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Abstract

The Keller-Segel-Stokes system











nt + u · ∇n = ∆n−∇ · (n∇c) + ρn− µnα,

ct + u · ∇c = ∆c− c+ n,

ut = ∆u+∇P − n∇Λ, ∇ · u = 0,

(⋆)

is considered in a bounded domain Ω ⊂ R
3 with smooth boundary, with parameters ρ ≥ 0, µ > 0

and α > 1, and with a given gravitational potential Λ ∈W 2,∞(Ω).

It is shown that in this general setting, when posed under no-flux boundary conditions for n
and c and homogeneous Dirichlet boundary conditions for u, and for any suitably regular initial
data, an associated initial value problem possesses at least one globally defined solution in an
appropriate generalized sense. Since it is well-known that in the absence of absorption, already
the corresponding fluid-free subsystem with u ≡ 0 and µ = 0 admits some solutions blowing up in
finite time, this particularly indicates that any power-type superlinear degradation of the form in
(⋆) goes along with some significant regularizing effect.
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1 Introduction

The damping role of logistic sources in classical Keller-Segel systems. Chemotaxis, the
biased movement of individuals corresponding to concentration gradients of a chemical signal, is
known to be a mechanism of great significance for pattern formation in numerous biological contexts.
Concentrating on cross-diffusion and signal production through cells as the main ingredients of a
corresponding feedback loop, the apparently most prominent mathematical description of essential
aspects within such processes is achieved by the classical Keller-Segel model ([8]) in its minimal
version, as given by

{

nt = ∆n−∇ · (n∇c),
ct = ∆c− c+ n.

(1.1)

Indeed, several studies have revealed a distinct ability of this system to describe spontaneous aggre-
gation in two- and higher-dimensional settings; for instance, it is well-known that the homogeneous
Neumann problem associated with (1.1) in balls Ω ⊂ R

N possesses some solutions blowing up in finite
time when either N ≥ 3, or when N = 2 and the total mass of cells is large ([5], [27]).

In cases when the respective application contexts involve large time scales, model refinements which
appropriately account for proliferation and death of cells seem in order. Yet leaving further coupling
unaddressed, Keller-Segel-growth systems of the form

{

nt = ∆n−∇ · (n∇c) + ρn− µnα,

ct = ∆c− c+ n,
(1.2)

provide modifications of (1.1) which incorporate such mechanisms through the inclusion of stan-
dard logistic proliferation terms, and hence in a manner quite common in biomathematical modeling.
Mathematically, the introduction of such logistic effects can rule out the possibility of unbounded-
ness phenomena in the style of those known to occur for (1.1); indeed, in the most prototypical
framework related to the choice α = 2, corresponding Neumann-type initial-boundary value problems
admit bounded smooth solutions for essentially arbitrary initial data if either the spatial dimension
N satisfies N = 2 and µ is any positive number ([13]), or N ≥ 3 and µ ≥ µ0 with some suitably
large µ0 = µ0(ρ,Ω) > 0 ([25]; cf. also [7], [34], [35] and the references therein for some more studies
concerned with global classical solvability of (1.2)).

Further findings in the literature, however, indicate that also the presence of weaker degradation terms
may go along with significant relaxation effects in comparison with (1.1): For instance, in the weakly
quadratic absorption case when in (1.2) we have α = 2, N ≥ 3 and µ ∈ (0, µ0), after all some global
solutions can be seen to exist within a natural weak solution concept ([11]). By resorting to some
yet weaker notions of solvability, global solutions could more recently also be constructed for systems
merely containing certain subquadratic degradation terms, where first steps in this direction required
that α ≥ 2 − 1

N
when N ≥ 2 ([20], [21]), and where subsequent approaches successively facilitated

extensions to the wider ranges α > 2N+4
N+4 ([32]) and α > min{2N+4

N+4 , 2 − 2
N
} ([36]); very recently, a

framework generalized solvability was designed which allows for the construction of global solutions
even in quite arbitrary superlinearly dampened logistic-type Keller-Segel systems, including the choice
of arbitrary α > 1 in (1.2) whenever N ≥ 2 ([33]). It might be noted that in general it seems indeed
appropriate to suitably relax requirements on regularity of “solutions” to (1.2), as some caveats assert
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the occurrence of blow-up, with respect to spatial L∞ norms of n, in parabolic-elliptic variants of (1.2):
It is known, for example, that such explosions occur in the variant of (1.2) in which the respective
second equation is replaced with 0 = ∆c − c + n when α < 7

6 for N ∈ {3, 4}, or α < 1 + 1
2(N−1) for

N ≥ 5 ([30]; see also [3], [17], [26] for several precedents in this direction).

Keller-Segel-fluid systems involving logistic degradation. The object of the present study
is the Keller-Segel-Stokes system











nt + u · ∇n = ∆n−∇ · (n∇c) + ρn− µnα, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut = ∆u+∇P − n∇Λ, ∇ · u = 0, x ∈ Ω, t > 0,

(1.3)

which quite in general can be viewed as an extension of (1.2) that accounts for interaction of prolif-
erating and chemotactically migrating populations with liquid environments through transport and
buoyancy in the style of the modeling approach in [19]. More specifically, this system can, in par-
ticular, be used to model effects of chemotaxis on processes of coral fertilization, as addressed in [9]
and [10] in the context of a related parabolic-elliptic chemotaxis system involving a given solenoidal
fluid field. Indeed, in [9] and [10] the chemotactically directed motion of spermatozoids toward eggs is
described in the framework of a two-component model accounting for transport through a prescribed
fluid, with a focus on the question how far taxis may affect the reaction mechanism, in that particular
context corresponding to the choice ρ = 0 and hence to a merely sink-type reaction term of the form
−µnα, by influencing the total fertilization rate, as measured by the quantity

∫

Ω n(x, t)dx. The model
(1.3) now extends this by considering the fluid field as an additional unknown, the evolution of which
is governed by the incompressible Stokes system forced by the population density variable due to
buoyancy in a given external gravitational potential Λ.

Due to an accordingly increased mathematical complexity, systems of the form (1.3) seem much less
thoroughly understood than associated chemotaxis-only counterparts; in particular, the literature in
this direction seems limited to the case α = 2 of quadratic degradation: A result on global existence
of weak solutions to a no-flux/no-flux/Dirichlet initial-boundary value therefor in two-dimensional
bounded domains was established in [1] when ρ = 0, and in [15] it was seen that actually global
bounded classical solutions can be found, even in a corresponding variant of (1.3) involving the full
Navier-Stokes equations rather than its Stokes simplification, and for arbitrary ρ ≥ 0. The three-
dimensional version of (1.3) with α = 2 is known to possess global bounded smooth solutions in
convex domains whenever µ > 23 ([16]), whereas for arbitrary µ > 0 at least some global general-
ized solutions exist, again even a corresponding Navier-Stokes framework ([31]). No existence result,
however, seems available for any chemotaxis-(Navier-)Stokes systems of the form (1.3) which involves
subquadratic degradation in that α < 2.

Main results. In order to address this apparently open solvability question in the context of a
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prototypically simple initial-boundary value problem for (1.3), we shall subsequently consider































nt + u · ∇n = ∆n−∇ · (n∇c) + ρn− µnα, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut = ∆u+∇P − n∇Λ, ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν

= ∂c
∂ν

= 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.4)

in a bounded domain Ω ⊂ R
3 with smooth boundary, with parameters ρ ≥ 0, µ > 0 and α > 1, and

with a given gravitational potential Λ ∈W 2,∞(Ω).

Throughout our analysis, we shall assume that the initial data therein are such that











n0 ∈ C0(Ω) is nonnegative, that

c0 ∈W 1,∞(Ω) is nonnegative, and that

u0 ∈ D(Aϑ) with some ϑ ∈ (34 , 1),

(1.5)

where A denotes the realization of the Stokes operator in the solenoidal subspace L2
σ(Ω) = {ϕ ∈

L2(Ω)|∇ · ϕ = 0} of L2(Ω).

In this framework, we shall see that also in this considerably more complex setting than the fluid-free
one in (1.2), actually any α > 1 is sufficient to ensure global existence of certain solutions:

Theorem 1.1 Let Ω ⊂ R
3 be a bounded domain with smooth boundary, and suppose that ρ ≥ 0, µ > 0

and
α > 1, (1.6)

and that Λ ∈W 2,∞(Ω). Then for any choice of (n0, c0, u0) fulfilling (1.5), the problem (1.4) possesses
at least one global generalized solution (n, c, u) in the sense of Definition 2.5 below.

Main ideas and key steps. In view of the circumstance that for small values of α > 1 we
apparently can only expect quite poor a priori information on solution regularity, a major challenge,
newly arising in the analysis of (1.4) when compared to that of (1.2), will especially be linked to
the question how far regularity features of the taxis gradient may be influenced by the considered
fluid interaction. Unlike in the associated unperturbed case with u ≡ 0 in which some strong spatio-
temporal Lq precompactness properties of∇c can be derived solely from temporally uniform L1 bounds
for n on the basis of rather standard regularization features in the corresponding semilinear heat
equation solved by c (see, e.g., [33, Lemma 5.1]), in the present situation a corresponding argument
evidently needs to appropriately cope with the additional appearance of the nonlinear convective term
−u·∇c in the second equation from (1.4). The core of our analysis will thus consist in making adequate
use of some basic integrability properties of the fluid velocity field, as quite directly resulting from
L1 boundedness of n thanks to standard smoothing properties of the Stokes semigroup (Lemma 2.3),
in order to derive certain compactness features of c and especially ∇c, where by referring to certain
strong Lp topologies inter alia ensure a.e. pointwise convergence along some sequences of solutions to
suitably regularized problems (cf. (2.1) and Lemma 5.1). A key step toward this will be accomplished in
Lemma 3.7, in which an argument based on maximal Sobolev regularity in inhomogeneous linear heat
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equations will be applied to a variant of (−∆+1)−
1
2
+δc for suitably small δ = δ(α) > 0, and where said

basic regularity features of n and u will be used to estimate correspondingly arising inhomogeneities
through an appropriate interpolation inequality, to be prepared in Lemma 3.6. In the context of a
suitably weak solution concept quite closely paralleling that pursued in the fluid-free counterpart in
[33], this pointwise convergence property will form an essential ingredient in an adequate limit process,
to be performed in Lemma 5.2.

