g1(w) ≤ δ · (w + 1) for all w ≥ 0 with some δ > 0. (1.16)

Proposition 1.2 If, apart from the hypotheses of Theorem 1.1, the condition (1.16) is satisfied, then
in the situation of Theorem 1.1, instead of (1.15) the stronger conclusion

lim sup
tրT

‖u(·, t)‖L∞(Ω) = ∞ (1.17)

holds.

Especially in view of the question which of the three population densities genuinely undergo explosions
near blow-up times, beyond the basic statements in (1.15) and (1.17) the derivation of more detailed
information about possible blow-up mechansisms forms an important topic for future research which,
however, goes beyond the scope of the present study.

Challenges and main ideas. When compared to well-understood situations of blow-up proofs for
radial solutions to parabolic-elliptic Keller-Segel systems ([16], [5], [22]), the present setting exposes
its increased complexity through the circumstance that the scalar parabolic equation satisfied by the
mass accumulation function, as defined by

z(s, t) :=
1

n|B1(0)|

∫

B n√s(0)
u(x, t)dx, s ∈ [0, Rn], t ≥ 0,
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contains certain spatially nonlocal ingredients, particularly in the corresponding taxis-induced contri-
bution (Lemma 4.1). In order to appropriately control these, and especially to suitably bound the
potentially destabilizing nonlinear action from below, in Section 3 we shall remain in the framework of
the original variables and derive some preliminary estimates for (u, v, w), including a pointwise lower
estimate for w, at least within some adequately small time intervals (Lemma 3.5). In Lemma 4.2,
these preparations will be seen to imply a one-sided parabolic inequality for z that exclusively contains
local ingredients, which thereafter will be further developed into a superlinearly forced autonomous
ODI, again valid during suitably short time intervals, for the function given by

y(t) :=

∫ s0

0
(s0 − s)z(s, t)ds, t > 0,

with the localization parameter s0 ∈ (0, Rn) still at our disposal (Lemma 4.4). A key step, quite
immediately implying both Theorem 1.1 and Proposition 1.2, will then be accomplished in Lemma
4.5 which reveals that for suitably large values of the tactic sensitivity χ and sufficiently small s0, the
driving source in this ODI does not only compel a collapse of y, but that this singularity must indeed
be formed prior to the end of said short time interval.

2 Local existence

To begin with, let us adapt approaches well-established in the context of parabolic-elliptic chemotaxis
models (cf., e.g., [33] and [8]) to derive the following basic result on local existence and extensibility.

Lemma 2.1 Let Du, Dv, Dw and α be positive constants and χ ∈ R, and suppose that (1.4) and (1.5)-
(1.10) as well as (1.11) hold. Then there exist Tmax ∈ (0,∞] and uniquely determined nonnegative
functions 




u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈ C2,0(Ω× (0, Tmax)) and

w ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

(2.1)

such that u(·, t), v(·, t) and w(·, t) are radially symmetric for all t ∈ (0, Tmax), that (u, v, w) solves
(1.3) in the classical sense in Ω× (0, Tmax), and that

if Tmax < ∞, then lim sup
tրTmax

{
‖u(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω)

}
= ∞. (2.2)

Proof. To construct a classical solution satisfying (2.1), we fix any p > n, which allows us to pick
θ ∈ ( n

2p ,
1
2). Then the realization of A := −∆ under homogeneous Neumann boundary conditions in

Lp(Ω) has the property that the domain of the definition of the fractional power (A + 1)θ satisfies
D((A+ 1)θ) →֒ L∞(Ω) ([14]), and that thus there exists c1 > 0 such that

‖ϕ‖L∞(Ω) ≤ c1‖(A+ 1)θϕ‖Lp(Ω) for all ϕ ∈ D(A). (2.3)

Next, by continuity of the embedding W 2,p(Ω) →֒ W 1,∞(Ω) we may draw on elliptic regularity theory
([11]) to pick c2 > 0 satisfying

‖ϕ‖W 1,∞(Ω) ≤ c2‖ −Dv∆ϕ+ αϕ‖Lp(Ω)

for all ϕ ∈ W 2,p(Ω) such that ∂ϕ
∂ν

= 0 on ∂Ω. (2.4)
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Moreover, relying on standard smoothing estimates for the Neumann heat semigroup (etDu∆)t≥0 on
Ω we can c3 > 0 such that for all t > 0, the operator (A+ 1)θetDu∆∇· can continuously be extended
to all of Lp(Ω;Rn), with

‖(A+ 1)θetDu∆∇ · ϕ‖Lp(Ω) ≤ c3t
− 1

2
−θ‖ϕ‖Lp(Ω) for all ϕ ∈ Lp(Ω;Rn) (2.5)

(cf. [39, Lemma 1.3], for instance). We now set R0 := ‖u0‖L∞(Ω) + ‖w0‖L∞(Ω) + 1, and for T ∈ (0, 1)
to be specified below we introduce the closed subset

S :=
{
(u,w) ∈ X

∣∣∣ ‖u(·, t)‖L∞(Ω) ≤ R0 and ‖w(·, t)‖L∞(Ω) ≤ R0 for all t ∈ (0, T )
}

of the Banach space

X := C0(Ω̄× [0, T ])× C0(Ω̄× [0, T ]).

