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Abstract

This work is concerned with the doubly degenerate cross-diffusion system

{
ut = (uvux)x − (u2vvx)x + uv,

vt = vxx − uv,
(0.1)

that has been proposed as a model for experimentally observable quite complex pattern formation
phenomena in bacterial populations.

It is shown that for any initial data satisfying adequate regularity and positivity assumptions, a no-flux
initial-boundary value problem for (0.1) in a bounded real interval possesses a global weak solution
which is continuous in its first and essentially smooth in its second component.

This solution is seen to asymptotically stabilize in the sense that

u(·, t) → u∞ and v(·, t) → 0 as t→ ∞ (0.2)

with some nonnegative u∞ ∈ C0(Ω) which can be obtained as the evaluation of a weak solution
z ∈ C0(Ω× [0, 1]) to a porous medium-type parabolic problem at the finite time 1.

It is moreover revealed that for each suitably regular nonnegative function u⋆ on Ω, the pair (u⋆, 0),
formally constituting an equilibrium of (0.1), is stable in an appropriate sense. This finally implies a
sufficient criterion for the limit u∞ in (0.2) to be spatially heterogeneous.

The latter properties are in sharp contrast to known asymptotic features of corresponding nutrient taxis
systems involving linear non-degenerate diffusion, as for which the literature appears to exclusively
provide results on solutions which approach spatially constant states in the large time limit.
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1 Introduction

The tendency to evolve toward equilibrium belongs to the fundamental features naturally inherent to
large classes of parabolic flows. Beyond a virtually inexhaustible multitude of findings concerned with
convergence to steady states in numerous particular cases, the literature in fact provides considerably
comprehensive rigorous evidence for corresponding stabilization properties of bounded solutions in quite
general problem classes ([25], [12], [16], [24]). As a common characteristic, however, most among the sys-
tems well-understood in this regard share the peculiarity that their equilibria are either trivial or reflect an
appropriate balance of diffusion and the action of reaction-type sources; as the richness especially of the
stable among such steady state constellations is usually limited, this goes along with evident confinements
with regard to the ability of adequately describing systems in which significant trends to support large
varieties of structures are to be expected.

One purpose of the present work consists in rigorously confirming that when suitably accounting for possi-
ble subtleties with respect to particle motility, even some quite artless parabolic systems may nevertheless
well be appropriate models also under such circumstances of increased complexity. This will be sub-
stantiated in the context of a two-component reaction-(cross-)diffusion system which has been proposed
to describe bacterial patterning in particular physical frameworks, and a main mathematical feature of
which lies in a certain density-dependent limitation of the incorporated diffusion mechanisms. According
to a correspondingly included degeneracy of parabolicity, this system admits an abundantly rich – and
especially uncountable – set of steady states, and the analysis to be developed in this work will, inter alia,
reveal that each of these equilibria enjoys some stability property, and that any solution to an associated
initial value problem stabilizes toward one among these states.

The challenge of detecting nontrivial asymptotics in nutrient taxis systems. Describing the
emergence and evolution of structures appears to be among the most challenging topics in the analysis of
models for chemotaxis processes. Indeed, in the context of reinforced taxis mechanisms such as addressed
in the classical Keller-Segel system {

ut = ∆u+∇ · (u∇v),

vt = ∆v − v + u,
(1.3)

and some of its close relatives, the literature of the past years could rigorously detect quite a few among
the colorful dynamical features of such types of interplay which have been predicted by studies based on
either formal analysis or numerical simulations ([5], [28], [31]). Beyond the description of aggregation
phenomena in the mathematically extreme sense of finite-time blow-up in appropriate settings ([14], [27],
[37]) the existence of spatially heterogeneous steady states ([29], [30], [18], [8], [1]) as well as the role
of equilibria in the large time asymptotics ([9], [13]) have been the objectives of numerous contributions
in this direction; recent findings have furthermore revealed certain facets of colorful solution behavior at
intermediate time scales ([20], [39]).

The corresponding state of knowledge is much weaker in situations when instead of signal production
mechanisms as modeled in (1.3), chemotactic migration is directed by a signal substance which is not
produced but rather consumed by cells. At the level of biological experiments, observations in such
nutrient taxis systems witness the formation of quite strongly structured patterns, exhibiting up to fractal-
like complexity, even in very simple settings such as determined by bacteria of the species Bacillus subtilis
grown on the surface of thin agar plates, especially in presence of sparse nutrient ([6], [11], [10], [26]).
However, to the best of our knowledge virtually none of these findings could so far appropriately be
captured by any result from mathematical analysis concerned with models for such processes which are
evidently lacking any external driving force as well as any self-enhancing effect on cell migration such as
described in (1.3) by the signal production term +u in its second equation: in nutrient taxis systems of
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the form {
ut = ∆u+∇ · (uS(u, v)∇v) + f(u, v),

vt = ∆v − uv,
(1.4)

various choices of the sensitivity and proliferation coefficient functions S and f have been proposed in
the literature, but no nontrivial large time behavior could be discovered in any of the previously studied
cases. When posed along with no-flux boundary conditions in bounded convex domains Ω ⊂ R

n, in the
prototypical setting obtained on letting S ≡ 1 and f ≡ 0, for instance, (1.4) apparently enforces asymp-
totics exclusively characterized by spatial homogenization: namely, corresponding initial value problems
involving reasonably regular but arbitrarily large initial data are known to possess global bounded classi-
cal solutions when n = 2, whereas global weak and eventually smooth solutions can be constructed when
n = 3, but in both cases each of these solutions approaches one of the spatially homogeneous equilibria
given by u ≡ a and v ≡ 0 with appropriate a ≥ 0 ([35]); even additionally accounting for nutrient-induced
proliferation by choosing f(u, v) = uv does not essentially change this asymptotic property of (1.4) ([41]).
Together with further results of a similar flavor for the case when S(u, v) = 1

v
and f ≡ 0 ([4]), or when

even couplings to surrounding liquid media are included ([21], [38], [40]), these findings suggest that in the
context of (1.4), the most colorful large-time dynamics that can at all be expected consists in wave-like
propagation phenomena, which in fact have been found to occur for the latter specific version of (1.4),
but which according to their particular nature eventually lead to spatial homogeneity in each bounded
spatial region ([17]).

Nutrient taxis involving signal-dependent degenerate diffusion. In the present work we shall
see that this situation may become substantially different when unlike in (1.4), cell diffusion nonlinearly
degenerates at small signal densities. Specifically, we shall be concerned with the nutrient taxis system

{
ut = ∇ · (uv∇u)− χ∇ · (u2v∇v) + uv,

vt = ∆v − uv,
(1.5)

for χ > 0, which has been proposed in [23], and recently also rigorously been derived by means of parabolic
limits in [32], as a model for the bacterial pattern formation phenomena reported in [11], [10] and [26].
In fact, numerical simulations performed in [23] for the spatially two-dimensional version of (1.5) indicate
that essential experimental observations such as e.g. quite complex forms of structure formation, including
branch-like patterning, are quite precisely reflected in the corresponding behavior of solutions, with the
level of this conformity apparently being significantly higher in (1.5) than in the corresponding taxis-free
simplification thereof obtained on letting χ = 0 (cf. the detailed discussion in [23, Sections 4 and 5]).

Main results. The main goal of this work will be to rigorously capture part of these features, and our
results will indicate that in stark contrast to the situation in (1.4) discussed above, already in the spatially
one-dimensional version of (1.5) a considerable dynamical complexity can be observed also at large time
scales, and that due to the signal-dependent diffusion degeneracy this is possible even despite the fact
that each individual trajectory approaches a steady state. Indeed, equilibria (u, v) of (1.5) with u 6≡ 0 yet
vanish identically in their second component, as do those of (1.4), but unlike in the latter system there
is virtually unlimited freedom in the first component in the sense that any reasonably regular nontrivial
nonnegative function u at least formally defines a steady state (u, 0) of (1.5). Now constituting one of the
probably most striking properties of (1.5), it will turn out that within this large continuum of equilibria,
in fact each individual one is stable in an appropriate sense, thus reflecting the ability of (1.5) to support
a large variety of arbitrarily complex asymptotic profiles.

Our particular analysis will address the initial-boundary value problem for the spatially one-dimensional
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normalized version of (1.5) given by





ut = (uvux)x − (u2vvx)x + uv, x ∈ Ω, t > 0,

vt = vxx − uv, x ∈ Ω, t > 0,

uvux − u2vvx = 0, vx = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.6)

in a bounded open interval Ω ⊂ R, where the initial data in (1.6) will be assumed to be such that

{
u0 ∈ Cϑ(Ω) for some ϑ ∈ (0, 1), with u0 ≥ 0 and

∫
Ω lnu0 > −∞, and that

v0 ∈W 1,∞(Ω) satisfies v0 > 0 in Ω.
(1.7)

In this framework, we shall firstly address the basic issue of global solvability. Here due to the degeneracy
of diffusion in (1.6), which can actually be regarded stronger than that in the associated porous medium
equation ut = (uux)x, in view of known results on limitations of smoothness in the latter we cannot expect
the component u to possess regularity properties substantially beyond continuity. We therefore believe
that the following global existence result is essentially optimal in this respect.

Theorem 1.1 Let Ω ⊂ R be a bounded open interval, and suppose that (1.7) holds. Then there exists at
least one pair of nonnegative functions u and v which form a global weak solution of (1.6) in the sense of
Definition 2.1 below, and which moreover satisfy

{
u ∈ C0(Ω× [0,∞)) ∩ L2

loc([0,∞);W 1,2(Ω)) and

v ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)).
(1.8)

Next addressing the asymptotic behavior of these solutions, we first make sure that their second compo-
nents must vanish in the large time limit, and that this decay occurs in quite a regular manner: namely,
besides the quantity v also the corresponding spatial gradient uniformly approaches zero, and moreover
v satisfies the temporally uniform Harnack-type inequality (1.11) which inter alia implies that the corre-

sponding decay rate is spatially uniform in the sense that each of the scaled trajectories
(

v(·,t)
‖v(·,t)‖L∞(Ω)

)
t>0

forms a set of functions with values in [C, 1] with some C > 0.

Theorem 1.2 If (1.7) holds, then the global weak solution (u, v) obtained in Theorem 1.1 has the addi-
tional properties that v decays in the sense that

∫ ∞

0
‖v(·, t)‖W 1,∞(Ω)dt <∞ (1.9)

as well as
v(·, t) → 0 in W 1,∞(Ω) as t→ ∞. (1.10)

Furthermore, there exists C > 0 such that

min
x∈Ω

v(x, t) ≥ C ·max
x∈Ω

v(x, t) for all t > 0. (1.11)

It may now be considered intriguing that despite these highly uniform decay properties of the chemoat-
tractant, the asymptotics of the respective first solution components are determined by substantially more
subtle mechanisms: namely, we shall see that for each individual solution the corresponding quantity u
also stabilizes toward a continuous limit function u∞, but that this final profile need no longer be trivial
nor even only independent of the choice of the initial data; in fact, it turns out that u∞ coincides with

4



the spatial profile of a solution to a scalar parabolic equation, evaluated at some finite time, where this
parabolic equation is essentially of porous medium type, with the degeneracy of the diffusion process
therein thus being of rather well-understood type.

We find it worth underlining here that to the best of our knowledge, the literature only contains very few
precedents detecting such finite-time evaluations as relevant to the final-time asymptotics in parabolic
equations, and in each of these cases the respective phenomenon can only be observed upon an appropriate
rescaling of the solution in amplitude ([3], [36]).

Theorem 1.3 Assume (1.7), and let (u, v) denote the corresponding solution of (1.6) from Theorem 1.1.
Then u is bounded in Ω× (0,∞) with

u(·, t) > 0 a.e. in Ω for all t > 0, (1.12)

and there exists u∞ ∈ C0(Ω) such that

u(·, t) → u∞ in L∞(Ω) as t→ ∞. (1.13)

Moreover, this limit function satisfies u∞ = z(·, 1), with z ∈ C0(Ω× [0, 1]) ∩ L2
loc([0, 1);W

1,2(Ω)) being a
weak solution, in the sense specified in Lemma 10.4 below, of





zτ =
(
a(x, τ)zzx

)
x
−
(
b(x, τ)z2

)
x
+ a(x, τ)z, x ∈ Ω, τ ∈ (0, 1),

zx = 0, x ∈ ∂Ω, τ ∈ (0, 1),

z(x, 0) = u0(x), x ∈ Ω,

(1.14)

where

a(x, τ) := J ·
v(x, t)

‖v(·, t)‖L∞(Ω)
and b(x, τ) := J ·

v(x, t)vx(x, t)

‖v(·, t)‖L∞(Ω)
for x ∈ Ω, τ ∈ (0, 1) and t = ρ−1(τ),

(1.15)
with

J :=

∫ ∞

0
‖v(·, t)‖L∞(Ω)dt and ρ(t) :=

1

J
·

∫ t

0
‖v(·, s)‖L∞(Ω)ds, t ≥ 0, (1.16)

are such that there exists C > 0 fulfilling

1

C
≤ a(x, τ) ≤ C and |b(x, τ)| ≤ C for all x ∈ Ω and τ ∈ (0, 1). (1.17)

Natural next questions consist in determining which functions from C0(Ω) do appear as limits in (1.13),
and more generally, in characterizing stability properties of the functions (u⋆, 0), with suitably regular
but otherwise arbitrary nonnegative u⋆, when considered as a steady state of (1.6). Among the possibly
most striking properties of (1.6), the following result asserts that actually each of these equilibria is stable
in an appropriate sense.

Theorem 1.4 Let p > 8
3 , q >

p
p−2 and K > 0. Then for all η > 0 there exists δ > 0 with the following

property: if u⋆ ∈ (W 2,q
0 (Ω))⋆ is nonnegative and u0 and v0 are such that beyond (1.7) we have

‖u0‖Lp(Ω) ≤ K and

∫

Ω
lnu0 ≥ −K (1.18)

and

‖v
3

2(p+1)

0 ‖
W

1,
2(p+1)(p+2)

p+4 (Ω)
≤ K (1.19)
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as well as
‖u0 − u⋆‖(W 2,q

0 (Ω))⋆
≤ δ and ‖v0‖L1(Ω) ≤ δ, (1.20)

then the corresponding solution (u, v) of (1.6) from Theorem 1.1 satisfies

‖u(·, t)− u⋆‖(W 2,q
0 (Ω))⋆

≤ η and ‖v(·, t)‖L1(Ω) ≤ η for all t > 0. (1.21)

Not surprisingly, the latter can finally be seen to imply an at least partial answer to the question how far
Theorem 1.3 indeed describes pattern formation in the sense of stabilization toward spatially heterogeneous
states:

Corollary 1.5 Let u0 ∈
⋃
ϑ∈(0,1)C

ϑ(Ω) be nonnegative with
∫
Ω lnu0 > −∞, and suppose that u0 6≡ const.

Then for all K > 0 there exists δ > 0 such that whenever v0 ∈W 1,∞(Ω) is positive in Ω with

‖v
3

2(p+1)

0 ‖
W

1,
2(p+1)(p+2)

p+4 (Ω)
≤ K (1.22)

and
‖v0‖L1(Ω) ≤ δ, (1.23)

for the solution (u, v) of (1.6) from Theorem 1.1 we have

u(·, t) → u∞ in L∞(Ω) and v(·, t) → 0 in W 1,∞(Ω) (1.24)

as t→ ∞, where
u∞ 6≡ const. (1.25)

Main ideas. As a fundamental starting point, our approach will make use of the gradient-like structure
of (1.6) formally expressed in the energy identity

d

dt

{
−

∫

Ω
lnu+

1

2

∫

Ω
v2x

}
= −

∫

Ω

v

u
u2x −

∫

Ω
v2xx −

∫

Ω
uv2x −

∫

Ω
v. (1.26)

A first key step will consist in turning a bound for v in L1(Ω × (0,∞)), as resulting from a rigorous
counterpart of (1.26) for solutions to appropriately regularized variants of (1.6) in a rather direct manner,
into an estimate for ∫ ∞

0
‖v(·, t)‖L∞(Ω)dt. (1.27)

This will be achieved in Section 3 by using further regularity information implied by (1.26) in the course

of an analysis of the time evolution of
∫
Ω
v2x
v
.