2 Preliminaries

2.1 Appropriate solutions and basic properties thereof

As a conveniently regularized variant of (1.4), for ε ∈ (0, 1) we shall subsequently consider the approx-
imate problem































nεt + uε · ∇nε = ∆nε −∇ · (nε∇cε) + ρnε − µnαε , x ∈ Ω, t > 0,

cεt + uε · ∇cε = ∆cε − cε +
nε

1+εnε
, x ∈ Ω, t > 0,

uεt = ∆uε +∇Pε − nε∇Λ, x ∈ Ω, t > 0,
∂nε

∂ν
= ∂cε

∂ν
= 0, uε = 0, x ∈ ∂Ω, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,

(2.1)

that according to a well-established construction on the basis of the contraction mapping principle
can be seen to admit local-in-time smooth solutions which, due to boundedness of 0 ≤ n 7→ n

1+εn for
each ε ∈ (0, 1), can actually be extended so as to become global classical solutions (cf., e.g., [29] and
[23] for details in closely related situations):

Lemma 2.1 Let ε ∈ (0, 1). Then there exist uniquely determined functions











nε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

cε ∈
⋂

q>3C
0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞)) and

uε ∈ C0([0,∞);D(Aϑ)) ∩ C2,1(Ω× (0,∞))

such that nε ≥ 0 and cε ≥ 0 in Ω× (0,∞), and that (2.1) is satisfied in the classical sense with some
Pε ∈ C1,0(Ω× (0,∞)).

The following basic and essentially well-known properties of these solutions are due to the presence of
the degradation term in the first equation of (2.1).

Lemma 2.2 Let α > 1. Then

∫

Ω
nε(·, t) ≤ m := max

{
∫

Ω
n0 ,

(ρ

µ

)
1

α−1 |Ω|
}

for all t > 0 and ε ∈ (0, 1), (2.2)

and moreover
∫ T

0

∫

Ω
nαε ≤ (1 + ρT ) ·m

µ
for all T > 0 and ε ∈ (0, 1). (2.3)
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Proof. By integration of the first equation in (2.1) we see that

d

dt

∫

Ω
nε = ρ

∫

Ω
nε − µ

∫

Ω
nαε for all t > 0, (2.4)

so that since
∫

Ω n
α
ε ≥ |Ω|1−α

{

∫

Ω nε

}α

for all t > 0 by the Hölder inequality, (2.2) readily follows

through a straightforward ODE comparison argument. Thereupon, a direct time integration in (2.4)
shows that

∫

Ω
nε(·, T ) + µ

∫ T

0

∫

Ω
nαε ≤

∫

Ω
n0 + ρ

∫ T

0

∫

Ω
nε ≤

∫

Ω
n0 + ρTm for all T > 0

and hence establishes (2.3). �

Through a standard argument based on well-known smoothing properties of the Stokes semigroup,
the L1 boundedness feature expressed in (2.2) can readily be seen to entail the following (cf. also [22,
Lemma 2.5] and [29, Corollary 3.4]).

Lemma 2.3 Let α > 1, and let δ ∈ (0, 32) and T > 0. Then there exists C(δ, T ) > 0 such that

‖uε(·, t)‖L3−δ(Ω) ≤ C(δ, T ) for all t ∈ (0, T ) and any ε ∈ (0, 1) (2.5)

and
‖∇uε(·, t)‖

L
3
2−δ(Ω)

≤ C(δ, T ) for all t ∈ (0, T ) and each ε ∈ (0, 1). (2.6)

2.2 A generalized notion of solvability

In this section, we quite closely follow the approach in [33] to develop a generalized solution concept
suitable for our purposes. This will be based on the following observation on how products of the
form φ(n)ψ(c) evolve in time, along suitably smooth trajectories either of (2.1) for ε ∈ (0, 1), or of the
original problem (1.4) – the existence of the latter being formally presupposed here only.

Lemma 2.4 Let φ, ψ and Φ belong to C2([0,∞)) with φ ≥ 0, ψ > 0, φ′′ > 0 and Φ′ =
√
φ′′ on [0,∞),

and suppose that ε ∈ [0, 1) and T ∈ (0,∞], and that n ∈ C2,1(Ω × (0, T )), c ∈ C2,1(Ω × (0, T )), u ∈
C2,1(Ω × (0, T );R3) and P ∈ C1,0(Ω × (0, T )) are such that n ≥ 0 and c ≥ 0 and that (2.1) holds in
Ω× (0, T ). Then for arbitrary ϕ ∈ C∞(Ω× (0, T )),
∫

Ω
∂t

{

φ(n)ψ(c)
}

· ϕ

= −
∫

Ω

∣

∣

∣

∣

∇
(

Φ(n)
√

ψ(c)
)

+
{ φ′(n)
√

φ′′(n)
· ψ′(c)
√

ψ(c)
− 1

2
Φ(n)

ψ′(c)
√

ψ(c)
− 1

2
n
√

φ′′(n)
√

ψ(c)
}

· ∇c
∣

∣

∣

∣

2

· ϕ

−
∫

Ω

{

φ(n)ψ′′(c)− φ′2(n)
φ′′(n)

· ψ
′2(c)
ψ(c)

− 1

4
n2φ′′(n)ψ(c)

}

· |∇c|2ϕ

−
∫

Ω

φ′(n)
√

φ′′(n)

√

ψ(c)∇
(

Φ(n)
√

ψ(c)
)

· ∇ϕ

+

∫

Ω

{

nφ′(n)ψ(c)− φ(n)ψ′(c) +
1

2

Φ(n)φ′(n)
√

φ′′(n)
ψ′(c)

}

∇c · ∇ϕ+

∫

Ω
φ(n)ψ(c)u · ∇ϕ

+

∫

Ω

{

(ρn− µnα)φ′(n)ψ(c)− cφ(n)ψ′(c) +
n

1 + εn
φ(n)ψ′(c)

}

· ϕ. (2.7)
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Proof. This result can be proved by quite a trivial modification of that from Lemma 3.1 in [33].
�

On the basis of a formal evaluation of (2.7) for ε = 0, we can thereby extend the solution concept
specified in [33] to the present case involving fluid interaction in a straightforward manner (cf. also
[24] and [12] for related precedents).

Definition 2.5 Let










n ∈ Lαloc(Ω× [0,∞)),

c ∈ L1
loc([0,∞);W 1,1(Ω)) and

u ∈ L1
loc([0,∞);W 1,1

0 (Ω;R3))

(2.8)

be such that n ≥ 0, c ≥ 0 and ∇ · u = 0 a.e. in Ω × (0,∞). Then we will call (n, c, u) a global
generalized solution of (1.4) if

∫

Ω
n(·, t) ≤

∫

Ω
n0 + ρ

∫ t

0

∫

Ω
n− µ

∫ t

0

∫

Ω
nα for a.e. t > 0 (2.9)

and

−
∫ ∞

0

∫

Ω
cϕt −

∫

Ω
c0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇c · ∇ϕ−

∫ ∞

0

∫

Ω
cϕ+

∫ ∞

0

∫

Ω
nϕ+

∫ ∞

0

∫

Ω
cu · ∇ϕ (2.10)

for all ϕ ∈ C∞
0 (Ω× [0,∞)), if

−
∫ ∞

0

∫

Ω
u · ϕt −

∫

Ω
u0 · ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇u · ∇ϕ−

∫ ∞

0

∫

Ω
nϕ · ∇Λ (2.11)

for all ϕ ∈ C∞
0 (Ω× [0,∞)) fulfilling ∇ · ϕ = 0 in Ω× (0,∞), and if moreover one can find functions

φ, ψ and Φ which belong to C2([0,∞)) and satisfy

φ′ < 0, ψ > 0 and φ′′ > 0 on [0,∞) (2.12)

as well as
Φ′ =

√

φ′′ on [0,∞), (2.13)

such that

{

φ(n)ψ′′(c)− φ′2(n)
φ′′(n)

· ψ
′2(c)
ψ(c)

− 1

4
n2φ′′(n)ψ(c)

}

|∇c|2, nφ′(n)ψ(c)|∇c|,

φ(n)ψ′(c)|∇c|, Φ(n)φ′(n)
√

φ′′(n)
ψ′(c)|∇c| and φ(n)ψ(c)|u| as well as

nαφ′(n)ψ(c), cφ(n)ψ′(c) and nφ(n)ψ′(c) belong to L1
loc(Ω× [0,∞)), (2.14)

that
Φ(n)

√

ψ(c) ∈ L2
loc([0,∞);W 1,2(Ω)), (2.15)
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and that

−
∫ ∞

0

∫

Ω
φ(n)ψ(c)ϕt −

∫

Ω
φ(n0)ψ(c0)ϕ(·, 0)

≤ −
∫ ∞

0

∫

Ω

∣

∣

∣

∣

∇
(

Φ(n)
√

ψ(c)
)

+
{ φ′(n)
√

φ′′(n)
· ψ′(c)
√

ψ(c)
− 1

2
Φ(n)

ψ′(c)
√

ψ(c)
− 1

2
n
√

φ′′(n) ·
√

ψ(c)
}

∇c
∣

∣

∣

∣

2

ϕ

−
∫ ∞

0

∫

Ω

{

φ(n)ψ′′(c)− φ′2(n)
φ′′(n)

· ψ
′2(c)
ψ(c)

− 1

4
n2φ′′(n)ψ(c)

}

· |∇c|2ϕ

−
∫ ∞

0

∫

Ω

φ′(n)
√

φ′′(n)

√

ψ(c)∇
(

Φ(n)
√

ψ(c)
)

· ∇ϕ

+

∫ ∞

0

∫

Ω

{

nφ′(n)ψ(c)− φ(n)ψ′(c) +
1

2

Φ(n)φ′(n)
√

φ′′(n)
ψ′(c)

}

∇c · ∇ϕ

+

∫ ∞

0

∫

Ω
φ(n)ψ(c)u · ∇ϕ

+

∫ ∞

0

∫

Ω

{

(ρn− µnα)φ′(n)ψ(c)− cφ(n)ψ′(c) + nφ(n)ψ′(c)
}

· ϕ (2.16)

for each nonnegative ϕ ∈ C∞
0 (Ω× [0,∞)).

