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Abstract
The Keller-Segel-Stokes system

n+u-Vn = An—V-(nVe)+ pn — un®,
c+u-Ve = Ac—c+n, (%)
Ut = Au+ VP —nVA, V-u=0,

is considered in a bounded domain €2 C R3 with smooth boundary, with parameters p > 0, p > 0
and a > 1, and with a given gravitational potential A € W2°°(Q).

It is shown that in this general setting, when posed under no-flux boundary conditions for n
and ¢ and homogeneous Dirichlet boundary conditions for u, and for any suitably regular initial
data, an associated initial value problem possesses at least one globally defined solution in an
appropriate generalized sense. Since it is well-known that in the absence of absorption, already
the corresponding fluid-free subsystem with © = 0 and p = 0 admits some solutions blowing up in
finite time, this particularly indicates that any power-type superlinear degradation of the form in
(%) goes along with some significant regularizing effect.
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1 Introduction

The damping role of logistic sources in classical Keller-Segel systems. Chemotaxis, the
biased movement of individuals corresponding to concentration gradients of a chemical signal, is
known to be a mechanism of great significance for pattern formation in numerous biological contexts.
Concentrating on cross-diffusion and signal production through cells as the main ingredients of a
corresponding feedback loop, the apparently most prominent mathematical description of essential
aspects within such processes is achieved by the classical Keller-Segel model ([8]) in its minimal
version, as given by

{ ng = An—V-(nVe), (1.1)

¢ = Ac—c+n.

Indeed, several studies have revealed a distinct ability of this system to describe spontaneous aggre-
gation in two- and higher-dimensional settings; for instance, it is well-known that the homogeneous
Neumann problem associated with (1.1) in balls Q € RY possesses some solutions blowing up in finite
time when either N > 3, or when N = 2 and the total mass of cells is large ([5], [27]).

In cases when the respective application contexts involve large time scales, model refinements which
appropriately account for proliferation and death of cells seem in order. Yet leaving further coupling
unaddressed, Keller-Segel-growth systems of the form

{nt = An—V-(nVe)+ pn — un®, (1.2)

¢ = Ac—c+n,

provide modifications of (1.1) which incorporate such mechanisms through the inclusion of stan-
dard logistic proliferation terms, and hence in a manner quite common in biomathematical modeling.
Mathematically, the introduction of such logistic effects can rule out the possibility of unbounded-
ness phenomena in the style of those known to occur for (1.1); indeed, in the most prototypical
framework related to the choice a = 2, corresponding Neumann-type initial-boundary value problems
admit bounded smooth solutions for essentially arbitrary initial data if either the spatial dimension
N satisfies N = 2 and p is any positive number ([13]), or N > 3 and p > po with some suitably
large 1o = po(p,2) > 0 ([25]; cf. also [7], [34], [35] and the references therein for some more studies
concerned with global classical solvability of (1.2)).

Further findings in the literature, however, indicate that also the presence of weaker degradation terms
may go along with significant relaxation effects in comparison with (1.1): For instance, in the weakly
quadratic absorption case when in (1.2) we have a = 2, N > 3 and p € (0, up), after all some global
solutions can be seen to exist within a natural weak solution concept ([11]). By resorting to some
yet weaker notions of solvability, global solutions could more recently also be constructed for systems
merely containing certain subquadratic degradation terms, where first steps in this direction required
that o > 2 — % when N > 2 ([20], [21]), and where subsequent approaches successively facilitated
extensions to the wider ranges a > %ij ([32]) and a > min{ 2]@/144 , 2 — £} ([36]); very recently, a
framework generalized solvability was designed which allows for the construction of global solutions
even in quite arbitrary superlinearly dampened logistic-type Keller-Segel systems, including the choice
of arbitrary a > 1 in (1.2) whenever N > 2 ([33]). It might be noted that in general it seems indeed
appropriate to suitably relax requirements on regularity of “solutions” to (1.2), as some caveats assert




the occurrence of blow-up, with respect to spatial L> norms of n, in parabolic-elliptic variants of (1.2):
It is known, for example, that such explosions occur in the variant of (1.2) in which the respective
second equation is replaced with 0 = Ac — ¢+ n when a < % for N € {3, 4}, ora < 1+ m for
N > 5 ([30]; see also [3], [17], [26] for several precedents in this direction).

Keller-Segel-fluid systems involving logistic degradation.  The object of the present study
is the Keller-Segel-Stokes system

ng+u-Vn = An—V-(nVe)+ pn — un®, zeN, t>0,
¢g+u-Ve = Ac—c+n, reQ, t>0, (1.3)
Uy = Au+VP—-nVA, V-u=0, e, t>0,

which quite in general can be viewed as an extension of (1.2) that accounts for interaction of prolif-
erating and chemotactically migrating populations with liquid environments through transport and
buoyancy in the style of the modeling approach in [19]. More specifically, this system can, in par-
ticular, be used to model effects of chemotaxis on processes of coral fertilization, as addressed in [9]
and [10] in the context of a related parabolic-elliptic chemotaxis system involving a given solenoidal
fluid field. Indeed, in [9] and [10] the chemotactically directed motion of spermatozoids toward eggs is
described in the framework of a two-component model accounting for transport through a prescribed
fluid, with a focus on the question how far taxis may affect the reaction mechanism, in that particular
context corresponding to the choice p = 0 and hence to a merely sink-type reaction term of the form
—pn®, by influencing the total fertilization rate, as measured by the quantity [, n(z,¢)dz. The model
(1.3) now extends this by considering the fluid field as an additional unknown, the evolution of which
is governed by the incompressible Stokes system forced by the population density variable due to
buoyancy in a given external gravitational potential A.

Due to an accordingly increased mathematical complexity, systems of the form (1.3) seem much less
thoroughly understood than associated chemotaxis-only counterparts; in particular, the literature in
this direction seems limited to the case o = 2 of quadratic degradation: A result on global existence
of weak solutions to a no-flux/no-flux/Dirichlet initial-boundary value therefor in two-dimensional
bounded domains was established in [1] when p = 0, and in [15] it was seen that actually global
bounded classical solutions can be found, even in a corresponding variant of (1.3) involving the full
Navier-Stokes equations rather than its Stokes simplification, and for arbitrary p > 0. The three-
dimensional version of (1.3) with o = 2 is known to possess global bounded smooth solutions in
convex domains whenever p > 23 ([16]), whereas for arbitrary p > 0 at least some global general-
ized solutions exist, again even a corresponding Navier-Stokes framework ([31]). No existence result,
however, seems available for any chemotaxis-(Navier-)Stokes systems of the form (1.3) which involves
subquadratic degradation in that a < 2.

Main results. In order to address this apparently open solvability question in the context of a



prototypically simple initial-boundary value problem for (1.3), we shall subsequently consider

ne+u-Vn = An—V-(nVe)+ pn — un®, zeQ, t>0,

c¢+u-Ve = Ac—c+n, re, t>0,

Uy = Au+VP—-nVA, V-u=0, zeQ, t>0, (1.4)
%:%:0, u =0, r e i, t >0,

n(z,0) =no(x), c(z,0)=co(z), u(z,0)=mup(x), x € €,

in a bounded domain 2 C R? with smooth boundary, with parameters p > 0, > 0 and o > 1, and
with a given gravitational potential A € W2>°((Q).