Given (ū, w̄) ∈ S, we then define F (ū, w̄) ≡ (u,w) by first letting v : (0, T ) → W 2,p(Ω) solve
{

−Dv∆v + αv = ū+g(ū+, w̄+), x ∈ Ω, t ∈ (0, T ),
∂v
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, T ),
(2.6)

in the standard sense of strong solutions ([11]), and by thereafter introducing

u(·, t) := etDu∆u0 − χ

∫ t

0
e(t−s)Du∆∇ · (ū∇v)(·, s)ds

+

∫ t

0
e(t−s)Du∆f(ū+, v, w̄+)(·, s)ds, t ∈ (0, T ), (2.7)

as well as

w(·, t) := etDw∆w0 +

∫ t

0
e(t−s)Dw∆h(ū+, v, w̄+)(·, s)ds, t ∈ (0, T ), (2.8)

where ξ+ := max{ξ, 0} for ξ ∈ R, and where to verify well-definedness of u and w we note that a
standard reasoning based on the continuity of ū and w̄ guarantees that v belongs to C0([0, T ];W 2,p(Ω)),
and that v ≥ 0 due to a straightforward comparison-type argument.

To show that F maps S into itself whenever T is suitably small, we first observe that thanks to (1.7),
(1.8) and the inclusion (ū, w̄) ∈ S,

0 ≤ ū+g(ū+, w̄+) ≤ ū+g1(w̄+) ≤ R0g1(R0), (2.9)

which together with (2.6) and elliptic regularity theory as well as (2.4) ensures that

‖v(·, t)‖W 1,∞(Ω) ≤ c4 := c2 ·R0g1(R0) · |Ω|
1
p for all t ∈ (0, T ). (2.10)

Moreover, in view of (2.7) we have

‖u(·, t)‖L∞(Ω) ≤ ‖etDu∆u0‖L∞(Ω) + χ

∫ t

0
‖e(t−s)Du∆∇ · (ū∇v)(·, s)‖L∞(Ω)ds

+

∫ t

0
‖e(t−s)Du∆f(ū+, v, w̄+)(·, s)‖L∞(Ω)ds

:= I1(t) + I2(t) + I3(t) (2.11)
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for all t ∈ (0, T ), where the parabolic maximum principle readily shows that

I1(t) ≤ ‖u0‖L∞(Ω) for all t ∈ (0, T ). (2.12)

Apart from that, according to (2.3), (2.5), the inclusion (ū, w̄) ∈ S and (2.10), we find that

I2(t) ≤ c1c3χ

∫ t

0
(t− s)−

1
2
−θ‖(ū∇v)(·, s)‖Lp(Ω)ds

≤ c1c3χ

∫ t

0
(t− s)−

1
2
−θ‖ū(·, s)‖L∞(Ω) · ‖∇v(·, s)‖L∞(Ω) · |Ω|

1
pds

≤ c1c3χ ·R0 · c4 · |Ω|
1
p

∫ t

0
(t− s)−

1
2
−θds

≤ c1c3c4χR0|Ω|
1
p

1
2 − θ

· T 1
2
−θ for all t ∈ (0, T ), (2.13)

and due to (1.5), (1.6) and the maximum principle, again since (ū, w̄) ∈ S we see that

I3(t) ≤
∫ t

0
‖f(ū+, v, w̄+)(·, s)‖L∞(Ω)ds

≤
∫ t

0
max{λ, ‖(ū+f0(w̄+))(·, s)‖L∞(Ω)}ds

≤ max{λ, R0f0(R0)} · T for all t ∈ (0, T ).

Combining this with (2.12)-(2.13), from (2.11 we obtain that

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) +
c1c3c4χR0|Ω|

1
p

1
2 − θ

· T 1
2
−θ +max{λ, R0f0(R0)} · T for all t ∈ (0, T ),

(2.14)
and using (1.9), (1.10) and (2.10) we similarly find that

‖w(·, t)‖L∞(Ω) ≤ ‖w0‖L∞(Ω) +max{β(c4 + 1), h0(R0)} · T for all t ∈ (0, T ). (2.15)

Therefore, if we take T1 = T1(R0) ∈ (0, 1) sufficiently small such that

c1c3c4χR0|Ω|
1
p

1
2 − θ

· T
1
2
−θ

1 +max{λ, R0f0(R0)} · T1 +max{β(c4 + 1), h0(R0)} · T1 < 1,

then from (2.14), (2.15) and the definition of R0 we infer that whenever T ∈ (0, T1),

‖u(·, t)‖L∞(Ω) ≤ R0 and ‖w(·, t)‖L∞(Ω) ≤ R0 for all t ∈ (0, T ),

and that hence, indeed, F maps S into itself for any such T . Likewise, a straighforward modification
of the above reasoning finally yields T = T (R0) ∈ (0, T1) with the property that, in fact, F even acts
as a contraction on S and hence possesses a fixed point (u,w) ∈ S.

A standard argument now reveals that with v as accordingly determined through (2.6), u ∈ L∞(Ω×
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(0, T )) ∩ L2((0, T );W 1,2(Ω)) and w ∈ L∞(Ω × (0, T )) ∩ L2((0, T );W 1,2(Ω)) solve the two initial-
boundary value problems in





ut = Du∆u− χ∇ · (u∇v) + f(u+, v, w+), x ∈ Ω, t ∈ (0, T ),

wt = Dw∆w + h(u+, v, w+), x ∈ Ω, t ∈ (0, T ),
∂u
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω.

(2.16)

in the natural weak sense specified, e.g., in [29]. In view of boundedness of u∇v and f in L∞(Ω),
a standard result on Hölder regularity in quasi-linear parabolic equations [29, Theorem 1.3, Remark
1.4] therefore becomes applicable so as to yield γ ∈ (0, 1) such that u ∈ Cγ, γ

2 (Ω× [0, T ]), whereupon a
straightforward bootstrap procedure reveals that actually u and w belong to C0(Ω× [0, T ])∩C2,1(Ω×
(0, T )), that v lies in C2,0(Ω× (0, T )), and that (u, v, w) solves (2.16) and (2.6) in the classical sense
in Ω × (0, T ). In particular, this enables us to twice invoke the parabolic maximum principle to
conclude that besides v, also w and u are both nonnegative in Ω × (0, T ), and that hence (u, v, w)
in fact forms a classical solution of (1.3) in Ω× (0, T ). The extensibility of this solution, up to some
Tmax ∈ (0,∞] fulfilling (2.2), follows from the exclusive dependence of T on (u0, w0) through its norm
in L∞(Ω)×L∞(Ω), combined with the fact that thanks to the elliptic comparison principle and (1.8),
v remains bounded as long as u and w are bounded.