Remark. Similar to a corresponding comment made in [33] for the associated fluid-free counterpart,
quite simple adaptation of the arguments detailed in [12, Lemma 2.5] and [28, Lemma 2.1] shows that
this concept is indeed consistent with that of classical solvability in the sense that if n0 ∈ C0(Ω), c0 ∈
C0(Ω) an u0 ∈ C0(Ω;R3) are such that u0|∂Ω = 0, and if 0 ≤ n ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),
0 ≤ c ∈ C0(Ω × [0,∞)) ∩ C2,1(Ω × (0,∞)) and u ∈ C0(Ω × [0,∞);R3) ∩ C2,1(Ω × (0,∞);R3) are
such that (n, c, u) forms a global generalized solution of (1.4) in the above sense, then there exists
P ∈ C1,0(Ω× (0,∞)) such that (n, c, u, p) in fact solves (1.4) in the classical sense.

3 A strong precompactness feature of cε

Next approaching the core of our analysis, in this section we intend to derive a strong precompactness
feature of cε with respect to the norm in L1((0, T );W 1,1(Ω)) for arbitrary T > 0 (see Lemma 3.9),
which will play a key role not only in the course of a suitable limit process in the second equation of
(2.1), but also in the final verification of the supersolution property in Lemma 5.2.

Our first step in this direction results from a standard testing procedure applied to the second equation
from (2.1), which thanks to the space-time integrability property in (2.3) yields the following.

Lemma 3.1 Let α > 1 and

p(α) :=

{

3α
5−2α if α < 5

2 ,

+∞ if α ≥ 5
2 .

(3.1)

Then for each T > 0 and any p ∈ (1,∞) fulfilling p ≤ p(α) there exists C(p, T ) > 0 such that

∫

Ω
cpε(·, t) ≤ C(p, T ) for all t ∈ (0, T ) and ε ∈ (0, 1) (3.2)
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and
∫ T

0

∫

Ω
cp−2
ε |∇cε|2 ≤ C(p, T ) for all ε ∈ (0, 1). (3.3)

Proof. Since ∇ · uε = 0, from the second equation in (2.1) we obtain that

1

p

d

dt

∫

Ω
cpε + (p− 1)

∫

Ω
cp−2
ε |∇cε|2 +

∫

Ω
cpε =

∫

Ω
nεc

p−1
ε for all t > 0, (3.4)

where by the Hölder inequality, writing fε(t) :=
∫

Ω n
α
ε (·, t) for t > 0 and ε ∈ (0, 1) we see that

∫

Ω
nεc

p−1
ε ≤ f

1
α
ε (t) ·

{
∫

Ω
c
(p−1)α
α−1

ε

}
α−1
α

= f
1
α
ε (t)‖c

p
2
ε ‖

2(p−1)
p

L
2(p−1)α
p(α−1) (Ω)

for all t > 0. (3.5)

Here since our assumption on p warrants that if α < 5
2 then

2(p− 1)α

p(α− 1)
=

2α

α− 1
·
(

1− 1

p

)

≤ 2α

α− 1
·
(

1− 5− 2α

3α

)

=
10

3
,

and that thus in both cases α < 5
2 and α ≥ 5

2 we have 2(p−1)α
p(α−1) < 6, we may invoke the Gagliardo-

Nirenberg inequality to find C1 = C1(p) > 0 such that

‖c
p
2
ε ‖

2(p−1)
p

L
2(p−1)α
p(α−1) (Ω)

≤ C1‖∇c
p
2
ε ‖

3(p−α)
pα

L2(Ω)
‖c

p
2
ε ‖

(2p+1)α−3p
pα

L2(Ω)
+ C1‖c

p
2
ε ‖

2(p−1)
p

L2(Ω)
for all t > 0 and ε ∈ (0, 1),

noting that the latter conclusion is trivially valid when 2(p−1)α
p(α−1) ≤ 2, that is, when p ≤ α. Again due

to the inequality p ≤ p(α), we next see that if α < 5
2 then herein

3(p− α)

pα
=

3

α
·
(

1− α

p

)

≤ 3

α
·
(

1− α
3α

5−2α

)

=
2(α− 1)

α
< 2,

so that regardless of the size of α we have 3(p−α)
pα

< 2. Accordingly, Young’s inequality applies so as
to yield C2 = C2(p) > 0 such that

f
1
α
ε (t)‖c

p
2
ε ‖

2(p−1)
p

L
2(p−1)α
p(α−1) (Ω)

≤ 2(p− 1)

p2
‖∇c

p
2
ε ‖2L2(Ω) + C2f

2p
(2p+3)α−3p
ε (t)‖c

p
2
ε ‖

2· (2p+1)α−3p
(2p+3)α−3p

L2(Ω)

+C1f
1
α
ε (t)‖c

p
2
ε ‖

2(p−1)
p

L2(Ω)

=
p− 1

2

∫

Ω
cp−2
ε |∇cε|2 + C2f

2p
(2p+3)α−3p
ε (t) ·

{
∫

Ω
cpε

}

(2p+1)α−3p
(2p+3)α−3p

+C1f
1
α
ε (t) ·

{
∫

Ω
cpε

}
p−1
p

for all t > 0 and ε ∈ (0, 1),
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whence combining (3.5) with (3.4) shows that yε(t) :=
∫

Ω c
p
ε(·, t), t ≥ 0, ε ∈ (0, 1), and gε(t) :=

p−1
2

∫

Ω c
p−2
ε (·, t)|∇cε(·, t)|2, t > 0, ε ∈ (0, 1), satisfy

1

p
y′ε(t) + gε(t) ≤ C2f

2p
(2p+3)α−3p
ε (t)y

(2p+1)α−3p
(2p+3)α−3p
ε (t) + C1f

1
α
ε (t)y

p−1
p

ε (t) for all t > 0 and ε ∈ (0, 1). (3.6)

Only at this point, we now take full advantage of the condition p ≤ p(α), which namely ensures that

1− (2p+ 3)α− 3p

2p
=

(5− 2α)p− 3α

2p
≤ 0

and thus 2p
(2p+3)α−3p ≤ 1. Since furthermore, clearly,

(2p+ 1)α− 3p

(2p+ 3)α− 3p
< 1 and

p− 1

p
< 1,

several applications of Young’s inequality enable us to see that (3.6) actually entails the inequality

1

p
y′ε(t) + gε(t) ≤ (C1 + C2) · (fε(t) + 1) · (yε(t) + 1) for all t > 0 and ε ∈ (0, 1), (3.7)

which by nonnegativity of gε firstly implies that

yε(t) + 1 ≤
(

yε(0) + 1
)

· ep(C1+C2)
∫ t
0 (fε(s)+1)ds for all t > 0 and ε ∈ (0, 1).

As a consequence of Lemma 2.2, this shows that supε∈(0,1) supt∈(0,T )(yε(t) + 1) is finite for all T > 0,

whereupon a direct integration in (3.7) reveals that therefore also supε∈(0,1)
∫ T

0 gε(s)ds < ∞ for all
T > 0. By definition of (yε)ε∈(0,1) and (gε)ε∈(0,1), both (3.2) and (3.3) have thereby been established.
�

A straightforward interpolation turns (3.2) and (3.3) into the following.

Lemma 3.2 Let α ∈ (1, 52) and p
(α) be as in (3.1), and let q ∈ (p(α), 3p(α)]. Then for all T > 0 there

exists C(q, T ) > 0 such that

∫ T

0
‖cε(·, t)‖

2p(α)q

3(q−p(α))

Lq(Ω) dt ≤ C(q, T ) for all ε ∈ (0, 1). (3.8)

Proof. We abbreviate p := p(α) and observe that then our assumption on q guarantees that 2q
p
≤ 6

and 2q
p
> 2, so that an application of the Gagliardo-Nirenberg inequality yields C1 = C1(q) > 0 such

that

‖ϕ‖
4q

3(q−p)

L
2q
p (Ω)

≤ C1‖∇ϕ‖2L2(Ω)‖ϕ‖
2(3p−q)
3(q−p)

L2(Ω)
+ C1‖ϕ‖

4q
3(q−p)

L2(Ω)
for all ϕ ∈W 1,2(Ω).
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Therefore,

∫ T

0
‖cε(·, t)‖

2pq
3(q−p)

Lq(Ω) dt =

∫ T

0
‖c

p
2
ε (·, t)‖

4q
3(q−p)

L
2q
p (Ω)

dt

≤ C1

∫ T

0
‖∇c

p
2
ε (·, t)‖2L2(Ω)‖c

p
2
ε (·, t)‖

2(3p−q)
3(q−p)

L2(Ω)
dt+ C1

∫ T

0
‖c

p
2
ε (·, t)‖

4q
3(q−p)

L2(Ω)
dt

=
p2C1

4

∫ T

0

{
∫

Ω
cp−2
ε (·, t)|∇cε(·, t)|2

}

·
{
∫

Ω
cpε(·, t)

}
3p−q
3(q−p)

dt

+C1

∫ T

0

{
∫

Ω
cpε(·, t)

}
2q

3(q−p)

dt

≤ p2C1

4
·
{

sup
t∈(0,T )

∫

Ω
cpε(·, t)

}
3p−q
3(q−p)

·
∫ T

0

∫

Ω
cp−2
ε |∇cε|2

+C1T ·
{

sup
t∈(0,T )

∫

Ω
cpε(·, t)

}
2q

3(q−p)

for all T > 0 and ε ∈ (0, 1),

whence the claim immediately results from Lemma 3.1. �

Again by interpolation, in light of Lemma 3.2 the estimate (3.3) moreover entails some weight-free
spatio-temporal Lq-estimate involving an exponent q > 1:

