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Abstract

The flux-limited Keller-Segel-Navier-Stokes system











nt + u · ∇n = ∆n−∇ ·
(

nf(|∇c|2)∇c
)

,

ct + u · ∇c = ∆c− c+ n,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0,

(⋆)

is considered in a smoothly bounded domain Ω ⊂ R
2. It is shown that whenever the suitably

smooth function f models any asymptotically algebraic-type saturation of cross-diffusive fluxes in
the sense that

|f(ξ)| ≤ Kf · (ξ + 1)−
α

2

holds for all ξ ≥ 0 with some Kf > 0 and α > 0, for any all reasonably regular initial data a
corresponding no-flux/no-flux/Dirichlet problem admits a globally defined classical solution which
is bounded, inter alia, in L∞(Ω × (0,∞)) with respect to all its components. By extending a
corresponding result known for a fluid-free counterpart of (⋆), this confirms that with regard to
the possible emergence of blow-up phenomena, the choice f ≡ const. retains some criticality also
in the presence of fluid interaction.
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1 Introduction

The choice f ≡ Kf = const. in the two-dimensional version of the chemotaxis model

{

nt = ∆n−∇ ·
(

nf(|∇c|2)∇c
)

,

τct = ∆c− c+ n,
(1.1)

is critical in several respects: Firstly, the classical Keller-Segel systems thus obtained are themselves
well-known to be mass-critical in the sense that with some mc = mc(Kf ) > 0, global bounded solu-
tions to associated no-flux problems in smoothly bounded planar domains Ω can be found whenever
the suitably regular initial data satisfy

∫

Ω n(·, 0) < mc whereas some unbounded solutions emanating
from appropriately chosen initial data with

∫

Ω n(·, 0) > mc exist (see [25], [4] and [26] for the simplified
parabolic-elliptic case with τ = 0, and [27], [18] as well as [19] for the fully parabolic variant involv-
ing τ = 1). Secondly, already small perturbations of such constant f , asymptotically damping the
corresponding cross-diffusion mechanism in the spirit of gradient-dependent flux limitations recently
receiving considerable attention in the biomathematical literature ([1], [29], [2], [3]), seem to entirely
inhibit any such blow-up phenomenon: If f is suitably smooth and such that

|f(ξ)| ≤ Kf · (ξ + 1)−
α
2 for all ξ ≥ 0 (1.2)

with some Kf > 0 and α > 0, namely, then all reasonably regular initial data of arbitrary size lead to
global bounded solutions both when τ = 0 and when τ = 1 ([28], [45], [46]).

A natural next task now seems to consist in determining how far such criticality features persist when
single two-component systems of the form (1.1) are embedded into more complex models. Here in
accordance with considerable developments in both the modeling and the analysis-focused literature, of
particular interest appear couplings of chemotactically migrating populations to liquid environments
([8], [9], [24], [33], [34]), and indeed some significant effects of fluid interaction have either been
indicated by numerical evidence ([34], [23]), or even been verified rigorously ([21], [22], [16], [10]).

In order to address this topic for possibly flux-limited Keller-Segel systems of the form in a framework
consistent with the modeling approach in [34], concentrating on the prototypical situation of bacterial
populations coupled to a surrounding liquid through transport and buocancy we shall subsequently
consider the problem































nt + u · ∇n = ∆n−∇ ·
(

nf(|∇c|2)∇c
)

, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν

= ∂c
∂ν

= 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.3)

in a smoothly bounded domain Ω ⊂ R
2, with a suitably regular chemotactic sensitivity coefficient f

and a given gravitational potential Φ.

Within this setting and that of a corresponding parabolic-elliptic simplification, the first of the above
two criticality features of f ≡ const. has already been investigated numericaly and analytically: While
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simulations predict that fluid coupling of this type may entail some blow-up delay by enforcing bound-
edness in the presence of large-mass initial data for which solutions to (1.1) blow up ([23]), a result
on global solvability for small-mass initial data indicates that the corresponding critical mass phe-
nomenon for (1.1), albeit with a possibly changed particular threshold value, persists also under the
influence of the considered fluid interplay ([43]).

Main results. The purpose of the present study now consists in examining corresponding sta-
bility properties of the second among the mentioned aspects of criticality related to the choice of
constant f in (1.1). Specifically concerned with the question whether in the fully coupled model
(1.3) still an arbitrarily small algebraic flux limitation of the form in (1.2) is sufficient to suppress
any unboundedness phenomenon, by means of an analytical approach quite completely different from
those pursued in the literature on (1.1) we shall find the following essentially affirmative answer.
In its formulation, as well as throughout the sequel, we let W

1,2
0,σ (Ω) := W

1,2
0 (Ω;R2) ∩ L2

σ(Ω) with

L2
σ(Ω) := {ϕ ∈ L2(Ω;R2) | ∇ · ϕ = 0}, and letting P represent the Helmholtz projection on

⋂

r>1 L
r(Ω;R2) we let A = −P∆ and (Aϑ)ϑ>0 denote the Stokes operator in L2(Ω;R2), with do-

main given by D(A) := W 2,2(Ω;R2)∩W
1,2
0,σ (Ω), and the family of its corresponding fractional powers,

respectively.

Theorem 1.1 Suppose that Ω ⊂ R
2 is a bounded convex domain with smooth boundary, and assume

that Φ ∈ W 2,∞(Ω), and that f ∈ C2([0,∞)) is such that f ∈ C2([0,∞)) satisfies (1.2) with some
Kf > 0 and some

α > 0.

Moreover, suppose that











n0 ∈ C0(Ω) is nonnegative with n0 6≡ 0, that

c0 ∈ W 1,∞(Ω) is nonnegative, and that

u0 ∈ W
1,2
0,σ (Ω) ∩W 2,2(Ω;R2).

(1.4)

Then there exist uniquely determined functions











n ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

c ∈ ⋂

q>1C
0([0,∞);W 1,2q(Ω)) ∩ C2,1(Ω× (0,∞)) and

u ∈ ⋂

ϑ∈( 1
2
,1)C

0([0,∞);D(Aϑ)) ∩ C2,1(Ω× (0,∞);R2)

(1.5)

which are such that n > 0 and c ≥ 0 in Ω × (0,∞), and that with some P ∈ C1,0(Ω × (0,∞)), the
quadruple (n, c, u, P ) is a classical solution of (1.3) in Ω× (0,∞). Moreover, this solution is bounded
in the sense that one can find q > 1 and ϑ ∈ (12 , 1) satisfying

sup
t>0

{

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,2q(Ω) + ‖Aϑu(·, t)‖L2(Ω)

}

< ∞. (1.6)

By thus essentially asserting persistence of a boundedness feature, as known to be enjoyed by a
chemotaxis system, under the additional inclusion of fluid interaction, this result appears to be quite
in line with some precedent studies concerned with variants of (1.1) involving migration rates which
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depend on population densities, rather than signal gradients. In fact, the substantially more favorable
mathematical structure of such systems has allowed for quite a complete knowledge concerning blow-up
dichotomies, and for a widely comprehensive transfer of results from corresponding taxis-only systems
to associated Keller-Segel fluid variants, both in cases governed by linear cell diffusion ([36], [37], [35],
[41]) and in models involving certain nonlinear diffusion mechanisms ([6], [5], [44], [7], [30], [32], [38]).