It remains to observe that uniqueness of solutions within the class of nonnegative functions fulfilling
(2.1) can be verified by means of a fairly standard testing procedure, as detailed for related problems
e.g. in [35] and in [38], and that therefore (u(·, t), v(·, t), w(·, t)) must inherit radial symmetry from u0
and w0. �

Without further explicit mentioning, throughout the sequel we shall refer to the above solution when-
ever χ > 0 and u(u0, w0) satisfies (1.11).

3 A lower bound for w and an L
p
estimate for v for small times

In order to create an appropriate framework for our qualitative analysis, let us introduce the conditions

∫

Ω
u0 ≤ m (3.1)

as well as
w0(x) ≥ ℓ for all x ∈ Ω (3.2)

and
w0(x) ≤ L for all x ∈ Ω, (3.3)

with positive parameters m, ℓ and L to be commented on in more detail below.

In this setting, we can readily derive a statement on mass control within short time intervals in the
following quantitative manner.
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Lemma 3.1 Let m > 0. Then if χ ∈ R, and if u0 and w0 satisfy (1.11) as well as (3.1), it follows
that ∫

Ω
u(·, t) ≤ 2m for all t ∈

(
0 , min

{ m

λ|Ω| , Tmax

})
. (3.4)

Proof. According to (1.6), an integration of the first equation in (1.3) shows that

d

dt

∫

Ω
u =

∫

Ω
f(u, v, w) ≤ λ|Ω| for all t ∈ (0, Tmax)

and hence
∫

Ω
u(·, t) ≤

∫

Ω
u0 + λ|Ω|t for all t ∈ (0, Tmax),

which due to (3.1) immediately results in (3.4). �

As a preparation for our subsequent selections of parameters, let us recall two standard results from
elliptic and parabolic regularity theory.

Lemma 3.2 Let p ≥ 1 be such that p < n
n−2 . Then there exists K1(p) > 0 such that

‖ϕ‖Lp(Ω) ≤ K1(p)‖ −Dv∆v + αv‖L1(Ω) for all ϕ ∈ C2(Ω) fulfilling ∂ϕ
∂ν

= 0 on ∂Ω. (3.5)

Proof. This is a classical result from the regularity theory of elliptic boundary value problems
with inhomogeneities in L1 spaces ([7]). �

Lemma 3.3 Let p ≥ 1. Then there exists K2(p) > 0 such that

‖eDwt∆ϕ‖L∞(Ω) ≤ K2(p)t
− n

2p ‖ϕ‖Lp(Ω) for all ϕ ∈ C0(Ω) and any t ∈ (0, 1), (3.6)

where (et∆)t≥0 denotes the Neumann heat semigroup over Ω.

Proof. The claimed inequality describes a well-known smoothing property of the heat semigroup
(see e.g. [39]). �

In combining the latter two properties to derive an upper bound for w and an Lp bound for v, again
for suitably small times, we will make essential use of our overall assumption that n ≤ 3:

Lemma 3.4 Let m > 0, L > 0 and p ∈ (n2 ,
n

n−2). Then there exist t⋆ = t⋆(m,L, p) > 0 and M =
M(m,L, p) > 0 with the property that whenever χ ∈ R and u0 and w0 are such that (1.11) as well as
(3.1) and (3.3) hold, we have

‖w(·, t)‖L∞(Ω) ≤ 2L for all t ∈
(
0,min{t⋆, Tmax}

)
(3.7)

and
‖v(·, t)‖Lp(Ω) ≤ M for all t ∈

(
0,min{t⋆, Tmax}

)
. (3.8)
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Proof. Given m > 0, L > 0 and p ∈ (n2 ,
n

n−2), we let

t⋆ ≡ t⋆(m,L, p) :=





m

λ|Ω| , 1 ,





(1− n
2p)L

2βK2(p) ·
(
2K1(p)g1(2L)m+ |Ω|

1
p

)





1

1− n
2p





, (3.9)

where K1(p) and K2(p) denote the constants provided by Lemma 3.2 and Lemma 3.3, respectively.
Then supposing that χ ∈ R and that u0 and w0 satisfy (1.11), (3.1) and (3.3), we see from the latter
that

T := sup

{
T̃ ∈

(
0,min{t⋆, Tmax}

) ∣∣∣∣ ‖w(·, t)‖L∞(Ω) < 2L for all t ∈ [0, T̃ )

}
(3.10)

is well-defined and positive, and we claim that actually T = min{t⋆, Tmax}.
To see this, assuming on the contrary that T < min{t⋆, Tmax}, we would firstly obtain that due to
Lemma 2.1, w is continuous at t = T and hence

‖w(·, T )‖L∞(Ω) = 2L. (3.11)

On the other hand, the second equation in (1.3) together with (1.8) and our definition of T implies
that

−Dv∆v + αv = ug(u,w)

≤ ug1(w)

≤ g1(2L)u in Ω× (0, T ),

whereas Lemma 3.1 asserts that
∫

Ω
u(·, t) ≤ 2m for all t ∈ (0, T )

due to (3.1) and the first restriction on t⋆ contained in (3.9). Accordingly, since p < n
n−2 we may

invoke Lemma 3.2 to infer that

‖v(·, t)‖Lp(Ω) ≤ K1(p)g1(2L)‖u(·, t)‖L1(Ω)

≤ 2K1(p)g1(2L)m for all t ∈ (0, T ). (3.12)