Lemma 3.3 Let α > 1. Then for all T > 0 there exists C(T ) > 0 such that

∫ T

0

∫

Ω
|∇cε|

5
4 ≤ C(T ) for all ε ∈ (0, 1). (3.9)

Proof. If α ≥ 10
7 and hence in (3.1) we have p(α) ≥ 2, the claim immediately follows upon invoking

Lemma 3.1 with p := 2.
If α < 10

7 and hence p(α) < 2, however, Lemma 3.1 and Lemma 3.2 ensure that given T > 0 we can
pick C1(T ) > 0 and C2(T ) > 0 such that

∫ T

0

∫

Ω
cp

(α)−2
ε |∇cε|2 ≤ C1(T ) for all ε ∈ (0, 1) (3.10)

and
∫ T

0

∫

Ω
c
5p(α)

3
ε ≤ C2(T ) for all ε ∈ (0, 1). (3.11)

According to Young’s inequality, this implies that for any such T ,

∫ T

0

∫

Ω
|∇cε|

5p(α)

p(α)+3 =

∫ T

0

∫

Ω

{

cp
(α)−2
ε |∇cε|2

}
5p(α)

2(p(α)+3) · c
5p(α)(2−p(α))

2(p(α)+3)
ε

≤
∫ T

0

∫

Ω
cp

(α)−2
ε |∇cε|2 +

∫ T

0

∫

Ω
c
5p(α)

3
ε

≤ C1(T ) + C2(T ) for all ε ∈ (0, 1),
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so that (3.9) results also in this case, because

5p(α)

p(α) + 3
=

5

1 + 3
p(α)

≥ 5

1 + 3
=

5

4

due to the inequality p(α) > 1. �

In conjunction with the information on fluid integrability from Lemma 2.3, the weighted gradient
estimate in (3.3) can be seen to furthermore entail that the nonlinear convection term in the second
equation from (2.1) admits the following estimate which, as we underline here, involves some super-
linear summability power with respect to spatial integration, but only some possibly small positive
integrability exponent in time.

Lemma 3.4 Let α > 1. Then there exist p > 1 and λ > 0 with the property that for all T > 0 one
can find C(T ) > 0 such that

∫ T

0
‖uε(·, t) · ∇cε(·, t)‖λLp(Ω)dt ≤ C(T ) for all ε ∈ (0, 1). (3.12)

Proof. We first consider the cane when α < 10
7 , in which with p(α) taken from (3.1) we observe

that then p(α) > α and p(α) < 2. Moreover, since 2 − p(α) < p(α) due to the fact that p(α) > 1, it is
possible to fix δ > 0 small enough such that besides

δ <
1

6
, (3.13)

we can achieve that

q :=
3(1 + 2δ)(2− p(α))

1− 6δ
(3.14)

satisfies
q ≤ 3p(α) (3.15)

and
δ(2− p(α))

2− δ
≤ 2p(α)q

3(q − p(α))+
. (3.16)

A first application of the Hölder inequality thereupon shows that for all T > 0 and ε ∈ (0, 1),

∫ T

0
‖uε(·, t) · ∇cε(·, t)‖δL1+δ(Ω)dt ≤

∫ T

0
‖uε(·, t)‖δ

L
3(1+δ)(1+2δ)

1+4δ (Ω)
‖∇cε(·, t)‖δ

L
3(1+2δ)

2 (Ω)
dt

≤ C1(T )

∫ T

0
‖∇cε(·, t)‖δ

L
3(1+2δ)

2 (Ω)
dt, (3.17)

where

C1(T ) := sup
ε∈(0,1)

sup
t∈(0,T )

‖uε(·, t)‖δ
L

3(1+δ)(1+2δ)
1+4δ (Ω)
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is finite according to Lemma 2.3, because

3(1 + δ)(1 + 2δ)

1 + 4δ
=

3(1 + 3δ + 2δ2)

1 + 4δ
<

3(1 + 3δ + δ)

1 + 4δ
= 3

due to the inequality δ < 1
2 implied by (3.13).

Next, making full use of (3.13) we employ the Hölder inequality for a second time to see that the
integrand on the right of (3.17) can be estimated according to

‖∇cε‖δ
L

3(1+2δ)
2 (Ω)

=

{
∫

Ω
|∇cε|

3(1+2δ)
2

}
2δ

3(1+2δ)

=

{
∫

Ω
(cp

(α)−2
ε |∇cε|2)

3(1+2δ)
4 · c

3(1+2δ)(2−p(α))
4

ε

}
2δ

3(1+2δ)

≤
{
∫

Ω
cp

(α)−2
ε |∇cε|2

}
δ
2

·
{
∫

Ω
c
3(1+2δ)(2−p(α))

1−6δ
ε

}

δ(1−6δ)
6(1+2δ)

=

{
∫

Ω
cp

(α)−2
ε |∇cε|2

}
δ
2

· ‖cε‖
δ(2−p(α))

2

Lq(Ω) for all t > 0 and ε ∈ (0, 1),

because p(α) < 2. Thanks to the fact that δ < 2, a final application of the Hölder inequality therefore
shows that as a consequence of (3.17), for all T > 0 and ε ∈ (0, 1) we have

∫ T

0
‖uε(·, t) · ∇cε(·, t)‖δL1+δ(Ω)dt ≤ C1(T )

∫ T

0

{
∫

Ω
cp

(α)−2
ε (·, t)|∇cε(·, t)|2

}
δ
2

· ‖cε(·, t)‖
δ(2−p(α))

2

Lq(Ω)

≤ C1(T ) ·
{
∫ T

0

∫

Ω
cp

(α)−2
ε |∇cε|2

}
δ
2

·
{
∫ T

0
‖cε(·, t)‖

δ(2−p(α))
2−δ

Lq(Ω) dt

}
2−δ
2

.

For any such α, the conclusion thus follows upon observing that

sup
ε∈(0,1)

∫ T

0

∫

Ω
cp

(α)−2
ε |∇cε|2 <∞

due to Lemma 3.1, and that if q > p(α) then

sup
ε∈(0,1)

∫ T

0
‖cε(·, t)‖

δ(2−p(α))
2−δ

Lq(Ω) dt <∞

thanks to (3.15), (3.16) and Lemma 3.2, whereas if q ≤ p(α) then even

sup
ε∈(0,1)

sup
t∈(0,T )

‖cε(·, t)‖Lq(Ω) <∞ for all T > 0

by Lemma 3.1 and, e.g., Young’s inequality.

If α ≥ 10
7 , however, then in (3.1) we have p(α) ≥ 2, so that Lemma 3.1 entails that

C2(T ) := sup
ε∈(0,1)

∫ T

0

∫

Ω
|∇cε|2 <∞ for all T > 0,
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while from Lemma 2.3 we know that

C3(T ) := sup
ε∈(0,1)

sup
t∈(0,T )

‖uε(·, t)‖
L

5
2 (Ω)

<∞ for all T > 0.

By means of the Hölder inequality we can thus estimate

∫ T

0
‖uε(·, t) · ∇cε(·, t)‖2

L
10
9 (Ω)

dt ≤
∫ T

0
‖uε(·, t)‖2

L
5
2 (Ω)

‖∇cε(·, t)‖2L2(Ω)dt

≤ C2(T )C
2
3 (T ) for all T > 0 and ε ∈ (0, 1),

from which the claim directly follows in this case. �

Apart from that, when rewritten in the form uε ·∇cε = ∇· (cεuε) the convection term addressed above
enjoys a further regularity property, now in a reflexive Lebesgue setting with regard to both the space
and the time variable.

Lemma 3.5 If α > 1, then there exists p > 1 such that to each T > 0 there corresponds some
C(T ) > 0 satisfying

∫ T

0

∫

Ω
|cεuε|p ≤ C(T ) for all ε ∈ (0, 1). (3.18)

Proof. We fix δ > 0 small such that

δ <
1

2
, (3.19)

and that
(1 + δ)(1 + 6δ)

2(1 + 2δ)
≤ 1, (3.20)

and let q := 3(1+2δ)
2 . Then (3.19) ensures that, as in Lemma 3.4,

3(1 + δ)(1 + 2δ)

1 + 4δ
< 3,

so that Lemma 2.3 applies so as to warrant that for each T > 0,

C1(T ) := sup
ε∈(0,1)

sup
t∈(0,T )

‖uε(·, t)‖
L

3(1+δ)(1+2δ)
1+4δ (Ω)

<∞. (3.21)

Apart from that, using Lemma 3.1 we see that if q ≤ p(α), with p(α) taken from (3.1), then also

C2(T ) := sup
ε∈(0,1)

sup
t∈(0,T )

‖cε(·, t)‖Lq(Ω) <∞ for all T > 0, (3.22)

whereas if q > p(α), and hence necessarily α < 5
2 , then Lemma 3.2 asserts that

C3(T ) := sup
ε∈(0,1)

∫ T

0
‖cε(·, t)‖1+δLq(Ω)dt <∞ for all T > 0, (3.23)
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because then due to the fact that p(α) > 1, (3.19) ensures that

q <
3 · (1 + 2 · 1

2)

2
= 3 < 3p(α),

and because our restriction (3.20) guarantees that

(1 + δ) · 3(q − p(α))

2p(α)q
=

3(1 + δ)

2
·
( 1

p(α)
− 1

q

)

<
3(1 + δ)

2
·
(

1− 1

q

)

=
(1 + δ)(1 + 6δ)

2(1 + 2δ)
≤ 1

and thus 1 + δ ≤ 2p(α)q

3(q−p(α))
. Now since the Hölder inequality implies that according to our choice of q

we have
∫ T

0

∫

Ω
|cεuε|1+δ ≤

∫ T

0
‖cε(·, t)‖1+δLq(Ω)‖uε(·, t)‖

1+δ

L
3(1+δ)(1+2δ)

1+4δ (Ω)

dt for all T > 0 and ε ∈ (0, 1),

in the case q ≤ p(α) we may use the definitions of (C1(T ))T>0 and (C2(T ))T>0 in (3.21) and (3.22) to
see that

∫ T

0

∫

Ω
|cεuε|1+δ ≤ C1+δ

1 (T )C1+δ
2 (T ) · T for all T > 0 and ε ∈ (0, 1),

while if q > p(α) then on the basis of (3.21) and (3.23) we can estimate

∫ T

0

∫

Ω
|cεuε|1+δ ≤ C1+δ

1 (T )C3(T ) for all T > 0 and ε ∈ (0, 1),

and thus conclude on letting p := 1 + δ. �

In order to prepare an appropriate exploitation of the latter two lemmata, let us state the following
interpolation inequality in which, as throughout the remainder of this section, given p > 1 we let
B = Bp denote the realization of −∆ + 1 under homogeneous Neumann boundary conditions in
Lp(Ω).