Throughout our analysis, we shall assume that the initial data therein are such that

no € CY(Q) is nonnegative, that
co € WH™(Q) is nonnegative, and that (1.5)
up € D(A?)  with some ¥ € (3,1),

where A denotes the realization of the Stokes operator in the solenoidal subspace L2(2) = {p €
L*(Q)|V - ¢ = 0} of L?(9).

In this framework, we shall see that also in this considerably more complex setting than the fluid-free
one in (1.2), actually any o > 1 is sufficient to ensure global existence of certain solutions:

Theorem 1.1 Let Q C R? be a bounded domain with smooth boundary, and suppose that p > 0, j > 0
and
a>1, (1.6)

and that A € W2>(Q). Then for any choice of (ng, co,ug) fulfilling (1.5), the problem (1.4) possesses
at least one global generalized solution (n,c,u) in the sense of Definition 2.5 below.

Main ideas and key steps. In view of the circumstance that for small values of a@ > 1 we
apparently can only expect quite poor a priori information on solution regularity, a major challenge,
newly arising in the analysis of (1.4) when compared to that of (1.2), will especially be linked to
the question how far regularity features of the taxis gradient may be influenced by the considered
fluid interaction. Unlike in the associated unperturbed case with « = 0 in which some strong spatio-
temporal L? precompactness properties of Ve can be derived solely from temporally uniform L' bounds
for n on the basis of rather standard regularization features in the corresponding semilinear heat
equation solved by ¢ (see, e.g., [33, Lemma 5.1]), in the present situation a corresponding argument
evidently needs to appropriately cope with the additional appearance of the nonlinear convective term
—u-Ve in the second equation from (1.4). The core of our analysis will thus consist in making adequate
use of some basic integrability properties of the fluid velocity field, as quite directly resulting from
L' boundedness of n thanks to standard smoothing properties of the Stokes semigroup (Lemma 2.3),
in order to derive certain compactness features of ¢ and especially V¢, where by referring to certain
strong LP topologies inter alia ensure a.e. pointwise convergence along some sequences of solutions to
suitably regularized problems (cf. (2.1) and Lemma 5.1). A key step toward this will be accomplished in
Lemma 3.7, in which an argument based on maximal Sobolev regularity in inhomogeneous linear heat



equations will be applied to a variant of (—A+ 1)7%“0 for suitably small 6 = §(«) > 0, and where said
basic regularity features of n and u will be used to estimate correspondingly arising inhomogeneities
through an appropriate interpolation inequality, to be prepared in Lemma 3.6. In the context of a
suitably weak solution concept quite closely paralleling that pursued in the fluid-free counterpart in
[33], this pointwise convergence property will form an essential ingredient in an adequate limit process,

to be performed in Lemma 5.2.

2 Preliminaries

2.1 Appropriate solutions and basic properties thereof

As a conveniently regularized variant of (1.4), for € € (0, 1) we shall subsequently consider the approx-
imate problem

Net + Ue - Ve = An. — V- (n:Veo) + pne — un, reQ, t>0,

Cet +us - Ve = Acs—cs+1+”TEnE, zeQ, t>0,

Ugt = Aus+ VP. —n.VA, zeQ, t>0, (2.1)
One — 9 =0, y, =0, x €09, t>0,

ne(x,0) = no(x), ceo(z,0) =co(x), u(x,0)=wup(x), x €Q,

that according to a well-established construction on the basis of the contraction mapping principle

can be seen to admit local-in-time smooth solutions which, due to boundedness of 0 < n H% for

each € € (0,1), can actually be extended so as to become global classical solutions (cf., e.g., [29] and
[23] for details in closely related situations):
Lemma 2.1 Let e € (0,1). Then there exist uniquely determined functions

ne € C%(Q x [0,00)) N C%L(Q x (0,00)),

ce € ﬂq>3 CY([0, 00); W4 (Q)) N C%HQ x (0,00)) and

u. € CO([0,00); D(AY)) N C>1(Q x (0,00))

such that ne > 0 and cc > 0 in Q x (0,00), and that (2.1) is satisfied in the classical sense with some
P. € OY9(Q x (0,00)).

The following basic and essentially well-known properties of these solutions are due to the presence of
the degradation term in the first equation of (2.1).

Lemma 2.2 Let > 1. Then

/ne(.,t) <m:= max{/no, (p)al\m} forallt >0 and € € (0,1), (2.2)
Q 9 I

and moreover .
1 T -
/ / ng < A +pT)-m for all T >0 and € € (0,1). (2.3)
0o Ja



PROOF. By integration of the first equation in (2.1) we see that
n6 = p/ Ne — / for all t > 0, (2.4)

so that since [,ng > \Q]l_a{ fQ na} for all t > 0 by the Holder inequality, (2.2) readily follows

through a straightforward ODE comparison argument. Thereupon, a direct time integration in (2.4)
shows that

/ +u/ /n </n0+p/ /n8 /n0+me forall T >0

and hence establishes (2.3). O

Through a standard argument based on well-known smoothing properties of the Stokes semigroup,
the L' boundedness feature expressed in (2.2) can readily be seen to entail the following (cf. also [22,
Lemma 2.5] and [29, Corollary 3.4]).

Lemma 2.3 Let o > 1, and let § € (0,2) and T > 0. Then there exists C(5,T) > 0 such that
[[ue (- )| 35y < C(6,T) for allt € (0,T) and any € € (0,1) (2.5)

and

| Vue (-, t) < C(6,7) for allt € (0,T) and each € € (0,1). (2.6)

Ipg-s00) =
2.2 A generalized notion of solvability

In this section, we quite closely follow the approach in [33] to develop a generalized solution concept
suitable for our purposes. This will be based on the following observation on how products of the
form ¢(n)(c) evolve in time, along suitably smooth trajectories either of (2.1) for € € (0, 1), or of the
original problem (1.4) — the existence of the latter being formally presupposed here only.

Lemma 2.4 Let ¢,v¢ and ® belong to C’Q([O,oo)) with ¢ > 0,1 > 0,¢" >0 and ® = /¢" on [0, oo),
and suppose that ¢ € [0,1) and T € (0,00], and that n € C*1(Q x (0,T)),c € C>1(Q x (0,T)),u
C*HQ x (0,T);R3) and P € CHO(Q x (O T)) are such that n > 0 and ¢ > 0 and that (2.1) holds in

Q% (0,T). Then for arbitrary p € C>*(2 x (0,7)),

/ at{¢<n>w<c>} ¢

- ]9 (@)« { - O S L STV Ve
- [ oo - S 2 gt} - vere
- | s i (a0 i) - v

[ n¢'<n>w )= o (0)+ 5 w0} ve- Vg + [ oyt v

+ [ {(on = )t n)ote) - cotnv' (@) + T 0mi' (@) - (27)



PRrROOF.  This result can be proved by quite a trivial modification of that from Lemma 3.1 in [33].
O

On the basis of a formal evaluation of (2.7) for ¢ = 0, we can thereby extend the solution concept
specified in [33] to the present case involving fluid interaction in a straightforward manner (cf. also
[24] and [12] for related precedents).