Next, by means of a variation-of-constants formula associated with the third equation in (1.3) we can
rely on the ordering property of (eDwt∆)t≥0 and on (3.3) and (1.10) in estimating

w(·, t) = eDwt∆w0 +

∫ t

0
eDw(t−s)∆h

(
u(·, s), v(·, s), w(·, s)

)
ds

≤ ‖w0‖L∞(Ω) +

∫ t

0
eDw(t−s)∆

{
β ·

(
v(·, s) + 1

)}
ds

≤ L+ β

∫ t

0

∥∥∥eDw(t−s)∆
(
v(·, s) + 1

)∥∥∥
L∞(Ω)

ds for all t ∈ (0, Tmax), (3.13)
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where thanks to (3.12) and Lemma 3.3, the latter being applicable due to the condition t⋆ ≤ 1 asserted
by (3.9), for all t ∈ [0, T ] we have

β

∫ t

0

∥∥∥eDw(t−s)∆
(
v(·, s) + 1

)∥∥∥
L∞(Ω)

ds ≤ βK2(p)

∫ t

0
(t− s)

− n
2p ‖v(·, s) + 1‖Lp(Ω)ds

≤ βK2(p)

∫ t

0
(t− s)

− n
2p

{
‖v(·, s)‖Lp(Ω) + |Ω|

1
p

}
ds

≤ βK2(p) ·
{
2K1(p)g1(2L)m+ |Ω|

1
p

}
·
∫ t

0
(t− s)

− n
2pds

= βK2(p) ·
{
2K1(p)g1(2L)m+ |Ω|

1
p

}
· t

1− n
2p

1− n
2p

,

because p > n
2 . In light of the third restriction on t⋆ entailed by (3.9), from (3.13) and the nonnegativity

of w we thus obtain that

‖w(·, t)‖L∞(Ω) ≤ L+ βK2(p) ·
{
2K1(p)g1(2L)m+ |Ω|

1
p

}
· t

1− n
2p

⋆

1− n
2p

≤ L+
L

2
for all t ∈ [0, T ],

which contradicts (3.11) and thereby verifies that indeed T = min{t⋆, Tmax}. By (3.10), this directly
shows (3.7), whereas (3.8) results from (3.12) if we let M ≡ M(m,L, p) := 2K1(p)g1(2L)m. �

When suitably utilized in the course of a comparison argument, the upper bound for w provided by
(3.7) can be seen to actually imply a pointwise lower estimate for the same solution component:

Lemma 3.5 Let m > 0, ℓ > 0 and L > 0. Then there exists t⋆⋆ = t⋆⋆(m, ℓ, L) > 0 such that if χ ∈ R

and (1.11), (3.1), (3.2) as well as (3.3) hold, then

w(x, t) ≥ ℓ

2
for all x ∈ Ω and any t ∈

(
0,min{t⋆⋆, Tmax}

)
. (3.14)

Proof. Picking an arbitrary p ∈ (n2 ,
n

n−2), with t⋆(m,L, p) > 0 as given by Lemma 3.4 we define

t⋆⋆ ≡ t⋆⋆(m, ℓ, L) := min

{
t⋆(m,L, p) ,

ℓ

2h0(2L)

}
. (3.15)

Then assuming χ ∈ R to be given and u0 and w0 to satisfy (1.11), (3.1), (3.2) and (3.3), from Lemma
3.4 we know that since t⋆⋆ ≤ t⋆(m,L, p) we have

w(x, t) ≤ 2L for all x ∈ Ω and t ∈
(
0,min{t⋆⋆, Tmax}

)
.

Therefore, due to (1.9) the third equation in (1.3) implies that

wt = Dw∆w + h(u, v, w)

≥ Dw∆w − h0(w)

≥ Dw∆w − h0(2L) in Ω×
(
0,min{t⋆⋆, Tmax}

)
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and that hence, in view of a simple comparison argument and (3.2),

w(x, t) ≥ inf
y∈Ω

w0(y)− h0(2L) · t

≥ ℓ− h0(2L) · t for all x ∈ Ω and t ∈
(
0,min{t⋆⋆, Tmax}

)
.

As h0(2L) · t⋆⋆ ≤ ℓ
2 by (3.15), this already establishes (3.14). �

4 Unbounded radial solutions. Proof of Theorem 1.1

Our goal in this section consists in deriving a suitable parabolic differential inequality for the mass
accumulation function z : [0, Rn]× [0, Tmax) → [0,∞) defined by

z(s, t) :=
1

n|B1(0)|

∫

B n√s(0)
u(x, t)dx, s ∈ [0, Rn], t ∈ [0, Tmax), (4.1)

where our particular ambition will be to make sure that the respective constants appearing therein
will depend on the initial data only through the parameters in (3.1), (3.2) and (3.3), thus particularly
being essentially independent of how far u0 may reflect concentration of mass near the origin. We
note that basing blow-up arguments on functions of the form (4.1) has a long history in the analysis
of chemotaxis systems ([16], [5], [22]), also accounting for more involved cell migration mechanisms or
also additional cell proliferation ([8], [4], [10]); due to an apparently lacking robustness with regard to
the introduction of further complexity, corresponding blow-up proofs for a system involving additional
components seem restricted to quite exceptional situations ([34]).

In the present context, this cumulated density can readily be verified to satisfy a scalar parabolic equa-
tion which, besides including a diffusion degeneracy of dimension-dependent strength, in its potentially
destabilizing taxis-related part contains a nonlocal nonlinearity:

Lemma 4.1 Suppose that χ ∈ R and that (1.11) holds, and let z be as defined in (4.1). Then

zt = n2Dus
2− 2

n zss +
χ

Dv|B1(0)|
· zs ·

∫

B
s1/n

(0)
u(·, t)g

(
u(·, t), w(·, t)

)

− αχ

Dv|B1(0)|
· zs ·

∫

B
s1/n

(0)
v(·, t) + 1

n|B1(0)|

∫

B
s1/n

(0)
f
(
u(·, t), v(·, t), w(·, t)

)
(4.2)

in (0, Rn)× (0, Tmax).