Main ideas. In contrast to the simple situation of (1.1), any derivation of boundedness features for
solutions to (1.3) evidently needs to adequately cope with the circumstance that regularity properties
of the crucial quantity ∇c may potentially be affected by the fluid field which is a priori unknown.
Accordingly, this seems to limit accessibility to well-established direct strategies toward establishing
Lp bounds for n, e.g. by controlling the time evolution in expressions of the form

∫

Ω
np + a

∫

Ω
|∇c|2q, (1.7)

as having played key roles in studies on chemotaxis systems for various choices of a > 0 and q ≥ 1
([32], [47], [20]). In fact, at a first stage the only source for regularity information on u appears to be
the standard energy identity for the Navier-Stokes subsystem of (1.3), any meaningful application of
which, however, seems to require integrability features of the forcing term n∇Φ therein that go beyond
those trivially implied by mass conservation in the first solution component. A first and crucial step in
our analysis will accordingly consist in the derivation of some additional basic estimates for n which do
not rely on any features of the fluid field beyond its mere solenoidality, and which provide integrability
properties sufficient to allow for a successful initial regularity analysis of u (Lemma 3.3). Fortunately,
in Section 3 we shall see that precisely when α > 0, the assumption (1.2) warrants that this can indeed
be achieved by tracing the evolution of

−
∫

Ω
np +

∫

Ω
(c+M)r (1.8)

for some p ∈ (0, 1), arbitrarily large r and suitably chosen M > 0 (cf. Lemma 3.6); although in its
principal design related to the strategy from [35] where similar sublinear powers have been essential,
this procedure deviates from the latter by simultaneously providing bounds for c which will later on
come in handy when an apparently novel interpolation inequality will be applied (Lemma 4.1, Lemma
4.5 and Lemma 4.6). Only after this preparation, Section 4 will reveal that an analysis of higher
regularity features can be based on the examination of functionals in the style of those from (1.7)
with arbitrarily large p > 1 and q > 1, when augmented by an added Dirichlet integral of the fluid
velocity. In fact, appropriately estimating respectively appearing ill-signed contributions will enable
us to derive temporally uniform bounds for the coupled functionals under consideration (Lemma 4.8),
and to thereupon obtain our main result by means of a final bootstrap argument to be performed in
Section 5.

2 Local existence and extensibility

Let us first note that according to approaches meanwhile quite standard, unique local-in-time classical
solutions enjoying a fairly handy entensibility feature always exist:

4



Lemma 2.1 Suppose that f ∈ C2([0,∞)) and that (n0, c0, u0) satisfies (1.4). Then there exist Tmax ∈
(0,∞] and unique functions











n ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

c ∈ ⋂

q>1C
0([0, Tmax);W

1,2q(Ω)) ∩ C2,1(Ω× (0, Tmax)) and

u ∈ ⋂

ϑ∈( 1
2
,1)C

0([0, Tmax);D(Aϑ)) ∩ C2,1(Ω× (0, Tmax,ε);R
2)

such that n > 0 and c ≥ 0 in Ω× [0, Tmax), that

if Tmax = ∞, or for all q > 1 and ϑ ∈ (12 , 1) we have

lim sup
tրTmax

{

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,2q(Ω) + ‖Aϑu(·, t)‖L2(Ω)

}

= ∞, (2.1)

and that (n, c, u, P ) forms a classical solution of (1.3) in Ω × (0, Tmax) with some appropriate P ∈
C1,0(Ω× (0, Tmax)). This solution has the additional property that

∫

Ω
n(·, t) =

∫

Ω
n0 for all t ∈ (0, Tmax). (2.2)

Proof. This can be seen by straightforward adaptation of well-known arguments from the literature
on local existence, extensibility, positivity and mass conservation in related chemotaxis-fluid systems,
as detailed in [39], for instance. �

3 Basic bounds for n and c. Analyzing the Navier-Stokes energy

The first objective of this section is to make sure that functionals of the form in (1.8) enjoy certain
entropy-like features when the integrability exponent p ∈ (0, 1) appearing therein is suitably small.
Besides implying bounds for c in Lr spaces with arbitrarily large r, this will reveal some additional
regularity features of n that will turn out to be sufficient for a successful analysis of the standard
energy identity associated with the Navier-Stokes subsystem of (1.3).

Our analysis in this direction is launched by the following observation which already relies in an
essentiall manner on the flux limitation mechanism expressed in our overall assumption (1.2).

Lemma 3.1 Assume (1.2) with some Kf > 0 and α > 0, and let p ∈ (0, 1) be such that

p ≤ α

1− α
. (3.1)

Then there exists C = C(p) > 0 such that

− d

dt

∫

Ω
np +

p(1− p)

2

∫

Ω
np−2|∇n|2 ≤ C

∫

Ω
|∇c|2 + C for all t ∈ (0, Tmax). (3.2)
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Proof. We make use of the positivity of n in Ω× (0, Tmax) to see upon integrating by parts in the
first equation from (1.3) and using Young’s inequality along with (1.2) that

−1

p

d

dt

∫

Ω
np + (1− p)

∫

Ω
np−2|∇n|2

= (1− p)

∫

Ω
np−1f(|∇c|2)∇n · ∇c

≤ 1− p

4

∫

Ω
np−2|∇n|2 + (1− p)

∫

Ω
npf2(|∇c|2)|∇c|2

≤ 1− p

4

∫

Ω
np−2|∇n|2 + (1− p)K2

f

∫

Ω
np(|∇c|2 + 1)−α|∇c|2 for all t ∈ (0, Tmax). (3.3)

Here if α ≥ 1, then by the Hölder inequality and (2.2), abbreviating C1 :=
∫

Ω n0 we have

(1− p)K2
f

∫

Ω
np(|∇c|2 + 1)−α|∇c|2 ≤ (1− p)K2

f

∫

Ω
np

≤ (1− p)K2
f |Ω|1−p ·

{
∫

Ω
n

}p

= (1− p)K2
f |Ω|1−pC

p
1 for all t ∈ (0, Tmax),

while if α ∈ (0, 1) and p ≤ α, then after employing Young’s inequality we may proceed similarly to
estimate

(1− p)K2
f

∫

Ω
np(|∇c|2 + 1)−α|∇c|2 ≤ (1− p)K2

f

∫

Ω
np|∇c|2−2α

≤ (1− p)K2
f

∫

Ω
n

p

α + (1− p)2K2
f

∫

Ω
|∇c|2

≤ (1− p)K2
f · |Ω|1−

p

αC
p

α

1 + (1− p)2K2
f

∫

Ω
|∇c|2

for all t ∈ (0, Tmax), so that in both these cases, (3.2) is a consequence of (3.3).