Lemma 3.6 Let p > 1 and δ ∈ (0, 12). Then for all η ∈ (0, 12) there exists C = C(p, δ, η) > 0 such
that

‖B− 1
2
+δ∇·ϕ‖Lp(Ω) ≤ C‖∇·ϕ‖

2δ+2η
1+2η

Lp(Ω)‖ϕ‖
1−2δ
1+2η

Lp(Ω) for all ϕ ∈ C1(Ω;R3) such that ϕ · ν|∂Ω = 0. (3.24)

Proof. According to Theorem 14.1 in [2], let us first pick C1 = C1(p, δ, η) > 0 such that

‖B− 1
2
+δψ‖Lp(Ω) ≤ C1‖ψ‖

2δ+2η
1+2η

Lp(Ω)‖B
− 1

2
−ηψ‖

1−2δ
1+2η

Lp(Ω) for all ψ ∈ C0(Ω), (3.25)

and observe that due to the topological equivalence of D(B
1
2
−η) to W 1−2η,p(Ω) ([6, Theorem 1.6.1])

and the continuity of the embeddings W 1,p(Ω) →֒W 1−2η,p(Ω) and D(B
1
2
−η) →֒ D(B− 1

2
−η), by relying

on a Poincaré inequality we can choose C2 = C2(p, η) > 0 and C3 = C3(p, η) > 0 such that

‖B 1
2
−ηψ‖Lp(Ω) ≤ C2‖∇ψ‖Lp(Ω) for all ψ ∈W 1,p(Ω) such that

∫

Ω
ψ = 0 (3.26)
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and
‖B− 1

2
−ηψ‖Lp(Ω) ≤ C3‖B

1
2
−ηψ‖Lp(Ω) for all ψ ∈W 1,p(Ω). (3.27)

We moreover recall that the Helmholtz projection acts as a bounded operator on Lp(Ω;R3) ([14]),
whence we can fix C4 = C4(p) > 0 fulfilling

‖Pψ‖Lp(Ω) ≤ C4‖ψ‖Lp(Ω) for all ψ ∈ Lp(Ω;R3). (3.28)

Consequently, given ϕ ∈ C1(Ω;R3) we can find ρ ∈ W 1,p(Ω) such that
∫

Ω ρ = 0 and ϕ = Pϕ + ∇ρ,
where ∇ · (Pϕ) = 0 in D′(Ω) ([14]). Therefore, taking any ϕ ∈ C1(Ω;R3) with ϕ · ν|∂Ω = 0 and an
arbitrary ψ ∈ C∞

0 (Ω) we see that since B and all its fractional powers are self-adjoint in L2(Ω), and

since evidently
∫

∂Ω(ϕ · ν)B− 1
2
−ηψ = 0 and

∫

Ω Pϕ · ∇(B− 1
2
−ηψ) = 0 as well as

∫

∂Ω ρ
∂
∂ν
(B− 1

2
−ηψ) = 0,

we see that
∫

Ω
(B− 1

2
−η∇ · ϕ) · ψ =

∫

Ω
(∇ · ϕ) ·B− 1

2
−ηψ

= −
∫

Ω
ϕ · ∇(B− 1

2
−ηψ)

= −
∫

Ω
∇ρ · ∇(B− 1

2
−ηψ)

=

∫

Ω
ρ∆(B− 1

2
−ηψ)

=

∫

Ω
ρ · (−B + 1)(B− 1

2
−ηψ)

= −
∫

Ω
ρ ·B 1

2
−ηψ +

∫

Ω
ρ ·B− 1

2
−ηψ

= −
∫

Ω
B

1
2
−ηρ · ψ +

∫

Ω
B− 1

2
−ηρ · ψ

≤ ‖B 1
2
−ηρ‖Lp(Ω)‖ψ‖

L
p

p−1 (Ω)
+ ‖B− 1

2
−ηρ‖Lp(Ω)‖ψ‖

L
p

p−1 (Ω)

by the Hölder inequality, so that thanks to (3.27), (3.26) and (3.28),

‖B− 1
2
−η∇ · ϕ‖Lp(Ω) = sup

ψ∈C∞
0 (Ω)

‖ψ‖
L

p
p−1 (Ω)

≤1

∫

Ω
(B− 1

2
−η∇ · ϕ) · ψ

≤ ‖B 1
2
−ηρ‖Lp(Ω) + ‖B− 1

2
−ηρ‖Lp(Ω)

≤ (1 + C3)‖B
1
2
−ηρ‖Lp(Ω)

≤ C2(1 + C3)‖∇ρ‖Lp(Ω)

= C2(1 + C3)‖ϕ− Pϕ‖Lp(Ω)

≤ C2(1 + C3)(1 + C4)‖ϕ‖Lp(Ω).

In view of (3.25), this shows that for any such ϕ we have

‖B− 1
2
+δ∇ · ϕ‖Lp(Ω) ≤ C1‖∇ · ϕ‖

2δ+2η
1+2η

Lp(Ω)‖B
− 1

2
−η∇ · ϕ‖

1−2δ
1+2η

Lp(Ω)
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≤ C1‖∇ · ϕ‖
2δ+2η
1+2η

Lp(Ω) ·
{

C2(1 + C3)(1 + C4)
}

1−2δ
1+2η ‖ϕ‖

1−2δ
1+2η

Lp(Ω),

and that thus (3.24) holds with an obvious choice of C(p, δ, η). �

We can thereby accomplish the main step of our analysis in this section by combining Lemma 3.4
and Lemma 3.5 to achieve the following estimate of cε in a space which is compactly embedded into
W 1,1(Ω).

Lemma 3.7 If α > 1, then there exist p > 1 and δ > 0 such that for any choice of τ > 0 and T > τ

one can fix C(τ, T ) > 0 satisfying

∫ T

τ

∫

Ω
|B 1

2
+δcε|p ≤ C(τ, T ) for all ε ∈ (0, 1). (3.29)

Proof. We first invoke Lemma 3.4 and Lemma 3.5 to fix p0 > 1 and λ ∈ (0, 2) with the property
that for all T > 0 we can find C1(T ) > 0 and C2(T ) > 0 fulfilling

∫ T

0
‖uε(·, t) · ∇cε(·, t)‖λLp0 (Ω)dt ≤ C1(T ) for all ε ∈ (0, 1) (3.30)

and
∫ T

0

∫

Ω
|cεuε|p0 ≤ C2(T ) for all ε ∈ (0, 1), (3.31)

and we then pick p > 1 such that

p < p0, p ≤ p(α) and p ≤ α, (3.32)

which is possible since p(α) > 1 and α > 1. We thereafter use that 4p − 2λ > 4 · 1 − 2 · 2 = 0 and
(1− 2δ)pλ− [λ− (4p− 2λ)δ] · p0 → (p− p0)λ < 0 as δ ց 0 in choosing some suitably small δ > 0 such
that

δ <
1

2
and δ <

λ

4p− 2λ
, (3.33)

and such that moreover
(1− 2δ)pλ

λ− (4p− 2λ)δ
≤ p0, (3.34)

where the last inequality in (3.33) warrants that the operator B− 1
2
+δ is bounded in Lp(Ω), whence

with some C3 > 0 we have

‖B− 1
2
+δϕ‖p

Lp(Ω) ≤ C3‖ϕ‖pLp(Ω) for all ϕ ∈ Lp(Ω). (3.35)

Next, we invoke standard maximal Sobolev regularity theory in Lp(Ω) ([4]) to fix C4 > 0 such that
whenever T > 0, w ∈ C2,1(Ω× [0, T ]) and f ∈ C0(Ω× [0, T ]) are such that











wt = ∆w − w + f(x, t), x ∈ Ω, t ∈ (0, T ),
∂w
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, T ),

w(x, 0) = 0, x ∈ Ω,
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we have
∫ T

0

∫

Ω
|Bw|p ≤ C4

∫ T

0

∫

Ω
|f |p. (3.36)

We now let τ > 0 and T > 0 be given and take any nondecreasing cut-off function ζ ∈ C∞([0,∞))
such that ζ ≡ 0 in [0, τ2 ] and ζ ≡ 1 in [τ,∞), and observe that then for each ε ∈ (0, 1),

wε(·, t) := ζ(t) ·B− 1
2
+δcε(·, t), t ∈ [0, T ],

defines a function wε on Ω × [0, T ] which since cε(·, t) ∈ D(B) for all t > 0, and since B− 1
2
+δ maps

D(B) into itself, belongs to C2,1(Ω× [0, T ]) and satisfies ∂wε

∂ν
= 0 on ∂Ω× (0, T ) as well as wε(·, 0) ≡ 0

in Ω. Furthermore, using (2.1) we see that

wεt = ζ(t)B− 1
2
+δcεt + ζ ′(t)B− 1

2
+δcε

= ζ(t)B− 1
2
+δ

{

−Bcε +
nε

1 + εnε
−∇ · (cεuε)