Definition 2.5 Let -
ne LY (Qx][0,00)),
1

loc

ce L ([0,00); WEEH(Q)) and (2.8)

loc

ue LL.([0,00); Wy ' (; R3))

loc

be such that n > 0,¢c > 0 and V -u = 0 a.e. in Q x (0,00). Then we will call (n,c,u) a global
generalized solution of (1.4) if

/Qn(-,t)g/gno+p/ot/9n,u/ot/gna for a.e. t >0 (2.9)
and
—/OOO/Qcapt—/Qcocp(-,O)——/OOO/QVC-V(p—/ooo/ﬂccp—l—/ooo/ﬂmp—i-/ooo/ﬂcu-Vgo (2.10)

for all o € C§(Q x [0,00)), if

_/OOO/QU.%_/QUO.M.,O):_/OOO/QW.W_/OOO/QW.VA (2.11)

for all p € CG° (2 x [0,00)) fulfilling V - ¢ =0 in Q x (0,00), and if moreover one can find functions
®, ¥ and ® which belong to C?([0,00)) and satisfy

¢ <0, >0 and ¢" >0 on [0, 00) (2.12)
as well as
O = /¢ on [0,00), (2.13)
such that
" —¢/2(n)~¢/2(6)—}n2 " (e 2. nd (n)(e) Ve
{omua - S8 g mu@ e, ndwu(olve,
p(n)y'(c)|Vel, W”L/}’(C)Wc\ and  ¢(n)(c)|ul as well as
n®¢’ (n)w(c), cp(n)Y'(c) and ne(n)y'(c) belong to Llloc(ﬁx [0,00)), (2.14)
that
®(n)/9(c) € Li,([0,00); WH(9)), (2.15)



and that

- ) W) 1. () 1
< —/0 /QV(‘i(n) ¢(C))+{W.m—2@(n) ¢(c)_§”m' w(c)}Vc o

S /2 12

[ o522 o

[ S T (20T - v

o[ [ {rot i) - om0+ 5 2 e v

[T [ otmpien-ve

[T {on = i) mute) - cotmsf (0 + nomw' @)} - 2.16)

for each nonnegative ¢ € C§°(Q x [0, 00)).

Remark. Similar to a corresponding comment made in [33] for the associated fluid-free counterpart,
quite simple adaptation of the arguments detailed in [12, Lemma 2.5] and [28, Lemma 2.1 shows that
this concept is indeed consistent with that of classical solvability in the sense that if ng € C°(Q), ¢y €
CY(Q) an ug € C°(;R3) are such that ug|sq = 0, and if 0 < n € CO(Q x [0,00)) N C%1(Q x (0, 00)),
0<ceC%x[0,00)NCH(Q x (0,00)) and u € C*(Q x [0,00); R?) N CHL(Q x (0,00);R3) are
such that (n,c,u) forms a global generalized solution of (1.4) in the above sense, then there exists
P e CH(Q x (0,00)) such that (n,c,u,p) in fact solves (1.4) in the classical sense.

3 A strong precompactness feature of c.

Next approaching the core of our analysis, in this section we intend to derive a strong precompactness
feature of c. with respect to the norm in L'((0,T); W'(Q)) for arbitrary 7" > 0 (see Lemma 3.9),
which will play a key role not only in the course of a suitable limit process in the second equation of
(2.1), but also in the final verification of the supersolution property in Lemma 5.2.

Our first step in this direction results from a standard testing procedure applied to the second equation
from (2.1), which thanks to the space-time integrability property in (2.3) yields the following.

Lemma 3.1 Let a > 1 and
3 : 5
p(a) — 5—304 if o < 27 (3 1)
' +00 if o> 5. )

Then for each T > 0 and any p € (1,00) fulfilling p < @) there exists C(p,T) > 0 such that

/ A1) <C(p,T) for allt € (0,T) and € € (0,1) (3.2)
Q

8



and

T
/ / A2 Ve|* < C(p, T) for all e € (0,1). (3.3)
0 Q
PROOF.  Since V - u. = 0, from the second equation in (2.1) we obtain that
ld -2 2 -1
—— [ 2+ (p-1) | £ Vee|"+ | £= [ nt for all ¢t > 0, (3.4)
pdt Jo Q Q Q
where by the Hélder inequality, writing fe(t) := [, n&(-,t) for t > 0 and ¢ € (0,1) we see that
1 (p-1a y St
[ = {1
Q Q
1 P 2(17 1)
= fEW2] Hfiya for all ¢ > 0. (3.5)
[ pla—1) (Q)

Here since our assumption on p warrants that if a < % then

3 )

pla—1) a-—1

2p-La 2« ‘(1_1) - 2a .(1_5—204) 10
p/ T a—1 3a
and that thus in both cases a < % and o > % we have 210((”0[_71%‘)1 < 6, we may invoke the Gagliardo-
Nirenberg inequality to find Cy = Ci(p) > 0 such that

p 2(=1) 3(p=) p (2p+1)a 3p 2(p—1)
2 | 2p-Da = CIHVCE HL2(Q le2 HL2 + ClHCE ||L2 () for all ¢ > 0 and € € (0, 1),
[, p(a—1) (Q)

2(p—1)

noting that the latter conclusion is trivially valid when p(a_ﬁy < 2, that is, when p < «. Again due

to the inequality p < p(@) | we next see that if o < % then herein

M=z'<1_a)§i'(1_ . >:2<a_1)<2,

3
pa p 5-2a

so that regardless of the size of a we have 2= < 9. Accordingly, Young’s inequality applies so as
g o
to yield Cy = Cy(p) > 0 such that

1 p 2“’ 1) 2 2 9. (2ptha—3p
f ( )”C H 2<p Da S (p ) ch HL2 + C2f€(2p+3)a73p )HC HL (2p+3)a 3p
[, p(a—1) (Q)

P 2(p—1)

1 4
+C1fe (t)||e2 HL??Q)

(2p+1)a—3p

-1 Ty (@pF3)a—sp
e o AR UR ]
Q Q

p—1

N p—1
+C1fg°‘(t)-{/c§} ! forall t >0 and € € (0,1),
Q

9



Whence combining (3.5) with (3.4) shows that y.(t) := [,cE(-,t), t > 0, ¢ € (0,1), and g.(t) :=
pl 5 Jo (0| Ve )] t >0, € € (0,1), satisfy

(2p+1)a—3p p*l

1 2p p—1
Eyé(t) +g:(t) < C’gff”*g)a*?’p (t)yf“?’)a*gp( t) + C1f5 (t)y" (t) forallt >0 and ¢ € (0,1). (3.6)

Only at this point, we now take full advantage of the condition p < p(®, which namely ensures that

(2p+3)a—3p (65— 2a)p—3a

1-— <0
2p 2p -
and thus (%Jr??% < 1. Since furthermore, clearly,
M <1 and p;]' <1
(2p+3)a—3p p 7

several applications of Young’s inequality enable us to see that (3.6) actually entails the inequality

;yg(t) +9:(t) < (C1+Ca) - (fo(t) +1) - (ye(t) + 1) for all £ > 0 and ¢ € (0,1), (3.7)

which by nonnegativity of g. firstly implies that
ye(t) +1 < <y5(0) + 1)  eP(C1FC2) Jy(Fe()+ds  for a1l £ > 0 and € € (0, 1).

As a consequence of Lemma 2.2, this shows that sup.c (g 1) Supse(o,r)(y=(t) + 1) is finite for all 7' > 0,

whereupon a direct integration in (3.7) reveals that therefore also sup.¢ (g 1) fOT ge(s)ds < oo for all
T > 0. By definition of (ye)ee(0,1) and (ge)z(0,1), both (3.2) and (3.3) have thereby been established.
U

A straightforward interpolation turns (3.2) and (3.3) into the following.