If α < 1 and α < p ≤ α
1−α

, finally, then in view of the Gagliardo-Nirenberg inequality we can pick
C2 = C2(p) > 0 such that

‖ϕ‖
2p

p−α

L2α(Ω)
≤ C2‖∇ϕ‖2L2(Ω)‖ϕ‖

2α
p−α

L
2
p (Ω)

+ C2‖ϕ‖
2p

p−α

L
2
p (Ω)

for all ϕ ∈ W 1,2(Ω),

to see that again by Young’s inequality and (2.2),

(1− p)K2
f

∫

Ω
np(|∇c|2 + 1)−α|∇c|2

≤ (1− p)K2
f ·

{
∫

Ω
n

p

α

}α

·
{
∫

Ω
|∇c|2

}1−α

≤ (1− p)K2
fC

p−α

p

2 ·
{

‖∇n
p

2 ‖2L2(Ω)‖n
p

2 ‖
2α
p−α

L
2
p (Ω)

+ ‖n
p

2 ‖
2p

p−α

L
2
p (Ω)

}
p−α

p

·
{
∫

Ω
|∇c|2

}1−α

= (1− p)K2
fC

p−α

p

2 ·
{

p2C
pα

p−α

1

4

∫

Ω
np−2|∇n|2 + C

4
p−α

1

}
p−α

p

·
{
∫

Ω
|∇c|2

}1−α
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for all t ∈ (0, Tmax). Taking C3 = C3(p) > 0 such that in accordance with Young’s inequality we have

ab ≤ 1− p

p2C
pα

p−α

1

a
p

p−α + C3b
p

α for all a ≥ 0 and b ≥ 0,

we therefore obtain that for all t ∈ (0, Tmax),

(1− p)K2
f

∫

Ω
np(|∇c|2 + 1)−α|∇c|2

≤ 1− p

p2C
pα

p−α

1

·
{

p2C
pα

p−α

1

4

∫

Ω
np−2|∇n|2 + C

4
p−α

1

}

+ C3 ·
{

(1− p)K2
fC

p−α

p

2 ·
{
∫

Ω
|∇c|2

}1−α
}

p

α

=
1− p

4

∫

Ω
np−2|∇n|2 + (1− p)C

4−pα

p−α

1

p2
+ (1− p)

p

αK
2p
α

f C
p−α

α

2 C3 ·
{
∫

Ω
|∇c|2

}

p(1−α)
α

,

so that since, clearly,

{
∫

Ω
|∇c|2

}

p(1−α)
α

≤
∫

Ω
|∇c|2 + 1 for all t ∈ (0, Tmax)

due to the fact that p(1−α)
α

≤ 1, we readily infer (3.2) from (3.3) also for such p. �

Fortunately, the ill-signed contribution to the right-hand side of (3.2) is dominated by the dissipation
rate appearing in a zero-order testing procedure which operates on the second equation in (1.3), but
which unlike that to be pursued later when analyzing functionals of the form in (1.7) (see Lemma 4.3)
does not presuppose any quantitative regularity feature of the fluid field.

Lemma 3.2 Suppose that (1.2) is satisfied with some Kf > 0 and α > 0, and let p ∈ (0, 1), r ≥ 3
and M ≥ 1. Then there exists C(M) = C(M ; p, r) > 0 with the property that

d

dt

∫

Ω
(c+M)r +M

∫

Ω
|∇c|2 +

∫

Ω
(c+M)r ≤ p(1− p)

4

∫

Ω
np−2|∇n|2 +C(M) for all t ∈ (0, Tmax).

(3.4)

Proof. We fix q = q(p, r) > 1 such that

q <
r

r − p
, (3.5)

and observe that then the inequalities r > p+ 1 > 1 ensure that q < 1
1−p

and q < r, and that hence

pq

q − 1
> 1 and

2q(r − 1)

(q − 1)r
> 2. (3.6)

As furthermore clearly 2q
p

> 2, we may interpolate using the Gagliardo-Nirenberg inequality to find
C1 = C1(p, r) > 0 and C2 = C2(p, r) > 0 such that

‖ϕ‖
2q
q−1

L
2q
p (Ω)

≤ C1‖∇ϕ‖2L2(Ω)‖ϕ‖
2

q−1

L
2
p (Ω)

+ C1‖ϕ‖
2q
q−1

L
2
p (Ω)

for all ϕ ∈ W 1,2(Ω) (3.7)
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and
‖ϕ‖2

L
2q(r−1)
(q−1)r (Ω)

≤ C2‖∇ϕ‖2L2(Ω) + C2‖ϕ‖2L2(Ω) for all ϕ ∈ W 1,2(Ω). (3.8)

Moreover, relying on the left inequality in (3.6) we may invoke Young’s inequality to see that if we
abbreviate C3 :=

∫

Ω n0, then with some C4 = C4(p, r) > 0 we have

ab ≤ 1− p

pC
p

q−1

3

a
pq

q−1 + C4b
pq

pq−q+1 for all a ≥ 0 and b ≥ 0, (3.9)

and to appropriately make use of these selections, we multiply the second equation in (1.3) by (c +
M)r−1 and integrate by parts to find that

d

dt

∫

Ω
(c+M)r +

4(r − 1)

r

∫

Ω

∣

∣∇(c+M)
r
2

∣

∣

2

= −r

∫

Ω
c(c+M)r−1 + r

∫

Ω
n(c+M)r−1

= −r

∫

Ω
(c+M)r + rM

∫

Ω
(c+M)r−1 + r

∫

Ω
n(c+M)r−1 for all t ∈ (0, Tmax). (3.10)

Here by Young’s inequality,

rM

∫

Ω
(c+M)r−1 =

∫

Ω

{r(r − 2)

r − 1
(c+ 1)r

}
r−1
r ·

{

r
1
rM ·

(r − 1

r − 2

)
r−1
r
}

≤
∫

Ω

{

r − 1

r
·
{r(r − 2)

r − 1
(c+M)r

}

+
1

r
·
{

r
1
rM ·

(r − 1

r − 2

)
r−1
r
}r

}

= (r − 2)

∫

Ω
(c+M)r +

(r − 1

r − 2

)r−1
M r|Ω| for all t ∈ (0, Tmax), (3.11)

while combining the Hölder inequality with (3.7) and (3.9), we infer that according to (2.2) and our
definition of C3,

r

∫

Ω
n(c+M)r−1 ≤ r ·

{
∫

Ω
nq

}
1
q

·
{
∫

Ω
(c+M)

q(r−1)
q−1

}
q−1
q

= r‖n
p

2 ‖
2
p

L
2q
p (Ω)

‖(c+M)
r
2 ‖

2(r−1)
r

L
2q(r−1)
(q−1)r (Ω)

≤ C
q−1
pq

1 r ·
{

‖∇n
p

2 ‖2L2(Ω)‖n
p

2 ‖
2

q−1

L
2
p (Ω)

+ ‖n
p

2 ‖
2q
q−1

L
2
p (Ω)

}
q−1
q

· ‖(c+M)
r
2 ‖

2(r−1)
r

L
2q(r−1)
(q−1)r (Ω)

= C
q−1
pq

1 r ·
{

p2C
p

q−1

3

4

∫

Ω
np−2|∇n|2 + C

pq

q−1

3

}
q−1
pq

· ‖(c+M)
r
2 ‖

2(r−1)
r

L
2q(r−1)
(q−1)r (Ω)