Proof. Using the standard notation in radial variables, (u, v, w) = (u, v, w)(r, t) for r = |x| ∈ [0, R]
and t ∈ [0, Tmax), we differentiate

z(s, t) =

∫ s
1
n

0
ρn−1u(ρ, t)dρ, s ∈ [0,Rn], t ∈ [0, Tmax),

to see that

zs(s, t) =
1

n
u(r, t) and zss(s, t) =

1

n2
s

1
n
−1ur(r, t), s = rn ∈ (0, Rn), t ∈ (0, Tmax),
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and that thus, by (1.3),

zt(s, t) =

∫ s
1
n

0
ρn−1ut(ρ, t)dρ

=

∫ s
1
n

0
ρn−1 ·

{
Duρ

1−n(ρn−1ur)r − χρ1−n(ρn−1uvr)r + f(u, v, w)

}
dρ

= Du · s1− 1
nur − χs1−

1
nuvr +

∫ s
1
n

0
ρn−1f(u, v, w)dρ

= Du · n2s2−
2
n zss − nχs1−

1
n zsvr +

∫ s
1
n

0
ρn−1f(u, v, w)dρ

for all s ∈ (0, Rn) and t ∈ (0, Tmax). As the second equation in (1.3) shows that Dv(r
n−1vr)r =

αrn−1v − rn−1ug(u,w) for all r ∈ (0, R) and t ∈ (0, Tmax) and hence

s1−
1
n vr = rn−1vr =

α

Dv

∫ s
1
n

0
ρn−1vdρ− 1

Dv

∫ s
1
n

0
ρn−1ug(u,w)dρ, s = rn ∈ (0, Rn), t ∈ (0, Tmax),

this readily implies (4.2). �

An observation of crucial importance for our subsequent reasoning now reveals that thanks to our
preparations from Section 3, and especially of Lemma 3.5, the nonlocal contributions to (4.2) can be
estimated in terms of exclusively local expressions that will turn out as quite conveniently manage-
able; in particular, the cross-diffusive remnant entering the accordingly obtained parabolic inequality
for z attains the Burgers-type functional form familiar from classical Keller-Segel analysis ([16], [5])
whenever the chemotactic sensitivity parameter χ is positive. We emphasize, however, that again the
following statement addresses small time intervals only, the length of which once more depending on
the parameters in (3.1), (3.2) and (3.3):

Lemma 4.2 Let m > 0, ℓ > 0 and L > 0, and suppose that ε > 0. Then there exist positive constants
t⋆⋆⋆ = t⋆⋆⋆(m, ℓ, L, ε), γ1 = γ1(ℓ), γ2 = γ2(m,L, ε) and γ3 = γ3(L) such that if χ > 0 and if (3.1),
(3.2) and (3.3) hold, then the function z introduced in (4.1) satisfies

zt ≥ n2Dus
2− 2

n zss + γ1χzzs − γ2χs
2
n
−εzs − γ3z in (0, Rn)×

(
0,min{t⋆⋆⋆, Tmax}

)
. (4.3)

Proof. Using that p−1
p

→ 2
n
as p ր n

n−2 , given ε > 0 we can fix p = p(ε) ∈ (n2 ,
n

n−2) such that

p− 1

p
≥ 2

n
− ε, (4.4)

and for m > 0, ℓ > 0 and L > 0 we thereafter let

t⋆⋆⋆ ≡ t⋆⋆⋆(m, ℓ, L, ε) := min
{
t⋆(m,L, p(ε)) , t⋆⋆(m, ℓ, L)

}
(4.5)
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with t⋆(·, ·, ·) and t⋆⋆(·, ·, ·) as determined by Lemma 3.4 and Lemma 3.5, respectively. Then taking any
χ > 0 and (u0, w0) fulfilling (1.11), (3.1), (3.2) and (3.3), from Lemma 3.5 and the second restriction
in (4.5) we know that w ≥ ℓ

2 in Ω× (0,min{t⋆⋆⋆, Tmax}), so that by (1.7),

g(u,w) ≥ g0(w) ≥ g0

( ℓ
2

)
in Ω×

(
0,min{t⋆⋆⋆, Tmax}

)
.

Since evidently zs is nonnegative, the second summand on the right of (4.2) can therefore be estimated
according to

χ

Dv|B1(0)|
· zs ·

∫

B
s1/n

(0)
ug(u,w) ≥ g0(

ℓ
2)χ

Dv|B1(0)|
· zs ·

∫

B
s1/n

(0)
u

=
ng0(

ℓ
2)

Dv
· χzzs in (0, Rn)×

(
0,min{t⋆⋆⋆, Tmax}

)
. (4.6)

Next, using that (4.5) warrants that also t⋆⋆⋆ ≤ t⋆(m,L, p(ε)), we may invoke Lemma 3.4 to see that
thanks to the Hölder inequality and (4.4),

∫

B
s1/n

(0)
v ≤

{∫

Ω
vp
} 1

p

·
∣∣∣B

s
1
n
(0)

∣∣∣
p−1

p

≤ M(m,L, p) ·
∣∣∣B

s
1
n
(0)

∣∣∣
p−1

p

= M(m,L, p) · |B1(0)|
p−1

p · s
p−1

p

≤ M(m,L, p) · |B1(0)|
p−1

p · (Rn)
p−1

p
−( 2

n
−ε) · s 2

n
−ε

for all s ∈ (0, Rn) and t ∈ (0,min{t⋆⋆⋆, Tmax}), so that in (4.2) we have

αχ

Dv|B1(0)|
·zs ·

∫

B
s1/n

(0)
v ≤ αM(m,L, p)(Rn)

p−1

p
−( 2

n
−ε)

Dv|B1(0)|
1
p

·χs 2
n
−εzs in (0, Rn)×

(
0,min{t⋆⋆⋆, Tmax}

)
.

