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Abstract

We consider a quasilinear Keller-Segel system with density-dependent migration rates, coupled to the incompressible
Stokes equations through transport and buoyancy. By means of an apparently novel approach based on certain
conditional estimates for the taxis gradient and the fluid field, for diffusion rates asymptotically controllable by
power-tape majorants and minorants a result on global existence and boundedness is derived under an essentially
optimal condition on the strength of cross-diffusion relative to diffusion.
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1 Introduction

In a smoothly bounded domain Ω ⊂ R
n, n ≥ 2, we consider the problem































nt + u · ∇n = ∇ · (D(n)∇n)−∇ · (S(n)∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν

= ∂c
∂ν

= 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.1)

which can be viewed as an extension of the classical quasilinear Keller-Segel model to frameworks in which the
interaction of chemotactically moving populations with liquid environments through transport and buoyancy needs to
be accounted for ([11]).

In the absence of such fluid coupling, the resulting two-component system for the unknown population density n

and signal concentration c has been thoroughly studied in the literature, reflecting its prominent role in the refined
modeling of chemotactic motion in situations when density-dependent influences on cell motility are of quantitative
relevance ([6], [4]). With regard to the fundamental question whether or not the spontaneous emergence of singular
structures is supported, the latter fluid-free version of (1.1) is fairly well-understood, at least in cases when D is
suitably smooth and positive, and such that with some m0 ∈ R,m ≥ m0, kD > 0 and KD > 0 we have

kDs
m0−1 ≤ D(s) ≤ KDs

m−1 for all s > 1. (1.2)

Then, namely, global bounded classical solutions can be found for all reasonably regular initial data whenever S is

suitably smooth and nonnegative satisfies S(0) = 0 and complies with the subcriticality condition that S(s)
D(s) ≤ KSD s

α

be valid for all s > 1 and some KSD > 0 and α < 2
n
([10], [7], [8]); additional results on the occurrence of finite-time or

infinite-time explosions, available under various assumptions suitably complementing to the latter, strongly indicate
that the growth of 0 ≤ s 7→ s

2
n indeed marks a genuinely blow-up critical relationship between S and D ([2], [3], [13],

[16]).

In the context of the fully coupled problem (1.1), however, the picture seems much less complete in this respect so far:
While said unboundedness results clearly extend in a trivial manner by simply letting Φ ≡ const. and u0 ≡ 0, in the
physically most relevant space dimension n = 3 the above condition on subcritical growth of S

D
has up to now been

found to ensure boundedness in (1.1) only under the additional assumption that in (1.2) we have m0 = m > − 1
3 ([1];

cf. also [12], [15] for precedents addressing the linear diffusion case when m0 = m = 1); for smaller values of m0, only
a result on global existence seems available, without information on boundedness properties ([1]). In the presence of
diffusion rates exhibiting fast algebraic decay at large densities, the question how far fluid interaction may influence
singularity formation in (1.1) accordingly seems unsolved.

The purpose of this note is to propose an analytical approach capable of adequately coping with the challenges
related to the chemotaxis-fluid coupling in (1.1) also when such strong diffusion degeneracies are involved. This
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method, in contrast to previously pursued strategies relying on certain conditional estimates for ∇c and u recently
obtained for solutions (c, u) to the respective sub-problem of (1.1) in a more general setting ([17]), will enable us to
derive the following result which essentially provides a complete answer to the above question, namely asserting that
fluid interaction does not affect the potential of (1.1) to generate singular behavior also when diffusion of arbitrary
algebraic strength near n = ∞ are present. Here and below, we let A denote the realization of the Stokes operator in
L2(Ω;R3), with its domain of definition given by D(A) = W 2,2(Ω;R3) ∩W 1,2

0 (Ω;R3) ∩ L2
σ(Ω), where L

2
σ(Ω) := {ϕ ∈

L2(Ω;R3) | ∇ · ϕ = 0}, and for ϑ > 0 we let Aϑ denote the corresponding fractional power ([9]).