≤ 1− p

pC
p

q−1

3

·
{

p2C
p

q−1

3

4

∫

Ω
np−2|∇n|2 + C

pq

q−1

3

}
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+C5‖(c+M)
r
2 ‖

2pq(r−1)
(pq−q+1)r

L
2q(r−1)
(q−1)r (Ω)

=
p(1− p)

4

∫

Ω
np−2|∇n|2 + (1− p)Cp

3

p
+ C5‖(c+M)

r
2 ‖

2pq(r−1)
(pq−q+1)r

L
2q(r−1)
(q−1)r (Ω)

(3.12)

for all t ∈ (0, Tmax), with C5 = C5(p, r) := C4 · (C
q−1
pq

1 r)
pq

pq−q+1 . We now employ (3.8) and then use

that according to (3.5) the positive number θ = θ(p, r) := pq(r−1)
(pq−q+1)r satisfies

θ − 1 = − r − (r − p)q

(pq − q + 1)r
< 0,

and hence θ > 1, to see once more by means of Young’s inequality that

C5‖(c+M)
r
2 ‖

2pq(r−1)
(pq−q+1)r

L
2q(r−1)
(q−1)r (Ω)

≤ Cθ
2C5 ·

{
∫

Ω
|∇(c+M)

r
2 |2 +

∫

Ω
(c+M)r

}θ

≤
∫

Ω
|∇(c+M)

r
2 |2 +

∫

Ω
(c+M)r + (Cθ

2C5)
1

1−θ for all t ∈ (0, Tmax).

Together with (3.12) and (3.11) inserted into (3.10), this shows that

d

dt

∫

Ω
(c+M)r +

{4(r − 1)

r
− 1

}

·
∫

Ω
|∇(c+M)

r
2 |2 +

{

r − (r − 2)− 1
}

·
∫

Ω
(c+M)r

≤ 1− p

4

∫

Ω
np−2|∇n|2 +

(r − 1

r − 2

)r−1
M r|Ω|+ (1− p)Cp

3

p
+ (Cθ

2C5)
1

1−θ for all t ∈ (0, Tmax)

and thereby establishes (3.4), because r− (r−2)−1 = 1, and because thanks to our restrictions r ≥ 3
and M ≥ 1,

{4(r − 1)

r
− 1

}

·
∫

Ω
|∇(c+M)

r
2 |2 = r(3r − 4)

4

∫

Ω
(c+M)r−2|∇c|2 ≥ 15

4
M r−2

∫

Ω
|∇c|2 ≥ M

∫

Ω
|∇c|2

for all t ∈ (0, Tmax). �

Among the consequences implied by an adequate linear combination of the inequalities provided by
the latter two lemmata, the following will be referred to below.

Lemma 3.3 Suppose that (1.2) holds with some Kf > 0 and α > 0. Then whenever p ∈ (0, 1)
satisfies (3.1) and r ≥ 3, one can find C = C(p, r) > 0 such that

∫

Ω
cr(·, t) ≤ C for all t ∈ (0, Tmax) (3.13)

and
∫ t+τ

t

∫

Ω
np−2|∇n|2 ≤ C for all t ∈ (0, Tmax − τ), (3.14)

where τ := min{1, 12Tmax}.
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Proof. We first apply Lemma 3.1 to fix C1 = C1(p) > 0 such that

− d

dt

∫

Ω
np +

p(1− p)

2

∫

Ω
np−2|∇n|2 ≤ C1

∫

Ω
|∇c|2 + C1 for all t ∈ (0, Tmax),

and then rely on Lemma 3.2 to find C2 = C2(p, r) > 0 fulfilling

d

dt

∫

Ω
(c+ C1)

r + C1

∫

Ω
|∇c|2 +

∫

Ω
(c+ C1)

r ≤ p(1− p)

4

∫

Ω
np−2|∇n|2 + C2 for all t ∈ (0, Tmax).

Therefore,

y(t) := −
∫

Ω
np(·, t) +

∫

Ω

(

c(·, t) + C1

)r

, t ∈ [0, Tmax),

and

h(t) :=
p(1− p)

4

∫

Ω
np−2(·, t)|∇n(·, t)|2, t ∈ (0, Tmax),

satisfy
y′(t) + y(t) + h(t) ≤ C1 + C2 for all t ∈ (0, Tmax), (3.15)

so that by nonnegativity of h,

y(t) ≤ y(0)e−t + (C1 + C2)

∫ t

0
e−(t−s)h(s)ds

= y(0)e−t + (C1 + C2) · (1− e−t)

≤ C3 = C3(p, r) :=

∫

Ω
(c0 + C1)

r + C1 + C2 for all t ∈ (0, Tmax). (3.16)

As −y(t) ≤
∫

Ω np(·, t) and
∫

Ω
np ≤ |Ω|1−p ·

{
∫

Ω
n

}p

= C4 = C4(p) := |Ω|1−p ·
{
∫

Ω
n0

}p

for all t ∈ (0, Tmax) (3.17)

by the Hölder inequality and (2.2), combining (3.15) with (3.16) we thereafter obtain that

∫ t+τ

t

h(s)ds ≤ y(t)− y(t+ τ)−
∫ t+τ

t

y(s)ds+ (C1 + C2)τ

≤ C3 + C4 + C4τ + (C1 + C2)τ

≤ C1 + C2 + C3 + 2C4 for all t ∈ (0, Tmax − τ)

due to the restriction τ ≤ 1. This implies (3.14), whereas (3.13) results from (3.16) together with
(3.17). �

Through an interpolation along with (2.2), the weighted first-order estimate in (3.14) provides a bound
for n with respect to some spatio-temporal Lebesgue norm that combines square integrability in time
with some superlinear summability feature in space:
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Corollary 3.4 If (1.2) holds with some Kf > 0 and α > 0, and if p ∈ (0, 1) satisfies (3.1), then there
exists C = C(p) > 0 such that

∫ t+τ

t

‖n(·, s)‖2
L

2
2−p (Ω)

ds ≤ C for all t ∈ (0, Tmax − τ), (3.18)

where again τ := min{1, 12Tmax}.

Proof. Using that 4
p(2−p) >

2
p
, we employ the Gagliardo-Nirenberg inequality to fix C1 = C1(p) > 0

such that

‖ϕ‖
4
p

L
4

p(2−p) (Ω)
≤ C1‖∇ϕ‖2L2(Ω)‖ϕ‖

4−2p
p

L
2
p (Ω)

+ C1‖ϕ‖
4
p

L
2
p (Ω)

for all ϕ ∈ W 1,2(Ω),

which when applied to ϕ := n
p

2 shows that

∫ t+τ

t

‖n(·, s)‖2
L

2
2−p (Ω)

ds =

∫ t+τ

t

‖n
p

2 (·, s)‖
4
p

L
4

p(2−p) (Ω)

ds

≤ C1

∫ t+τ

t

‖∇n
p

2 (·, s)‖2L2(Ω)‖n
p

2 (·, s)‖
4−2p

2

L
2
p (Ω)

ds

+C1

∫ t+τ

t

‖n
p

2 (·, s)‖
4
p

L
2
p (Ω)

ds

=
p2C1

4
·
{
∫

Ω
n0

}2−p

·
∫ t+τ

t

∫

Ω
np−2|∇n|2

+C1τ ·
{
∫

Ω
n0

}2

for all t ∈ (0, Tmax)

according to (2.2). The claim therefore results from the estimate in (3.14). �

In order to make appropriate use of the latter in the context of the announced analysis of the Navier-
Stokes system in (1.3), let us recall from [42, Lemma 3.4] the following elementary result concerned
with elementary calculus.