Lemma 3.2 Let a € (1, g) and p® be as in (3.1), and let ¢ € (p'®),3p(®)]. Then for all T > 0 there
exists C(q,T) > 0 such that

QP(CV)

T
/0 lle=C Ol 7y PNt < (g, T)  foralle € (0,1). (3.8)

PROOF.  We abbreviate p := p(® and observe that then our assumption on ¢ guarantees that % <6

and % > 2, so that an application of the Gagliardo-Nirenberg inequality yields C; = C1(q) > 0 such
that

2(3p— q)

Hsng“’ jgz)scluwué olell Sy +01||soHL”> for all € W'2(02).

10



Therefore,

T T .
/ HCE( ) )Hz(qq( p) dt = / ||Csz( , )Hd(q p) dt
0 0

T P 5 p 25(3;0 q) T P <
< /0 ||Vc§<-,t>||L2(m||cs<-, Ol dt +Cy / IeE (T dr
20 T %
= 28 [ [eeavecorh-{ [ aco}™
4 Jo Q0 Q
T 3(!12317)
+01/ {/cg(-,t)} dt
0 Q
2C =)
_ 1_{ sup /Cp } o / /Cp 2|V, |2
4 te(0,T) JQ
S(q—p)
+CiT - { sup / cﬁ(-,t)} forall T'> 0 and € € (0, 1),
t€(0,T) JQ
whence the claim immediately results from Lemma 3.1. U

Again by interpolation, in light of Lemma 3.2 the estimate (3.3) moreover entails some weight-free
spatio-temporal L?-estimate involving an exponent ¢ > 1:

Lemma 3.3 Let o > 1. Then for all T > 0 there exists C(T") > 0 such that

/T/ Vel <C(T)  foralle € (0,1). (3.9)
0 Q

Proor. Ifa> % and hence in (3.1) we have p(® > 2. the claim immediately follows upon invoking
Lemma 3 1 with p := 2.

If o < ¥ and hence p(® < 2, however, Lemma 3.1 and Lemma 3.2 ensure that given T > 0 we can
pick Cl( ) > 0 and C5(T") > 0 such that

T
/ / P2V P < OT)  foralle € (0,1) (3.10)
0 Q

and

5p()
/ / E < Co(T) for all e € (0,1). (3.11)

According to Young’s inequality, this implies that for any such 7',

5p(a) (2_p(a) )

r p() r (@) o) ()
/ /Vca|p<‘*)+3 = / / 0160 72’VCE|2}2@&+3).CE 2(pl®)43)
0 JQ
5p(0‘)
(a)

< —|— Co(T) for all £ e (0,1),

IN

11



so that (3.9) results also in this case, because

5pla) 5 5 5

= > =
pl®) +3 1+ﬁ “1+3 4

due to the inequality p(® > 1. O

In conjunction with the information on fluid integrability from Lemma 2.3, the weighted gradient
estimate in (3.3) can be seen to furthermore entail that the nonlinear convection term in the second
equation from (2.1) admits the following estimate which, as we underline here, involves some super-
linear summability power with respect to spatial integration, but only some possibly small positive
integrability exponent in time.

Lemma 3.4 Let o« > 1. Then there exist p > 1 and A > 0 with the property that for all T > 0 one
can find C(T) > 0 such that

T
/ llue(,t) - ch(-,t)||2p(mdt <C(T) for all e € (0,1). (3.12)
0
PrOOF.  We first consider the cane when o < %, in which with p(® taken from (3.1) we observe

that then p(® > o and p(® < 2. Moreover, since 2 — p(® < p(® due to the fact that p(® > 1, it is
possible to fix § > 0 small enough such that besides

1
o< = 1
<6’ (3.13)

we can achieve that
3(1+26)(2 — p)

= 14
q =65 (3.14)
satisfies
q < 3p'®) (3.15)
and (@) (@)
5(2 —pl@ 2p\@
C-p) W% (3.16)
2-0 3(g —pl))+
A first application of the Holder inequality thereupon shows that for all 7' > 0 and ¢ € (0, 1),
T 1 4 1 1
/ e (-, 2) - vc&('7t)HLl+5(Q)dt < / lue( O sasnnren  NVE(S D sases  di
0 0 L~ 1+ (Q) L™z (Q)
T
< o) [ Vel O g (3.17)
0 L™ (Q)
where
Ci(T):= sup sup |’ua(’7t)”53<1+6)(1+26>
€€(0,1) te(0,T) L~ 1+4 (Q)

12



is finite according to Lemma 2.3, because

3(1+6)(1+26)  3(1+ 35+ 262) _ 3(1+35+9) 5
1+46 B 1+46 1+45

due to the inequality § < 5 implied by (3.13).
Next, making full use of (3.13) we employ the Hélder inequality for a second time to see that the
integrand on the right of (3.17) can be estimated according to

26
3(1428) | 3(1+20)
IVeel® ey = {/Wv%|z}
L2 () [¢)

— (o) _ 3(1424) 3(1426)(2 p(a)> 3(127626)
p 2 9, 3U1+20) 3(1426)(2—p\Y))
{ / (C2 | C CE‘ ) 4 . CE ) } —+
Q

) (@) §(1—66)
(@) _g 2|2 e e D
c? Ve . Ce
Q Q

(@) g 5(2=p(®)
= {/ P 2|vcg\2} Nleell Loy for all t > 0 and € € (0, 1),
Q

IN

because p'® < 2. Thanks to the fact that § < 2, a final application of the Holder inequality therefore
shows that as a consequence of (3.17), for all "> 0 and ¢ € (0,1) we have

T 5 T @ s ,) 2 52-p(*)
/O [ue(+2) - Vee ()| pavsqdt - < Cl(T)/O {/cg _(~,t)ch(-,t)]} lee Gy L,
2—6

Q
r () _p )\ ¢ 4 secsh T
o) { [ [ & aver [ et ol @)

For any such «, the conclusion thus follows upon observing that

T
sup / /cg(a)_2|V65]2<oo
cc0,1)Jo Ja

due to Lemma 3.1, and that if ¢ > p(® then

IN

T 5(2—p(®)
swp [ ety dt < o0
e€(0,1) Jo

thanks to (3.15), (3.16) and Lemma 3.2, whereas if ¢ < p(® then even

sup  sup |lce(5t)||paa) < o0 forall T >0
€€(0,1) te(0,T)

by Lemma 3.1 and, e.g., Young’s inequality.
If @ > 12 however, then in (3.1) we have p{® > 2, so that Lemma 3.1 entails that

T
Cy(T) := sup / / Ve < oo for all T' > 0,
ce(0,1)Jo Jao

13



while from Lemma 2.3 we know that

C3(T):= sup sup |lu(-,t)] 5, <oo for all T > 0.
ce(0,1) t€(0,T) Lz()

By means of the Holder inequality we can thus estimate

T T
2 2 2
| ) ettt < [ e 2y 19O oyt

9 (9)
< Oy(T)C3(T) for all 7> 0 and € € (0, 1),

from which the claim directly follows in this case. O

Apart from that, when rewritten in the form u. - Ve, = V- (c.u.) the convection term addressed above
enjoys a further regularity property, now in a reflexive Lebesgue setting with regard to both the space
and the time variable.