Theorem 1.1 Suppose that Ω ⊂ R
3 is a bounded domain with smooth boundary, that Φ ∈ W 2,∞(Ω), and that

D ∈
⋃

ι>0 C
1+ι([0,∞)) and S ∈

⋃

ι>0 C
1+ι([0,∞)) are such that D > 0 in [0,∞), that S(0) = 0, and that (1.2) as

well as
|S(s)|

D(s)
≤ KSD s

α for all s > 1 (1.3)

with some m0 ∈ R,m ≥ m0, kD > 0,KD > 0, KSD > 0 and α < 2
3 . Then for any choice of 0 ≤ n0 ∈ C0(Ω),

0 ≤ c0 ∈W 1,∞(Ω) and u0 ∈
⋃

ϑ∈( 3
4 ,1)

D(Aϑ), one can find functions



















n ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

c ∈
⋂

q>3 C
0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞)),

u ∈
⋃

ϑ∈( 3
4 ,1)

C0([0,∞);D(Aϑ)) ∩ C2,1(Ω× (0,∞);R3) and

P ∈ C1,0(Ω× (0,∞))

such that n ≥ 0 and c ≥ 0 in Ω× (0,∞), and that (n, c, u, P ) forms a classical solution of (1.1). Moreover,

sup
t>0

{

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) + ‖Aϑu(·, t)‖L2(Ω)

}

<∞ for all ϑ ∈ ( 34 , 1). (1.4)

2 Preliminaries. Conditional bounds for c and u

Lemma 2.1 Under the assumption of Theorem 1.1, there exist Tmax ∈ (0,∞] and functions



















n ∈ C0(Ω× [0, Tmax)) ∩ C
2,1(Ω× (0, Tmax)),

c ∈
⋂

q>3 C
0([0, Tmax);W

1,q(Ω)) ∩ C2,1(Ω× (0, Tmax)),

u ∈
⋃

ϑ∈( 1
2 ,1)

C0([0, Tmax);D(Aϑ)) ∩ C2,1(Ω× (0, Tmax);R
3) and

P ∈ C1,0(Ω× (0, Tmax))

such that n ≥ 0 and c ≥ 0 in Ω × (0, Tmax), that (n, c, u, P ) solves (1.1) classically in Ω × (0, Tmax), and that if
Tmax <∞, then for all ϑ ∈ ( 34 , 1) we have

lim sup
tրTmax

{

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) + ‖Aϑu(·, t)‖L2(Ω)

}

= ∞. (2.1)

In addition, this solution satisfies
∫

Ω

n(·, t) =

∫

Ω

n0 for all t ∈ (0, Tmax). (2.2)

Proof. This can be seen by straightforward adaptation of standard arguments, a detailed application of which to
some closely related contexts can be found in [5, Section 2] and [14, Lemma 2.1], for instance. �

The following conditional bounds for the second and third components of this solution are immediate consequences of
[17, Theorem 1.2 and Proposition 1.1].

Lemma 2.2 Under the assumptions of Theorem 1.1, given any θ ∈ ( 34 , 1), p > 3 and η > 0 one can find C =
C(θ, p, η) > 0 such that

‖c(·, t)‖W 1,∞(Ω) ≤ C ·

{

1 + sup
s∈(0,t)

‖n(·, s)‖Lp(Ω)

}

p
p−1 ·(

2
3+η)

for all t ∈ (0, Tmax) (2.3)
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and

‖Aθu(·, t)‖L2(Ω) ≤ C ·

{

1 + sup
s∈(0,t)

‖n(·, s)‖Lp(Ω)

}

p
p−1 ·(

4θ−1
6 +η)

for all t ∈ (0, Tmax). (2.4)

3 L
p
estimates for n. Proof of Theorem 1.1

In order to appropriately prepare our testing procedure to be detailed in Lemma 3.2, let us note two basic properties
of a function to be utilized therein.

Lemma 3.1 Under the assumptions from Theorem 1.1, for each p > 1 there exists C = C(p) > 0 such that

ψp(s) :=

∫ s

0

∫ σ

0

τm+p−3

D(τ)
dτdσ, s ≥ 0, (3.1)

satisfies

1

C
sp − 1 ≤ ψp(s) ≤ Csp+m−m0 + C for all s ≥ 0.

Proof. As this can be derived from (1.2) and (1.3) by quite elementary arguments, we may refrain from giving
details here. �

The core of our reasoning can now be found in the following outcome of a testing procedure which in an essential
manner relies on the outcome of Lemma 2.2.