Lemma 3.5 Let T ∈ (0,∞] and τ ∈ (0, T ), and suppose that h ∈ L1
loc((0, T )) is nonnegative and such

that

∫ t+τ

t

h(s)ds ≤ b for all t ∈ (0, T − τ)

with some b > 0. Then whenever λ > 0,

∫ t

0
e−λ(t−s)h(s)ds ≤ b

1− e−λτ
for all t ∈ (0, T ).

By means of the latter, we can now utilize the outcome of Corollary 3.4 to derive the following basic
regularity information on the fluid component.
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Lemma 3.6 Assume that there exist Kf > 0 and α > 0 such that (1.2) holds. Then one can fix
C > 0 with the property that

∫

Ω
|u(·, t)|2 ≤ C for all t ∈ (0, Tmax) (3.19)

and
∫ t+τ

t

∫

Ω
|∇u|2 ≤ C for all t ∈ (0, Tmax − τ), (3.20)

again with τ := min{1, 12Tmax}.

Proof. We pick any p ∈ (0, 1) fulfilling (3.1), and then infer from Corollary 3.4 that there exists
C1 > 0 satisfying

∫ t+τ

t

‖n(·, s)‖2
L

2
2−p (Ω)

ds ≤ C1 for all t ∈ (0, Tmax − τ). (3.21)

Moreover, by continuity of the embedding W 1,2(Ω) →֒ L
2
p (Ω) we can employ an associated Poincaré-

Sobolev inequality to fix C2 > 0 with the property that

‖ϕ‖
L

2
p (Ω)

+ ‖ϕ‖L2(Ω) ≤ C2‖∇ϕ‖L2(Ω) for all ϕ ∈ W
1,2
0 (Ω;R2), (3.22)

and abbreviating C3 := ‖∇Φ‖L∞(Ω), we then test the third equation in (1.3) against u and invoke the
Hölder inequality along with (3.22) and Young’s inequality to see that

1

2

d

dt

∫

Ω
|u|2 +

∫

Ω
|∇u|2 =

∫

Ω
nu · ∇Φ

≤ C3‖n‖
L

2
2−p (Ω)

‖u‖
L

2
p (Ω)

≤ C2C3‖n‖
L

2
2−p (Ω)

‖∇u‖L2(Ω)

≤ 1

2

∫

Ω
|∇u|2 + C2

2C
2
3

2
‖n‖2

L
2

2−p (Ω)
for all t ∈ (0, Tmax).

Again using (3.22), we thus obtain that with λ := 1
2C2

2
we have

d

dt

∫

Ω
|u|2 + λ

∫

Ω
|u|2 + 1

2

∫

Ω
|∇u|2 ≤ h(t) := C2

2C
2
3‖n‖2

L
2

2−p (Ω)
for all t ∈ (0, Tmax), (3.23)

so that since
∫ t+τ

t

h(s)ds ≤ C4 := C1C
2
2C

2
3 for all t ∈ (0, Tmax − τ) (3.24)

by (3.21), we firstly infer upon applying Lemma 3.5 that

∫

Ω
|u|2 ≤ e−λt ·

∫

Ω
|u0|2 +

∫ t

0
e−λ(t−s)h(s)ds

≤ C5 :=

∫

Ω
|u0|2+

C4

1− e−λτ
for all t ∈ (0, Tmax).
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Besides directly establishing (3.19), due to (3.23) and (3.24) this furthermore shows that

1

2

∫ t+τ

t

∫

Ω
|∇u|2 ≤

∫

Ω
|u(·, t)|2 +

∫ t+τ

t

h(s)ds ≤ C5 + C4 for all t ∈ (0, Tmax − τ)

and hence also implies (3.20). �

4 An advanced quasi-entropy property. Estimates in Lp×W 1,2q×W 1,2

for some p > 2 and q > 1

This section will be devoted to the derivation of some time-independent integrability properties for n,
and espcially also for the signal gradient ∇c, in some superquadratic Lebesgue spaces. This will be
achieved in Lemma 4.8 by analyzing a functional which extends that from (1.7) through an additional
summand

∫

Ω |∇u|2, and in the course of an appropriate estimation of the respective contributions
stemming from the interaction mechanisms in (1.3) we shall make essential use the regularity features
of u asserted by Lemma 3.6 together with the Lr bounds for c from Lemma 3.3.

4.1 Interpolating between zero-order and weighted second-order expressions

In order to prepare a suitable exploitation of this latter information currently available for c, let
us briefly derive a functional inequality which interpolates gradients between weighted L2 norms of
Hessians and some zero-order Lebesgue norms. Though being quite in the spirit of precedents that
involve L∞ norms of the considered functions ([40, Lemma 3.8]), their particular preciousness in the
context of our present purposes originates from their meaningful applicability already in situations
when Lr bounds are a priori known for some finite r; in contrast to a previously obtained variant of a
similar flavor ([36, Lemma 2.7]), our result does not involve any additional zero-order summands on
its right-hand side, and moreover is fully homogeneous with respect to multiplication of the estimated
function by constant factors.

Lemma 4.1 Let q > 1 and λ > 2 be such that λ < 2q + 2. Then there exists C = C(q, λ) > 0 such
that for all ϕ ∈ C2(Ω) fulfilling ∂ϕ

∂ν
= 0 on ∂Ω,

∫

Ω
|∇ϕ|λ ≤ C ·

{
∫

Ω
|∇ϕ|2q−2|D2ϕ|2

}
λ

2q+2

·
{
∫

Ω
|ϕ|

2λ
2q+2−λ

}
2q+2−λ

2q+2

. (4.1)

Proof. Since ∂ϕ
∂ν

= 0 on ∂Ω, an integration by parts followed by an application of the Cauchy-

Schwarz inequality shows that since |∆ϕ| ≤
√
2|D2ϕ| in Ω,

∫

Ω
|∇ϕ|λ =

∫

Ω
|∇ϕ|λ−2∇ϕ · ∇ϕ

= −
∫

Ω
ϕ∇ϕ · ∇|∇ϕ|λ−2 −

∫

Ω
ϕ|∇ϕ|λ−2∆ϕ

= −(λ− 2)

∫

Ω
ϕ|∇ϕ|λ−4∇ϕ · (D2ϕ · ∇ϕ)−

∫

Ω
ϕ|∇ϕ|λ−2∆ϕ
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≤ (λ− 2 +
√
2)