Lemma 3.5 If o > 1, then there exists p > 1 such that to each T > 0 there corresponds some
C(T) > 0 satisfying

T
/ / lccus [P < C(T) for all e € (0,1). (3.18)
0 JO
Proor. We fix § > 0 small such that 1
5 < = 3.19
<5 (3.19)
and that (14 8)(1 4+ 65)
+0)(1+
)< 3.20
2(14+26) — 7 (3:20)
and let ¢ := M Then (3.19) ensures that, as in Lemma 3.4,
3(1+9)(1 4 29)
3
1446 =
so that Lemma 2.3 applies so as to warrant that for each T" > 0,
Ci(T) == sup sup |luc(-,0)|| sastsas2s) < o0 (3.21)
e€(0,1) te(0,T) L 1+ (Q)

Apart from that, using Lemma 3.1 we see that if ¢ < p(®, with p(® taken from (3.1), then also

Co(T) := sup  sup |lee(t)||paqn) < o0 for all T > 0, (3.22)
€€(0,1) te(0,T")

whereas if ¢ > p(®, and hence necessarily a < %, then Lemma 3.2 asserts that

T
C3(T) := sup / Hce(-,t)HEfQ)dt < o0 for all T > 0, (3.23)
e€(0,1) JO

14



because then due to the fact that p(®) > 1, (3.19) ensures that

3-(1+2-1)

= (@)
2 =3 < 3p\@

q<

and because our restriction (3.20) guarantees that

(1+96)- <1

2(1+26)

3<q—p<a>>_3<1+6>_<1 1><3<1+5>.<1 ;>:<l+5><1+65>

Qp(a)q o 2 p(a) 5 2

(@)g

and thus 1+ < ( (a))

we have

Now since the Holder inequality implies that according to our choice of ¢

T T
[ et < [ ety e O Soggan 0 oral T>0mnd e € (0,1)

in the case ¢ < p(® we may use the definitions of (C1(T))rso and (Co(T))7rs0 in (3.21) and (3.22) to
see that
T
/ / lcoue 10 < CHI(TYCI(T) T forall T > 0 and < € (0, 1),
0 Q

while if ¢ > p(® then on the basis of (3.21) and (3.23) we can estimate

T
/ / lccuc |10 < CIF(T)C3(T)  forall T >0 and € € (0, 1),
0 Q

and thus conclude on letting p := 1 + 4. O

In order to prepare an appropriate exploitation of the latter two lemmata, let us state the following
interpolation inequality in which, as throughout the remainder of this section, given p > 1 we let
B = B, denote the realization of —A 4+ 1 under homogeneous Neumann boundary conditions in
LP(Q).

Lemma 3.6 Let p > 1 and § € (0,%). Then for alln € (0,3) there exists C = C(p,8,n) > 0 such
that

26427 1-26

IB=32Y ol oy < CIV @l S el 2, Jor all o € CH(LES) such that o - vlog = 0. (3.24)

PrROOF.  According to Theorem 14.1 in [2], let us first pick C1 = C1(p,d,n) > 0 such that

26+2n 1-26

IB=2 49| oy < Call0ll i ||B"*w|y oy forally e CO(9), (3.25)

and observe that due to the topological equivalence of D(B%_”) to W1=272(Q)) ([6, Theorem 1.6.1])
and the continuity of the embeddings W1?(Q) — W=272(Q) and D(B%_”) — D(B_%_"), by relying
on a Poincaré inequality we can choose Cy = Ca(p,n) > 0 and C3 = C3(p,n) > 0 such that

|\B%—"¢||Lp(m < Co||Vllpeiy  for all ¢ € WHP(Q) such that / =0 (3.26)
Q

15



and
|B=27" o0y < C5|| BT ™l|pagy  for all y € WHP(Q2). (3.27)

We moreover recall that the Helmholtz projection acts as a bounded operator on LP(Q;R3) ([14]),
whence we can fix Cy = Cy(p) > 0 fulfilling

1PV o) < Calldllroa) for all ¢ € LP(Q;R?). (3.28)

Consequently, given ¢ € C'(Q;R?) we can find p € W'P(Q) such that [,p =0 and ¢ = Py + Vp,
where V - (Py) = 0 in D'(2) ([14]). Therefore, taking any ¢ € C*(Q;R3) with ¢ - v|go = 0 and an
arbitrary 1 € C§°(£2) we see that since B and all its fractional powers are self-adjoint in L?(£2), and
since evidently [y, (- V)B_%_qw =0and [, Py- V(B_%_W)) =0 as well as [, p%(B_%_W)) =0,
we see that

L@V = [V B
- - /Q o V(BE )
=~ [Vo-vEi
= /QPA(Bé”w)
= [oBrn@EE)

1 1
— —/p.BQ_nqp+/p.B_2_nq/}
Q Q

1_
1B oy ||w|rm Bl el

IN

LFT(Q)

by the Holder inequality, so that thanks to (3.27), (3.26) and (3.28),

_1_
1BV e = s [
¢ec°°<ﬂ) @
NIl <1
LP— 1(9)
1_ _1_
< |B: "ollLr) + I1B7 27 pll e ()

(14 Co)|IB2 ]| oo
Co(1+ C3)[Vpll e (o)
Co(1+ Cs)lle — Pellrr (o)
Co(1+ C3)(1 + Ca)llellLr(o)

In view of (3.25), this shows that for any such ¢ we have

IN A

IN

20427 1-26

_1
1B 59 lly < CLlIV- ol L IB377V - gl 15,

16



2542 1-25

< Qlv-elid (e e+ oY e R

and that thus (3.24) holds with an obvious choice of C(p, d, 7). O

We can thereby accomplish the main step of our analysis in this section by combining Lemma 3.4
and Lemma 3.5 to achieve the following estimate of ¢. in a space which is compactly embedded into
wWhi(Q).

Lemma 3.7 If o > 1, then there exist p > 1 and § > 0 such that for any choice of 7 >0 and T > 7
one can fix C(1,T) > 0 satisfying

T
/ / ]B%Mcelp <C(r,T) for alle € (0,1). (3.29)
T Q

PrROOF.  We first invoke Lemma 3.4 and Lemma 3.5 to fix pg > 1 and A € (0,2) with the property
that for all 7" > 0 we can find C1(7") > 0 and C2(T") > 0 fulfilling

T
/0 Jte (1) - Ve ) [t < C1(T) for all £ € (0,1) (3.30)
and
T
/ / lccus [P0 < Co(T) for all € € (0,1), (3.31)
0 Q

and we then pick p > 1 such that

p<po, p<p and p<a, (3.32)

which is possible since p(® > 1 and a > 1. We thereafter use that 4p — 2\ > 4-1—2-2 = 0 and
(1 =20)pA—[A— (4p—2X)d] - po — (p—po)A < 0 as § N\, 0 in choosing some suitably small 6 > 0 such
that

1 A
o< = d 0< —— 3.33
< 5 an < I on (3.33)
and such that moreover (1 26
- p
A L AN 3.34
A—(dp—2xn)s =10 (3:34)

where the last inequality in (3.33) warrants that the operator B~27 is bounded in LP (), whence
with some C'3 > 0 we have

1
|B 2+5¢||LP(Q) < Cslll7, for all ¢ € LP((Q). (3.35)

Next, we invoke standard maximal Sobolev regularity theory in LP(€2) ([4]) to fix C4y > 0 such that
whenever T' > 0, w € C*1(Q x [0,T]) and f € C°(Q x [0,77]) are such that

wy = Aw —w + f(z,t), z e, te(0,T),
%_0 zed, te(0,T),
([B,O):O; .feQa

17



we have

/ ' [Bap<c ' [ (336)

We now let 7 > 0 and T' > 0 be given and take any nondecreasing cut-off function ¢ € C°°([0, c0))
such that ¢ =01in [0, 5] and ¢ =1 in [, 00), and observe that then for each ¢ € (0,1),
we('7t) = C(t)'B_%—HSC&('at)? te [OvT]>

defines a function w. on Q x [0, 7] which since c.(-,t) € D(B) for all t > 0, and since B2 t? maps
D(B) into itself, belongs to C*(Q x [0, T]) and satisfies % =00n 902 x(0,7T) as well as w.(-,0) =0
in Q. Furthermore, using (2.1) we see that

Wet = C(t)Bié+écat + ((t)Bi%JréCs
_1 Ne _1
— ((t)B H{ ~Beet o=V (caug)} + (1) B3 e,
— _Buw. + C(t)B’%”l fe — )BTV - (cous) + C(#)B 2 0. in Qx (0,T),
Ne

so that (3.36) applies so as to warrant that

/OT /Q B P = /OT /Q |Bu.|?