Lemma 3.2 Suppose that the assumptions from Theorem 1.1 and satisfied, and let Tmax and (n, c, u, P ) be as in
Lemma 2.1. Then for all p0 > 1 there exist p ≥ p0 and C > 0 such that

‖n(·, t)‖Lp(Ω) ≤ C for all t ∈ (0, Tmax). (3.2)

Proof. Given p0 > 1, we use that 2− 3α > 0 in choosing p ≥ p0 such that abbreviating γ := m−m0 ≥ 0 we have

p > max

{

2− 3α+ 2γ

2− 3α
, 4− 2α−m, 3−m,

3 + γ − 3m

2

}

, (3.3)

and in observing that the first restriction contained herein ensures that

(p− 1)(4− 3α)− 3(p+ γ − 1) ·
2

3
= p · (2− 3α)− (2− 3α+ 2γ) > 0,

and that hence 3(p+γ−1)
(p−1)(4−3α) ·

2
3 < 1, so that we can pick η > 0 such that

κ :=
3(p+ γ − 1)

(p− 1)(4− 3α)
·
(2

3
+ η

)

satisfies κ < 1. (3.4)

With these values of p and η fixed henceforth, we next draw on Lemma 2.2 to obtain C1 > 0 such that writing

Mp(t) := 1 + sup
s∈(0,t)

‖n(·, s)‖Lp(Ω), t ∈ (0, Tmax),

we have

‖∇c(·, t)‖L∞(Ω) ≤ C1M
p

p−1 ·(
2
3+η)

p (t) for all t ∈ (0, Tmax). (3.5)

In order to estimateMp on the basis thereof, we first follow the classical approach from [10] by taking ψp as accordingly

defined in (3.1) and using (1.1) to see that for all t ∈ (0, Tmax), since ψ
′′
p (s) =

sm+p−3

D(s) for all s ≥ 0 and ∇ · u = 0 in

Ω× (0, Tmax),

d

dt

∫

Ω

ψp(n) = −

∫

Ω

nm+p−3|∇n|2 +

∫

Ω

nm+p−3 S(n)

D(n)
∇n · ∇c

≤ −
1

2

∫

Ω

nm+p−3|∇n|2 +
1

2

∫

Ω

nm+p−3 S
2(n)

D2(n)
|∇c|2

= −
2

(m+ p− 1)2

∫

Ω

|∇n
m+p−1

2 |2 +
1

2

∫

Ω

nm+p−3 S
2(n)

D2(n)
|∇c|2 (3.6)
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according to Young’s inequality, where thanks to (1.3),

1

2

∫

Ω

nm+p−3 S
2(n)

D2(n)
|∇c|2 =

1

2

∫

{n≤1}

nm+p−3 S
2(n)

D2(n)
|∇c|2 +

1

2

∫

{n>1}

nm+p−3 S
2(n)

D2(n)
|∇c|2

≤ C2

∫

Ω

|∇c|2 +
K2

SD

2

∫

Ω

nm+p−3+2α|∇c|2 for all t ∈ (0, Tmax) (3.7)

with C2 := 1
2 maxs∈[0,1]

{

sm+p−3 S2(s)
D2(s)

}

being finite by continuity of S and D and by positivity of D, and by the fact

that m− p− 3 ≥ 0 due to (3.3).

From now on, however, our strategy apparently deviates from all those previously pursued in that instead of explicitly
involving the second equation in (1.1), our method of controlling ∇c exclusively relies on (3.5), according to which,
namely, (3.7) implies that for all t ∈ (0, Tmax),

1

2

∫

Ω

nm+p−3 S
2(n)

D2(n)
|∇c|2 ≤ C2

1C2|Ω|M
2p

p−1 ·(
2
3+η)

p (t) +
K2

SDC
2
1

2
M

2p
p−1 ·(

2
3+η)

p (t)

∫

Ω

nm+p−3+2α. (3.8)

To appropriately estimate the latter integral by interpolation, we now use that the restrictions p > 4 − 2α −m and
p > 3−m in (3.3) imply that m+ p− 3 + 2α > 1 and that, again since α < 2

3 ,

3(m+ p− 1)− (m+ p− 3 + 2α) = 2p− 2α+ 2m > 2 · (3−m)− 2α+ 2m = 6− 2α > 0,

meaning that 2
m+p−1 <

2(m+p−3+2α)
m+p−1 < 6 and that hence setting a := 3(m+p−1)(m+p−4+2α)

(3m+3p−4)(m+p−3+2α) defines a number a

belonging to (0, 1). As
∥

∥n
m+p−1

2

∥

∥

2
m+p−1

L
2

m+p−1 (Ω)
=

∫

Ω
n =

∫

Ω
n0 for all t ∈ (0, Tmax) by (2.2), we may thus employ the

Gagliardo-Nirenberg inequality to see that with some C3 > 0 and C4 > 0 we have
∫

Ω

nm+p−3+2α =
∥

∥n
m+p−1

2

∥

∥

2(m+p−3+2α)
m+p−1

L
2(m+p−3+2α)

m+p−1 (Ω)