As a first application, in Section 4 this estimate will be utilized in our derivation of bounds for u in Lp(Ω)
with arbitrary p ≥ 2, which at its core will result from a differential inequality of the form

d

dt

{∫

Ω
up +

∫

Ω
v−α|vx|

q

}
≤ C‖v‖L∞(Ω) ·

{∫

Ω
up + 1

}

with suitably chosen q = q(p) > 1 and α = α(p) > 0 (Lemma 4.7). Section 5 will thereafter make use
of this for appropriately large p to derive a pointwise bound for the quantity (ln v)x, which will not only
form an essential basis for the decay properties of v from Theorem 1.2, but which together with the
estimate for the expression in (1.27) will moreover serve as a crucial ingredient in our derivation of an
L∞ bound for u through a newly developed Moser-type iterative procedure in Section 6. By means of
these and some further higher regularity properties documented in Section 7, the Sections 8 and 9 will
assert the statements on global existence and decay of v from Theorem 1.1 and Theorem 1.2, respectively.
Our collection of estimates will moreover turn out to be sufficient to derive the stabilization result from
Theorem 1.3 in Section 10 through the analysis of (1.14) and an approximate counterpart, whereas the
stability property in Theorem 1.4 and its consequence from Corollary 1.5 will be proved in Section 11.
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2 Preliminaries. Global classical solutions to regularized problems

2.1 A weak solution concept and a family of approximate problems

In view of the fact that the diffusion mechanism in (1.6) inter alia contains a degeneracy of porous medium
type, our existence theory will be carried out in the framework of the natural generalized solution concept
specified as follows.

Definition 2.1 Let u and v be nonnegative functions defined on Ω× (0,∞) such that

{
u ∈ L1

loc([0,∞);W 1,1(Ω)) and

v ∈ L1
loc([0,∞);W 1,1(Ω))

(2.1)

and that
uvvx, u2vvx and uv belong to L1

loc(Ω× [0,∞)). (2.2)

Then (u, v) will be called a global weak solution of (1.6) if

−

∫ ∞

0

∫

Ω
uϕt −

∫

Ω
u0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
uvvxϕx +

∫ ∞

0

∫

Ω
u2vvxϕx +

∫ ∞

0

∫

Ω
uvϕ (2.3)

and ∫ ∞

0

∫

Ω
vϕt +

∫

Ω
v0ϕ(·, 0) =

∫ ∞

0

∫

Ω
vxϕx +

∫ ∞

0

∫

Ω
uvϕ (2.4)

are valid for all ϕ ∈ C∞
0 (Ω× [0,∞)).

In order to obtain weak solutions in this sense through a convenient regularization process, let us fix an
arbitrary number

m >
9

4
(2.5)

and consider the approximate variants of (1.6) given by





uεt = ε
(
(uε + 1)m−1uεx

)
x
+ (uεvεuεx)x − (u2εvεvεx)x + uεvε, x ∈ Ω, t > 0,

vεt = vεxx − uεvε, x ∈ Ω, t > 0,

uεx = vεx = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(2.6)

for ε ∈ (0, 1). Since the diffusion processes in each of these problems are non-degenerate for nonnegative
solutions, standard theory from cross-diffusive parabolic systems, particularly of taxis type, becomes
applicable ([2], [7], [22]) so as to assert local existence of solutions to (2.6):

Lemma 2.1 Assume (1.7). Then for each ε ∈ (0, 1), there exist Tmax,ε ∈ (0,∞] and at least one pair
(uε, vε) of functions

{
uε ∈ C0(Ω× [0, Tmax,ε)) ∩ C

2,1(Ω× (0, Tmax,ε)),

vε ∈
⋂
p>1C

0([0, Tmax,ε);W
1,p(Ω)) ∩ C2,1(Ω× (0, Tmax,ε)),

(2.7)

which are such that uε > 0 in Ω × (0, Tmax,ε) and vε > 0 in Ω × [0, Tmax,ε) and that (uε, vε) solves (2.6)
in the classical sense in Ω× (0, Tmax,ε), and that

if Tmax,ε <∞, then lim sup
tրTmax,ε

{
‖uε(·, t)‖L∞(Ω) + ‖vε(·, t)‖W 1,q(Ω)

}
= ∞ for all q > 1. (2.8)
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Without explicit further mentioning, throughout the sequel we shall let (uε, vε) denote the solution of
(2.6) obtained in Lemma 2.1 for ε ∈ (0, 1), and we shall consistently make use notation such as uεx, uεxx
and uεt when referring to corresponding spatial or temporal derivatives.

Let us first collect some basic properties of these solutions which in our subsequent analysis will play
important roles not only by providing some useful fundamental regularity features, but also by establishing
the first quantitative information (2.12) on large time behavior. Indeed, the latter will turn out to be
crucial in asserting that the solution components vε exhibit a certain decay property which is uniform
with respect to ε ∈ (0, 1) (Lemma 10.3).

Lemma 2.2 If (1.7) holds, then for all ε ∈ (0, 1),
∫

Ω
uε(·, t) +

∫

Ω
vε(·, t) =

∫

Ω
u0 +

∫

Ω
v0 for all t ∈ (0, Tmax,ε) (2.9)

and ∫

Ω
uε(·, t) ≥

∫

Ω
uε(·, t0) for all t0 ∈ [0, Tmax,ε) and any t ∈ (t0, Tmax,ε) (2.10)

as well as ∫

Ω
vε(·, t) ≤

∫

Ω
vε(·, t0) for all t0 ∈ [0, Tmax,ε) and any t ∈ (t0, Tmax,ε). (2.11)

Moreover, ∫ ∞

t0

∫

Ω
uεvε ≤

∫

Ω
vε(·, t0) for all t0 ∈ [0, Tmax,ε) (2.12)

and

‖vε(·, t)‖L∞(Ω) ≤ ‖vε(·, t0)‖L∞(Ω) for all t0 ∈ [0, Tmax,ε) and any t ∈ (t0, Tmax,ε). (2.13)

Proof. Since integrating the first two equations in (2.6) shows that

d

dt

∫

Ω
uε =

∫

Ω
uεvε for all t ∈ (0, Tmax,ε) (2.14)

and
d

dt

∫

Ω
vε = −

∫

Ω
uεvε for all t ∈ (0, Tmax,ε), (2.15)

on adding we directly obtain (2.9). By nonnegativity of both uε and vε, (2.14) furthermore implies (2.10),
whereas (2.15) entails both (2.11) and (2.12). Finally, (2.13) is a consequence of the maximum principle
applied to the second equation in (2.6). �

Beyond implying the above local solvability property, the condition (2.5) guarantees that the regularizing
effect of nonlinear diffusion enhancement at large densities is sufficiently effective so as to let these solutions
become globally extensible:

Lemma 2.3 For each ε ∈ (0, 1), we have Tmax,ε = ∞; that is, the solution (uε, vε) of (2.6) from Lemma
2.1 is global in time.

Proof. Let us assume for contradiction that Tmax,ε <∞. We then firstly observe that since

‖uε(·, t)‖L1(Ω) ≤ c1 :=

∫

Ω
u0 +

∫

Ω
v0 for all t ∈ (0, Tmax,ε) (2.16)

by (2.9), and since thus, according to (2.13),

‖uε(·, t)vε(·, t)‖L1(Ω) ≤ c1c2 for all t ∈ (0, Tmax,ε)
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with c2 := ‖v0‖L∞(Ω), a standard regularity argument applied to the second equation in (2.6) ([15]) shows
that for all q ∈ (1,∞) we can find c3(q) > 0 such that

‖vεx(·, t)‖Lq(Ω) ≤ c3(q) for all t ∈ (0, Tmax,ε). (2.17)

Moreover, for arbitrary p ≥ 2 we can integrate by parts in the first equation from (2.6) and neglect the
second among the diffusive contributions therein to see that due to Young’s inequality, the Cauchy-Schwarz
inequality and (2.17), for all t ∈ (0, Tmax,ε) we have

1

p

d

dt

∫

Ω
upε = −(p− 1)ε

∫

Ω
up−2
ε (uε + 1)m−1u2εx − (p− 1)

∫

Ω
up−1
ε vεu

2
εx

+(p− 1)

∫

Ω
upεvεuεxvεx +

∫

Ω
upεvε

≤ −(p− 1)ε

∫

Ω
up+m−3
ε u2εx + (p− 1)

∫

Ω
upεvεuεxvεx +

∫

Ω
upεvε

≤ −
(p− 1)ε

2

∫

Ω
up+m−3
ε u2εx +

(p− 1)c22
2ε

∫

Ω
up−m+3
ε v2εx + c2

∫

Ω
upε

≤
2(p− 1)ε

(p+m− 1)2

∫

Ω
(u

p+m−1
2

ε )2x + c4(p, ε) ·

{∫

Ω
u2(p−m+3)
ε

} 1
2

+ c2

∫

Ω
upε, (2.18)

where c4(p, ε) :=
(p−1)c22c

2
3(4)

2ε . Now writing a := (p+m−1)(2p−2m+5)
2(p+m−2)(p−m+3) ∈ (0, 1) and noting that

2(p−m+ 3)a

p+m− 1
− 2 =

−4m+ 9

p+m− 2
< 0

according to our restriction m > 9
4 , by using the Gagliardo-Nirenberg inequality (2.16) and again Young’s

inequality we obtain positive constants c5(p, ε), c6(p, ε) and c7(p, ε) such that

c4(p, ε) ·

{∫

Ω
u2(p−m+3)
ε

} 1
2

= c4(p, ε)
∥∥∥u

p+m−1
2

ε

∥∥∥
2(p−m+3)
p+m−1

L
4(p−m+3)
p+m−1 (Ω)

≤ c5(p, ε)
∥∥∥(u

p+m−1
2

ε )x

∥∥∥
2(p−m+3)a

p+m−1

L2(Ω)

∥∥∥u
p+m−1

2
ε

∥∥∥
2(p−m+3)(1−a)

p+m−1

L
2

p+m−1 (Ω)

+c5(p, ε)
∥∥∥u

p+m−1
2

ε

∥∥∥
2(p−m+3)
p+m−1

L
2

p+m−1 (Ω)

≤ c6(p, ε)
∥∥∥(u

p+m−1
2

ε )x

∥∥∥
2(p−m+3)a

p+m−1

L2(Ω)
+ c6(p, ε)

≤
2(p− 1)ε

(p+m− 1)2

∫

Ω
(u

p+m−1
2

ε )2x + c7(p, ε) for all t ∈ (0, Tmax,ε),

so that (2.18) implies that

1

p

d

dt

∫

Ω
upε ≤ c6(p, ε) + c2

∫

Ω
upε for all t ∈ (0, Tmax,ε).

Since thus ∫

Ω
upε ≤

{∫

Ω
u
p
0

}
· epc2Tmax,ε +

c6(p, ε)

c2
for all t ∈ (0, Tmax,ε),

and since p ≥ 2 was arbitrary, we may utilize the outcome of a standard Moser-type iteration ([34]) to
see that actually

‖uε(·, t)‖L∞(Ω) ≤ c7(ε) for all t ∈ (0, Tmax,ε)

with some c7(ε) > 0, which together with (2.17) contradicts (2.8) and thereby completes the proof. �
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3 Energy dissipation enforcing integrability of ‖vε(·, t)‖L∞(Ω) in time

Let us next make sure that the dissipative structure formally expressed in (1.26) indeed possesses a
rigorous counterpart in (2.6) that is essentially unaffected by the additional regularization term therein.
Among several possible natural conclusions, let us focus on formulating the following estimates which,
besides asserting a certain positivity property of the first solution component through (3.3), provide the
further decay information given in (3.4) and (3.5) which will form the basis for our derivation of the
crucial estimate (3.12) for vε in L

1((0,∞);L∞(Ω)).

In order to make our results accessible to both our arguments leading to global existence and stabilization
of solutions to fixed initial data in Theorem 1.1-Theorem 1.3, but also to our analysis of the stability and
heterogeneity properties addressed in Theorem 1.4 and Corollary 1.5, throughout this and the subsequent
section we shall emphasize the respective dependence of the obtained bounds on appropriate quantities
determined by the initial data.

Lemma 3.1 Let K > 0. Then there exists C(K) > 0 such that whenever u0 and v0 satisfy (1.7) and are
such that ∫

Ω
lnu0 ≥ −K and

∫

Ω
u0 ≤ K (3.1)

as well as ∫

Ω
v0 ≤ K and

∫

Ω
v20x ≤ K, (3.2)

for all ε ∈ (0, 1) we have ∫

Ω
lnuε(·, t) ≥ −C(K) for all t > 0 (3.3)

and ∫ ∞

0

∫

Ω

vε

uε
u2εx ≤ C(K) (3.4)

as well as ∫ ∞

0

∫

Ω
vε ≤ C(K). (3.5)

Proof. By using (2.6) and several integrations by parts, on dropping three nonpositive summands
and making use of a favorable cancellation we obtain

d

dt

{
−

∫

Ω
lnuε +

1

2

∫

Ω
v2εx

}
= −

∫

Ω

1

uε
·

{(
ε(uε + 1)m−1uεx + uεvεuεx − u2εvεvεx

)
x
+ uεvε

}

+

∫

Ω
vεx · (vεxx − uεvε)x

= −ε

∫

Ω

(uε + 1)m−1

u2ε
u2εx −

∫

Ω

vε

uε
u2εx +

∫

Ω
vεuεxvεx −

∫

Ω
vε

−

∫

Ω
v2εxx −

∫

Ω
vεuεxvεx −

∫

Ω
uεv

2
εx

≤ −

∫

Ω

vε

uε
u2εx −

∫

Ω
vε for all t > 0. (3.6)

On integration in time, in view of (3.1) and (3.2) this implies that

−

∫

Ω
lnuε(·, t) +

∫ t

0

∫

Ω

vε

uε
u2εx +

∫ t

0

∫

Ω
vε ≤ −

∫

Ω
lnu0 +

1

2

∫

Ω
v20x

≤
3

2
K for all t > 0 (3.7)
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and thereby firstly entails (3.3). As the validity of ln ξ ≤ ξ for all ξ > 0 warrants that

∫

Ω
lnuε(·, t) ≤

∫

Ω
uε(·, t) ≤

∫

Ω
u0 +

∫

Ω
v0 ≤ 2K

according to (2.9), (3.1) and (3.2), from (3.7) we moreover infer that

∫ t

0

∫

Ω

vε

uε
u2εx +

∫ t

0

∫

Ω
vε ≤

7

2
K for all t > 0

and that thus also (3.4) and (3.5) hold. �

Let us remark here that when aiming at a further development of (3.5) into an estimate for the quantity∫∞
0 ‖vε(·, t)‖

q

Lp(Ω)dt with some p ∈ (1,∞] and q ≥ 1, one might consider interpolating between (3.5) and

an additional bound on
∫∞
0

∫
Ω v

2
εxx that could as well be derived from (3.6). Since the latter integrability

property involves a temporal norm in L2 rather than L1, however, any effort in this direction seems limited
to certain q > 1, with q = 5p

4p+1 constituting the apparently smallest choice possible without further
external information. Since for our subsequent analysis it will be crucial to include the exponent q = 1
here, most conveniently combined with the choice p = ∞, independently from the above in Lemma 3.3 we

shall additionally analyze the time evolution of the weighted functional
∫
Ω
v2εx
vε

which, unlike the expression∫
Ω v

2
εx considered in Lemma 3.1, exhibits linear growth, rather than a quadratic one, with respect to the

parameter λ > 0 in the scaling vε 7→ λvε. Indeed, the corresponding dissipative contribution will turn

out to dominate a multiple of
∫
Ω
v4εx
v3ε

which, again due to its essentially linear growth in terms of the

unknown, will enable us to gain the desired L1 decay information for ‖vε(·, t)‖L∞(Ω) by means of suitable
interpolation.

The following basic calculus inequality will firstly allow us to control some ill-signed contributions arising
in Lemma 3.3, and it will secondly turn out to be useful in the course of another testing procedure in
Lemma 4.1 below.

Lemma 3.2 Let q > 0, α > −1 and φ ∈ C2(Ω) be a positive function satisfying φx = 0 on ∂Ω. Then

∫

Ω
φ−α−2|φx|

q+2 ≤
( q + 1

α+ 1

)2
∫

Ω
φ−α|φx|

q−2φ2xx. (3.8)

Proof. We integrate by parts and use the Cauchy-Schwarz inequality to see that
∫

Ω
φ−α−2|φx|

q+2 = −
1

α+ 1

∫

Ω
(φ−α−1)x|φx|

qφx

=
q + 1

α+ 1

∫

Ω
φ−α−1|φx|

qφxx

≤
q + 1

α+ 1
·

{∫

Ω
φ−α−1|φx|

q+2

} 1
2

·

{∫

Ω
φ−α|φx|

q−2φ2xx

} 1
2

,

which yields (3.8). �

We can now make use of the estimate (3.4) to derive the following additional information on decay in the
second solution component.