T
p
< Cy / / ‘C(t)B_%JF‘S "e  _((H)BTEV - (coue) + ¢'(H) BT e,
0 Q 1+ ENg
T
< 3pc4/ / prats Tl
0 O 1 + ENg
g —3+6 P
+3PCy ‘B 27OV - (caue)
0o Jo
T
+37ClIC 1 0 T))/ / [B=2 e P forall € (0,1), (3.37)
' 0o Ja
because 0 < ¢ < 1. Here by (3.35), Young’s inequality and the third restriction in (3.32),
T T
[ et | o< o [ |2 ]
0 JQ 1+ene a o Jaoll+en
T
Caf

0 Jo

T
< 03/ /ng+03|QyT for all £ € (0,1), (3.39)
0o Ja

whereas (3.35) together with Young’s inequality and the second requirement in (3.32) shows that

T 1 T
[ frser < of [
0 Q 0 Q

18



T
< 03/ /Cg(a)+03’Q|T
0 Q

< C3T - sup / cf;(a)(-,t) + C3|QT for all e € (0,1). (3.39)
)JQ

Apart from that, applying Lemma 3.6 to n := 4§ < % we obtain Cs > 0 such that for all € € (0, 1),

P T % (1—28)p
//‘B 99 () < s [V leaothucC )1 sl 05T
0 Lr(92)
4pd

so that relying on the identity V- (c.u.) = u. - Ve, on the fact that 5 1125 < A by the second condition
n (3.33), and on (3.34), we may twice again employ Young’s inequality to see that

T ) P T A T <1 28)pX
/ /]BWV'(ceua) < 05/ ]ua(-,t)-vce(~,t)H dt—l—C5/ e (s tue ()| Lol =" di
0 JQ 0 LP(Q) 0
r A
< (1) - (-, dt
< 05/0 ‘u( £) - Ve t)‘Lp(Q)

T
+o5/ oo s, I gt + CsT  for all & € (0,1).
0
Since the first restriction in (3.32) ensures that due to the Holder inequality we have

po—P
el ey < 12| Por ||| ro () for all p € LP°(Q),

along with (3.30) and (3.31) this implies that for all € € (0, 1),

T wo-pr [T
[ = o [
0 Q 0
» T

/ Hca«,t>u5<',t>u§%0(mdt+C5T

(pog—P)A PQ—P
< Co(T) := Oy(T )05\91 o+ Cy(T)C5|Q 7 + CsT,

A

dt
LPo(Q)

(+8) - Veul 1)

Po—
+C5|Q »

so that from (3.37)-(3.39) we infer that

T
| [ewpiter < o {acm +aor
0 Q
+37C4Co(T)
+3PC4.{0308(T)+03\Q]T} 11 oy forall e € (0,1),

where

T
C7(T) := sup / /n? and Cs(T') := sup sup /cp(a)
) Q

£€(0,1) te(0,T)
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are both finite due to Lemma 2.2 and Lemma 3.1. It remains to recall that ( = 1 on [r, 7] to conclude
(3.29) from this upon an evident choice of C(7,T). O

In preparation of an Aubin-Lions type argument, we supplement the above by some information on

regularity of time derivatives.

Lemma 3.8 Let a > 1. Then there exists an integer m > 3 such that for all T > 0 one can find
C(T) > 0 fulfilling

T
/0 lleae (s )H dt < C(T) for all e € (0,1). (3.40)

ProOOF.  We let p > 1 be as provided by Lemma 3.5 and take m € {3,4,...} such that m > 62—7;9’

which ensures that Wy™" %(Q) is continuously embedded into both W2°°(Q) and W PLl(Q), and that
thus there exist positive constants C1, C2 and Cj such that [|A[| L) < C1l|[Y]lwm2q), [¥]lLe@) <
Cal|9Y|lwm2(q) and HV@/JHLF(Q) < Csl[Y|lwmoe(q for all v € C§° (Q) Given any such ¢ and an

arbitrary ¢ > 0, on the basis of (2.1) we can therefore estimate

n
‘/Q—j('aﬂ"ﬁ’ = CsAw_/Csw‘i‘/ < T,Z)‘F/CEUE'V?J)
Q Q Q o l+ene Q
eell L@ l| AV oo () + el @9l Lo ) + el L@ 1Yl e (@)

Flectel Lo |9 wmﬁm

{(C1+ Co)lleellzn) + Callnellor o) + Csllectic ooy fIellwm o)

IN

IN

for € € (0,1). Therefore,

T
/ l[eet (-t H W2 (Q))* Lt < (Cr+Co)T - sup lee(+58)l|pia) + C2T - sup |Ine(-, 1)l L1 (q)
0 t€(0,T') te(0,T)

T
—i—Cg/ l[ce (-, ) ue (-, )l Lo(o)dt for all T'> 0 and € € (0, 1),
0

so that the claim results from Lemma 3.1, Lemma 2.2 and Lemma 3.5. O

We can thereby derive the main result of this section in quite a straightforward manner from Lemma
3.7:

Lemma 3.9 Let o > 1. Then for all T > 0,
(ce)ee(o,1) 18 relatively compact with respect to the strong topology in LY((0,7); Whi(Q)).  (3.41)
PROOF. According to Lemma 3.7, we can find p > 1 and § > 0 such that
(¢2)ze(0,1) s bounded in LP((0,7); D(BI,%—HS) for all T > 0,
whereas Lemma 3.8 provides an integer m > 3 with the property that

(Cet)ee(o,1) 1s bounded in LY((0,T); (Wg’ﬂ((l))*) for all ' > 0.
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1
Since D(BI?M) is continuously embedded into WP(Q) ([6, Theorem 1.6.1]), an Aubin-Lions lemma
([18]) becomes applicable so as to guarantee that for all 7' > 0,

(Ce)ee(o,1) is relatively compact with respect to the strong topology in LP((0,T); wir(Q)).

As p > 1, this clearly entails (3.41). O

4 Compactness properties of ((n.+ 1)_p€_'{65)56(071) for p > 0 and large
K

This section is devoted to an essentially straightforward adaptation of the reasoning from [33, Section
6], pursuing the goal to derive relative compactness of ((n. +1) Pe™"%)_. (0,1) with respect to both the
weak topology in L2((0,7); W12(Q)) and the strong topology in L*(Q2 x (0,T)) for arbitrary T' > 0,
each p > 0 and any suitably large x > 0. This will be achieved on the basis of Lemma 2.4, in which we
will choose ¢ and v as specified and described in the following statement imported from [33, Lemma
6.1].