≤ C3

∥

∥∇n
m+p−1

2

∥

∥

2(m+p−3+2α)
m+p−1 ·a

L2(Ω)

∥

∥n
m+p−1

2

∥

∥

2(m+p−3+2α)
m+p−1 ·(1−a)

L
2

m+p−1 (Ω)
+ C3

∥

∥n
m+p−1

2

∥

∥

2(m+p−3+2α)
m+p−1

L
2

m+p−1 (Ω)

≤ C4

∥

∥∇n
m+p−1

2

∥

∥

2·
3(m+p−4+2α)

3m+3p−4

L2(Ω) + C4 for all t ∈ (0, Tmax). (3.9)

Since here 3(m+p−4+2α)
3m+3p−4 − 1 = − 8−6α

3m+3p−4 < 0 due to the inequality α < 4
3 , it follows that λ := 3m+3p−4

3(m+p−4+2α) satisfies

λ > 1, so that Young’s inequality provides C5 > 0 fulfilling

K2
SDC

2
1

2
M

2p
p−1 ·(

2
3+η)(t) · C4

∥

∥∇n
m+p−1

2

∥

∥

2·
3(m+p−4+2α)

3m+3p−4

L2(Ω) ≤
1

(m+ p− 1)2
∥

∥∇n
m+p−1

2

∥

∥

2

L2(Ω)

+C5M
2p

p−1 ·(
2
3+η)· λ

λ−1 (t) for all t ∈ (0, Tmax),

which together with (3.9), (3.8), (3.7) and the fact that λ
λ−1 = 3m+3p−4

8−6α > 1 implies that since Mp ≥ 1, writing

C6 := C5 + C2
1C2|Ω|+

K2
SDC2

1C4

2 we have

1

2

∫

Ω

nm+p−3 S
2(n)

D2(n)
|∇c|2 ≤

K2
SDC

2
1

2
M

2p
p−1 ·(

2
3+η)

p (t) ·

{

C4

∥

∥∇n
m+p−1

2

∥

∥

2·
3(m+p−4+2α)

3m+3p−4

L2(Ω) + C4

}

+C2
1C2|Ω|M

2p
p−1 ·(

2
3+η)

p (t)

≤
1

(m+ p− 1)2

∫

Ω

|∇n
m+p−1

2 |2 + C5M
2p

p−1 ·(
2
3+η)· λ

λ−1
p (t)

+
K2

SDC
2
1C4

2
M

2p
p−1 ·(

2
3+η)

p (t) + C2
1C2|Ω|M

p
p−1 ·(

2
3+η)

p (t)

≤
1

(m+ p− 1)2

∫

Ω

|∇n
m+p−1

2 |2

+C6M
p

p−1 ·(
2
3+η)· 3m+3p−4

4−3α
p (t) for all t ∈ (0, Tmax). (3.10)
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We next turn part of the dissipative contribution to (3.6) into a superlinear zero-order absorptive term by recalling
that due to Lemma 3.1 and our definition of γ, there exists C7 > 0 such that

∫

Ω

ψp(n) ≤ C7

∫

Ω

np+γ + C7 for all t ∈ (0, Tmax), (3.11)

and that the rightmost restriction expressed in (3.3) guarantees that 6(m+ p− 1)− 2(p+ γ) = 4p− 2(3+ γ− 3m) > 0

and that thus 2
m+p−1 <

2(p−γ)
m+p−1 < 6, because clearly p + γ > 1, Therefore, namely, the number b := 3(m+p−1)(p+γ−1)

(3m+3p−4)(p+γ)

satisfies b ∈ (0, 1), so that we may once more employ the Gagliardo-Nirenberg inequality along with (2.2) to see that
with some C8 > 0 and C9 > 0, due to (3.11) we have

{
∫

Ω

ψp(n)

}

3m+3p−4
3(p+γ−1)

≤ (2C7)
3m+3p−4
3(p+γ−1)

{
∫

Ω

np+γ

}

3m+3p−4
3(p+γ−1)

+ (2C7)
3m+3p−4
3(p+γ−1)

= (2C7)
3m+3p−4
3(p+γ−1)