Lemma 3.3 For all K > 0 there exists C(K) > 0 such that if u0 and v0 satisfy (1.7) as well as (3.1),
(3.2) and ∫

Ω

v20x
v0

≤ K, (3.9)
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then ∫ ∞

0

∫

Ω

v4εx
v3ε

≤ C(K) for all ε ∈ (0, 1). (3.10)

Proof. From the regularity properties of uε and vε asserted by Lemma 2.1, in view of standard
parabolic Schauder theory ([19]) it follows that actually also vεx belongs to C2,1(Ω× (0,∞)) and satisfies
the accordingly differentiated version of the second equation in (2.6). Thanks to the strict positivity of
vε in Ω× (0,∞), we may therefore integrate by parts to compute

d

dt

∫

Ω

v2εx
vε

= 2

∫

Ω

vεx

vε
vεxt −

∫

Ω

v2εx
v2ε
vεt

= 2

∫

Ω

vεx

vε
· (vεxxx − uεxvε − uεvεx)−

∫

Ω

v2εx
v2ε

· (vεxx − uεvε)

= −2

∫

Ω

v2εxx
vε

+ 2

∫

Ω

v2εx
v2ε
vεxx − 2

∫

Ω
uεxvεx − 2

∫

Ω

uε

vε
v2εx −

∫

Ω

v2εx
v2ε
vεxx +

∫

Ω

uε

vε
v2εx

= −2

∫

Ω

v2εxx
vε

+

∫

Ω

v2εx
v2ε
vεxx − 2

∫

Ω
uεxvεx −

∫

Ω

uε

vε
v2εx for all t > 0. (3.11)

Here another integration by parts shows that

∫

Ω

v2εx
v2ε
vεxx =

2

3

∫

Ω

v4εx
v3ε

for all t > 0,

and in order to compensate this we invoke Lemma 3.2 to see that

−2

∫

Ω

v2εxx
vε

≤ −
8

9

∫

Ω

v4εx
v3ε

for all t > 0.

As moreover, by Young’s inequality,

−2

∫

Ω
uεxvεx ≤

∫

Ω

uε

vε
v2εx +

∫

Ω

vε

uε
u2εx for all t > 0,

from (3.11) we obtain that

d

dt

∫

Ω

v2εx
vε

+
2

9

∫

Ω

v4εx
v3ε

≤

∫

Ω

vε

uε
u2εx for all t > 0,

which after an integration in time, relying on the W 1,2-valued continuity of vε asserted by Lemma 2.1,
and on positivity of vε now throughout Ω× [0,∞), yields

∫

Ω

v2εx(·, T )

vε(·, T )
+

2

9

∫ T

0

∫

Ω

v4εx
v3ε

≤

∫

Ω

v20x
v0

+

∫ T

0

∫

Ω

vε

uε
u2εx for all T > 0

and thereby proves (3.10) due to Lemma 3.1 and (3.9). �

By means of a straightforward interpolation, a combination of the latter with (3.5) leads to the main
outcome of this section.

Lemma 3.4 For any K > 0 one can find C(K) > 0 such that whenever (1.7), (3.1), (3.2) and (3.9)
hold, we have ∫ ∞

0
‖vε(·, t)‖L∞(Ω)dt ≤ C(K) for all ε ∈ (0, 1). (3.12)
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Proof. According to the Gagliardo-Nirenberg inequality, there exists c1 > 0 such that

‖φ‖4L∞(Ω) ≤ c1‖φx‖L4(Ω)‖φ‖
3
L4(Ω) + c1‖φ‖

4
L4(Ω) for all φ ∈W 1.4(Ω),

which applied to φ := v
1
4
ε (·, t) for ε ∈ (0, 1) and t > 0 shows that due to Young’s inequality we have

∫ T

0
‖vε(·, t)‖L∞(Ω)dt =

∫ T

0
‖v

1
4
ε (·, t)‖

4
L∞(Ω)dt

≤ c1

∫ T

0

∥∥∥(v
1
4
ε )x(·, t)

∥∥∥
L4(Ω)

‖v
1
4
ε (·, t)‖

3
L4(Ω)dt+ c1

∫ T

0
‖v

1
4
ε (·, t)‖

4
L4(Ω)dt

≤ c1

∫ T

0

∥∥∥(v
1
4
ε )x(·, t)

∥∥∥
4

L4(Ω)
dt+ 2c1

∫ T

0
‖v

1
4
ε (·, t)‖

4
L4(Ω)dt

=
c1

256

∫ T

0

∫

Ω

v4εx
v3ε

+ 2c1

∫ T

0

∫

Ω
vε for all T > 0.

Therefore, (3.12) results from Lemma 3.3 and Lemma 3.1. �

4 Deriving Lp bounds for uε via further quasi-energy functionals

In deriving appropriate bounds for uε with respect to the norm in Lp(Ω) for large p > 1 on the basis of a
standard testing procedure in the first sub-problem of (2.6), we evidently need to appropriately cope with
the degeneracy of the diffusion mechanism therein with regard to the asymptotically decaying component
vε. In order to nevertheless make appropriate use of the corresponding dissipation mechanism, we will
rather consider the time evolution of a coupled functional additionally containing a weighted Lq norm of
the cross-diffusive gradient, thus being concerned with expressions of the form

∫

Ω
upε +

∫

Ω
v−αε |vεx|

q (4.1)

for conveniently large p > 1 and suitably chosen q > 1 and α > 0. Basic differential inequalities for
two summands herein will first be obtained separately in Section 4.1, whereafter Section 4.2 will provide
appropriate estimates for the respective right-hand sides. In Section 4.3 these will be combined so as to
detect a quasi-energy property of the functional in (4.1) under adequate assumptions on p, q and α, in
particular implying an estimate for uε in L

∞((0,∞);Lp(Ω)) for arbitrary p ≥ 2 in Lemma 4.8.

4.1 Further testing procedures

Let us first derive a basic information on the time evolution of the second summand in (4.1). We emphasize
that through the use of the precise quantitative form of the inequality from Lemma 3.2, our analysis here
strongly relies on the fact that the spatial setting is one-dimensional, which especially enables us to allow
for values α ∈ (0, q) in (4.2) which are arbitrarily close to the critical value α = q (cf. e.g. the choice of α
in the proof of Lemma 4.7).

Lemma 4.1 Let q > 2 and α ∈ (0, q). Then there exists C > 0 such that for any choice of ε ∈ (0, 1) we
have

d

dt

∫

Ω
v−αε |vεx|

q +
1

C

∫

Ω
v−α−2
ε |vεx|

q+2 ≤ C

∫

Ω
u

q+2
2

ε vq−αε for all t > 0. (4.2)
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Proof. Using the second equation in (2.6) and integrating by parts, we compute

d

dt

∫

Ω
v−αε |vεx|

q = −α

∫

Ω
v−α−1
ε |vεx|

qvεt + q

∫

Ω
v−αε |vεx|

q−2vεxvεxt

= (q − 1)α

∫

Ω
v−α−1
ε |vεx|

qvεt − q(q − 1)

∫

Ω
v−αε |vεx|

q−2vεxxvεt

= (q − 1)α

∫

Ω
v−α−1
ε |vεx|

qvεxx − (q − 1)α

∫

Ω
uεv

−α
ε |vεx|

q

−q(q − 1)

∫

Ω
v−αε |vεx|

q−2v2εxx + q(q − 1)

∫

Ω
uεv

1−α
ε |vεx|

q−2vεxx for all t > 0. (4.3)

Here by means of the Cauchy-Schwarz inequality and Lemma 3.2, we see that

(q − 1)α

∫

Ω
v−α−1
ε |vεx|

qvεxx ≤ (q − 1)α ·

{∫

Ω
v−α−2
ε |vεx|

q+2

} 1
2

·

{
v−αε |vεx|

q−2v2εxx

} 1
2

≤ (q − 1)α ·
q + 1

α+ 1
·

∫

Ω
v−αε |vεx|

q−2v2εxx for all t > 0,

so that

(q − 1)α

∫

Ω
v−α−1
ε |vεx|

qvεxx − q(q − 1)

∫

Ω
v−αε |vεx|

q−2v2εxx ≤ −c1

∫

Ω
v−αε |vεx|

q−2v2εxx for all t > 0, (4.4)

where

c1 := q(q − 1)− (q − 1)α ·
q + 1

α+ 1
=

(q − 1)(q − α)

α+ 1

is positive due to our restriction α < q. As Young’s inequality states that the rightmost summand in (4.3)
can be estimated according to

q(q − 1)

∫

Ω
uεv

1−α
ε |vεx|

q−2vεxx ≤
c1

2

∫

Ω
v−αε |vεx|

q−2v2εxx +
q2(q − 1)2

2c1

∫

Ω
u2εv

2−α
ε |vεx|

q−2 for all t > 0,

and that herein with some c2 > 0 we have

q2(q − 1)2

2c1

∫

Ω
u2εv

2−α
ε |vεx|

q−2 =
q2(q − 1)2

2c1

∫

Ω

(
uεv

−α
ε |vεx|

q
) q−2

q
· u

q+2
q

ε v
2(q−α)

q
ε

≤
(q − 1)α

2

∫

Ω
uεv

−α
ε |vεx|

q + c2

∫

Ω
u

q+2
2

ε vq−αε for all t > 0,

it follows from (4.3) and (4.4) that

d

dt

∫

Ω
v−αε |vεx|

q +
c1

2

∫

Ω
v−αε |vεx|

q−2v2εxx +
(q − 1)α

2

∫

Ω
uεv

−α
ε |vεx|

q ≤ c2

∫

Ω
u

q+2
2

ε vq−αε for all t > 0.

Since again Lemma 3.2 shows that

c1

4

∫

Ω
v−αε |vεx|

q−2v2εxx ≥
c1

4
·
(α+ 1

q + 1

)2
∫

Ω
v−α−2
ε |vεx|

q+2 for all t > 0,

this implies (4.2) upon an evident choice of C. �

In a corresponding testing procedure associated with the analysis of the first summand in (4.1), the
particular form of the second summand on the right of (4.2) suggests how to estimate vεx at a first stage,
thus leading to the following preliminary differential inequality.
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Lemma 4.2 Let p > 1, q > 1 and α > 0. Then for all η > 0 one can pick C(η) > 0 such that if ε ∈ (0, 1),
then

d

dt

∫

Ω
upε +

p(p− 1)

2

∫

Ω
up−1
ε vεu

2
εx +

p(p− 1)

2

∫

Ω
up+1
ε vεv

2
εx + p(p− 1)ε

∫

Ω
up+m−3
ε u2εx

≤ p‖vε‖L∞(Ω)

∫

Ω
upε + η

∫

Ω
v−α−2
ε |vεx|

q+2 + C(η)

∫

Ω
u

(p+1)(q+2)
q

ε v
q+2α+6

q
ε for all t > 0. (4.5)

Proof. From the first equation in (2.6) we obtain

1

p

d

dt

∫

Ω
upε + (p− 1)ε

∫

Ω
up−2
ε (uε + 1)m−1u2εx + (p− 1)

∫

Ω
up−1
ε vεu

2
εx

= (p− 1)

∫

Ω
upεvεuεxvεx +

∫

Ω
upεvε for all t > 0, (4.6)

where by Young’s inequality,

(p− 1)

∫

Ω
upεvεuεxvεx ≤

p− 1

2

∫

Ω
up−1
ε vεu

2
εx +

p− 1

2

∫

Ω
up+1
ε vεv

2
εx for all t > 0,

and where clearly

∫

Ω
upεvε ≤ ‖vε‖L∞(Ω)

∫

Ω
upε for all t > 0.

Trivially estimating (uε+1)m−1 ≥ um−1
ε in the second summand on the left-hand side therein, from (4.6)

we thus infer that for all t > 0,

1

p

d

dt

∫

Ω
upε +

p− 1

2

∫

Ω
up−1
ε vεu

2
εx +

p− 1

2

∫

Ω
up+1
ε vεv

2
εx + (p− 1)ε

∫

Ω
up−2
ε (uε + 1)m−1u2εx

≤ (p− 1)

∫

Ω
up+1
ε vεv

2
εx + ‖vε‖L∞(Ω)

∫

Ω
upε,

which already implies (4.5) due to the fact that for each η > 0, Young’s inequality provides c1 = c1(η) > 0
fulfilling

(p− 1)

∫

Ω
up+1
ε vεv

2
εx = (p− 1)

∫

Ω

(
v−α−2
ε |vεx|

q+2
) 2

q+2
· up+1

ε v
q+2α+6

q+2
ε

≤ η

∫

Ω
v−α−2
ε |vεx|

q+2 + c1

∫

Ω
u

(p+1)(q+2)
q

ε v
q+2α+6

q
ε

for all t > 0. �

4.2 Estimating the right-hand sides in (4.2) and (4.5)

We shall next face the yet open challenge how to make appropriate use of the degenerate diffusive action
in the first equation from (2.6), in the form expressed in (4.5). A key observation in this direction consists
in the following functional inequality which may be viewed as a particular Gagliardo-Nirenberg-type
interpolation involving certain products of functions. We underline that for our applications thereof in
Lemma 4.5 and Lemma 4.6 the appearance of the spatial L∞ norm on the left of (4.7) seems to be of
crucial importance, and that hence also in this part our analysis strongly relies on our resorting to the
the spatially one-dimensional case.
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Lemma 4.3 Let p > 0. Then there exists C > 0 such that

‖φψ
3

p+1 ‖p+2
L∞(Ω) ≤ C‖φ‖L1(Ω)‖ψ‖

3
p+1

L∞(Ω) ·

{
‖ψ‖2L∞(Ω)

∫

Ω
φp−1ψφ2x+

∫

Ω
φp+1ψψ2

x+‖φ‖p+1
L1(Ω)

‖ψ‖3L∞(Ω)

}
(4.7)

is valid for arbitrary positive functions φ ∈ C1(Ω) and ψ ∈ C1(Ω).

Proof. We employ the Gagliardo-Nirenberg inequality to find c1 > 0 fulfilling

‖φψ
3

p+1 ‖p+2
L∞(Ω) = ‖φ

p+1
2 ψ

3
2 ‖

2(p+2)
p+1

L∞(Ω)

≤ c1

∥∥∥(φ
p+1
2 ψ

3
2 )x

∥∥∥
2

L2(Ω)
‖φ

p+1
2 ψ

3
2 ‖

2
p+1

L
2

p+1 (Ω)
+ c1‖φ

p+1
2 ψ

3
2 ‖

2(p+2)
p+1

L
2

p+1 (Ω)
, (4.8)

where we note that

‖φ
p+1
2 ψ

3
2 ‖

2
p+1

L
2

p+1 (Ω)
=

∫

Ω
φψ

3
p+1 ≤ ‖φ‖L1(Ω)‖ψ‖

3
p+1

L∞(Ω).

Since by Young’s inequality we can moreover estimate

∥∥∥(φ
p+1
2 ψ

3
2 )x

∥∥∥
2

L2(Ω)
=

∫

Ω

{p+ 1

2
φ

p−1
2 ψ

3
2φx +

3

2
φ

p+1
2 ψ

1
2ψx

}2

≤
(p+ 1)2

2

∫

Ω
φp−1ψ3φ2x +

9

2

∫

Ω
φp+1ψψ2

x

≤
(p+ 1)2

2
‖ψ‖2L∞(Ω)

∫

Ω
φp−1ψφ2x +

9

2

∫

Ω
φp+1ψψ2

x,

from (4.8) we thus obtain that

‖φψ
3

p+1 ‖p+2
L∞(Ω) ≤

(p+ 1)2

2
c1‖φ‖L1(Ω)‖ψ‖

3
p+1

+2

L∞(Ω)

∫

Ω
φp−1ψφ2x +

9

2
c1‖φ‖L1(Ω)‖ψ‖

3
p+1

L∞(Ω)

∫

Ω
φp+1ψψ2

x

+c1‖φ‖
p+2
L1(Ω)

‖ψ‖
3(p+2)
p+1

L∞(Ω),

which directly implies (4.7) due to the fact that 3(p+2)
p+1 = 3

p+1 + 3. �

In light of our basic information from Lemma 2.2, when applied to (φ, ψ) := (uε, vε) this entails the
following more concrete preparation for Lemma 4.5 and Lemma 4.6.

Lemma 4.4 Let p > 0 and r > 0 be such that

(p+ 1)(p+ 2)

p+ 4
≤ r < p+ 2.

Then for all η > 0 and K > 0 there exists C(η,K) > 0 such that if besides (1.7) we have
∫

Ω
u0 ≤ K (4.9)

and
‖v0‖L∞(Ω) ≤ K, (4.10)

then

‖uεv
3

p+1
ε ‖rL∞(Ω) ≤ η

∫

Ω
up−1
ε vεu

2
εx + η

∫

Ω
up+1
ε vεv

2
εx + C(η,K)‖vε‖L∞(Ω) for all t > 0. (4.11)
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Proof. According to (4.9) and (4.10), the inequalities in (2.9) and (2.13) entail that

‖uε‖L1(Ω) ≤

∫

Ω
u0 +

∫

Ω
v0 ≤ K + |Ω| ·K for all t > 0

and
‖vε(·, t)‖L∞(Ω) ≤ K for all t > 0. (4.12)

In particular, Lemma 4.3 therefore implies the existence of c1 = c1(K) > 0 such that

‖uεv
3

p+1
ε ‖p+2

L∞(Ω) ≤ c1‖vε‖
3

p+1

L∞(Ω)I(t) + c1‖vε‖
3(p+2)
p+1

L∞(Ω) for all t > 0,

where we have abbreviated

I(t) :=

∫

Ω
up−1
ε vεu

2
εx +

∫

Ω
up+1
ε vεv

2
εx for t > 0.