∫

Ω
|ϕ| · |∇ϕ|λ−2 · |D2ϕ|

≤ (λ− 2 +
√
2) ·

{
∫

Ω
|∇ϕ|2q−2|D2ϕ|2

}
1
2

·
{
∫

Ω
ϕ2|∇ϕ|2λ−2q−2

}
1
2

. (4.2)

Here we may rely on our assumption λ < 2q + 2 to infer that by the Hölder inequality,

{
∫

Ω
ϕ2|∇ϕ|2λ−2q−2

}
1
2

≤
{
∫

Ω
|ϕ|

2λ
2q+2−λ

}
2q+2−λ

2λ

·
{
∫

Ω
|∇ϕ|λ

}
λ−q−1

λ

,

whence (4.2) implies that

{
∫

Ω
|∇ϕ|λ

}
q+1
λ

=

{
∫

Ω
|∇ϕ|λ

}1−λ−q−1
λ

≤ (λ− 2 +
√
2) ·

{
∫

Ω
|∇ϕ|2q−2|D2ϕ|2

}
1
2

·
{
∫

Ω
|ϕ|

2λ
2q+2−λ

}
2q+2−λ

2λ

,

and that thus (4.1) holds with C(q, λ) := (λ− 2 +
√
2)

λ
q+1 . �

As a particular implication specifically adapted to our context, let us note the following.

Corollary 4.2 Assume (1.2) with some Kf > 0 and α > 0, and let q ≥ 1 and λ > 0 be such that
λ < 2q + 2. Then for all η > 0 one can find C(η) = C(η; q, λ) > 0 such that

∫

Ω
|∇c|λ ≤ η

∫

Ω
|∇c|2q−2|D2c|2 + C(η) for all t ∈ (0, Tmax). (4.3)

Proof. Due to the Hölder inequality it is sufficient to consider the case when λ > 2, in which
since λ

2q+2 < 1, an application of Young’s inequality to (4.1) shows that given any η > 0 one can pick
C1 = C1(η, q, λ) > 0 fulfilling

∫

Ω
|∇c|λ ≤ η

∫

Ω
|∇c|2q−2|D2c|2 + C1

∫

Ω
c

2λ
2q+2−λ for all t ∈ (0, Tmax).

As from Lemma 3.3 we know that supt∈(0,Tmax)

∫

Ω c
2λ

2q+2−λ (·, t) is finite, this implies (4.3). �

4.2 Analyzing
∫

Ω
np +

∫

Ω
|∇c|2q +

∫

Ω
|∇u|2 for some p > 2 and q > 1

Let us now turn our attention to the major part of this section by noticing the preliminary outcomes
of three testing procedures applied to (1.3). For convenience in notation, we may and will assume
here that the exponent α in (1.2) be such that α < 1.

Lemma 4.3 Assume (1.2) with some Kf > 0 and α ∈ (0, 1), and let p > 2 and q > 2 − α. Then
there exists C = C(p, q) > 0 such that for all t ∈ (0, Tmax) we have

d

dt

∫

Ω
np +

∫

Ω
np−2|∇n|2 ≤ C

∫

Ω
n

p(q−1)−2(1−α)
q+α−2 + C

∫

Ω
|∇c|2·

p(q−1)−2(1−α)
p−2 + C (4.4)
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and

d

dt

∫

Ω
|∇c|2q+

∫

Ω
|∇c|2q−2|D2c|2 ≤ C

∫

Ω
n

p(q−1)−2(1−α)
q+α−2 +C

∫

Ω
|∇c|2·

p(q−1)−2(1−α)
p−2 +C

∫

Ω
|∇c|2q|∇u| (4.5)

as well as
d

dt

∫

Ω
|∇u|2 +

∫

Ω
|Au|2 ≤ C ·

{
∫

Ω
|∇u|2

}2

+ C

∫

Ω
n2 + C (4.6)

Proof. In view of the first equation from (1.3), using (1.2) along with our assumption that α < 1
we see that due to Young’s inequality,

1

p

d

dt

∫

Ω
np + (p− 1)

∫

Ω
np−2|∇n|2 = (p− 1)

∫

Ω
np−1f(|∇c|2)∇n · ∇c

≤ p− 1

2

∫

Ω
np−2|∇n|2 + p− 1

2

∫

Ω
npf2(|∇c|2)|∇c|2

≤ p− 1

2

∫

Ω
np−2|∇n|2

+
(p− 1)K2

f

2

∫

Ω
np|∇c|2−2α for all t ∈ (0, Tmax),

so that since p ≥ 2 implies that p(p−1
2 ≥ 1, we obtain that

d

dt

∫

Ω
np +

∫

Ω
np−2|∇n|2 ≤

p(p− 1)K2
f

2

∫

Ω
np|∇c|2−2α for all t ∈ (0, Tmax). (4.7)

Here we note that our hypothesis p > 2 ensures that θ := p(q−1)−2(1−α)
p(q+α−2) satisfies

θ − 1 =
(p− 2)(1− α)

p(q + α− 2)
> 0,

whence a further application of Young’s inequality shows that
∫

Ω
np|∇c|2−2α ≤

∫

Ω
npθ +

∫

Ω
|∇c|

(2−2α)θ
θ−1 for all t ∈ (0, Tmax). (4.8)

Observing that pθ = p(q−1)−2(1−α)
q+α−2 and that

(2− 2α)θ

θ − 1
= 2 · 1− α

1− p(q+α−2)
p(q−1)−2(1−α)

= 2 · p(q − 1)− 2(1− α)

p− 2
,

we thus infer (4.4) from (4.8) when inserted into (4.7).

To derive (4.5), we use that according to an argument due to [20, Lemma 3.2] we can find C1 =
C1(q) > 0 such that

−1

2

∫

Ω
|∇c|2q−2∂|∇c|2

∂ν
≤ 2(q − 1)

q2

∫

Ω

∣

∣

∣
∇|∇c|q

∣

∣

∣

2
+ C1

=
q − 1

2

∫

Ω
|∇c|2q−4

∣

∣

∣
∇|∇c|2

∣

∣

∣

2
+ C1 for all t ∈ (0, Tmax),
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to see intergating by parts in the second equation from (1.3) that since ∇c · ∇∆c = 1
2∆|∇c|2 − |D2c|2

and |∇c| ≤
√
2|D2c|,

1

2q

d

dt

∫

Ω
|∇c|2q =

∫

Ω
|∇c|2q−2∇c · ∇

{

∆c− c+ n− u · ∇c
}

=
1

2

∫

Ω
|∇c|2q−2∆|∇c|2 −

∫

Ω
|∇c|2q−2|D2c|2 −

∫

Ω
|∇c|2q

−
∫

Ω
n∇ · (|∇c|2q−2∇c)−

∫

Ω
|∇c|2q−2∇c · ∇(u · ∇c)

= −q − 1

2

∫

Ω
|∇c|2q−4

∣

∣

∣
∇|∇c|2

∣

∣

∣

2
− 1

2

∫

∂Ω
|∇c|2q−2∂|∇c|2

∂ν

−
∫

Ω
|∇c|2q−2|D2c|2 −

∫

Ω
|∇c|2q

−
∫

Ω
n ·

{

2(q − 1)|∇c|2q−4∇c · (D2c · ∇c)− |∇c|2q−2∆c
}

−
∫

Ω
|∇c|2q−2∇c · (∇u · ∇c)