∥

∥n
m+p−1

2

∥

∥

2(3m+3p−4)(p+γ)
3(m+p−1)(p+γ−1)

L
2(p+γ)
m+p−1 (Ω)

+ (2C7)
3m+3p−4
3(p+γ−1)

≤ C8

∥

∥∇n
m+p−1

2

∥

∥

2(3m+3p−4)(p+γ)
3(m+p−1)(p+γ−1)

·b

L2(Ω)

∥

∥n
m+p−1

2

∥

∥

2(3m+3p−4)(p+γ)
3(m+p−1)(p+γ−1)

·(1−b)

L
2

m+p−1 (Ω)

+C8

∥

∥n
m+p−1

2

∥

∥

2(3m+3p−4)(p+γ)
3(m+p−1)(p+γ−1)

L
2

m+p−1 (Ω)
+ (2C7)

3m+3p−4
3(p+γ−1)

≤ C9

∥

∥∇n
m+p−1

2

∥

∥

2(3m+3p−4)(p+γ)
3(m+p−1)(p+γ−1)

·b

L2(Ω) + C9

= C9

∥

∥∇n
m+p−1

2

∥

∥

2

L2(Ω)
+ C9 for all t ∈ (0, Tmax).

As thus

∫

Ω

|∇n
m+p−1

2 |2 ≥
1

C9
·

{
∫

Ω

ψp(n)

}

3m+3p−4
3(p+γ−1)

− 1 for all t ∈ (0, Tmax),

from (3.6) and (3.10) we accordingly obtain that for any fixed t0 ∈ (0, Tmax), again since Mp ≥ 1, and since Mp is
nondecreasing,

d

dt

∫

Ω

ψp(n) + C10 ·

{
∫

Ω

ψp(n)

}

3m+3p−4
3(p+γ−1)

≤ c11M
p

p−1 ·(
2
3+η)· 3m+3p−4

4−3α
p (t0) for all t ∈ (0, t0)

with C10 := 1
(m+p−1)2C9

and C11 := C6 +
1

(m+p−1)2 . A simple ODE comparison argument reveals that therefore

∫

Ω

ψp(n(·, t)) ≤ max

{

∫

Ω

ψp(n0) ,

{

C11

C10
M

p
p−1 ·(

2
3+η)· 3m+3p−4

4−3α
p (t0)

}

3(p+γ−1)
3m+3p−4

}

for all t ∈ (0, t0)

and that consequently, according to our definition of κ in (3.4) we have

∫

Ω

ψp(n(·, t)) ≤ C12M
p·

3(p+γ−1)
(p−1)(4−3α)

·( 2
3+η)

p (t0) = C12M
pκ
p (t0) for all t ∈ (0, t0)

with C12 := max
{

∫

Ω
ψp(n0) , (

C11

C10
)

3(p+γ−1)
3m+3p−4

}

. Since, on the other hand, Lemma 3.1 furthermore provides C13 > 0

such that
∫

Ω
np ≤ C13

∫

Ω
ψp(n) + C13 for all t ∈ (0, Tmax), this implies that

∫

Ω

np(·, t) ≤ C12C13M
pκ
p (t0) + C13 ≤ (C12 + 1)C13M

pκ
p (t0) for all t0 ∈ (0, Tmax) and t ∈ (0, t0),

and that according to the definition of Mp we therefore have

Mp(t0) ≤ 1 +
{

(C12 + 1)C13

}
1
p

Mκ
p (t0) ≤ C14M

κ
p (t0) for all t0 ∈ (0, Tmax),
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where C14 := 1 +
{

(C12 + 1)C13

}
1
p . We now only need to use that κ < 1, as asserted by (3.4), to infer that

Mp(t0) ≤ C
1

1−κ

14 for all t0 ∈ (0, Tmax), and to thereupon conclude as intended. �

With this lemma at hand, we can readily employ standard arguments to derive our main results:

Proof of Theorem 1.1. When combined with (1.3) and the upper estimate for D in (1.2), in view of Lemma 2.2 an
application of Lemma 3.2 readily shows that both n and h := S(n)∇c + nu belong to L∞((0, Tmax);L

p(Ω)) for any
p > 1. A Moser-type iterative argument on the basis of the identity nt = ∇ · (D(n)∇n) − ∇ · h ([10, Lemma A.1]
therefore shows that actually n ∈ L∞(Ω× (0, Tmax)), so that, again due to Lemma 2.2, the claim results from Lemma
2.1. �
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