For any fixed r ∈ [ (p+1)(p+2)
p+4 , p+ 2), this implies that with c2 ≡ c2(K) := (2c1)

r
p+2 we have

‖uεv
3

p+1
ε ‖rL∞(Ω) ≤ c2‖vε‖

3r
(p+1)(p+2)

L∞(Ω) I
r

p+2 (t) + c2‖vε‖
3r
p+1

L∞(Ω) for all t > 0, (4.13)

where thanks to the fact that r < p + 2, for each η > 0 we may invoke Young’s inequality to find
c3 = c3(η,K) > 0 such that

c2‖vε‖
3r

(p+1)(p+2)

L∞(Ω) I
r

p+2 (t) ≤ ηI(t) + c3‖vε‖
3r

(p+1)(p+2−r)

L∞(Ω) for all t > 0. (4.14)

Here since our assumption r ≥ (p+1)(p+2)
p+4 warrants that the difference

a :=
3r

(p+ 1)(p+ 2− r)
− 1 =

(p+ 4)r − (p+ 1)(p+ 2)

(p+ 1)(p+ 2− r)

is nonnegative, again by (4.12) we may estimate

c3‖vε‖
3r

(p+1)(p+2−r)

L∞(Ω) = c3‖vε‖
a
L∞(Ω)‖vε‖L∞(Ω) ≤ c3K

a‖vε‖L∞(Ω) for all t > 0.

As this hypothesis on r moreover entails that

b :=
3r

p+ 1
− 1 ≥

3(p+ 2)

p+ 4
− 1 =

2(p+ 1)

p+ 4

is positive, we similarly obtain that

c2‖vε‖
3r
p+1

L∞(Ω) ≤ c2K
b‖vε‖L∞(Ω) for all t > 0,

so that combining (4.13) with (4.14) yields (4.11). �

We can thereby estimate the right-hand side in Lemma 4.1 as follows.

Lemma 4.5 Suppose that p > 1
2 , q ∈ (1, 2(p+ 2)) and α > 0 satisfy

α ≤
(2p− 1)q

2(p+ 1)
(4.15)
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and

α ≤ q −
3(p+ 2)

p+ 4
(4.16)

as well as

α > q −
3(p+ 2)

p+ 1
. (4.17)

Then for all η > 0 and any K > 0 one can find C(η,K) > 0 such that whenever (1.7), (4.9) and (4.10)
hold, for arbitrary ε ∈ (0, 1) we have

∫

Ω
u

q+2
2

ε vq−αε ≤ η

∫

Ω
up−1
ε vεu

2
εx + η

∫

Ω
up+1
ε vεv

2
εx + C(η,K)‖vε‖L∞(Ω) for all t > 0. (4.18)

Proof. We first estimate

∫

Ω
u

q+2
2

ε vq−αε =

∫

Ω

(
uεv

3
p+1
ε

) (p+1)(q−α)
3

· u
q+2
2

−
(p+1)(q−α)

3
ε

≤ ‖uεv
3

p+1
ε ‖

(p+1)(q−α)
3

L∞(Ω) ·

∫

Ω
u

q+2
2

−
(p+1)(q−α)

3
ε for all t > 0 (4.19)

and note that here

q + 2

2
−

(p+ 1)(q − α)

3
= 1−

(2p− 1)q − 2(p+ 1)α

6
≤ 1

due to (4.15). Accordingly, (2.9) along with the Hölder inequality as well as (4.9) and (4.10) yields
c1 = c1(K) > 0 such that ∫

Ω
u

q+2
2

−
(p+1)(q−α)

3
ε ≤ c1 for all t > 0. (4.20)

Apart from that, on the right of (4.19) we may use (4.16) and (4.17) to estimate

(p+ 1)(q − α)

3
≥

(p+ 1) · 3(p+2)
p+4

3
=

(p+ 1)(p+ 2)

p+ 4

and

(p+ 1)(q − α)

3
<

(p+ 1) · 3(p+2)
p+1

3
= p+ 2.

Therefore, Lemma 4.4 applies so as to say that given η > 0 we can find c2 = c2(η,K) > 0 such that

c1‖uεv
3

p+1
ε ‖

(p+1)(q−α)
3

L∞(Ω) ≤ η

∫

Ω
up−1
ε vεu

2
εx + η

∫

Ω
up+1
ε vεv

2
εx + c2‖vε‖L∞(Ω) for all t > 0,

which together with (4.19) and (4.20) establishes (4.18). �

In much the same manner, we can derive a similar inequality for the right-hand side appearing in Lemma
4.2.

Lemma 4.6 Let p > 1
2 , q > 1 and α > 0 be such that

α ≥
(2p− 1)q

2(p+ 1)
(4.21)
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and

α ≥
3(p+ 2)q

2(p+ 4)
−
q + 6

2
(4.22)

as well as

α <
3(p+ 2)q

2(p+ 1)
−
q + 6

2
. (4.23)

Then for all η > 0 and K > 0 there exists C(η,K) > 0 with the property that if (1.7), (4.9) and (4.10)
holds, then for any ε ∈ (0, 1),

∫

Ω
u

(p+1)(q+2)
q

ε v
q+2α+6

q
ε ≤ η

∫

Ω
up−1
ε vεu

2
εx + η

∫

Ω
up+1
ε vεv

2
εx + C(η,K)‖vε‖L∞(Ω) for all t > 0. (4.24)

Proof. Proceeding as in Lemma 4.5, on the right-hand side of the inequality

∫

Ω
u

(p+1)(q+2)
q

ε v
q+2α+6

q
ε =

∫

Ω

(
uεv

3
p+1
ε

) (p+1)(q+2α+6)
3q

· u
2(p+1)(q−α)

3q
ε

≤ ‖uεv
3

p+1
ε ‖

(p+1)(q+2α+6)
3q

L∞(Ω) ·

∫

Ω
u

2(p+1)(q−α)
3q

ε , t > 0, (4.25)

we use (4.21) to see that

2(p+ 1)(q − α)

3q
≤

2(p+ 1) ·
(
q − (2p−1)q

2(p+1)

)

3q
= 1

to conclude from (2.9), (4.9) and (4.10) that

∫

Ω
u

2(p+1)(q−α)
3q

ε ≤ c1 for all t > 0 (4.26)

with some c1 = c1(K) > 0. As furthermore

(p+ 1)(q + 2α+ 6)

3q
≥

(p+ 1) ·
{
q + 2 ·

(
3(p+2)q
2(p+4) − q+6

2

)
+ 6

}

3q
=

(p+ 1)(p+ 2)

p+ 4

by (4.22) and

(p+ 1)(q + 2α+ 6)

3q
<

(p+ 1) ·
{
q + 2 ·

(
3(p+2)q
2(p+1) − q+6

2

)
+ 6

}

3q
= p+ 2

due to (4.23), in view of (4.26) we readily infer (4.24) from (4.25) and Lemma 4.4. �

4.3 An Lp bound for uε

Fortunately, the conditions on α from Lemma 4.5 and Lemma 4.6, and in particular the inequalities (4.15)
and (4.21), can simultaneously be fulfilled by some α ∈ (0, q) if p ≥ 2 and the exponent q is taken from an
appropriate intermediate range determined by p. For such choices, the coupled functional in (4.1) satisfies
a differential inequality which in view of Lemma 3.4 indeed reflects a certain energy-like feature.

19



Lemma 4.7 Let p ≥ 2 and q ≥ 4 be such that

2(p+ 1)(p+ 2)

p+ 4
≤ q < 2(p+ 2).

Then for all K > 0 there exists C(K) > 0 such that if (1.7), (4.9) and (4.10) are satisfied, then

d

dt

{∫

Ω
upε +

∫

Ω
v
− 2p−1

2(p+1)
·q

ε |vεx|
q

}
+

ε

C(K)

∫

Ω
up+m−3
ε u2εx ≤ C(K)‖vε‖L∞(Ω) ·

{
1 +

∫

Ω
upε

}
for all t > 0

(4.27)
whenever ε ∈ (0, 1).

Proof. We let

α :=
2p− 1

2(p+ 1)
· q (4.28)

and first invoke Lemma 4.1 to find c1 > 0 and c2 > 0 such that

d

dt

∫

Ω
v−αε |vεx|

q + c1

∫

Ω
v−α−2
ε |vεx|

q+2 ≤ c2

∫

Ω
u

q+2
2

ε vq−αε for all t > 0, (4.29)

whereupon Lemma 4.2 says that with some c3 > 0 and c4 > 0 we have

d

dt

∫

Ω
upε + c3

∫

Ω
up−1
ε vεu

2
εx + c3

∫

Ω
up+1
ε vεv

2
εx + c3ε

∫

Ω
up+m−3
ε u2εx

≤ c4‖vε‖L∞(Ω)

∫

Ω
upε + c1

∫

Ω
v−α−2
ε |vεx|

q+2 + c4

∫

Ω
u

(p+1)(q+2)
q

ε v
q+2α+6

q
ε for all t > 0. (4.30)

We next observe that according to (4.28), our assumption p ≥ 2 in particular warrants that

α−
{3(p+ 2)q

2(p+ 4)
−
q + 6

2

}
=

3(p− 2)q

2(p+ 1)(p+ 4)
+ 3 > 0, (4.31)

while

α−
{3(p+ 2)q

2(p+ 1)
−
q + 6

2

}
=

3(p+ 1− q)

p+ 1
< 0 (4.32)

thanks to the fact that q ≥ 2(p+1)(p+2)
p+4 especially ensures that q ≥ 4

3(p + 1) > p + 1 for any p in the

considered range. The hypothesis q ≥ 2(p+1)(p+2)
p+4 moreover entails that

α−
{
q −

3(p+ 2)

p+ 4

}
= 3 ·

2(p+ 1)(p+ 2)− (p+ 4)q

2(p+ 1)(p+ 4)
≤ 0, (4.33)

whereas the restriction q < 2(p+ 2) guarantees that

α−
{
q −

3(p+ 2)

p+ 1

}
= 3 ·

−q + 2(p+ 2)

2(p+ 1)
> 0. (4.34)

Now in view of (4.28), (4.31) and (4.32), Lemma 4.6 becomes applicable so as to yield c5 = c5(K) > 0
fulfilling

c4

∫

Ω
u

(p+1)(q+2)
q

ε v
q+2α+6

q
ε ≤

c3

2

∫

Ω
up−1
ε vεu

2
εx +

c3

2

∫

Ω
up+1
ε vεv

2
εx + c5‖vε‖L∞(Ω) for all t > 0, (4.35)
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and similarly (4.28), (4.33) and (4.34) enable us to infer from Lemma 4.5 that there exists c6 = c6(K) > 0
such that

c2

∫

Ω
u

q+2
2

ε vq−αε ≤
c3

2

∫

Ω
up−1
ε vεu

2
εx +

c3

2

∫

Ω
up+1
ε vεv

2
εx + c6‖vε‖L∞(Ω) for all t > 0. (4.36)

When combined with (4.35) and (4.36), (4.30) and (4.29) thus show that

d

dt

{∫

Ω
upε +

∫

Ω
v−αε |vεx|

q

}
+ c3ε

∫

Ω
up+m−3
ε u2εx

≤ c4‖vε‖L∞(Ω)

∫

Ω
upε + (c5 + c6)‖vε‖L∞(Ω) for all t > 0

and thereby establish (4.27). �

A time integration in (4.27) finally in fact leads to an Lp bound for the first solution component in the
following form.

Lemma 4.8 Let p ≥ 2. Then for all K > 0 there exists C(K) > 0 such that if u0 and v0 satisfy (1.7),
(3.1), (3.2) and (3.9) as well as ∫

Ω
u
p
0 ≤ K (4.37)

and ∫

Ω

∣∣∣
(
v

3
2(p+1)

0

)
x

∣∣∣
2(p+1)(p+2)

p+4
≤ K, (4.38)

then for any choice of ε ∈ (0, 1) we have
∫

Ω
upε(·, t) ≤ C for all t > 0 (4.39)

and

ε

∫ T

0
‖uε(·, t)‖

2p+m−1
L∞(Ω) dt ≤ C · (1 + εT ) for all t > 0. (4.40)

Proof. We apply Lemma 4.7 to q := 2(p+1)(p+2)
p+4 ≥ 4 to find c1 = c1(K) > 0 and c2 = c2(K) > 0 such

that

d

dt

{∫

Ω
upε +

∫

Ω
v
− 2p−1

2(p+1)
·q

ε |vεx|
q

}
+ c1ε

∫

Ω
(u

p+m−1
2

ε )2x ≤ c2‖vε‖L∞(Ω) ·

{∫

Ω
upε + 1

}
for all t > 0.

Therefore,

yε(t) :=

∫

Ω
upε(·, t) +

∫

Ω
v
− 2p−1

2(p+1)
·q

ε (·, t)|vεx(·, t)|
q, t ≥ 0,

and

gε(t) := c1ε

∫

Ω
(u

p+m−1
2

ε )2x as well as hε(t) := c2‖vε(·, t)‖L∞(Ω), t > 0,

satisfy
y′ε(t) + gε(t) ≤ hε(t)yε(t) for all t > 0, (4.41)

which upon a first integration shows that

yε(t) ≤ yε(0) · e
∫ t

0 hε(s)ds for all t ≥ 0.
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Now since (3.1), (3.2), (3.9) and (1.7) hold, we may invoke Lemma 3.4 to find c3 = c3(K) > 0 such that

∫ t

0
hε(s)ds ≤ c3 for all t > 0 and ε ∈ (0, 1), (4.42)

which implies that writing c4 = c4(K) := K + (2(p+1)
3 )

2(p+1)(p+2)
p+4 K we have

yε(t) =

∫

Ω
upε +

∫

Ω
v
− 2p−1

2(p+1)
·q

ε |vεx|
q ≤ c4e

c3 for all t > 0, (4.43)

because

yε(0) =

∫

Ω
u
p
0 +

(2(p+ 1)

3

) 2(p+1)(p+2)
p+4

∫

Ω

∣∣∣
(
v

3
2(p+1)

0

)
x

∣∣∣
2(p+1)(p+2)

p+4

due to our definition of q.
Having thereby particularly established (4.39) in order to derive (4.40) we go back to (4.41) to see that a
second integration thereof entails that due to (4.43) and again (4.42), we have

∫ T

0
gε(t)dt ≤ yε(0) +

∫ T

0
hε(s)yε(s)ds ≤ c4 + c4e

c3 for all T > 0

and hence

ε

∫ T

0

∫

Ω
(u

p+m−1
2

ε )2x ≤ c5 = c5(K) :=
c4 + c4e

e3

c1
for all T > 0. (4.44)

As the Gagliardo-Nirenberg inequality provides c6 > 0 such that

‖ϕ‖
2(2p+m−1)

p+m−1

L∞(Ω) ≤ c6‖ϕx‖
2
L2(Ω)‖ϕ‖

2p
p+m−1

L
2p

p+m−1 (Ω)
+ c6‖ϕ‖

2(2p+m−1)
p+m−1

L
2p

p+m−1 (Ω)
for all ϕ ∈W 1,2(Ω),

from (4.43) and (4.44) we infer that

ε

∫ T

0
‖uε(·, t)‖

2p+m−1
L∞(Ω) dt = ε

∫ T

0

∥∥∥u
p+m−1

2
ε (·, t)

∥∥∥
2(2p+m−1)

p+m−1

L∞(Ω)
dt

≤ c6ε

∫ T

0

∥∥∥(u
p+m−1

2
ε )x(·, t)

∥∥∥
2

L2(Ω)

∥∥∥u
p+m−1

2
ε (·, t)

∥∥∥
2p

p+m−1

L
2p

p+m−1 (Ω)
dt

+c6ε

∫ T

0

∥∥∥u
p+m−1

2
ε (·, t)

∥∥∥
2(2p+m−1)

p+m−1

L
2p

p+m−1 (Ω)
dt

≤ c4c5c6e
c3 + c6(c4e

c3)
2p+m−1

p · εT for all T > 0

and thus conclude that also (4.40) holds. �

5 Uniform boundedness of (ln vε)x

Again in view of the v-dependent degeneracy of diffusion in (1.6), deriving L∞ bounds from the previously
gained Lp estimates seems to require additional efforts when compared with well-established approaches
from the theory of quasilinear parabolic equations and systems. In fact, it seems that any straightforward
application of the standard Moser-type approach to e.g. the differential inequality from Lemma 4.7 leads
to bounds for uε in Lp(Ω) which unfavorably depend on p due to the nature of our above methods of
estimating the respective cross-diffusive contributions in (2.6).
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In order to nevertheless develop a modified Moser-type approach toward corresponding L∞ estimates in
the next section, we shall now make use of the information from Lemma 4.8 for suitably large but fixed p
to firstly obtain uniform pointwise bounds for the quantity (ln vε)x. In particular, these will enable us to
estimate, wherever convenient, the gradient |vεx| by some multiple of the expression vε which we already
know to decay conveniently fast e.g. in the sense specified in Lemma 3.4. Moreover, as a by-product this
will lead to the Harnack-type property (1.11) which, at the level of approximate solutions (Corollary 5.3),
will also ensure a certain uniformity of the decay property from Lemma 3.4 with respect to the parameter
ε (Lemma 10.3).