≤ C1 −
∫

Ω
|∇c|2q−2|D2c|2

+(2q − 2 +
√
2)

∫

Ω
n|∇c|2q−2|D2c|+

∫

Ω
|∇c|2q|∇u| for all t ∈ (0, Tmax), (4.9)

because for all t ∈ (0, Tmax),
∫

Ω
|∇c|2q−2∇c · ∇(u · ∇c)−

∫

Ω
|∇c|2q−2∇c · (∇u · ∇c) =

∫

Ω
|∇c|2q∇c · (D2c · u)

=
1

2q

∫

Ω
u · ∇|∇c|2q = 0

by solenoidality of u. Since Young’s inequality asserts that

(2q − 2 +
√
2)

∫

Ω
n|∇c|2q−2|D2c| ≤ 1

2q

∫

Ω
|∇c|2q−2|D2c|2

+
q(2q − 2 +

√
2)2

2

∫

Ω
n2|∇c|2q−2 for all t ∈ (0, Tmax),

and that here due to the fact that λ := p(q−1)−2(1−α)
2(q+α−2) satisfies λ > θ > 1 we have

∫

Ω
n2|∇c|2q−2 ≤

∫

Ω
n2λ +

∫

Ω
|∇c|(2q−2)λλ− 1 for all t ∈ (0, Tmax),

from (4.9) we readily obtain (4.5) upon noticing that 2q ≥ 1 and computing

2λ =
p(q − 1)− 2(1− α)

q + α− 2
as well as

(2q2)λ

λ− 1
= 2 · q − 1

1− 2(q+α−2)
p(q−1)−2(1−α)

= 2 · p(q − 1)− 2(1− α)

p− 2
.

(4.10)
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Finally, testing the Navier-Stokes subsystem of (1.3) by Au we find that thanks to Young’s inequality,

1

2

d

dt

∫

Ω
|∇u|2 +

∫

Ω
|Au|2 = −

∫

Ω
Au · P[(u · ∇)u] +

∫

Ω
Au · P[n∇Φ]

≤ 1

4

∫

Ω
|Au|2 + 2

∫

Ω
|P[(u · ∇)u]|2 + 2

∫

Ω
|P[n∇Φ]|2

≤ 1

4

∫

Ω
|Au|2 + 2

∫

Ω
|(u · ∇)u|2 + 2

∫

Ω
|n∇Φ|2

≤ 1

4

∫

Ω
|Au|2 + 2‖u‖2L∞(Ω)

∫

Ω
|∇u|2 + 2‖∇Φ‖2L∞(Ω)

∫

Ω
n2 (4.11)

for all t ∈ (0, Tmax), where on the basis of our assumption on f we may clearly invoke Lemma 3.6
to infer finiteness of supt∈(0,Tmax)

∫

Ω |u(·, t)|2, and to thus see by means of a Gagliardo-Nirenberg
interpolation and Young’s inequality that with some C2 > 0 and C3 > 0 we have

2‖u‖2L∞(Ω)

∫

Ω
|∇u|2 ≤ C2‖Au‖L2(Ω)‖u‖L2(Ω)

∫

Ω
|∇u|2

≤ 1

4

∫

Ω
|Au|2 + C3 ·

{
∫

Ω
|∇u|2

}2

for all t ∈ (0, Tmax).

We therefore obtain (4.6) as a consequence of (4.11). �

Next intending to estimate the expressions on the right-hand sides in (4.4), (4.5) and (4.6) through
appropriate interpolation, we shall first focus on the integrals in (4.4) and (4.5) that involve n. By
merely resorting to mass conservation as the only time-independent information on n currently at
hand, we see that these can favorably be controlled by means of the corresponding dissipation rate in
(4.4) when the exponent q is suitably large relative to p:

Lemma 4.4 Let α ∈ (0, 1), p > 2 and

q > p(1− α) + α. (4.12)

Then for all η > 0 there exists C(η) = C(η; p, q) > 0 such that
∫

Ω
n

p(q−1)−2(1−α)
q+α−2 ≤ η

∫

Ω
np−2|∇n|2 + C(η) for all t ∈ (0, Tmax). (4.13)

Proof. We first note that (4.12) together with our assumption p > 2 implies that q > (1−α)·2+α =
2− α, and that thus also

p(q − 1)− 2(1− α)− (q + α− 2) > 2(q − 1)− 2(1− α)− (q + α− 2) = q + α− 2 > 0,

whence θ := p(q−1)−2(1−α)
q+α−2 is well-defined with θ > 1. Therefore, the Gagliardo-Nirenberg inequality

in conjunction with (2.2) yields C1 = C1(p, q) > 0 and C2 = C2(p, q) > 0 such that
∫

Ω
nθ = ‖n

p

2 ‖
2θ
p

L
2θ
p (Ω)

≤ C1‖∇n
p

2 ‖
2(θ−1)

p

L2(Ω)
‖n

p

2 ‖
2
p

L
2
p (Ω)

+ C1‖n
p

2 ‖
2θ
p

L
2
p (Ω)

≤ C2‖∇n
p

2 ‖
2(θ−1)

p

L2(Ω)
+ C2 for all t ∈ (0, Tmax),
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so that since (4.12) furthermore ensures that

2(θ − 1)

p
− 2 =

2

p
· p(1− α) + α− q

q + α− 2
< 0,

and that thus 2(θ−1)
p

< 2, an application of Young’s inequality readily yields the claim. �

On the other hand, requiring q not to be too large as compared to p enables us to directly apply
Corollary 4.2 in order to similarly estimate the integrals merely involving the taxis gradient against
the dissipated quantity in (4.5).

Lemma 4.5 Assume (1.2) with some Kf > 0 and α ∈ (0, 1), and let p > 2 and q > 2 − α be such
that

q < p− α. (4.14)

Then given any η > 0 one can pick C(η) = C(η; p, q) > 0 such that

∫

Ω
|∇c|2·

p(q−1)−2(1−α)
p−2 ≤ η

∫

Ω
|∇c|2q−2|D2c|2 + C(η) for all t ∈ (0, Tmax). (4.15)

Proof. We only need to observe that since p > 2, the inequalities q > 2−α and q < p−α warrant
that

p(q − 1)− 2(1− α) > p(1− α)− 2(1− α) > 0

and

2 · p(q − 1)− 2(1− α)

p− 2
− (2q + 2) =

4(q + α− p)

p− 2
> 0,

respectively, so that λ := 2 · p(q−1)−2(1−α)
p−2 is positive with λ < 2q + 2. Therefore, namely, the claim

results from Corollary 4.2. �

Apart from that, let us prepare our subsequent estimation of the rightmost summand in (4.5) by the
following two lemmata, the first of which again quite trivially results from Corollary 4.2 when q is
suitably small.