(4.7)
Finally, as Lemma 3.4 ensures that w ≤ 2L in Ω× (0,min{t⋆⋆⋆, Tmax}) and hence

f(u, v, w) ≥ −uf0(w) ≥ −f0(2L)u in Ω×
(
0,min{t⋆⋆⋆, Tmax}

)

by (1.5), the rightmost summand in (4.2) can be controlled from below according to

1

n|B1(0)|

∫

B
s1/n

(0)
f(u, v, w) ≥ − f0(2L)

n|B1(0)|

∫

B
s1/n

(0)
u = −f0(2L)z in (0, Rn)×

(
0,min{t⋆⋆⋆, Tmax}

)
.

Together with (4.6) and (4.7), this entails (4.3) upon evident choices of γ1, γ2 and γ3. �

By modifying previous methods concerned with blow-up detections in simpler Keller-Segel systems ([5],
[42], [41]), the testing procedure in the next argument focuses on the behavior of z near the origin. As
a consequence, this turns (4.3) into an ODI that describes the evolution of a correspondingly obtained
functional as follows.
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Lemma 4.3 Suppose that m > 0, ℓ > 0, L > 0 and ε ∈ (0, 2
n
], and let t⋆⋆⋆ = t⋆⋆⋆(m, ℓ, L, ε) > 0 as

well as γ1 = γ1(ℓ) > 0, γ2 = γ2(m,L, ε) > 0 and γ3 = γ3(L) > 0 be as given by Lemma 4.2. Then
whenever χ > 0 and (1.11), (3.1), (3.2) and (3.3) are satisfied, the function z defined in (4.1) has the
property that for any choice of s0 ∈ (0, Rn),

d

dt

∫ s0

0
(s0 − s)z(s, t)ds ≥ −2n(n− 1)Du

∫ s0

0
s1−

1
n z(s, t)ds+

γ1χ

2

∫ s0

0
z2(s, t)ds

−γ2χ

∫ s0

0
s

2
n
−εz(s, t)ds

−γ3

∫ s0

0
(s0 − s)z(s, t)ds for all t ∈

(
0,min{t⋆⋆⋆, Tmax}

)
. (4.8)

Proof. Given s0 ∈ (0, Rn), we multiply (4.3) by s0 − s and integrate over (0, s0) to see that for all
t ∈ (0,min{t⋆⋆⋆, Tmax}),

d

dt

∫ s0

0
(s0 − s)z ≥ n2Du

∫ s0

0
(s0 − s)s2−

2
n zss + γ1χ

∫ s0

0
(s0 − s)zzs

−γ2χ

∫ s0

0
(s0 − s)s

2
n
−εzs − γ3

∫ s0

0
(s0 − s)z. (4.9)

Here we integrate by parts several times to find that since zs ≥ 0 in (0, Rn)× (0, Tmax) and z(0, t) = 0
for all t ∈ (0, Tmax),

n2Du

∫ s0

0
(s0 − s)s2−

2
n zss = n2Du

∫ s0

0
s2−

2
n zs −

(
2− 2

n

)
n2Du

∫ s0

0
(s0 − s)s1−

2
n zs

+n2Du(s0 − s)s2−
2
n zs

∣∣∣∣
s=s0

s=0

≥ −
(
2− 2

n

)
n2Du

∫ s0

0
(s0 − s)s1−

2
n zs

= −
(
2− 2

n

)
n2Du

∫ s0

0
s1−

1
n z +

(
1− 2

n

)(
2− 2

n

)
n2Du

∫ s0

0
(s0 − s)s−

2
n z

−
(
2− 2

n

)
n2Du(s0 − s)s1−

2
n z

∣∣∣∣
s=s0

s=0

≥ −
(
2− 2

n

)
n2Du

∫ s0

0
s1−

1
n z for all t ∈

(
0,min{t⋆⋆⋆, Tmax}

)

and

γ1χ

∫ s0

0
(s0 − s)zzs =

γ1χ

2

∫ s0

0
(s0 − s)(z2)s

=
γ1χ

2

∫ s0

0
z2 +

γ1χ

2
(s0 − s)z2

∣∣∣∣
s=s0

s=0

=
γ1χ

2

∫ s0

0
z2 for all t ∈

(
0,min{t⋆⋆⋆, Tmax}

)
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as well as

−γ2χ

∫ s0

0
(s0 − s)s

2
n
−εzs = −γ2χ

∫ s0

0
s

2
n
−εz +

( 2

n
− ε

)
γ2χ

∫ s0

0
(s0 − s)s−

n−2
n

−εz

−γ2χ(s0 − s)s
2
n
−εz

∣∣∣∣
s=s0

s=0

≥ −γ2χ

∫ s0

0
s

2
n
−εz for all t ∈

(
0,min{t⋆⋆⋆, Tmax}

)
,

because ε ≤ 2
n
. Therefore, (4.9) implies (4.8). �

Suitable interpolation next turns the latter into a quadratically forced autonomous ODI for the func-
tional under consideration, again restricted to small time intervals, and yet containing coefficients that
depend on the parameters in (3.1), (3.2) and (3.3):

Lemma 4.4 Let m > 0, ℓ > 0, L > 0 and ε ∈ (0, 2
n
]. Then there exist positive constants Γ1 =

Γ1(ℓ),Γ2 = Γ2(L),Γ3 = Γ3(ℓ) and Γ4 = Γ4(m, ℓ, L, ε) such that for any choice of χ > 0 and (u0, w0)
fulfilling (1.11), (3.1), (3.2) and (3.3), with z as in (4.1) we have

d

dt

∫ s0

0
(s0 − s)z(s, t)ds ≥ Γ1 ·

χ

s30
·
{∫ s0

0
(s0 − s)z(s, t)ds

}2

−Γ2 ·
∫ s0

0
(s0 − s)z(s, t)ds− Γ3 ·

s
3− 2

n
0

χ
− Γ4 · χ · s

n+4
n

−2ε

0 (4.10)

for all t ∈ (0,min{t⋆⋆⋆, Tmax}) and any s0 ∈ (0, Rn), where t⋆⋆⋆ = t⋆⋆⋆(m, ℓ, L, ε) > 0 is as given by
Lemma 4.2.