As our analysis in this direction will not be referred to in Theorem 1.4 and Corollary 1.5, we do no longer
pursue nor stress the quantitative dependence of the subsequently obtained estimates on the initial data,
hence assuming u0 and v0 to be fixed functions satisfying (1.7).

For convenience in notation during this section, for ε ∈ (0, 1) let us introduce the function wε given by

wε(x, t) := ln vε(x, t), x ∈ Ω, t ≥ 0, (5.1)

which according to the regularity and positivity properties of vε asserted by Lemma 2.1 is a classical
solution of 




wεt = wεxx + w2
εx − uε, x ∈ Ω, t > 0,

wεx = 0, x ∈ ∂Ω, t > 0,

wε(x, 0) = ln v0(x), x ∈ Ω,

(5.2)

Then once again due to the one-dimensional structure of our problem, the spatial gradients of these
solutions enjoy a further family of energy-like properties which entail the following boundedness feature.

Lemma 5.1 Suppose that (1.7) holds, and let q ≥ 2. Then there exists C > 0 such that for all ε ∈ (0, 1),

∫

Ω

∣∣∣vεx(·, t)
vε(·, t)

∣∣∣
q

≤ C for all t > 0. (5.3)

Proof. As Ω is bounded, in view of the Hölder inequality we may assume without loss of generality
that q ≥ 2 is an even integer. We moreover note that again thanks to parabolic Schauder theory, wεx
lies in C2,1(Ω× (0,∞)) and solves the differentiated version of (5.2) classically, so that upon testing the
resulting identity by the quantity wq−1

εx , well-defined since q − 1 is a positive integer, we obtain that

1

q

d

dt

∫

Ω
wqεx =

∫

Ω
wq−1
εx · (wεxxx + 2wεxwεxx − uεx)

= −(q − 1)

∫

Ω
wq−2
εx w2

εxx + 2

∫

Ω
wqεxwεxx −

∫

Ω
uεxw

q−1
εx for all t > 0. (5.4)

Once more due to the boundary condition, the second last summand herein satisfies

2

∫

Ω
wqεwεxx =

2

q + 1

∫

Ω
(wq+1

εx )x = 0 for all t > 0,

while in the last we again integrate by parts and useYoung’s inequality to see that

−

∫

Ω
uεxw

q−1
εx = (q − 1)

∫

Ω
uεw

q−2
εx wεxx

≤
q − 1

2

∫

Ω
wq−2
εx w2

εxx +
q − 1

2

∫

Ω
u2εw

q−2
εx

≤
q − 1

2

∫

Ω
wq−2
εx w2

εxx + c1‖wεx‖
q−2
L∞(Ω) for all t > 0, (5.5)
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where thanks to Lemma 4.8,

c1 :=
q − 1

2
· sup
ε∈(0,1)

sup
t>0

∫

Ω
u2ε(·, t)

is finite. We now make use of the fact that in the considered one-dimensional setting we have

‖φ‖L∞(Ω) ≤ c2‖φx‖L2(Ω) for all φ ∈W
1,2
0 (Ω) (5.6)

with e.g. c2 := |Ω|
1
2 , which when applied to φ := w

q
2
εx shows that due to Young’s inequality,

c1‖wεx‖
q−2
L∞(Ω) = c1‖w

q
2
εx‖

2(q−2)
q

L∞(Ω)

≤ c1c
2(q−2)

q

2

∥∥∥(w
q
2
εx)x

∥∥∥
2(q−2)

q

L2(Ω)

≤
q − 1

q2
·
∥∥∥(w

q
2
εx)x

∥∥∥
2

L2(Ω)
+ c3

=
q − 1

4

∫

Ω
wq−2
εx w2

εxx + c3 for all t > 0 (5.7)

with c3 := ( q−1
q2

)
2−q
2 c

q
2
1 c

q−2
2 . As once more by (5.6) we can estimate

∫

Ω
wqεx ≤ |Ω| · ‖w

q
2
εx‖

2
L∞(Ω)

≤ |Ω| · c2

∥∥∥(w
q
2
εx)x

∥∥∥
2

L2(Ω)

=
q2|Ω|c2

4

∫

Ω
wq−2
εx w2

εxx for all t > 0,

from (5.4), (5.5) and (5.7) we thus infer that writing c4 :=
q−1

q2|Ω|c2
we have

1

q

d

dt

∫

Ω
wqεx + c4

∫

Ω
wqεx ≤ c3 for all t > 0

and hence, thanks to the inclusion wεx ∈ C0([0,∞);Lq(Ω)) guaranteed by (2.7) in conjunction with the
positivity of vε on Ω× [0,∞),

∫

Ω
wqεx ≤ max

{∫

Ω

v
q
0x

v
q
0

,
c4

c3

}
for all t > 0,

which precisely yields (5.3). �

In particular, together with Lemma 4.8 this allows us to view the inhomogeneity hε := w2
εx − uε in (5.2)

as a perturbation uniformly bounded with respect to the norm in Lp(Ω) for arbitrary p > 1. Therefore,
applying straightforward regularity arguments to the heat equation wεt = wεxx+hε(x, t) yields the desired
pointwise estimate for wεx.

Lemma 5.2 Assume (1.7). Then there exists C > 0 such that for all ε ∈ (0, 1),

|vεx(x, t)| ≤ Cvε(x, t) for all x ∈ Ω and t > 0. (5.8)
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Proof. We fix any p > 1 and then obtain from Lemma 5.1 and Lemma 4.8 that there exists c1 > 0
such that for all ε ∈ (0, 1),

∫

Ω
|wεx|

2p ≤ c1 and

∫

Ω
upε ≤ c1 for all t > 0. (5.9)

Letting (e−tAN )t≥0 and (e−tAD)t≥0 denote the heat semigroups over Ω under homogeneous Neumann and
Dirichlet boundary conditions, respectively, by means of a Duhamel formula associated with (5.2) and a
known smoothing property of (e−tAN )t≥0 we can find c2 > 0 such that

‖wεx(·, t)‖L∞(Ω) =

∥∥∥∥∂xe
−min{1,t}ANwε(·, (t− 1)+) +

∫ t

(t−1)+

∂xe
(t−s)AN

{
w2
εx(·, s)− uε(·, s)

}
ds

∥∥∥∥
L∞(Ω)

≤
∥∥∥∂xe−min{1,t}ANwε(·, (t− 1)+)

∥∥∥
L∞(Ω)

+c2

∫ t

(t−1)+

(t− s)
− 1

2
− 1

2p

∥∥∥w2
εx(·, s)− uε(·, s)

∥∥∥
Lp(Ω)

ds for all t > 0, (5.10)

where thanks to (5.9),

∥∥∥w2
εx(·, s)− uε(·, s)

∥∥∥
Lp(Ω)

≤ ‖wεx(·, s)‖
2
L2p(Ω) + ‖uε(·, s)‖Lp(Ω) ≤ 2c

1
p

1 for all s > 0,

so that

c2

∫ t

(t−1)+

(t− s)
− 1

2
− 1

2p

∥∥∥w2
εx(·, s)− uε(·, s)

∥∥∥
Lp(Ω)

ds ≤
2c

1
p

1 c2
1
2 − 1

2p

(5.11)

due to our restriction p > 1.
We now note that in the considered one-dimensional framework the identity

∂xe
−tANφ = e−tADφx

can readily be verified to hold in Ω for all t > 0 and any φ ∈ C1(Ω) fulfilling φx = 0 on ∂Ω. Therefore,
by means of the comparison principle we find that for small t,

∥∥∥∂xe−min{1,t}ANwε(·, (t− 1)+)
∥∥∥
L∞(Ω)

= ‖e−tADwεx(·, 0)‖L∞(Ω)

≤ ‖wεx(·, 0)‖L∞(Ω)

=
∥∥∥v0x
v0

∥∥∥
L∞(Ω)

for all t ∈ (0, 1], (5.12)

whereas for larger times a known regularization feature of (e−tAD)t≥0 provides c3 > 0 fulfilling
∥∥∥∂xe−min{1,t}ANwε(·, (t− 1)+)

∥∥∥
L∞(Ω)

=
∥∥∥e−ADwεx(·, t− 1)

∥∥∥
L∞(Ω)

≤ c3‖wεx(·, t− 1)‖L2p(Ω)

≤ c
1
2p

1 c3 for all t > 1

according to (5.9). Together with (5.12) and (5.11) inserted into (5.10), this establishes (5.8). �

The approximate counterpart of (1.11) is now obvious.

Corollary 5.3 Suppose that (1.7) holds. Then there exists C > 0 such that whenever ε ∈ (0, 1),

vε(x, t) ≥ C‖vε(·, t)‖L∞(Ω) for all x ∈ Ω and t > 0. (5.13)
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Proof. According to Lemma 5.2, we can find c1 > 0 such that

|vεx(x, t)| ≤ c1vε(x, t) for all x ∈ Ω, t > 0 and ε ∈ (0, 1). (5.14)

Then for fixed ε ∈ (0, 1) and t > 0 we may choose x0 ∈ Ω such that vε(x0, t) = ‖vε(·, t)‖L∞(Ω), and use
(5.14) to estimate

ln vε(x, t) = ln vε(x0, t) +

∫ x

x0

(ln vε)x(y, t)dy

≥ ln vε(x0, t)− c1|Ω| for all x ∈ Ω,

which clearly implies (5.13) with C := e−c1|Ω|. �

6 Uniform boundedness of uε

We are now prepared to perform an iterative argument of Moser type in order to derive an L∞ bound for
uε independent of both ε and t. Our procedure will particularly involve a recursive inequality of the form
(6.1) which, beyond a quadratic nonlinearity of standard type, contains a certain inhomogeneity with fast
but yet digestible growth with respect to the sequence index. Since we could not find a precise reference
treating such inequalities in the literature, for completeness we include a short proof of the following
elementary statement.

Lemma 6.1 Let a ≥ 1, b ≥ 1, M0 ≥ 1 and (Mk)k∈N ⊂ [0,∞) be such that

Mk ≤ akM2
k−1 + b2

k

for all k ≥ 1. (6.1)

Then

lim inf
k→∞

M
1

2k

k ≤ bM0e
C , (6.2)

where

C :=
∞∑

j=1

ln 2 + j ln a

2j
. (6.3)

Proof. For convenience in notation, we introduce M−1 := 0 and then observe that the set

S :=
{
k ≥ 0

∣∣∣ b2k ≥M2
k−1

}

is not empty with 0 ∈ S, and that inside this set we can trivially estimate

M
1

2k−1

k−1 ≤
(
b2

k
) 1

2·2k−1
= b for all k ∈ S. (6.4)

In particular, this directly entails (6.2) in the case when S contains inifinitely many elements, because
M0 ≥ 1 and C is positive by (6.3) and our assumption a ≥ 1.
Thus left with the case when S is finite and hence k0 := maxS well-defined, using that then

b2
k

< M2
k−1 ≤ akM2

k−1 for all k > k0,

we obtain from (6.1) that

Mk ≤ 2akM2
k−1 for all k > k0,
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which is equivalent to saying that for zk := lnM
1

2k

k , k ≥ 0, we have

zk ≤
ln 2 + k ln a

2k
+ zk−1 for all k > k0.

Therefore,

zk ≤ zk0 +
k∑

j=k0+1

ln 2 + j ln a

2j
≤ zk0 + C for all k > k0

and thus

M
1

2k

k ≤ ezk0 · eC for all k > k0. (6.5)

Now in the exceptional case k0 = 0 we have

ezk0 = ez0 =M0 ≤ bM0,

while if k0 > 0 then its definition along with (6.4) warrants that

ezk0 =M
1

2k0−1

k0−1 ≤ b ≤ bM0.

In consequence, (6.5) hence ensures that (6.2) also holds when S is finite. �

We can now proceed to the verification of the announced boundedness result. As usual in the context of
Moser-type iterations, our starting point will consist in a testing procedure of the form in Lemma 4.2, but
in contrast to the latter we will now interpret the dissipative expression

∫
Ω u

p−1
ε vεu

2
εx appearing therein,

up to multiplicative constants, as part of the full Dirichlet integral of the coupled quantity u
p−1
2

ε v
1
2
ε (see

(6.10)), and estimate both the respective error thereby made, as well as the corresponding cross-diffusive
contribution, by making use of the pointwise inequality from Lemma 5.2 (cf. (6.12) and (6.15)). In each
of the quantities to be estimated from above, this will enable us to retain the quantity ‖vε(·, t)‖L∞(Ω) as
a factor which decays in the sense of Lemma 3.4 and can thus be estimated after an integration in time
(see (6.16) and (6.17)). By means of Lemma 6.1 this will entail the following.

Lemma 6.2 Assume (1.7). Then there exists C > 0 with the property that for all ε ∈ (0, 1) we have

‖uε(·, t)‖L∞(Ω) ≤ C for all t > 0. (6.6)

Proof. Writing
pk := 2k + 1, k ≥ 0, (6.7)

we observe that in view of Lemma 4.8, for each ε ∈ (0, 1) any of the numbers

Mk,ε := max

{
1 , sup

t>0

∫

Ω
upkε (·, t)

}
, k ∈ N0, (6.8)

is finite. To estimate Mk,ε for k ≥ 1 and ε ∈ (0, 1), fixing any such k we abbreviate p := pk and once
more use the first equation in (2.6) to see on employing Young’s inequality that

1

p

d

dt

∫

Ω
upε + (p− 1)ε

∫

Ω
up−2
ε (uε + 1)m−1u2εx + (p− 1)

∫

Ω
up−1
ε vεu

2
εx

= (p− 1)

∫

Ω
upεvεuεxvεx +

∫

Ω
upεvε

≤
p− 1

2

∫

Ω
up−1
ε vεu

2
εx +

p− 1

2

∫

Ω
up+1
ε vεv

2
εx +

∫

Ω
upεv for all t > 0,
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so that since p
4 ≤ p−1

2 ≤ p
2 due to the fact that p ≥ p0 = 2, we obtain

d

dt

∫

Ω
upε +

p2

4

∫

Ω
up−1
ε vεu

2
εx ≤

p2

2

∫

Ω
up+1
ε vεv

2
εx + p

∫

Ω
upεvε for all t > 0. (6.9)

In order to take appropriate advantage of the second summand on the left-hand side herein, we again use
Young’s inequality along with the fact that p+ 1 ≤ 2p to find that

∫

Ω
(u

p+1
2

ε v
1
2
ε )

2
x =

∫

Ω

{p+ 1

2
u

p−1
2

ε v
1
2
ε uεx +

1

2
u

p+1
2

ε v
− 1

2
ε vεx

}2

≤
(p+ 1)2

2

∫

Ω
up−1
ε vεu

2
εx +

1

2

∫

Ω
up+1
ε v−1

ε v2εx

≤ 2p2
∫

Ω
up−1
ε vεu

2
εx +

1

2

∫

Ω
up+1
ε v−1

ε v2εx for all t > 0

and that hence

p2

4

∫

Ω
up−1
ε vεu

2
εx ≥

1

8

∫

Ω
(u

p+1
2

ε v
1
2
ε )

2
x −

1

16

∫

Ω
up+1
ε v−1

ε v2εx for all t > 0. (6.10)

Here the rightmost summand can be controlled by using Lemma 5.2, which namely provides c1 > 0 such
that

v2εx(x, t) ≤ c1v
2
ε(x, t) for all x ∈ Ω, t > 0 and ε ∈ (0, 1), (6.11)

so that invoking the Gagliardo-Nirenberg inequality and Young’s inequality we infer that with some c2 > 0
and c3 > 0 we have