}

+ ζ ′(t)B− 1
2
+δcε

= −Bwε + ζ(t)B− 1
2
+δ nε

1 + εnε
− ζ(t)B− 1

2
+δ∇ · (cεuε) + ζ ′(t)B− 1

2
+δcε in Ω× (0, T ),

so that (3.36) applies so as to warrant that

∫ T

0

∫

Ω
ζp(t)|B 1

2
+δcε|p =

∫ T

0

∫

Ω
|Bwε|p

≤ C4

∫ T

0

∫

Ω

∣

∣

∣
ζ(t)B− 1

2
+δ nε

1 + εnε
− ζ(t)B− 1

2
+δ∇ · (cεuε) + ζ ′(t)B− 1

2
+δcε

∣

∣

∣

p

≤ 3pC4

∫ T

0

∫

Ω

∣

∣

∣
B− 1

2
+δ nε

1 + εnε

∣

∣

∣

p

+3pC4

∫ T

0

∫

Ω

∣

∣

∣
B− 1

2
+δ∇ · (cεuε)

∣

∣

∣

p

+3pC4‖ζ ′‖pL∞((0,T ))

∫ T

0

∫

Ω
|B− 1

2
+δcε|p for all ε ∈ (0, 1), (3.37)

because 0 ≤ ζ ≤ 1. Here by (3.35), Young’s inequality and the third restriction in (3.32),

∫ T

0

∫

Ω

∣

∣

∣
B− 1

2
+δ nε

1 + εnε

∣

∣

∣

p

≤ C3

∫ T

0

∫

Ω

∣

∣

∣

nε

1 + εnε

∣

∣

∣

p

≤ C3

∫ T

0

∫

Ω
npε

≤ C3

∫ T

0

∫

Ω
nαε + C3|Ω|T for all ε ∈ (0, 1), (3.38)

whereas (3.35) together with Young’s inequality and the second requirement in (3.32) shows that

∫ T

0

∫

Ω
|B− 1

2
+δcε|p ≤ C3

∫ T

0

∫

Ω
cpε
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≤ C3

∫ T

0

∫

Ω
cp

(α)

ε + C3|Ω|T

≤ C3T · sup
t∈(0,T )

∫

Ω
cp

(α)

ε (·, t) + C3|Ω|T for all ε ∈ (0, 1). (3.39)

Apart from that, applying Lemma 3.6 to η := δ < 1
2 we obtain C5 > 0 such that for all ε ∈ (0, 1),

∫ T

0

∫

Ω

∣

∣

∣
B− 1

2
+δ∇ · (cεuε)

∣

∣

∣

p

≤ C5

∫ T

0

∥

∥

∥
∇ · (cε(·, t)uε(·, t))

∥

∥

∥

4pδ
1+2δ

Lp(Ω)
‖cε(·, t)uε(·, t)‖

(1−2δ)p
1+2δ

Lp(Ω) dt,

so that relying on the identity ∇· (cεuε) = uε ·∇cε, on the fact that 4pδ
1+2δ < λ by the second condition

in (3.33), and on (3.34), we may twice again employ Young’s inequality to see that

∫ T

0

∫

Ω

∣

∣

∣
B− 1

2
+δ∇ · (cεuε)

∣

∣

∣

p

≤ C5

∫ T

0

∥

∥

∥
uε(·, t) · ∇cε(·, t)

∥

∥

∥

λ

Lp(Ω)
dt+ C5

∫ T

0
‖cε(·, t)uε(·, t)‖

(1−2δ)pλ
λ−(4p−2λ)δ

Lp(Ω) dt

≤ C5

∫ T

0

∥

∥

∥
uε(·, t) · ∇cε(·, t)

∥

∥

∥

λ

Lp(Ω)
dt

+C5

∫ T

0
‖cε(·, t)uε(·, t)‖p0Lp(Ω)dt+ C5T for all ε ∈ (0, 1).

Since the first restriction in (3.32) ensures that due to the Hölder inequality we have

‖ϕ‖Lp(Ω) ≤ |Ω|
p0−p

p0p ‖ϕ‖Lp0 (Ω) for all ϕ ∈ Lp0(Ω),

along with (3.30) and (3.31) this implies that for all ε ∈ (0, 1),

∫ T

0

∫

Ω

∣

∣

∣
B− 1

2
+δ∇ · (cεuε)

∣

∣

∣

p

≤ C5|Ω|
(p0−p)λ

p0p

∫ T

0

∥

∥

∥
uε(·, t) · ∇cε(·, t)

∥

∥

∥

λ

Lp0 (Ω)
dt

+C5|Ω|
p0−p

p

∫ T

0
‖cε(·, t)uε(·, t)‖p0Lp0 (Ω)dt+ C5T

≤ C6(T ) := C1(T )C5|Ω|
(p0−p)λ

p0p + C2(T )C5|Ω|
p0−p

p + C5T,

so that from (3.37)-(3.39) we infer that

∫ T

0

∫

Ω
ζp(t)|B 1

2
+δcε|p ≤ 3pC4 ·

{

C3C7(T ) + C3|Ω|T
}

+3pC4C6(T )

+3pC4 ·
{

C3C8(T ) + C3|Ω|T
}

· ‖ζ ′‖p
L∞((0,T )) for all ε ∈ (0, 1),

where

C7(T ) := sup
ε∈(0,1)

∫ T

0

∫

Ω
nαε and C8(T ) := sup

ε∈(0,1)
sup

t∈(0,T )

∫

Ω
cp

(α)

ε (·, t)
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are both finite due to Lemma 2.2 and Lemma 3.1. It remains to recall that ζ ≡ 1 on [τ, T ] to conclude
(3.29) from this upon an evident choice of C(τ, T ). �

In preparation of an Aubin-Lions type argument, we supplement the above by some information on
regularity of time derivatives.

Lemma 3.8 Let α > 1. Then there exists an integer m ≥ 3 such that for all T > 0 one can find
C(T ) > 0 fulfilling

∫ T

0
‖cεt(·, t)‖(Wm,2

0 (Ω))⋆
dt ≤ C(T ) for all ε ∈ (0, 1). (3.40)

Proof. We let p > 1 be as provided by Lemma 3.5 and take m ∈ {3, 4, ...} such that m ≥ 6−p
2p ,

which ensures that Wm,2
0 (Ω) is continuously embedded into both W 2,∞(Ω) and W

1, p
p−1 (Ω), and that

thus there exist positive constants C1, C2 and C3 such that ‖∆ψ‖L∞(Ω) ≤ C1‖ψ‖Wm,2(Ω), ‖ψ‖L∞(Ω) ≤
C2‖ψ‖Wm,2(Ω) and ‖∇ψ‖

L
p

p−1 (Ω)
≤ C3‖ψ‖Wm,2(Ω) for all ψ ∈ C∞

0 (Ω). Given any such ψ and an

arbitrary t > 0, on the basis of (2.1) we can therefore estimate

∣

∣

∣

∣

∫

Ω
cεt(·, t)ψ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
cε∆ψ −

∫

Ω
cεψ +

∫

Ω

nε

1 + εnε
ψ +

∫

Ω
cεuε · ∇ψ

∣

∣

∣

∣

≤ ‖cε‖L1(Ω)‖∆ψ‖L∞(Ω) + ‖cε‖L1(Ω)‖ψ‖L∞(Ω) + ‖nε‖L1(Ω)‖ψ‖L∞(Ω)

+‖cεuε‖Lp(Ω)‖∇ψ‖
L

p
p−1 (Ω)

≤
{

(C1 + C2)‖cε‖L1(Ω) + C2‖nε‖L1(Ω) + C3‖cεuε‖Lp(Ω)

}

‖ψ‖Wm,2(Ω)

for ε ∈ (0, 1). Therefore,

∫ T

0
‖cεt(·, t)‖(Wm,2

0 (Ω))⋆
dt ≤ (C1 + C2)T · sup

t∈(0,T )
‖cε(·, t)‖L1(Ω) + C2T · sup

t∈(0,T )
‖nε(·, t)‖L1(Ω)

+C3

∫ T

0
‖cε(·, t)uε(·, t)‖Lp(Ω)dt for all T > 0 and ε ∈ (0, 1),

so that the claim results from Lemma 3.1, Lemma 2.2 and Lemma 3.5. �

We can thereby derive the main result of this section in quite a straightforward manner from Lemma
3.7:

Lemma 3.9 Let α > 1. Then for all T > 0,

(cε)ε∈(0,1) is relatively compact with respect to the strong topology in L1((0, T );W 1,1(Ω)). (3.41)

Proof. According to Lemma 3.7, we can find p > 1 and δ > 0 such that

(cε)ε∈(0,1) is bounded in Lp((0, T );D(B
1
2
+δ

p ) for all T > 0,

whereas Lemma 3.8 provides an integer m ≥ 3 with the property that

(cεt)ε∈(0,1) is bounded in L1((0, T ); (Wm,2
0 (Ω))⋆) for all T > 0.
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Since D(B
1
2
+δ

p ) is continuously embedded into W 1,p(Ω) ([6, Theorem 1.6.1]), an Aubin-Lions lemma
([18]) becomes applicable so as to guarantee that for all T > 0,

(cε)ε∈(0,1) is relatively compact with respect to the strong topology in Lp((0, T );W 1,p(Ω)).

As p ≥ 1, this clearly entails (3.41). �

4 Compactness properties of ((nε+1)−pe−κcε)ε∈(0,1) for p > 0 and large

κ

This section is devoted to an essentially straightforward adaptation of the reasoning from [33, Section
6], pursuing the goal to derive relative compactness of ((nε+1)−pe−κcε)ε∈(0,1) with respect to both the

weak topology in L2((0, T );W 1,2(Ω)) and the strong topology in L2(Ω × (0, T )) for arbitrary T > 0,
each p > 0 and any suitably large κ > 0. This will be achieved on the basis of Lemma 2.4, in which we
will choose φ and ψ as specified and described in the following statement imported from [33, Lemma
6.1].