Lemma 4.1 Let p >0 and k > 0, and define

p+1

o(s):=(s+1)7P, D(s):=-2 (s+1)72 and ¥(5):=e ", $>0,5>0 (4.1)
Then
' (5) = +/¢"(s) for all s >0, (4.2)

and for any s > 0 and's > 0 we have

ds) WG 1 WG 1 s s
RO RN V' (s) - Vi (5)

26+pp+ 1)

2¢/p(p+1)

(s+1)"5e” %  (4.3)

and
2(g 2(35 4K% — p(p + 1)238722 -
B()9"(5) — Zf)) | ww(s)) — 1P ((E) = iém G (5 1) P (4.4)
as well as
@' (s) = P 5 3
VIR = o) (45)
and
s (s)0(E) — b (8) + 22OV gy s 1)1, (4.6)

When substantiated according to the latter choices, for € € (0,1) Lemma 2.4 indeed takes the following
form.
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Corollary 4.2 Let p > 0 and x > 0. Then whenever p € C®(Q x (0,00)),
O (ne + 1) Pe =4 -
[ ad+1yrene

n2
/ 4/‘@2 — p(p + 1)2m(
Q 4(p+1)

—2/(n5+1)_56_?V{(n5+1)_§e_ﬁ206}-ch
Q

—p/ﬂng(nE + 1)*1’*16”“65ch -V

_b _ kce
ne 1 (ne+1)"2e” 2 Ve,

e 26+ pp+1)"
5 1 _P _ kce
V{(n +1)72e 2 }+ p+1)

ne + 1) Pe "¢ |Vc€|2<p

Q

b [ (4 )77 (pne = e
Q

n
1) Pece ™ g — = 1) Peree 4.7
—l-/i/g)(ng%- ) Pe.e © K/g]1+5na(n5+ ) Pe ® (4.7)

for allt >0 and e € (0,1).

Proor.  We only need to combine Lemma 2.4 with Lemma 4.1. O

Using that the factor 4x? —p(p+ 1)2% appearing in the second integrand on the right-hand side of

(4.7) has a uniform positive lower bound whenever 52 > 2@+ H)

from the latter.

, the following can readily be derived

Lemma 4.3 Ifp > 0 and x > 0 satisfy

VP (p+1)

4.
K> SR (4.8)
then for all T > 0 there exists C = C(T,p, k) > 0 such that
KC, 2
n6 +1)” ?E} <C  foralle e (0,1) (4.9)
and
T
/ /(nE + 1) Pe | Ve 2 < C for all e € (0,1). (4.10)
0 Q

PRrROOF. Upon choosing ¢ = 1 in Corollary 4.2, on the basis of Lemma 2.2 this can be seen by
copying almost word by word the proof of Lemma 6.3 in [33]. O

In a straightforward manner, this also entails some time regularity feature of said coupled quantities:
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Lemma 4.4 Let p > 0 and k > ‘/ﬁ'(é)ﬂ). Then for all T > 0 there exists C = C(T,p,k,m) > 0 such
that

T —p
/ 8t{ (ng(-,t) + 1) e~res(5) H dt < C for alle € (0,1). (4.11)
0 (W2:2(2))*
Proor. Fore € (0,1), we abbreviate a. := V{(na + 1)72 —5% } and b. 1= (n. + 1)7%67%VUE for

€ (0,1). An application of Corollary 4.2 to ¢(z,t) := ((z), (z,t) € Q x (0, 00), for fixed ¢ € C*(Q),

2
then shows that if we let C; = Cy(p, k) := 8(p;'1) : (%iﬁffgl)> + 4/14—(!;7p+(;;—)|-1) then

Q@{mg+nfkﬂ%}(’

_ | et [
_l p .A "

2

¢

2ﬁ+p@+&%ﬁ%b

€

: 4(p+1)

4ﬁ—p@+n2%ﬂ b
A; Alp+1) leef*¢
—2/(n6 + 1),ge,~;5 az - V¢

Q

—p/ ne(ne +1)7%
Q
b [ (04277 (pne = e ¢
)
+ / (ne +1)Pe " =u, - V¢
Q

_ _ n —y

< {/\} ¢l ooy + s - {/|b |2} ¢l
+2-{ / |a5|2} ~|v<||Lz(m+p-{ / |b512}-uva|m>
+pp'{ L } ¢l ooy + pi- { / n?}-ncnmm{ / |u5|2}-||v<||m(m
ey + { / na}wrcumm (1.12)

forallt > 0ande € (0,1), e < , (ne+1)71 <1, e77 < 1and kv.e "= < 1in Qx (0, 00).
Since from Lemma 4.3, Lemma 2.2 and 2.3 we know that for all 7' > 0 we have

T T T
sup {/ /]a6]2 / /\bglz—i-/ /n?—i—/ /\u5\2} < 00, (4.13)
e(0,1) Q o Ja 0o Ja
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and since W22(Q) is continuously embedded into L>(2), from (4.12) we readily conclude (4.11 upon

taking the supremum over all ¢ € C°°(Q) fulfilling |[(|[yy2.2(q) < 1, and then integrating over ¢ € (0,T')
for fixed T' > 0. O

In consequence, we infer the following.

Corollary 4.5 Suppose that p > 0 and k > M. Then for all T > 0, ((n. + 1)_7’6_"‘65)56(071) 18
relatively compact in L?((0,T); W12(Q)) with respect to the weak topology, and relatively compact in
L2(2 x (0,T)) with respect to the strong topology.

PROOF.  This can be derived from Lemma 4.3 and Lemma 4.4 by verbatim copying a corresponding
argument detailed in [33, Lemma 7.1]. O

5 Passing to the limit. Proof of Theorem 1.1

Thanks to the boundedness and compactness features obtained so far, we are now in the position to
construct a limit triple which satisfies the second and the third sub-problem in (1.4) in the spirit of
Definition 2.5.

Lemma 5.1 Let o > 1. Then there exist (¢;)jen C (0,1) and functions

ne LY (Qx][0,00)),

loc

ce L} ([0,00); WHL()) and (5.1)

loc

u € Li,([0,00); Wy () R?))
such that €5 \,0 as j — oo, thatn > 0,¢ >0 and V- u =0 a.e. in Q x (0,00), that
ne —n in L, (Q x [0,00)) and a.e. in Q x (0,00),
ce +c in L (2 x[0,00)) and a.e. in Q x (0, 00),

Ve: = Ve in L (Q % [0,00)) and a.e. in  x (0,00) as well as
ue = uin Lige([0,00); WH ()

T = W DN
o — D

5.
5.
5.
5.

o~ o~ o~ o~

as € = ; \, 0, and such that (2.9) holds, that (2.10) is satisfied for all ¢ € C§°(Q x [0,00)), and that
(2.11) is fulfilled for each ¢ € C§°(Q x [0,00); R3) such that V - ¢ = 0.

Proor. We fix any p > 0 and k > M, and let w. := (n. + 1)"Pe " for € € (0,1). In view of
Lemma 3.9 and Corollary 4.5, we can then find (g;);en C (0, 1) and nonnegative functions w an ¢ on
2 x (0,00) such that ; \, 0 as j — oo, and that as € = ¢; \, 0 we have (5.3), (5.4) as well as

we — w a.e. in Q x (0, 00).
Therefore,

KCe

1 1
ne = ("“w;) P —1 = n:=("w) » -1 ae inQx(0,00) as e =¢j \,0.