1

16

∫

Ω
up+1
ε v−1

ε v2εx ≤
c1

16

∫

Ω
up+1
ε vε

=
c1

16
‖u

p+1
2

ε v
1
2
ε ‖

2
L2(Ω)

≤ c2

∥∥∥(u
p+1
2

ε v
1
2
ε )x

∥∥∥
2
3

L2(Ω)
‖u

p+1
2

ε v
1
2
ε ‖

4
3

L1(Ω)
+ c2‖u

p+1
2

ε v
1
2
ε ‖

2
L1(Ω)

≤
1

16

∥∥∥(u
p+1
2

ε v
1
2
ε )x

∥∥∥
2

L2(Ω)
+ c3‖u

p+1
2

ε v
1
2
ε ‖

2
L1(Ω) for all t > 0. (6.12)

As (6.7) warrants that p+1
2 = pk+1

2 = pk−1 and hence

‖u
p+1
2

ε v
1
2
ε ‖

2
L1(Ω) ≤ ‖vε‖L∞(Ω) ·

{∫

Ω
u

p+1
2

ε

}2

≤ ‖vε‖L∞(Ω) ·M
2
k−1,ε for all t > 0 (6.13)

according to (6.8), this means that

1

16

∫

Ω
up+1
ε v−1

ε v2εx ≤
1

16

∫

Ω
(u

p+1
2

ε v
1
2
ε )

2
x + c3‖vε‖L∞(Ω)M

2
k−1,ε for all t > 0,

whence combining (6.9) with (6.10) shows that

d

dt

∫

Ω
upε +

1

16

∫

Ω
(u

p+1
2

ε v
1
2
ε )

2
x ≤

p2

2

∫

Ω
up+1
ε vεv

2
εx + p

∫

Ω
upεvε + c3‖vε‖L∞(Ω)M

2
k−1,ε for all t > 0. (6.14)
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Here the first summand on the right can be treated by arguments quite similar to those used in (6.12)
and (6.13): indeed, using (6.11), (2.13), the Gagliardo-Nirenberg inequality and Young’s inequality we
can find positive constants c4, c5 and c6 such that

p2

2

∫

Ω
up+1
ε vεv

2
εx ≤

c1p
2

2

∫

Ω
up+1
ε v3ε

≤ c4p
2

∫

Ω
up+1
ε vε

≤ c5p
2
∥∥∥(u

p+1
2

ε v
1
2
ε )x

∥∥∥
2
3

L2(Ω)
‖u

p+1
2

ε v
1
2
ε ‖

4
3

L1(Ω)
+ c5p

2‖u
p+1
2

ε v
1
2
ε ‖

2
L1(Ω)

≤
1

32

∥∥∥(u
p+1
2

ε v
1
2
ε )x

∥∥∥
2

L2(Ω)
+ c6p

3‖u
p+1
2

ε v
1
2
ε ‖

2
L1(Ω) + c5p

2‖u
p+1
2

ε v
1
2
ε ‖

2
L1(Ω)

≤
1

32

∫

Ω
(u

p+1
2

ε v
1
2
ε )

2
x + (c5 + c6)p

3‖vε‖L∞(Ω)M
2
k−1,ε for all t > 0, (6.15)

because p ≥ 1.
Finally, in the second last term in (6.14) we again invoke the Gagliardo-Nirenberg inequality, Young’s
inequality and (6.13) to find c7 > 0 and c8 > 0 fulfilling

p

∫

Ω
upεvε = p

∫

Ω
(u

p+1
2

ε v
1
2
ε )

2p
p+1 · v

1
p+1
ε

≤ p‖vε‖
1

p+1

L∞(Ω)‖u
p+1
2

ε v
1
2
ε ‖

2p
p+1

L
2p
p+1 (Ω)

≤ c7p‖vε‖
1

p+1

L∞(Ω)

∥∥∥(u
p+1
2

ε v
1
2
ε )x

∥∥∥
2(p−1)
3(p+1)

L2(Ω)
‖u

p+1
2

ε v
1
2
ε ‖

2(2p+1)
3(p+1)

L1(Ω)
+ c7p‖vε‖

1
p+1

L∞(Ω)‖u
p+1
2

ε v
1
2
ε ‖

2p
p+1

L1(Ω)

≤
1

32

∥∥∥(u
p+1
2

ε v
1
2
ε )x

∥∥∥
2

L2(Ω)
+ c8p

3(p+1)
2(p+2) ‖vε‖

3
2(p+2)

L∞(Ω)‖u
p+1
2

ε v
1
2
ε ‖

2p+1
p+2

L1(Ω)
+ c7p‖vε‖

1
p+1

L∞(Ω)‖u
p+1
2

ε v
1
2
ε ‖

2p
p+1

L1(Ω)

≤
1

32

∫

Ω
(u

p+1
2

ε v
1
2
ε )

2
x + c8p

3(p+1)
2(p+2) ‖vε‖

3
2(p+2)

L∞(Ω) ·

{
‖vε‖

2p+1
2(p+2)

L∞(Ω)M
2p+1
p+2

k−1,ε

}

+c7p‖vε‖
1

p+1

L∞(Ω) ·

{
‖vε‖

p
p+1

L∞(Ω)M
2p
p+1

k−1,ε

}

=
1

32

∫

Ω
(u

p+1
2

ε v
1
2
ε )

2
x + c8p

3(p+1)
2(p+2) ‖vε‖L∞(Ω)M

2p+1
p+2

k−1,ε + c7p‖vε‖L∞(Ω)M
2p
p+1

k−1,ε for all t > 0.

Since evidently 3(p+1)
2(p+2) ≤ 3, 2p+1

p+2 ≤ 2 and 2p
p+1 ≤ 2, we may use the inequalities p ≥ 1 and Mk−1,ε ≥ 1 here

to obtain

p

∫

Ω
upεvε ≤

1

32

∫

Ω
(u

p+1
2

ε v
1
2
ε )

2
x + (c7 + c8)p

3‖vε‖L∞(Ω)M
2
k−1,ε for all t > 0,

which in conjunction with (6.15) and (6.14) shows that

d

dt

∫

Ω
upε ≤ c9p

3‖vε‖L∞(Ω)M
2
k−1,ε for all t > 0 (6.16)

with c9 := c3 + c5 + c6 + c7 + c8.
We now rely on the fact that Lemma 3.4 yields c10 > 0 satisfying

∫ ∞

0
‖vε(·, t)‖L∞(Ω) ≤ c10 for all ε ∈ (0, 1),
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as a consequence of which we infer upon an integration in (6.16) that

∫

Ω
upkε (·, t) ≤

∫

Ω
u
pk
0 + c9p

3
kM

2
k−1,ε

∫ t

0
‖vε(·, s)‖L∞(Ω)ds

≤

∫

Ω
u
pk
0 + c9c10p

3
kM

2
k−1,ε for all t > 0. (6.17)

Writing c11 := max{1, c9c10}, after maximizing over t ∈ (0,∞) we thus obtain that in both cases
‖uε‖L∞((0,∞);Lpk (Ω)) < 1 and ‖uε‖L∞((0,∞);Lpk (Ω)) ≥ 1,

Mk,ε ≤

∫

Ω
u
pk
0 + c11p

3
kM

2
k−1,ε.

By means of the obvious estimates

c11p
3
k = c11 · (2

k + 1)3 ≤ c11 · (2 · 2
k)3 = 8c11 · 8

k ≤ ak

with a := 64c11 ≥ 1 and
∫

Ω
u
pk
0 ≤ |Ω| · ‖u0‖

pk
L∞(Ω) =

(
|Ω| · ‖u0‖L∞(Ω)

)
· ‖u0‖

2k

L∞(Ω)

≤

{
max

{
1 , |Ω| · ‖u0‖L∞(Ω)

}}2k

· ‖u0‖
2k

L∞(Ω)

≤ b2
k

with

b := max

{
1 , max

{
1 , |Ω| · ‖u0‖L∞(Ω)

}
· ‖u0‖L∞(Ω)

}
≥ 1,

this entails that

Mk,ε ≤ akM2
k−1,ε + b2

k

for all k ≥ 1 and ε ∈ (0, 1),

whence Lemma 6.1 applies so as to show that with some c12 > 0 we have

lim inf
k→∞

M
1

2k

k,ε ≤ c12 for all ε ∈ (0, 1).

As Mk,ε ≥ 1 and pk ≥ 2k, this implies that also

lim inf
k→∞

M
1
pk

k,ε ≤ lim inf
k→∞

M
1

2k

k,ε ≤ c12 for all ε ∈ (0, 1),

which by (6.8) entails that

c12 ≥ lim inf
k→∞

{∫

Ω
upkε (·, t)

} 1
pk

= ‖uε(·, t)‖L∞(Ω) for all t > 0 and any ε ∈ (0, 1)

and thereby proves the lemma. �
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7 Further temporally local estimates

The uniform boundedness property of uε obtained in Lemma 6.2 has some straightforward consequences
on further regularity properties of both solution components. Once more due to the structure of the
diffusion degeneracy in (1.6), these will substantially depend on appropriate positivity features of vε and
thereby essentially remain local in time by relying on the following immediate by-product of Lemma 6.2.

Lemma 7.1 There exist κ > 0 and C > 0 such that for all ε ∈ (0, 1),

vε(x, t) ≥ C · e−κt for all x ∈ Ω and t > 0. (7.1)

Proof. Since Lemma 6.2 yields c1 > 0 such that uε ≤ c1 in Ω× (0,∞) and hence

vεt ≥ vεxx − c1vε in Ω× (0,∞),

the inequality in (7.1) with κ := c1 and C := minx∈Ω v0(x) > 0 immediately results from a straightforward
comparison argument. �

We can thereby extract from our previously gained weighted estimates for uεx a corresponding local-in-
time integral bound which no longer involves any weight function.

Lemma 7.2 There exists C > 0 such that for any ε ∈ (0, 1),

∫ T

0

∫

Ω
u2εx ≤ CeκT for all T > 0, (7.2)

where κ > 0 is as in Lemma 7.1.

Proof. According to Lemma 3.1, we can find c1 > 0 such that
∫ ∞

0

∫

Ω

vε

uε
u2εx ≤ c1 for all ε ∈ (0, 1), (7.3)

whereas Lemma 6.2 and Lemma 7.1 provide positive constants c2 and c3 such that whenever ε ∈ (0, 1),

uε(x, t) ≤ c2 for all x ∈ Ω and t > 0

and

vε(x, t) ≥ c3e
−κt for all x ∈ Ω and each t > 0.

Therefore, (7.3) implies that

c1 ≥

∫ T

0

∫

Ω

vε

uε
u2εx ≥

c1c3e
−κT

c2

∫ T

0

∫

Ω
u2εx for all T > 0 and ε ∈ (0, 1)

and thereby entails (7.2). �

Independently from the preceding, the degeneracy control provided by Lemma 7.1 allows us to invoke
standard regularity theory for porous medium type scalar parabolic equations ([33]) in order to obtain
Hölder estimates for both solution components.

Lemma 7.3 Let T > 0.Then there exist θ = θ(T ) ∈ (0, 1) and C(T ) > 0 with the property that

‖uε‖
Cθ, θ2 (Ω×[0,T ])

≤ C(T ) for all ε ∈ (0, 1) (7.4)

and
‖vε‖

Cθ, θ2 (Ω×[0,T ])
≤ C(T ) for all ε ∈ (0, 1). (7.5)
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Proof. We write the first equation in (2.6) in the form

uεt = ∂xAε(x, t, uε, uεx) +Bε(x, t, uε), x ∈ Ω, t > 0,

with

Aε(x, t, z, ξ) := ε(z + 1)m−1ξ + vε(x, t)zξ − vε(x, t)vεx(x, t)z
2, (x, t, z, ξ) ∈ Ω× (0,∞)× [0,∞)× R

and

Bε(x, t, z) := vε(x, t)z, (x, t, z) ∈ Ω× (0,∞)× [0,∞).

Here using that Lemma 7.1,(2.13) and Lemma 5.2 provide c1 = c1(T ), c2 > 0 and c3 > 0 such that

c1 ≤ vε(x, t) ≤ c2 and |vεx(x, t)| ≤ c3 for all x ∈ Ω, t > 0 and ε ∈ (0, 1),

we may use Young’s inequality to estimate

Aε(x, t, z, ξ) · ξ ≥ c1zξ
2 − vεvεxz

2ξ

≥
1

2
c1zξ

2 −
c22c

2
3

2
z3 for all (x, t, z, ξ) ∈ Ω× (0,∞)× [0,∞)× R,

whereas evidently

|Aε(x, t, z, ξ)| ≤
{
(z + 1)m−1 + c2z

}
· |ξ|+ c2c3z

2 for all (x, t, z, ξ) ∈ Ω× (0,∞)× [0,∞)× R

and

|Bε(x, t, z)| ≤ c2z for all (x, t, z) ∈ Ω× (0,∞)× [0,∞).

As (uε)ε∈(0,1) is bounded in L∞(Ω× (0,∞)) by Lemma 6.2 and u0 is Hölder continuous in Ω according to
(1.7), the estimate in (7.4) therefore becomes a consequence of a well-known result on Hölder regularity
in quasilinear degenerate parabolic equations ([33, Theorem 1.3, Remark 1.4]). Likewise, (7.5) can be
derived e.g. from the boundedness of (−uεvε)ε∈(0,1) in L∞(Ω × (0,∞)) and the Hölder continuity of v0
implied by (1.7). �

Based on the latter, the second solution component can be seen to actually possess the following higher-
order smoothness feature, due to possibly lacking regularity of v0 naturally restricted to time intervals
away from t = 0.

Lemma 7.4 Let T > 0 and τ ∈ (0, T ). Then there exist θ = θ(τ, T ) ∈ (0, 1) and C(τ, T ) > 0 such that

‖vε‖
C2+θ,1+ θ

2 (Ω×[τ,T ])
≤ C(τ, T ) for all ε ∈ (0, 1).

Proof. As (−uεvε)ε∈(0,1) is bounded in Cθ1,
θ1
2 (Ω× [0, T ]) with some θ1 = θ1(T ) ∈ (0, 1) according to

Lemma 7.3, this is an immediate consequence of standard parabolic Schauder estimates ([19]). �

8 Passing to the limit. Proof of Theorem 1.1

Our construction of a weak solution to (1.6) through an appropriate extraction procedure is now rather
straightforward.
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Lemma 8.1 There exist (εj)j∈N ⊂ (0, 1) and nonnegative functions

{
u ∈ C0(Ω× [0,∞)) ∩ L∞(Ω× (0,∞)) and

v ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) ∩ L∞(Ω× (0,∞))
(8.1)

satisfying
ux ∈ L2

loc(Ω× [0,∞)) (8.2)

and
vx ∈ L∞(Ω× (0,∞)) (8.3)

which are such that εj ց 0 as j → ∞ and

uε → u in C0
loc(Ω× [0,∞)), (8.4)

uεx ⇀ ux in L2
loc(Ω× [0,∞)), (8.5)

vε → v in C0
loc(Ω× [0,∞)) ∩ C2,1

loc (Ω× (0,∞)) and (8.6)

vεx
⋆
⇀ vx in L∞(Ω× (0,∞)) (8.7)

as ε = εj ց 0, and that (u, v) is a global weak solution of (1.6) in the sense of Definition 2.1.

Proof. According to Lemma 6.2 and Lemma 7.2,

(uε)ε∈(0,1) is bounded in L∞(Ω× (0,∞))

and

(uεx)ε∈(0,1) is bounded in L2
loc(Ω× [0,∞)),

whereas due to (2.13) and Lemma 5.2,

(vε)ε∈(0,1) and (vεx)ε∈(0,1) are bounded in L∞(Ω× (0,∞)).

Moreover, Lemma 7.3 and Lemma 7.4 in conjunction with the Arzelá-Ascoli theorem ensure that

(uε)ε∈(0,1) is relatively compact in C0
loc(Ω× [0,∞))

and that

(vε)ε∈(0,1) is relatively compact in C0
loc(Ω× [0,∞)) ∩ C2,1

loc (Ω× (0,∞)).