Lemma 4.1 Let p > 0 and κ > 0, and define

φ(s) := (s+ 1)−p, Φ(s) := −2

√

p+ 1

p
(s+ 1)−

p
2 and ψ(s) := e−κs, s ≥ 0, s ≥ 0. (4.1)

Then
Φ′(s) =

√

φ′′(s) for all s ≥ 0, (4.2)

and for any s ≥ 0 and s ≥ 0 we have

φ′(s)
√

φ′′(s)
· ψ′(s)
√

ψ(s)
− 1

2
Φ(s)

ψ′(s)
√

ψ(s)
− 1

2
s
√

φ′′(s) ·
√

ψ(s) = −
2κ+ p(p+ 1) s

s+1

2
√

p(p+ 1)
(s+ 1)−

p
2 e−

κs
2 (4.3)

and

φ(s)ψ′′(s)− φ′2(s)
φ′′(s)

· ψ
′2(s)
ψ(s)

− 1

4
s2φ′′(s)ψ(s) =

4κ2 − p(p+ 1)2 s2

(s+1)2

4(p+ 1)
(s+ 1)−pe−κs (4.4)

as well as
φ′(s)

√

φ′′(s)

√

ψ(s) = − p
√

p(p+ 1)
(s+ 1)−

p
2 e−

κs
2 (4.5)

and

sφ′(s)ψ(s)− φ(s)ψ′(s) +
1

2

Φ(s)φ′(s)
√

φ′′(s)
ψ′(s) = −ps(s+ 1)−p−1e−κs. (4.6)

When substantiated according to the latter choices, for ε ∈ (0, 1) Lemma 2.4 indeed takes the following
form.
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Corollary 4.2 Let p > 0 and κ > 0. Then whenever ϕ ∈ C∞(Ω× (0,∞)),

∫

Ω
∂t

{

(nε + 1)−pe−κcε
}

· ϕ

= −4(p+ 1)

p

∫

Ω

∣

∣

∣

∣

∇
{

(nε + 1)−
p
2 e−

κcε
2

}

+
2κ+ p(p+ 1) nε

nε+1

4(p+ 1)
(nε + 1)−

p
2 e−

κcε
2 ∇cε

∣

∣

∣

∣

2

ϕ

−
∫

Ω

4κ2 − p(p+ 1)2 n2
ε

(nε+1)2

4(p+ 1)
(nε + 1)−pe−κcε |∇cε|2ϕ

−2

∫

Ω
(nε + 1)−

p
2 e−

κcε
2 ∇

{

(nε + 1)−
p
2 e−

κcε
2

}

· ∇ϕ

−p
∫

Ω
nε(nε + 1)−p−1e−κcε∇cε · ∇ϕ

+

∫

Ω
(nε + 1)−pe−κcεuε · ∇ϕ

−p
∫

Ω
(nε + 1)−p−1(ρnε − µnαε )e

−κcεϕ

+κ

∫

Ω
(nε + 1)−pcεe

−κcεϕ− κ

∫

Ω

nε

1 + εnε
(nε + 1)−pe−κcεϕ (4.7)

for all t > 0 and ε ∈ (0, 1).

Proof. We only need to combine Lemma 2.4 with Lemma 4.1. �

Using that the factor 4κ2−p(p+1)2 n2
ε

(nε+1)2
appearing in the second integrand on the right-hand side of

(4.7) has a uniform positive lower bound whenever κ2 > p(p+1)2

4 , the following can readily be derived
from the latter.

Lemma 4.3 If p > 0 and κ > 0 satisfy

κ >

√
p · (p+ 1)

2
, (4.8)

then for all T > 0 there exists C = C(T, p, κ) > 0 such that

∫ T

0

∫

Ω

∣

∣

∣

∣

∇
{

(nε + 1)−
p
2 e−

κcε
2

}

∣

∣

∣

∣

2

≤ C for all ε ∈ (0, 1) (4.9)

and
∫ T

0

∫

Ω
(nε + 1)−pe−κcε |∇cε|2 ≤ C for all ε ∈ (0, 1). (4.10)

Proof. Upon choosing ϕ ≡ 1 in Corollary 4.2, on the basis of Lemma 2.2 this can be seen by
copying almost word by word the proof of Lemma 6.3 in [33]. �

In a straightforward manner, this also entails some time regularity feature of said coupled quantities:
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Lemma 4.4 Let p > 0 and κ >
√
p·(p+1)

2 . Then for all T > 0 there exists C = C(T, p, κ,m) > 0 such
that

∫ T

0

∥

∥

∥

∥

∂t

{(

nε(·, t) + 1
)−p

e−κcε(·,t)
}

∥

∥

∥

∥

(W 2,2(Ω))⋆
dt ≤ C for all ε ∈ (0, 1). (4.11)

Proof. For ε ∈ (0, 1), we abbreviate aε := ∇
{

(nε+1)−
p
2 e−

κcε
2

}

and bε := (nε+1)−
p
2 e−

κcε
2 ∇vε for

ε ∈ (0, 1). An application of Corollary 4.2 to ϕ(x, t) := ζ(x), (x, t) ∈ Ω× (0,∞), for fixed ζ ∈ C∞(Ω),

then shows that if we let C1 = C1(p, κ) :=
8(p+1)
p

·
(

2κ+p(p+1)
4(p+1)

)2
+ 4κ2+p(p+1)

4(p+1) , then

∣

∣

∣

∣

∫

Ω
∂t

{

(nε + 1)−pe−κcε
}

· ζ
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

− 4(p+ 1)

p

∫

Ω

∣

∣

∣

∣

aε +
2κ+ p(p+ 1) nε

nε+1

4(p+ 1)
bε

∣

∣

∣

∣

2

ζ

−
∫

Ω

4κ2 − p(p+ 1)2 n2
ε

(nε+1)2

4(p+ 1)
|bε|2ζ

−2

∫

Ω
(nε + 1)−

p
2 e−

κcε
2 aε · ∇ζ

−p
∫

Ω
nε(nε + 1)−

p
2
−1e−

κcε
2 bε · ∇ζ

−p
∫

Ω
(nε + 1)−p−1(ρnε − µnαε )e

−κcεζ

+

∫

Ω
(nε + 1)−pe−κcεuε · ∇ζ

+κ

∫

Ω
(nε + 1)−pcεe

−κcεζ − κ

∫

Ω

nε

1 + εnε
(nε + 1)−pe−κcεζ

∣

∣

∣

∣

∣

≤ 8(p+ 1)

p
·
{
∫

Ω
|aε|2

}

· ‖ζ‖L∞(Ω) + c5 ·
{
∫

Ω
|bε|2

}

· ‖ζ‖L∞(Ω)

+2 ·
{
∫

Ω
|aε|2

}
1
2

· ‖∇ζ‖L2(Ω) + p ·
{
∫

Ω
|bε|2

}

· ‖∇ζ‖L2(Ω)

+pρ ·
{
∫

Ω
nε

}

· ‖ζ‖L∞(Ω) + pµ ·
{
∫

Ω
nαε

}

· ‖ζ‖L∞(Ω) +

{
∫

Ω
|uε|2

}

· ‖∇ζ‖L2(Ω)

+
|Ω|
e
‖ζ‖L∞(Ω) + κ ·

{
∫

Ω
nε

}

· ‖ζ‖L∞(Ω) (4.12)

for all t > 0 and ε ∈ (0, 1), because nε

nε+1 ≤ 1, (nε+1)−1 ≤ 1, e−κcε ≤ 1 and κvεe
−κcε ≤ 1

e
in Ω×(0,∞).

Since from Lemma 4.3, Lemma 2.2 and 2.3 we know that for all T > 0 we have

sup
ε∈(0,1)

{
∫ T

0

∫

Ω
|aε|2 +

∫ T

0

∫

Ω
|bε|2 +

∫ T

0

∫

Ω
nαε +

∫ T

0

∫

Ω
|uε|2

}

<∞, (4.13)
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and since W 2,2(Ω) is continuously embedded into L∞(Ω), from (4.12) we readily conclude (4.11 upon
taking the supremum over all ζ ∈ C∞(Ω) fulfilling ‖ζ‖W 2,2(Ω) ≤ 1, and then integrating over t ∈ (0, T )
for fixed T > 0. �

In consequence, we infer the following.

Corollary 4.5 Suppose that p > 0 and κ >
√
p(p+1)
2 . Then for all T > 0, ((nε + 1)−pe−κcε)ε∈(0,1) is

relatively compact in L2((0, T );W 1,2(Ω)) with respect to the weak topology, and relatively compact in
L2(Ω× (0, T )) with respect to the strong topology.

Proof. This can be derived from Lemma 4.3 and Lemma 4.4 by verbatim copying a corresponding
argument detailed in [33, Lemma 7.1]. �

5 Passing to the limit. Proof of Theorem 1.1

Thanks to the boundedness and compactness features obtained so far, we are now in the position to
construct a limit triple which satisfies the second and the third sub-problem in (1.4) in the spirit of
Definition 2.5.

Lemma 5.1 Let α > 1. Then there exist (εj)j∈N ⊂ (0, 1) and functions











n ∈ Lαloc(Ω× [0,∞)),

c ∈ L1
loc([0,∞);W 1,1(Ω)) and

u ∈ L1
loc([0,∞);W 1,1

0 (Ω);R3))

(5.1)

such that εj ց 0 as j → ∞, that n ≥ 0, c ≥ 0 and ∇ · u = 0 a.e. in Ω× (0,∞), that

nε → n in L1
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (5.2)

cε → c in L1
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (5.3)

∇cε → ∇c in L1
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞) as well as (5.4)

uε ⇀ u in L1
loc([0,∞);W 1,1(Ω)) (5.5)

as ε = εj ց 0, and such that (2.9) holds, that (2.10) is satisfied for all ϕ ∈ C∞
0 (Ω× [0,∞)), and that

(2.11) is fulfilled for each ϕ ∈ C∞
0 (Ω× [0,∞);R3) such that ∇ · ϕ = 0.

Proof. We fix any p > 0 and κ >
√
p(p+1)
2 , and let wε := (nε + 1)−pe−κcε for ε ∈ (0, 1). In view of

Lemma 3.9 and Corollary 4.5, we can then find (εj)j∈N ⊂ (0, 1) and nonnegative functions w an c on
Ω× (0,∞) such that εj ց 0 as j → ∞, and that as ε = εj ց 0 we have (5.3), (5.4) as well as

wε → w a.e. in Ω× (0,∞).