Recalling that (2.3) implies uniform integrability of (n:).c(o,1) over Qx (0, 7)) for each T' > 0, we obtain
(5.2) as a consequence of the Vitali convergence theorem, while (5.5) directly results from Lemma 2.3,
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and while the inclusions in (5.1) follow from the boundedness properties in (3.41), (2.5), (2.6) and
(2.3) when combined with (5.2)-(5.5) and Fatou’s lemma.

Apart from that, taking a null set N C (0,00) such that in accordance with (5.2) and the Tonelli
theorem we have n.(-,t) = n(-,t) a.e. in Q for all t € (0,00) \ N as ¢ = ¢; \, 0 and hence

/n(-,t) < liminf/ no(1)  forall t € (0,00)\ N, (5.6)
Q Q

e=e; \0

in the identity

t t
/na<-,t>+u//n§—/no+p//ng,
Q 0 Q Q 0 9]

valid for all ¢ > 0 and ¢ € (0, 1) due to (2.1), we may again employ (5.2) along with Fatou’s lemma to
infer that the inequality in (2.9) indeed holds for each ¢ € (0,00) \ N.

Finally, given ¢ € C§°(Q2 x [0,00)) we see from the second equation in (2.1) that

_/ /CsSot_/COSO('vO)
o Jao Q
= —/ /VCE'VQO—/ /CESO—F/ / e 804‘/ /CEUE'VSO (57)
0o Jao 0o Jo o Jal+ne o Ja

for all € € (0,1), where clearly, by (5.3) and (5.4),

/ /cggot—>/ /cgot, / /Vce-ch—>/ /Vc-Vgp and / /c€¢—>/ /cgp
0 Q 0 Q 0 Q 0 Q 0 Q 0 Q

as € = g5 N\, 0. Furthermore, once more due to (5.2) we infer from the Vitali convergence theorem
that also —=— — n in L} (Q x [0,00)) and thus

1+ene
%2 n
o Jolten: 0 JO v

as € = g \ 0, whereas Lemma 3.5 entails

/ /cgug-Vg0—>/ /cu-Vgp
0 Q 0 Q

as € = ¢; ¢ 0. The identity in (2.10) thus results from (5.7), and that in (2.11) can be verified in
quite a similar way by relying on (5.2) and (5.5). O

Quite in the style of Lemma 8.2 in [33], we can now verify the remaining parts of Definition 2.5 by
making use of Corollary 4.2 and the convergence properties gathered in Lemma 5.1:

Lemma 5.2 Let a > 1, and given p > 0 and k > \/;5(22#1)’ let ¢, ® and i be as accordingly defined by

(4.1). Then (2.12)-(2.14) are satisfied, and (2.16) holds for any nonnegative p € C5(Q x [0, 00)).
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Proor. For fixed T" > 0, Lemma 4.3 implies that

_ Ekce

((ng +1)Ee s is bounded in L2((0,T); W12(Q)),

)56(0,1)

and that both

and (m;(n6 +1)" 27 e T ch> are bounded in L*(Q2 x (0,T)).
ec

)

_Pb __kCe
((ne—l—l) ¢ 2 VCE)EE(OJ)

In view of Lemma 5.1 and Egorov’s theorem, this implies that as ¢ = ¢; \, 0,

V{(ns + 1)—36—%} —~ v{(n + 1)—%6—%} in L2(Q x (0,7)), (5.8)
and that
(ne4+1)"2¢ T Ve. = (n+1)"%2e 2Ve  in L2(Q x (0,T)) (5.9)
and
ne(n. +1)"2 e F Ve =~ n(n+1)"2" e T Ve in L2(Q x (0,7)), (5.10)

from which it follows that

e\ 26+ p(p+ 1) p ke
v {ne + 1) S, 4 1) Ee
(n€+ ) 2e 2 o+ 4(p+1) (ns+ ) 2e” 2 Vee

26 +pp+ 1)
4(p+1)

~ v{(n+1)—%e—%}+ (n+1)"5e"%Ve  in L2Qx (0,T) (5.11)

and that, since

P _ Kce

(ne+1)"%2e"% = (n4+1)"2e 7 in L2Qx(0,T) ase=¢e; \0 (5.12)

by the dominated convergence theorem, also
ne(ne +1) P le7 Ve, — n(n+1)P e Ve  in L'(Q x (0,7)) (5.13)
and

P
2

(na+1)*%e*%v{(na+1)*%e*%} ~ (n+1)” e*%v{(nﬂ)*%e*%} in LY(Qx (0,T)) (5.14)

as € = g5 \¢ 0. Since ((ne + 1) Y pn. — /mg)e*"ca) o) can readily be seen to be uniformly
ee(0,

integrable over 2 x (0,7’) according to (2.3), the Vitali convergence theorem ensures that furthermore
(ne + )P Y pne — pn@)e " — (n+1)P " pn — un®)e "¢ in LY(Q x (0,T)), (5.15)
while, quite similarly,

(ne + 1) Pcce ™™ — (n+1)Pce™™ in LY(Q x (0,T)) ase=¢; (0 (5.16)
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and

e (ne +1)Pe™ - n(n+1)"Pe " in LY(Q x (0,7)) as e =¢; \,0, (5.17)
14 eng
as well as
(ne +1)Pe "y, — (n+ 1) Pe "y in L'(Q x (0,T)) ase=-¢; \,0 (5.18)
due to (5.5).

Now letting ¢, ® and ¢ be as in (4.1), we see that the properties in (2.12) and (2.13) are obvious, and
that (2.14), (2.15) are immediate from (5.8)-(5.17). Moreover, given any nonnegative ¢ € C5°(£2 x
[0,00)), in the corresponding identity from Corollary 4.2, upon a time integration implying that to
see that

e 2
p+1 KCE} 2R+p(p+1)nn+1 _DP _ Kce
1)” E 1
ng—l— 2 o+ o+ (ne+1)"2e 2 Ve,
2
k% —p p+ D iy
/ / T e+ 1) e Ve

/ /(n5+1)_”6_“5%—1—/(7104-1)_”6_’“‘)@(-,0)

0o Jo Q

—2/ /(n€+1)_56_?V{(n5+1)_56_?} -V

_p/ /ns Ne + RCEVCE VQO

+/ /(na—i—l) Ry, - Vi — p/ / (ne +1) 7" (pne — pn)e "=
0o Ja

o0
—m/ /(na + 1) Pece™ o + fﬁ/ / e (ne+1)Pe " =p for all e € (0,1),
0 QO 0 Q 1+ ENge

( Y to infer that since thus 4x2 — p(p+1)> e jl)

we may once again rely on our hypothesis k > VPiptl)

is nonnegative for all € € (0,1), from Lemma 5.1 and Fatou’s lemma we obtain that

n2
/ / 4k? — p(p + 1) (n+1)2 (n+1)"Pe ™|Vl

4(p+1)
2
4k* —p(p+1)? ( SRy
< liminf ne+1) 1) Pe ke |y 2 )
A e

Along with (5.11) and a standard argument based on lower semicontinuity property of L? norms with
respect to weak convergence, due to (5.13)-(5.18) this can readily be verified to entail (2.16). O

We can thereby complete the derivation of our main results:

PrROOF of Theorem 1.1.  The claim follows by combining Lemma 5.1 with Lemma 5.2. U
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