By means of a standard extraction procedure we thus infer the existence of (εj)j∈N ⊂ (0, 1) such that
εj ց 0 as j → ∞ and that (8.4)-(8.7) hold as ε = εj ց 0 with some nonnegative functions u and v

fulfilling (8.1)-(8.3). The latter properties evidently entail the regularity requirements in (2.1) and (2.2)
in Definition 2.1, while the identities (2.3) and (2.4) result from (8.4)-(8.7) in quite a straigtforward
manner: given ϕ ∈ C∞

0 (Ω× [0,∞)), using (2.6) we see that

−

∫ ∞

0

∫

Ω
uεϕt −

∫

Ω
u0ϕ(·, 0) = −ε

∫ ∞

0

∫

Ω
(uε + 1)m−1uεxϕx −

∫ ∞

0

∫

Ω
uεvεuεxϕx

+

∫ ∞

0

∫

Ω
u2εvεvεxϕx +

∫ ∞

0

∫

Ω
uεvεϕ (8.8)

for all ε ∈ (0, 1). Here since suppϕ is bounded, (8.4) and (8.5) apply to show that

−

∫ ∞

0

∫

Ω
uεϕt → −

∫ ∞

0

∫

Ω
uϕt
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as well as

−

∫ ∞

0

∫

Ω
(uε + 1)m−1uεxϕx → −

∫ ∞

0

∫

Ω
(u+ 1)m−1uxϕx

and hence

−ε

∫ ∞

0

∫

Ω
(uε + 1)m−1uεxϕx → 0

as ε = εj ց 0, while combining (8.4) with (8.5), (8.6) and (8.7) yields

−

∫ ∞

0

∫

Ω
uεvεuεxϕx → −

∫ ∞

0

∫

Ω
uvuxϕx

as well as
∫ ∞

0

∫

Ω
u2εvεvεxϕx →

∫ ∞

0

∫

Ω
u2vvxϕx

and
∫ ∞

0

∫

Ω
uεvεϕ→

∫ ∞

0

∫

Ω
uvϕ

as ε = εj ց 0. Therefore, (8.8) implies (2.3), and (2.4) can be verified similarly. �

Inter alia, this establishes our main result on global existence in (1.6).

Proof of Theorem 1.1. The statement actually is a by-product of Lemma 8.1. �

9 Asymptotics of v. Proof of Theorem 1.2

The above preparations also immediately entail the claimed qualitative properties of v:

Proof of Theorem 1.2. From Lemma 3.4 and Lemma 5.2 we know that
∫ ∞

0
‖vε(·, t)‖L∞(Ω)dt ≤ c1 for all ε ∈ (0, 1) (9.1)

and
|vεx(x, t)| ≤ c2vε(x, t) for all x ∈ Ω, t > 0 and ε ∈ (0, 1) (9.2)

and that thus also ∫ ∞

0
‖vεx(·, t)‖L∞(Ω)dt ≤ c1c2 for all ε ∈ (0, 1). (9.3)

In view of (8.6) and Fatou’s lemma, combining (9.1) with (9.3) establishes (1.9) and thereby also entails
(1.10), because (2.13) and (8.6) imply that

‖v(·, t)‖L∞(Ω) ≤ ‖v(·, t0)‖L∞(Ω) for all t0 ≥ 0 and t > t0

and hence

‖v(·, t)‖L∞(Ω) ≤

∫ t

t−1
‖v(·, s)‖L∞(Ω)ds→ 0 as 1 ≤ t→ ∞

by (1.9), and because thus (9.2) and again (8.6) imply that also

‖vx(·, t)‖L∞(Ω) ≤ c2‖v(·, t)‖L∞(Ω) → 0 as t→ ∞.

Finally, once more thanks to (8.6) the Harnack-type inequality (1.11) is a direct consequence of Corollary
5.3. �
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10 Convergence of u. Proof of Theorem 1.3

Next concerned with the asymptotic properties of u, to achieve a first observation in this respect let us
perform a substitution of the time variable in the style of that in Theorem 1.3 but yet at the stage of
the solutions to the approximate problems (2.6). Here of crucial importance will be the observation that
thanks to the Harnack-type inequality (1.11), unlike in (1.6) the degeneracy of the diffusion mechanism
in the accordingly transformed problem is, up to a bounded and uniformly positive (x, t)-dependent
coefficient and a correction vanishing as εց 0, essentially of porous medium type.

Lemma 10.1 Suppose that (1.7) holds, and for ε ∈ (0, 1) let

tε :=
1

κ
ln

2

ε
(10.1)

and

Jε :=

∫ tε

0
‖vε(·, t)‖L∞(Ω)dt (10.2)

as well as
zε(x, τ) := uε(x, ρ

−1
ε (τ)), x ∈ Ω, τ ∈ [0, 1], (10.3)

where

ρε(t) :=
1

Jε
·

∫ t

0
‖vε(·, s)‖L∞(Ω)ds, t ∈ [0, tε], (10.4)

where κ > 0 is as provided by Lemma 7.1, and where (uε, vε) denotes the solution of (2.6) from Lemma
2.1. Then




zετ =
(
âε(x, τ)zεx

)
x
+
(
aε(x, τ)zεzεx

)
x
−

(
bε(x, τ)z

2
ε

)
x
+ aε(x, τ)zε, x ∈ Ω, τ ∈ (0, 1),

zεx = 0, x ∈ ∂Ω, τ ∈ (0, 1),

zε(x, 0) = u0(x), x ∈ Ω,
(10.5)

with

âε(x, τ) := Jε ·
ε

‖vε(·, t)‖L∞(Ω)
·
(
uε(x, t) + 1

)m−1
(10.6)

as well as

aε(x, τ) := Jε ·
vε(x, t)

‖vε(·, t)‖L∞(Ω)
and bε(x, τ) := Jε ·

vε(x, t)vεx(x, t)

‖vε(·, t)‖L∞(Ω)
(10.7)

for x ∈ Ω, τ ∈ (0, 1) and t := ρ−1
ε (τ). Moreover, there exists C > 0 such that for all ε ∈ (0, 1),

0 ≤ âε(x, τ) ≤ C for all x ∈ Ω and τ ∈ (0, 1) (10.8)

and
1

C
≤ aε(x, τ) ≤ C for all x ∈ Ω and τ ∈ (0, 1) (10.9)

as well as
|bε(x, τ)| ≤ C for all x ∈ Ω and τ ∈ (0, 1). (10.10)

Proof. Observing that zε indeed is well-defined due to the fact that ρε is strictly increasing with
ρε(0) = 0 and ρε(tε) = 1, from the regularity properties of uε and vε it is clear that zε belongs to
C2,1(Ω× (0, 1)) with

zετ (x, τ) = uεt(x, ρ
−1
ε (τ)) ·

1

ρ′ε(ρ
−1
ε (τ))

= uεt(x, ρ
−1
ε (τ)) ·

Jε

‖vε(·, ρ
−1
ε (τ))‖L∞(Ω)
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for all x ∈ Ω and τ ∈ (0, 1). Therefore, (10.5) readily results upon multiplying the first equation in (2.6)
by Jε

‖vε(·,t)‖L∞(Ω)
and making use of the definitions in (10.6) and (10.7).

Next, to derive (10.8), (10.9) and (10.10) we recall that Lemma 3.4 and Lemma 7.1 provide c1 > 0 and
c2 > 0 such that

Jε ≤ c1 for all ε ∈ (0, 1) (10.11)

and
vε(x, t) ≥ c2e

−κt for all x ∈ Ω, t > 0 and ε ∈ (0, 1), (10.12)

and that Corollary 5.3, Lemma 5.2 and Lemma 6.2 in conjunction with (2.13) yield positive constants c3,
c4 and c5 fulfilling

vε(x, t) ≥ c3‖vε(·, t)‖L∞(Ω) for all x ∈ Ω, t > 0 and ε ∈ (0, 1) (10.13)

and
|vεx(x, t)| ≤ c4 for all x ∈ Ω, t > 0 and ε ∈ (0, 1) (10.14)

as well as
uε(x, t) ≤ c5 for all x ∈ Ω, t > 0 and ε ∈ (0, 1). (10.15)

Therefore, namely, thanks to (10.11) we immediately obtain that for all ε ∈ (0, 1),

aε(x, τ) ≤ Jε ≤ c1 for all x ∈ Ω and τ ∈ (0, 1),

whereas combining (10.13) with (10.12) shows that for all ε ∈ (0, 1) we have

aε(x, τ) ≥ c3Jε = c3

∫ tε

0
‖vε(·, t)‖L∞(Ω)dt ≥ c2c3

∫ tε

0
e−κtdt

=
c2c3

κ
· (1− e−κtε) =

c2c3

κ
·
(
1−

ε

2

)
≥
c2c3

2κ
for all x ∈ Ω and τ ∈ (0, 1).

Since furthermore

|bε(x, τ)| = aε(x, τ) · |vεx(x, ρ
−1
ε (τ))| ≤ c4aε(x, τ) for all x ∈ Ω, τ ∈ (0, 1) and ε ∈ (0, 1),

and since the definition of tε along with (10.11), (10.12) and (10.15) guarantees that

0 ≤ âε(x, τ) ≤ c1 ·
ε

c2e−κρ
−1
ε (τ)

· (c5 + 1)m−1

≤ c1 ·
ε

c2e−κtε
· (c5 + 1)m−1

= c6 :=
2c1(c5 + 1)m−1

c2
for all x ∈ Ω, τ ∈ (0, 1) and ε ∈ (0, 1),

we thus conclude that indeed (10.8), (10.9) and (10.10) are valid if we let C := max{c6 , c1 ,
κ

2c2c3
, c1c4},

for instance. �

As a consequence of the inequalities in (10.8), (10.9) and (10.10), these rescaled solutions are uniformly
Hölder continuous, again due to standard regularity theory for porous medium type equations.

Lemma 10.2 Assume (1.7). Then there exist θ ∈ (0, 1) and C > 0 such that

‖zε‖
Cθ, θ2 (Ω×[0,1])

≤ C for all ε ∈ (0, 1). (10.16)
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Proof. According to (10.3) and Lemma 6.2, (zε)ε∈(0,1) is bounded in L∞(Ω × (0, τ)). In view of the
upper bounds in (10.8), (10.9) and (10.10), the nonnegativity of âε and the uniform lower estimate for
aε in (10.9), and due to the Hölder continuity of u0 asserted by (1.7), the claimed estimate can be seen
by straightforward application of Hölder regularity theory for the quasilinear parabolic problem (10.5) in
quite a similar fashion as demonstrated in Lemma 7.3. �

Now an important preparation for an appropriate passage to the limit in (10.5) addresses the corresponding
limit behavior in the expressions Jε from (10.2). In our verification of the expected behavior we shall
essentially rely on the integrability property from (2.12) which can be used to provide some ε-independent
control of the tail integrals

∫∞
t0

‖vε(·, t)‖L∞(Ω)dt for large t0 > 0 by means of the positivity feature of uε
from Lemma 3.1 and, again, the Harnack inequality (1.11).

Lemma 10.3 Assume (1.7), and let (εj)j∈N ⊂ (0, 1) and tε > 0 be as in Lemma 8.1 and (10.1), respec-
tively. Then ∫ tε

0
‖vε(·, t)‖L∞(Ω)dt→

∫ ∞

0
‖v(·, t)‖L∞(Ω)dt as ε = εj ց 0. (10.17)

Proof. In order to appropriately estimate the difference of the expressions in (10.17), we first apply
Corollary 5.3 and Lemma 3.1 to fix c1 > 0 and c2 > 0 such that for all ε ∈ (0, 1),

vε(x, t) ≥ c1‖vε(·, t)‖L∞(Ω) for all x ∈ Ω and t > 0 (10.18)

and
∫

Ω
lnuε(·, t) ≥ −c2 for all t > 0.

Here the latter implies that for all ε ∈ (0, 1) and t > 0 we have

c2 ≥

∫

Ω
ln

1

uε(·, t)
≥

∫

{ln 1
uε(·,t)

>
2c2
|Ω|

}
ln

1

uε(·, t)
≥

2c2
|Ω|

·

∣∣∣∣
{
ln

1

uε(·, t)
>

2c2
|Ω|

}∣∣∣∣

and hence
∣∣∣
{
ln 1

uε(·,t)
> 2c2

|Ω|

}∣∣∣ ≤ |Ω|
2 , meaning that if we abbreviate c3 := e

−
2c2
|Ω| , then

∣∣∣{uε(·, t) ≥ c3}
∣∣∣ =

∣∣∣∣
{
ln

1

uε(·, t)
≤

2c2
|Ω|

}∣∣∣∣ ≥
|Ω|

2
for all t > 0 and any ε ∈ (0, 1). (10.19)

Now given η > 0 we make use of Theorem 1.2 in finding t0 > 0 such that

‖v(·, t0)‖L1(Ω) ≤
c1c3|Ω|η

16
,

which in view of the approximation property (8.6) warrants the existence of ε⋆ > 0 fulfilling

‖vε(·, t0)‖L1(Ω) ≤
c1c3|Ω|η

8
for all ε ∈ (εj)j∈N with ε < ε⋆. (10.20)

Here again due to (8.6), and due to the fact that tε → ∞ as εց 0 by (10.1), diminishing ε⋆ if necessary
we can achieve that moreover

|vε(x, t)− v(x, t)| ≤
η

2t0
for all x ∈ Ω and t ∈ (0, t0) and each ε ∈ (εj)j∈N with ε < ε⋆ (10.21)

and that
tε ≥ t0 for all ε < ε⋆. (10.22)
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Now according to Lemma 2.2, (10.20) entails that
∫ ∞

t0

∫

Ω
uεvε ≤

∫

Ω
vε(·, t0) ≤

c1c3|Ω|η

8
for all ε ∈ (εj)j∈N with ε < ε⋆, (10.23)

where we firstly make use of (10.18) in estimating
∫

Ω
uε(·, t)vε(·, t) ≥

∫

{uε(·,t)≥c3}
uε(·, t)vε(·, t)

≥ c3

∫

{uε(·,t)≥c3}
vε(·, t)

≥ c1c3‖vε(·, t)‖L∞(Ω) ·
∣∣∣{uε(·, t) ≥ c3}

∣∣∣ for all t > 0 and any ε ∈ (0, 1),

so that thanks to (10.19) we obtain

‖vε(·, t)‖L∞(Ω) ≤
2

c1c3|Ω|

∫

Ω
uε(·, t)vε(·, t) for all t > 0 and ε ∈ (0, 1).

Therefore, (10.23) implies that
∫ ∞

t0

‖vε(·, t)‖L∞(Ω)dt ≤
2

c1c3|Ω|
·
c1c3|Ω|η

8
=
η

4
for all ε ∈ (εj)j∈N with ε < ε⋆

and thus clearly also
∫ ∞

t0

‖v(·, t)‖L∞(Ω)dt ≤
η

4

by Lemma 8.1 and Fatou’s lemma, whence invoking (10.21) and making use of (10.22) we infer that
∣∣∣∣
∫ tε

0
‖vε(·, t)‖L∞(Ω)dt−

∫ ∞

0
‖v(·, t)‖L∞(Ω)dt

∣∣∣∣

≤

∫ t0

0
‖vε(·, t)− v(·, t)‖L∞(Ω)dt+

∫ ∞

t0

‖vε(·, t)‖L∞(Ω)dt+

∫ ∞

t0

‖v(·, t)‖L∞(Ω)dt

≤ t0 ·
η

2t0
+
η

4
+
η

4
= η for all ε ∈ (εj)j∈N with ε < ε⋆.

As η > 0 was arbitrary, this establishes (10.17). �

This enables us to take εց 0 along the sequence from Lemma 8.1, and thus to achieve the following.

Lemma 10.4 Suppose that (1.7) holds, and let (εj)j∈N ⊂ (0, 1) be as in Lemma 8.1. Then with (zε)ε∈(0,1) ⊂

C0(Ω× [0, 1]) as defined in (10.3), we have

zε → z in C0(Ω× [0, 1]) as ε = εj ց 0 (10.24)

with some z ∈ C0(Ω× [0, 1]) satisfying

z(x, τ) = u(x, ρ−1(τ)), x ∈ Ω, τ ∈ [0, 1), (10.25)

where ρ is as determined by (1.16) and u is taken from Lemma 8.1. Moreover, z is a solution of (1.14),
with a and b as defined in (1.15) and fulfilling (1.17), in the sense that zx ∈ L2

loc(Ω× [0, 1)) and that

−

∫ 1

0

∫

Ω
zφτ −

∫

Ω
u0φ(·, 0) = −

∫ 1

0

∫

Ω
a(x, τ)zzxφx +

∫ 1

0

∫

Ω
b(x, τ)z2φx +

∫ 1

0

∫

Ω
a(x, τ)z (10.26)

is valid for all φ ∈ C∞
0 (Ω× [0, 1)).
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Proof. From Lemma 8.1 we know that with ρε as in (10.4), for all t ≥ 0 we have ρε(t) → ρ(t) as
ε = εj ց 0, while Lemma 10.3 asserts that the numbers from (10.2) satisfy Jε → J as ε = εj ց 0. It is
therefore clear from (8.4), (8.6) and Lemma 7.1 that zε(x, τ) → z(x, τ), âε(x, τ) → 0, aε(x, τ) → a(x, τ)
and bε(x, τ) → b(x, τ) for all x ∈ Ω and τ ∈ (0, 1) as ε = εj ց 0, so that (10.24) and (1.17) become a
consequence of Lemma 10.2 and the Arzelà-Ascoli theorem. The claimed regularity property of zx as well
as the validity of (10.26) can thereafter readily be verified on the basis of (8.2) and (2.3). �

As z trivially possesses a limit as τ ր 1, however, the latter means that u must stabilize in the large time
limit.