Proof. With γ1 = γ1(ℓ) > 0, γ2 = γ2(m,L, ε) > 0 and γ3 = γ3(L) > 0 as introduced in Lemma
4.2, on the right-hand side of (4.8) we use Young’s inequality to estimate

2n(n− 1)Du

∫ s0

0
s1−

1
n z ≤ γ1χ

8

∫ s0

0
z2 +

[2n(n− 1)Du]
2

4 · γ1χ
8

∫ s0

0
s2−

2
nds

=
γ1χ

8

∫ s0

0
z2 +

8n2(n− 1)2D2
u

γ1χ
· s

3− 2
n

0

3− 2
n

(4.11)

and

γ2χ

∫ s0

0
s

2
n
−εz ≤ γ1χ

8

∫ s0

0
z2 +

(γ2χ)
2

4 · γ1χ
8

∫ s0

0
s

4
n
−2εds

=
γ1χ

8

∫ s0

0
z2 +

2γ22χ

γ1
· s

n+4
n

−2ε

0
n+4
n

− 2ε
(4.12)

for all t ∈ (0,min{t⋆⋆⋆, Tmax}). As furthermore the Cauchy-Schwarz inequality ensures that

∫ s0

0
(s0 − s)z ≤ s0 ·

∫ s0

0
z ≤ s

3
2

0 ·
{∫ s0

0
z2
} 1

2

for all t ∈
(
0,min{t⋆⋆⋆, Tmax}

)
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and hence

γ1χ

4

∫ s0

0
z2 ≥ γ1χ

4s30
·
{∫ s0

0
(s0 − s)z

}2

for all t ∈
(
0,min{t⋆⋆⋆, Tmax}

)
,

on combining this with (4.11), (4.12) and (4.8) we readily derive (4.10) with Γ1(ℓ) := γ1
4 ,Γ2(L) :=

γ3,Γ3(ℓ) :=
8n2(n−1)2D2

u

γ1·(3−
2
n
)

and Γ4(m, ℓ, L, ε) :=
2γ2

2

γ1·(
n+4
n

−2ε)
. �

Now a task of central importance consists in making sure that for suitably large chemotactic sensitivi-
ties χ, and for appropriately small localization parameters s0, a condition on initial mass concentration
in the flavor of that from Theorem 1.1 ensures that the driving nonlinearity on the right-hand side of
(4.10) indeed enforces blow-up, and that, first and foremost, this collapse occurs within the considered
time interval. An accordingly careful parameter selection forms the technical core of the following key
step toward our proof of Theorem 1.1.

Lemma 4.5 Let m > 0, ℓ > 0 and L > 0. Then there exist r0 = r0(m, ℓ, L) ∈ (0, R) and χ0 =
χ0(m, ℓ, L) > 0 with the following property: If χ > χ0 and if u0 and w0 satisfy (1.11), (3.1), (3.2)
and (3.3) as well as ∫

Br0 (0)
u0 ≥

m

2
, (4.13)

then Tmax < ∞.

Proof. We fix any ε ∈ (0, 2
n
), and given m > 0, ℓ > 0 and L > 0 we let Γ1 = Γ1(ℓ) > 0,

Γ2 = Γ2(L) > 0, Γ3 = Γ3(ℓ) > 0, Γ4 = Γ4(m, ℓ, L, ε) > 0 and t⋆⋆⋆ = t⋆⋆⋆(m, ℓ, L, ε) > 0 be as
thereupon provided by Lemma 4.4 and Lemma 4.2, respectively. Since ε < 2

n
, we can then pick

s0 = s0(m, ℓ, L) ∈ (0, Rn) small enough such that

s
2
n
−ε

0 ≤ m
√
Γ1

32
√
6n|B1(0)|

√
Γ4

(4.14)

and thereafter choose χ0 = χ0(m, ℓ, L) > 0 large fulfilling

χ0 ≥
192n|B1(0)|Γ2s0

mΓ1
(4.15)

and

χ0 ≥
32
√
6n|B1(0)|

√
Γ3s

1− 1
n

0

m
√
Γ1

(4.16)

as well as

χ0 ≥
64n|B1(0)|s0

mΓ1t⋆⋆⋆
. (4.17)

We now suppose that χ > χ0 and that (u0, w0) satisfies (1.11), (3.1), (3.2), (3.3) and (4.13) with

r0 :=
(s0
2

) 1
n
, (4.18)

and claim that then necessarily Tmax ≤ t⋆⋆⋆.
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To verify this, assuming on the contrary that Tmax > t⋆⋆⋆ we would obtain from Lemma 4.4 that with
z taken from (4.1),

y(t) :=

∫ s0

0
(s0 − s)z(s, t)ds, t ∈ [0, Tmax),

was well-defined on [0, t⋆⋆⋆] with

y′(t) ≥ Γ1χ

s30
y2(t)− Γ2y(t)−

Γ3s
3− 2

n
0

χ
− Γ4χs

n+4
n

−2ε

0 for all t ∈ (0, t⋆⋆⋆). (4.19)