Therefore,

nε = (eκcεwε)
− 1

p − 1 → n := (eκcw)
− 1

p − 1 a.e. in Ω× (0,∞) as ε = εj ց 0.

Recalling that (2.3) implies uniform integrability of (nε)ε∈(0,1) over Ω×(0, T ) for each T > 0, we obtain
(5.2) as a consequence of the Vitali convergence theorem, while (5.5) directly results from Lemma 2.3,
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and while the inclusions in (5.1) follow from the boundedness properties in (3.41), (2.5), (2.6) and
(2.3) when combined with (5.2)-(5.5) and Fatou’s lemma.
Apart from that, taking a null set N ⊂ (0,∞) such that in accordance with (5.2) and the Tonelli
theorem we have nε(·, t) → n(·, t) a.e. in Ω for all t ∈ (0,∞) \N as ε = εj ց 0 and hence

∫

Ω
n(·, t) ≤ lim inf

ε=εjց0

∫

Ω
nε(·, t) for all t ∈ (0,∞) \N, (5.6)

in the identity

∫

Ω
nε(·, t) + µ

∫ t

0

∫

Ω
nαε =

∫

Ω
n0 + ρ

∫ t

0

∫

Ω
nε,

valid for all t > 0 and ε ∈ (0, 1) due to (2.1), we may again employ (5.2) along with Fatou’s lemma to
infer that the inequality in (2.9) indeed holds for each t ∈ (0,∞) \N .

Finally, given ϕ ∈ C∞
0 (Ω× [0,∞)) we see from the second equation in (2.1) that

−
∫ ∞

0

∫

Ω
cεϕt −

∫

Ω
c0ϕ(·, 0)

= −
∫ ∞

0

∫

Ω
∇cε · ∇ϕ−

∫ ∞

0

∫

Ω
cεϕ+

∫ ∞

0

∫

Ω

nε

1 + nε
ϕ+

∫ ∞

0

∫

Ω
cεuε · ∇ϕ (5.7)

for all ε ∈ (0, 1), where clearly, by (5.3) and (5.4),

∫ ∞

0

∫

Ω
cεϕt →

∫ ∞

0

∫

Ω
cϕt,

∫ ∞

0

∫

Ω
∇cε · ∇ϕ→

∫ ∞

0

∫

Ω
∇c · ∇ϕ and

∫ ∞

0

∫

Ω
cεϕ→

∫ ∞

0

∫

Ω
cϕ

as ε = εj ց 0. Furthermore, once more due to (5.2) we infer from the Vitali convergence theorem
that also nε

1+εnε
→ n in L1

loc(Ω× [0,∞)) and thus

∫ ∞

0

∫

Ω

nε

1 + εnε
ϕ→

∫ ∞

0

∫

Ω
nϕ

as ε = εj ց 0, whereas Lemma 3.5 entails

∫ ∞

0

∫

Ω
cεuε · ∇ϕ→

∫ ∞

0

∫

Ω
cu · ∇ϕ

as ε = εj ց 0. The identity in (2.10) thus results from (5.7), and that in (2.11) can be verified in
quite a similar way by relying on (5.2) and (5.5). �

Quite in the style of Lemma 8.2 in [33], we can now verify the remaining parts of Definition 2.5 by
making use of Corollary 4.2 and the convergence properties gathered in Lemma 5.1:

Lemma 5.2 Let α > 1, and given p > 0 and κ >
√
p(p+1)
2 , let φ,Φ and ψ be as accordingly defined by

(4.1). Then (2.12)-(2.14) are satisfied, and (2.16) holds for any nonnegative ϕ ∈ C∞
0 (Ω× [0,∞)).
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Proof. For fixed T > 0, Lemma 4.3 implies that

(

(nε + 1)−
p
2 e−

κcε
2

)

ε∈(0,1)
is bounded in L2((0, T );W 1,2(Ω)),

and that both
(

(nε + 1)−
p
2 e−

κcε
2 ∇cε

)

ε∈(0,1)
and

(

nε(nε + 1)−
p
2
−1e−

κcε
2 ∇cε

)

ε∈(0,1)
are bounded in L2(Ω× (0, T )).

In view of Lemma 5.1 and Egorov’s theorem, this implies that as ε = εj ց 0,

∇
{

(nε + 1)−
p
2 e−

κcε
2

}

⇀ ∇
{

(n+ 1)−
p
2 e−

κc
2

}

in L2(Ω× (0, T )), (5.8)

and that
(nε + 1)−

p
2 e−

κcε
2 ∇cε ⇀ (n+ 1)−

p
2 e−

κc
2 ∇c in L2(Ω× (0, T )) (5.9)

and
nε(nε + 1)−

p
2
−1e−

κcε
2 ∇cε ⇀ n(n+ 1)−

p
2
−1e−

κc
2 ∇c in L2(Ω× (0, T )), (5.10)

from which it follows that

∇
{

(nε + 1)−
p
2 e−

κcε
2

}

+
2κ+ p(p+ 1) nε

nε+1

4(p+ 1)
(nε + 1)−

p
2 e−

κcε
2 ∇cε

⇀ ∇
{

(n+ 1)−
p
2 e−

κc
2

}

+
2κ+ p(p+ 1) n

n+1

4(p+ 1)
(n+ 1)−

p
2 e−

κc
2 ∇c in L2(Ω× (0, T )) (5.11)

and that, since

(nε + 1)−
p
2 e−

κcε
2 → (n+ 1)−

p
2 e−

κc
2 in L2(Ω× (0, T )) as ε = εj ց 0 (5.12)

by the dominated convergence theorem, also

nε(nε + 1)−p−1e−κcε∇cε ⇀ n(n+ 1)−p−1e−κc∇c in L1(Ω× (0, T )) (5.13)

and

(nε+1)−
p
2 e−

κcε
2 ∇

{

(nε+1)−
p
2 e−

κcε
2

}

⇀ (n+1)−
p
2 e−

κc
2 ∇

{

(n+1)−
p
2 e−

κc
2

}

in L1(Ω×(0, T )) (5.14)

as ε = εj ց 0. Since
(

(nε + 1)−p−1(ρnε − µnαε )e
−κcε

)

ε∈(0,1)
can readily be seen to be uniformly

integrable over Ω× (0, T ) according to (2.3), the Vitali convergence theorem ensures that furthermore

(nε + 1)−p−1(ρnε − µnαε )e
−κcε → (n+ 1)−p−1(ρn− µnα)e−κc in L1(Ω× (0, T )), (5.15)

while, quite similarly,

(nε + 1)−pcεe
−κcε → (n+ 1)−pce−κc in L1(Ω× (0, T )) as ε = εj ց 0 (5.16)
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and

nε

1 + εnε
(nε + 1)−pe−κcε → n(n+ 1)−pe−κc in L1(Ω× (0, T )) as ε = εj ց 0, (5.17)

as well as

(nε + 1)−pe−κcεuε ⇀ (n+ 1)−pe−κcu in L1(Ω× (0, T )) as ε = εj ց 0 (5.18)

due to (5.5).

Now letting φ,Φ and ψ be as in (4.1), we see that the properties in (2.12) and (2.13) are obvious, and
that (2.14), (2.15) are immediate from (5.8)-(5.17). Moreover, given any nonnegative ϕ ∈ C∞

0 (Ω ×
[0,∞)), in the corresponding identity from Corollary 4.2, upon a time integration implying that to
see that

4(p+ 1)

p

∫ ∞

0

∫

Ω

∣

∣

∣

∣

∇
{

(nε + 1)−
p
2 e−

κcε
2

}

+
2κ+ p(p+ 1) nε

nε+1

4(p+ 1)
(nε + 1)−

p
2 e−

κcε
2 ∇cε

∣

∣

∣

∣

2

ϕ

+

∫ ∞

0

∫

Ω

4κ2 − p(p+ 1)2 n2
ε

(nε+1)2

4(p+ 1)
(nε + 1)−pe−κcε |∇cε|2ϕ

=

∫ ∞

0

∫

Ω
(nε + 1)−pe−κcεϕt +

∫

Ω
(n0 + 1)−pe−κc0ϕ(·, 0)

−2

∫ ∞

0

∫

Ω
(nε + 1)−

p
2 e−

κcε
2 ∇

{

(nε + 1)−
p
2 e−

κcε
2

}

· ∇ϕ

−p
∫ ∞

0

∫

Ω
nε(nε + 1)−p−1e−κcε∇cε · ∇ϕ

+

∫ ∞

0

∫

Ω
(nε + 1)−pe−κcεuε · ∇ϕ− p

∫ ∞

0

∫

Ω
(nε + 1)−p−1(ρnε − µnαε )e

−κcεϕ

+κ

∫ ∞

0

∫

Ω
(nε + 1)−pcεe

−κcεϕ+ κ

∫ ∞

0

∫

Ω

nε

1 + εnε
(nε + 1)−pe−κcεϕ for all ε ∈ (0, 1),

we may once again rely on our hypothesis κ >
√
p(p+1)
2 to infer that since thus 4κ2 − p(p+ 1)2 n2

ε

(nε+1)2

is nonnegative for all ε ∈ (0, 1), from Lemma 5.1 and Fatou’s lemma we obtain that

∫ ∞

0

∫

Ω

4κ2 − p(p+ 1)2 n2

(n+1)2

4(p+ 1)
(n+ 1)−pe−κc|∇c|2ϕ

≤ lim inf
ε=εjց0

∫ ∞

0

∫

Ω

4κ2 − p(p+ 1)2 n2
ε

(nε+1)2

4(p+ 1)
(nε + 1)−pe−κcε |∇cε|2ϕ.

Along with (5.11) and a standard argument based on lower semicontinuity property of L2 norms with
respect to weak convergence, due to (5.13)-(5.18) this can readily be verified to entail (2.16). �

We can thereby complete the derivation of our main results:

Proof of Theorem 1.1. The claim follows by combining Lemma 5.1 with Lemma 5.2. �
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