Lemma 10.5 Assume (1.7). Then

u(·, t) → z(·, 1) in L∞(Ω) as t→ ∞, (10.27)

where z ∈ C0(Ω× [0, 1]) is as obtained in Lemma 10.4.

Proof. In view of the identity (10.25), the claim is an immediate consequence of the continuity of z
in Ω× {1}. �

We can thus pass to our main result on qualitative behavior in the first solution component.

Proof of Theorem 1.3. The convergence property (1.13) as well as the characterization of u∞ and the
claimed upper and lower bounds in (1.17) have precisely been asserted by Lemma 10.5 and Lemma 10.4,
whereupon the boundedness of u becomes an evident consequence. To verify (1.12), we note that from
Lemma 3.1 and Lemma 6.2 it follows that with some c1 > 0 we have

∫

Ω

(
ln

1

uε(·, t)

)
+

= −

∫

Ω
lnuε(·, t) +

∫

{uε(·,t)>1}
lnuε(·, t)

≤ −

∫

Ω
lnuε(·, t) + |Ω| · ln ‖uε‖L∞(Ω×(0,∞))

≤ c1 for all t > 0 and each ε ∈ (0, 1),

so that (8.4) together with Fatou’s lemma ensures that

∫

Ω

(
ln

1

u(·, t)

)
+
≤ c1 for all t > 0

and that thus indeed (1.12) is valid. �

11 Stability of arbitrary steady states. Convergence to nonconstant
equilibria. Proofs of Theorem 1.4 and Corollary 1.5

We finally turn our attention to the statements on stability and nontrivial stabilization from Theorem
1.4 and Corollary 1.5. Our analysis in this direction is based on the following observation which at its
core consists in appropriately controlling the time derivative uεt in suitable dual spaces by means of the
previously gained estimates.

Lemma 11.1 Let p > 8
3 , q >

p
p−2 and K > 0. Then there exist γ(p, q) ∈ (0, 1) and C(p, q,K) > 0 such

that whenever u0 and v0 are such that (1.7), (1.18) and (1.19) hold, for all ε ∈ (0, 1) we have

‖uε(·, t)− u0‖(W 2,q
0 (Ω))⋆

≤ C(p, q,K)‖v0‖
γ(p,q)
L1(Ω)

for all t ∈
(
0,

1

ε

)
. (11.1)
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Proof. We multiply the first equation in (2.6) by an arbitrary ψ ∈ C∞
0 (Ω) to see on several integrations

by parts that

∣∣∣∣
∫

Ω
uεtψ

∣∣∣∣ =

∣∣∣∣− ε

∫

Ω
(uε + ε)m−1uεxψx −

∫

Ω
uεvεuεxψx +

∫

Ω
u2εvεvεxψx +

∫

Ω
uεvεψ

∣∣∣∣

=

∣∣∣∣
ε

m

∫

Ω
(uε + 1)mψxx +

1

2

∫

Ω
u2εvεxψx +

1

2

∫

Ω
u2εvεψxx +

∫

Ω
u2εvεvεψx +

∫

Ω
uεvεψ

∣∣∣∣

≤
ε

m

∫

Ω
(uε + 1)m|ψxx|

+

∫

Ω
u2ε ·

(1
2
+ vε

)
· |vεx| · |ψx|+

1

2

∫

Ω
u2εvε|ψxx|+

∫

Ω
uεvε|ψ| for all t > 0. (11.2)

In order to appropriately estimate the expressions on the right-hand side herein, we observe that since

p > 8
3 , the number γ1 :=

p− 8
3

p−1 satisfies γ1 ∈ (0, 1), whereas the inequality q > p
p−2 warrants that also

γ2 :=
pq−p−2q
(p−1)q belongs to (0, 1). Now by means of the Hölder inequality, we obtain that

∫

Ω
u2ε ·

(1
2
+ vε

)
· |vεx| · |ψx| =

∫

Ω

(1
2
+ vε

)
·
(v4εx
v3ε

) 1
4
· u2εv

3
4
ε · |ψx|

≤
(1
2
+ ‖vε‖L∞(Ω)

)
·

{∫

Ω

v4εx
v3ε

} 1
4

·

{∫

Ω
u

8
3
ε vε

} 3
4

· ‖ψx‖L∞(Ω) (11.3)

for all t > 0, and that thanks to the fact that
8
3
−γ1

1−γ1
= p,

{∫

Ω
u

8
3
ε vε

} 3
4

=

{∫

Ω
u

8
3
−γ1

ε · v1−γ1ε · (uεvε)
γ1

} 3
4

≤

{∫

Ω
u

8
3−γ1
1−γ1
ε

} 3(1−γ1)
4

· ‖vε‖
3(1−γ1)

4

L∞(Ω) ·

{∫

Ω
uεvε

} 3γ1
4

≤ c
3(1−γ1)

4
1 · ‖vε‖

3(1−γ1)
4

L∞(Ω) ·

{∫

Ω
uεvε

} 3γ1
4

for all t > 0, (11.4)

where

c1 := sup
ε∈(0,1)

sup
t>0

∫

Ω
upε(·, t)

is a finite number indeed depending onK only thanks to Lemma 4.8 and our assumptions (1.18) and (1.19).

Since, by continuity of the embedding W
1,

2(p+1)(p+2)
p+4 (Ω) →֒ L∞(Ω), (2.13) along with (1.19) warrants the

existence of c2 = c2(K) > 0 such that

‖vε(·, t)‖L∞(Ω) ≤ ‖v0‖L∞(Ω) ≤ c2 for all t > 0 and ε ∈ (0, 1), (11.5)

from (11.3) and (11.4) we thus infer that

∫

Ω
u2ε ·

(1
2
+vε

)
· |vεx| · |ψx| ≤ c

3(1−γ1)
4

1 ·
(1
2
+c2

)
·‖vε‖

3(1−γ1)
4

L∞(Ω) ·

{∫

Ω

v4εx
v3ε

} 1
4

·

{∫

Ω
uεvε

} 3γ1
4

·‖ψx‖L∞(Ω) (11.6)
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for all t > 0. Similarly, observing that our definition of γ2 ensures that 2−γ2
p

+ γ2 +
1
q
= 1, by means of

the Hölder inequality we find that the second last summand in (11.2) satisfies

1

2

∫

Ω
u2εvε|ψxx| =

1

2

∫

Ω
u2−γ2ε · v1−γ2ε · (uεvε)

γ2 · |ψxx|

≤
1

2
·

{∫

Ω
upε

} 2−γ2
p

· ‖vε‖
1−γ2
L∞(Ω) ·

{∫

Ω
uεvε

}γ2
·

{∫

Ω
|ψxx|

q

} 1
q

≤
1

2
c
2−γ2

p

1 ‖vε‖
1−γ2
L∞(Ω) ·

{∫

Ω
uεvε

}γ2
· ‖ψxx‖Lq(Ω) for all t > 0. (11.7)

Since finally
∫

Ω
uεvε|ψ| ≤

{∫

Ω
uεvε

}
· ‖ψ‖L∞(Ω) for all t > 0

and

ε

m

∫

Ω
(uε + 1)m|ψxx| ≤

ε

m
‖uε + 1‖mL∞(Ω)

∫

Ω
|ψxx|

≤
2m−1

m
ε ·

{
‖uε‖

m
L∞(Ω) + 1

}
· ‖ψxx‖L1(Ω) for all t > 0,

and since also the embeddingsW 2,q
0 (Ω) →֒W 1,∞(Ω) andW 2,q

0 (Ω) →֒W 2,1(Ω) are continuous, from (11.2),
(11.6) and (11.7) we obtain that there exists c3 = c3(p, q,K) > 0 such that

‖uεt(·, t)‖(W 2,q
0 (Ω))⋆

≤ c3 · ‖vε‖
3(1−γ1)

4

L∞(Ω) ·

{∫

Ω

v4εx
v3ε

} 1
4

·

{∫

Ω
uεvε

} 3γ1
4

+c3 · ‖vε‖
1−γ2
L∞(Ω) ·

{∫

Ω
uεvε

}γ2
+ c3

∫

Ω
uεvε

+c3ε‖uε‖
m
L∞(Ω) + c3ε

for all t > 0. On integrating this with respect to t ∈ (0,∞) and once more employing the Hölder inequality
several times, we see that thus for all ε ∈ (0, 1),

∫ T

0
‖uεt(·, t)‖(W 2,q

0 (Ω))⋆
dt ≤ c3 ·

{∫ ∞

0
‖vε(·, t)‖L∞(Ω)dt

} 3(1−γ1)
4

·

{∫ ∞

0

∫

Ω

v4εx
v3ε

} 1
4

·

{∫ ∞

0

∫

Ω
uεvε

} 3γ1
4

+c3 ·

{∫ ∞

0
‖vε(·, t)‖L∞(Ω)dt

}1−γ2

·

{∫ ∞

0

∫

Ω
uεvε

}γ2

+c3

∫ ∞

0

∫

Ω
uεvε

+c3ε

∫ T

0
‖uε(·, t)‖

m
L∞(Ω)dt+ c3εT for all T > 0. (11.8)

Here from Lemma 3.4 and Lemma 3.3 we know that with some c4 = c4(K) > 0 and c5 = c5(K) > 0 we
have

∫ ∞

0
‖vε(·, t)‖L∞(Ω)dt ≤ c4 for all ε ∈ (0, 1),

and
∫ ∞

0

∫

Ω

v4εx
v3ε

≤ c5 for all ε ∈ (0, 1)
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where we note that our hypothesis (1.19), when viewed together with (11.5), can be seen to guarantee
that

∫

Ω

v20x
v0

≤ c6 and

∫

Ω
v20x ≤ c7

with some c6 = c6(p,K) > 0 and c7 = c7(p,K) > 0 due to the fact that the exponents in (1.19) satisfy
3

2(p+1) ≤
1
2 and 2(p+1)(p+2)

p+4 ≥ 2. Furthermore, Lemma 2.2 allows us to estimate

∫ ∞

0

∫

Ω
uεvε ≤ ‖v0‖L1(Ω) for all ε ∈ (0, 1),

and Lemma 4.8 yields c8 = c8(p,K) > 0 such that

ε

∫ T

0
‖uε(·, t)‖

2p+m−1
L∞(Ω) dt ≤ c8 · (1 + εT ) for all ε ∈ (0, 1) and each T > 0,

so that by Young’s inequality,

c3ε

∫ T

0
‖uε(·, t)‖

m
L∞(Ω)dt+ c3εT ≤ c3ε

∫ T

0
‖uε(·, t)‖

2p+m−1
L∞(Ω) dt+ 2c3εT

≤ c3c8 · (1 + εT ) + 2c3εT

≤ 2c3c8 + 2c3 for all ε ∈ (0, 1) and T ∈
(
0,

1

ε

)
,

as clearly 2p+m− 1 ≥ m. From (11.8) we therefore conclude that for all ε ∈ (0, 1) and any t ∈ (0, 1
ε
),

‖uε(·, t)− u0‖(W 2,q
0 (Ω))⋆

≤

∫ t

0
‖uεt(·, t)‖(W 2,q

0 (Ω))⋆
dt

≤

∫ ∞

0
‖uεt(·, t)‖(W 2,q

0 (Ω))⋆
dt

≤ c3c
3(1−γ1)

4
4 c

1
4
5 ‖v0‖

3γ1
4

L1(Ω)
+ c3c

1−γ2
4 ‖v0‖

γ2
L1(Ω)

+ c3‖v0‖L1(Ω) + 2c3c8 + 2c3,

which already establishes (11.1) with γ(p, q) := min{3γ1
4 , γ2} ∈ (0, 1), because according to (11.5) we have

‖v0‖L1(Ω) ≤ ‖v0‖
γ

L1(Ω)
· |Ω|β−γcβ−γ2 for arbitrary β ≥ γ. �

This firstly implies that indeed arbitrary equilibria of (1.6) have the stability property described in The-
orem 1.4:

Proof of Theorem 1.4. Given p > 8
3 , q >

p
p−2 and K > 0, we apply Lemma 11.1 to find γ ∈ (0, 1) and

c1 > 0 such that whenever (1.7), (1.18) and (1.19) hold, for all ε ∈ (0, 1) we have

‖uε(·, t)− u0‖(W 2,q
0 (Ω))⋆

≤ c1‖v0‖
γ

L1(Ω)
for all t ∈

(
0,

1

ε

)
. (11.9)

Now for fixed η > 0 we choose δ > 0 small enough fulfilling

δ ≤
η

2
and c1δ

γ ≤
η

2
(11.10)

and suppose that u⋆ ∈ (W q,2
0 (Ω))⋆, u0 and v0 are such that (1.7) as well as (1.18)-(1.20) are satisfied.

Then using that (8.4) clearly implies that uε(·, t) → u(·, t) in (W q,2
0 (Ω))⋆ as ε = εj ց 0 for all t > 0, from
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(11.9), (1.20) and (11.10) we infer that

‖u(·, t)− u⋆‖(W 2,q
0 (Ω))⋆

≤ ‖u(·, t)− u0‖(W 2,q
0 (Ω))⋆

+ ‖u0 − u⋆‖(W 2,q
0 (Ω))⋆

≤ c1‖v0‖
γ

L1(Ω)
+ ‖u0 − u⋆‖(W 2,q

0 (Ω))⋆

≤ c1δ
γ + δ

≤
η

2
+
η

2
= η for all t > 0,

whereas (1.20) and (11.10) in view of Lemma 2.2 and (8.6) trivially entail that

‖v(·, t)‖L1(Ω) ≤ ‖v0‖L1(Ω) ≤ δ < η for all t > 0,

as claimed. �

Beyond the latter, Lemma 11.1 secondly entails that stabilization toward spatially heterogeneous steady
states in fact occurs within considerably large sets of initial data.

Proof of Corollary 1.5. Since u0 is nonconstant and continuous, we can pick c1 > 0 and an open
subinterval Ω0 of Ω such that

u0(x) + c1 ≤ u0 :=
1

|Ω|

∫

Ω
u0 for all x ∈ Ω0, (11.11)

and thereafter fix some nonnegative ψ ∈ C∞
0 (Ω) such that suppψ ⊂ Ω0 and

∫
Ω ψ = 1.

Moreover, given K > 0 we apply Theorem 1.4 to any conveniently chosen p > 8
3 and q > p

p−2 and to

η := c1
2‖ψ‖

W2,q(Ω)
and u⋆ := u0 and thereby obtain δ > 0 with the property that whenever v0 ∈W 1,∞(Ω) is

positive in Ω and such that both (1.22) and (1.23) are valid, for the corresponding solution (u, v) of (1.6)
from Theorem 1.1 we have

‖u(·, t)− u0‖(W 2,q
0 (Ω))⋆

≤
c1

2‖ψ‖W 2,q(Ω))⋆
for all t > 0. (11.12)

Now fixing any such v0, since we already know from Theorem 1.2 and Theorem 1.3 that (1.24) holds with
some u∞ ∈ C0(Ω), verifying the claimed inhomogeneity property amounts to showing that the hypothesis
that

u∞ ≡ c2 in Ω for some c2 ≥ 0 (11.13)

is absurd. To achieve this, assuming (11.13) to be valid we firstly use (1.24) to see that
∫

Ω
u(·, t)ψ →

∫

Ω
u∞ψ = c2

∫

Ω
ψ = c2 as t→ ∞, (11.14)

whereas combining (1.24) with (11.12) shows that

‖u∞ − u0‖(W 2,q
0 (Ω))⋆

≤
c1

2

and hence, in particular,
∫

Ω
u∞ψ −

∫

Ω
u0ψ ≤ ‖u∞ − u0‖(W 2,q

0 (Ω))⋆
· ‖ψ‖W 2,q(Ω) ≤

c1

2
. (11.15)

Here we note that according to our choice of ψ and (11.11),
∫

Ω
u0ψ =

∫

Ω0

u0ψ ≤ (u0 − c1)

∫

Ω
ψ = u0 − c1,
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so that (11.14) and (11.15) yield

c2 ≤

∫

Ω
u0ψ +

c1

2
≤ (u0 − c1) +

c1

2
= u0 −

c1

2
. (11.16)

But from Lemma 2.2 we know that
∫

Ω
uε(·, t) ≥

∫

Ω
u0 for all t > 0 and any ε ∈ (0, 1),

which clearly implies that

∫

Ω
u∞ ≥

∫

Ω
u0

and that thus, again by (11.14),

c2 ≥ u0.

This contradiction falsifies (11.13), so that in consequence indeed (1.25) must be true. �
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