Furthermore, (4.18) and (4.13) warrant that

z(s, 0) ≥ z
(s0
2
, 0
)
=

1

n|B1(0)|

∫

Br0 (0)
u0 ≥

m

2n|B1(0)|
for all s ∈

(s0
2
, Rn

)
,

so that

y(0) ≥
∫ s0

s0
2

(s0 − s)z(s, 0)ds

≥ m

2n|B1(0)|

∫ s0

s0
2

(s0 − s)ds

=
ms20

16n|B1(0)|
. (4.20)

Therefore,

S :=

{
T̃ ∈ (0, t⋆⋆⋆)

∣∣∣∣ y(t) >
ms20

32n|B1(0)|
for all t ∈ [0, T̃ )

}

is not empty and hence T := supS is well-defined with T ∈ (0, t⋆⋆⋆], and our first goal is to make sure
that

y′(t) ≥ Γ1χ

2s30
· y2(t) for all t ∈ (0, T ). (4.21)

To see this on the basis of (4.19), we first combine the definition of S with (4.15) to obtain

Γ2y(t)
1
6 · Γ1χ

s30
· y2(t)

=
6Γ2s

3
0

Γ1χy(t)

<
192n|B1(0)|Γ2s0

mΓ1χ0

≤ 1 for all t ∈ (0, T )

and hence

Γ2y(t) ≤
1

6
· Γ1χ

s30
· y2(t) for all t ∈ (0, T ). (4.22)
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Similarly, (4.16) ensures that

Γ3s
3− 2

n
0

χ

1
6 · Γ1χ

s30
· y2(t)

=
6Γ3s

6− 2
n

0

Γ1χ2y2(t)

<
6144n2|B1(0)|2Γ3s

2− 2
n

0

m2Γ1χ
2
0

≤ 1 for all t ∈ (0, T ),

whereas

Γ4χs
n+4
n

−2ε

0
1
6 · Γ1χ

s30
· y2(t)

=
6Γ4s

4n+4
n

−2ε

0

Γ1y2(t)

<
6144n2|B1(0)|2Γ4s

4
n
−2ε

0

m2Γ1

≤ 1 for all t ∈ (0, T )

due to (4.14). As thus also

Γ3s
3− 2

n
0

χ
≤ 1

6
· Γ1χ

s30
· y2(t) for all t ∈ (0, T )

and

Γ4χs
n+4
n

−2ε

0 ≤ 1

6
· Γ1χ

s30
· y2(t) for all t ∈ (0, T ),

in view of (4.22) we infer from (4.19) that indeed (4.21) is valid.

Now since (4.21) in particular entails that y is increasing on [0, T ], from this we firstly obtain that in
fact T = t⋆⋆⋆, and that therefore, secondly, we may integrate (4.21) over t ∈ (0, t⋆⋆⋆) to see that

Γ1χ

2s30
· t⋆⋆⋆ ≤

1

y(0)
− 1

y(t⋆⋆⋆)
≤ 1

y(0)
,

which in conjunction with (4.20) and (4.17) leads to the absurd conclusion that

t⋆⋆⋆ ≤ 2s30
Γ1χ

· 16n|B1(0)|
ms20

=
32n|B1(0)|s0

mΓ1χ

≤ t⋆⋆⋆

2

and thereby shows that actually we must indeed have had Tmax ≤ t⋆⋆⋆. �
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The proof of our main result on singularity formation in the original problem (1.3) hence in essence
reduces to a mere reformulation of the above:

Proof of Theorem 1.1. For fixed positive radial w0 ∈ C0(Ω) and m > 0, we let ℓ := infx∈Ωw0(x)
and L := supx∈Ωw0(x) and take r⋆ ≡ r⋆(m,w0) := r0(m, ℓ, L) ∈ (0, R) as well as χ⋆ ≡ χ⋆(m,w0) :=
χ0(m, ℓ, L) > 0 as obtained in Lemma 4.5. Then the latter together with Lemma 2.1 immediately
establishes the claim. �

Two fairly straightforward applications of maximum principles finally facilitate the claimed conclusion
on unboundedness of the first solution component whenever (1.16) holds:

Proof of Proposition 1.2. If (1.17) was false, then there would exist c1 > 0 such that

‖u(·, t)‖L∞(Ω) ≤ c1 for all t ∈ (0, Tmax), (4.23)

whence according to the second equation in (1.3), (1.8) and (1.16) we would have

−Dv∆v + αv = ug(u,w)

≤ ug1(w)

≤ δu(w + 1)

≤ δc1(w + 1) in Ω× (0, T ).

As a consequence of the maximum principle, this would entail that

α‖v(·, t)‖L∞(Ω) ≤ δc1 ·
{
‖w(·, t)‖L∞(Ω) + 1

}
for all t ∈ (0, T ) (4.24)

and that thus, by the third equation in (1.3) and (1.10),

wt = Dw∆w + h(u, v, w)

≤ Dw∆w + β · (v + 1)

≤ Dw∆w +
βδc1

α
‖w(·, t)‖L∞(Ω) +

βδc1

α
+ β for all x ∈ Ω and t ∈ (0, T ).

By means of a parabolic comparison argument, from this we could conclude that

‖w(·, t)‖L∞(Ω) ≤ ‖w0‖L∞(Ω) +

∫ t

0

{βδc1

α
‖w(·, s)‖L∞(Ω) +

βδc1

α
+ β

}
ds

≤ ‖w0‖L∞(Ω) +
(βδc1

α
+ β

)
· T +

βδc1

α

∫ t

0
‖w(·, s)‖L∞(Ω)ds for all t ∈ (0, T ),

which due to the Grönwall lemma would entail that

‖w(·, t)‖L∞(Ω) ≤
{
‖w0‖L∞(Ω) +

(βδc1
α

+ β
)
· T

}
· e

βδc1
α

·T for all t ∈ (0, T ).

Together with (4.23) and (4.24), this would mean that

lim sup
tրT

{
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω)

}
< ∞
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and thereby contradict (1.15), so that actually the hypothesis (4.23) must have been false. �
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