Lemma 4.6 Assume (1.2) with some Kf > 0 and α > 0, and let q ≥ 1 be such that

q < 2. (4.16)

Then for all η > 0 there exists C(η) = C(η; q) > 0 with the property that

∫

Ω
|∇c|3q ≤ η

∫

Ω
|∇c|2q−2|D2c|2 + C(η) for all t ∈ (0, Tmax). (4.17)

Proof. This immediately follows from Corollary 4.2, because (4.16) warrants that 2q− (2q+ 2) =
q − 2 < 0. �

Secondly, the corresponding fluid velocity gradient will be controlled by making use of the following
result that relies on the L2 bound for u provided by Lemma 3.6.
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Lemma 4.7 Assume that (1.2) be satisfied with some Kf > 0 and α > 0. Then there exists C > 0
such that

∫

Ω
|∇u|3 ≤ C

∫

Ω
|Au|2 for all t ∈ (0, Tmax). (4.18)

Proof. Since well-known regularity features of the Stokes operator guarantee that ‖A(·)‖L2(Ω)

defines a norm equivalent to ‖·‖W 2,2(Ω) on D(A) ([31]), by means of the Gagliardo-Nirenberg inequality
we see that with some C1 > 0 and C2 > 0 we have

∫

Ω
|∇u|3 ≤ C1‖u‖2W 2,2(Ω)‖u‖L2(Ω) ≤ C2‖Au‖2L2(Ω)‖u‖L2(Ω) for all t ∈ (0, Tmax).

Due to the boundedness property in (3.19) this already establishes (4.18). �

It now turns out that if one last time we adequately make explicit use of our overall assumption
on validity of (1.2) with some positive α, then we can find p > 2 and q > 1 in such a way that
the assumptions (4.12), (4.14) and (4.16) are simultaneously satisfied. We may therefore derive the
following from a combination of Lemma 4.3 with Lemma 4.4–Lemma 4.7.

Lemma 4.8 Suppose that (1.2) holds with some Kf > 0 and α > 0. Then there exist p > 2, q > 1
and C > 0 such that

∫

Ω
np(·, t) ≤ C for all t ∈ (0, Tmax) (4.19)

and
∫

Ω
|∇c(·, t)|2q ≤ C for all t ∈ (0, Tmax) (4.20)

as well as
∫

Ω
|∇u(·, t)|2 ≤ C for all t ∈ (0, Tmax). (4.21)

Proof. Assuming without loss of generality that α < 1, we fix any q ∈ (2−α, 2) and use that then

q − α

1− α
− (q + α) =

α · (q + α− 2)

1− α
> 0

in choosing p ∈ (q + α, q−α
1−α

). Then necessarily p > (2− α) + α = 2, so that Lemma 4.3 applies so as
to yield C1 > 0 such that

d

dt

{
∫

Ω
np +

∫

Ω
|∇c|2q +

∫

Ω
|∇u|2

}

+

∫

Ω
np−2|∇n|2 +

∫

Ω
|∇c|2q−2|D2c|2 +

∫

Ω
|Au|2

≤ C1 + C1

∫

Ω
n

p(q−1)−2(1−α)
q+α−2 + C1

∫

Ω
n2

+C1

∫

Ω
|∇c|2·

p(q−1)−2(1−α)
p−2

+C1

∫

Ω
|∇c|2q|∇u|+ C1 ·

{
∫

Ω
|∇u|2

}2

for all t ∈ (0, Tmax). (4.22)
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To derive (4.19)-(4.21) from this, we employ Lemma 3.6 to fix C2 > 0 such that

h(t) :=

{

C1

∫

Ω |∇u(·, t)|2, t ∈ (0, Tmax),

0, t ∈ R \ (0, Tmax),

has the property that again with τ := min{1, 12Tmax} we have

∫ t+τ

t

h(s)ds ≤ C2 for all t ∈ R, (4.23)

and thereupon let
B := 2C2. (4.24)

Then observing that p(q−1)−2(1−α)
q+α−2 − p = (p−2)(1−α)

q+α−2 > 0 and hence 2 < p <
p(q−1)−2(1−α)

q+α−2 , by using
Young’s inequality along with Lemma 4.4 we can find C3 > 0 fulfilling

B

∫

Ω
np + C1

∫

Ω
n

p(q−1)−2(1−α)
q+α−2 + C1

∫

Ω
n2 ≤ (B + 2C1)

∫

Ω
n

p(q−1)−2(1−α)
q+α−2 + (B + C1)|Ω| (4.25)

≤
∫

Ω
np−2|∇n|2 + C3 for all t ∈ (0, Tmax).(4.26)

Moreover, taking C4 > 0 such that in accordance with Lemma 4.7 we have

∫

Ω
|∇u|3 ≤ C4

∫

Ω
|Au|2 for all t ∈ (0, Tmax),

in view of Young’s inequality we obtain that

B

∫

Ω
|∇u|2 + 1

2C4

∫

Ω
|∇u|3 =

(4C4

3

)
2
3
B

∫

Ω

{ 3

4C4
|∇u|3

}
2
3
+

1

2C4

∫

Ω
|∇u|3

≤ 2

3
·
∫

Ω

{ 3

4C4
|∇u|3

}

+
1

3
·
{(4C4

3

)
2
3
M

}3
|Ω|+ 1

2C4

∫

Ω
|∇u|3

=
1

C4

∫

Ω
|∇u|3 + C5

≤
∫

Ω
|Au|2 + C5 for all t ∈ (0, Tmax) (4.27)

with C5 := 1
3 ·

(

4C4
3

)2
M3|Ω|. Writing C6 := 2

3 ·
{(

2C4
3

)
1
3
C1

}
3
2
, we thereafter combine Young’s

inequality with Lemma 4.6 and Lemma 4.5 to infer the existence of C7 > 0 satisfying

B

∫

Ω
|∇c|2q + C6

∫

Ω
|∇c|3q + C1

∫

Ω
|∇c|2·

p(q−1)−2(1−α)
p−2

≤ (B + C6)

∫

Ω
|∇c|3q + C1

∫

Ω
|∇c|2·

p(q−1)−2(1−α)
p−2

≤
∫

Ω
|∇c|2q−2|D2c|+ C7 for all t ∈ (0, Tmax), (4.28)
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so that since, again by Young’s inequality,

C1

∫

Ω
|∇c|2q|∇u| =

∫

Ω

{ 3

2C4
|∇u|3

}
1
3 ·

{(2C4

3

)
1
3
C1|∇c|2q

}

≤ 1

3
·
∫

Ω

{ 3

2C4
|∇u|3

}

+
2

3
·
∫

Ω

{(2C4

3

)
1
3
C1|∇c|2q

}
3
2

=
1

2C4

∫

Ω
|∇u|3 + C6

∫

Ω
|∇c|3q for all t ∈ (0, Tmax),

upon collecting (4.25), (4.27) and (4.28) we conclude from (4.22) that

y(t) :=

∫

Ω
np(·, t) +

∫

Ω
|∇c(·, t)|2q +

∫

Ω
|∇u(·, t)|2, t ∈ [0, Tmax),

has the property that

y′(t) +By(t) ≤ h(t)y(t) + C8 for all t ∈ (0, Tmax) (4.29)

with C8 := C1 + C3 + C5 + C7.

To proceed from this, we note that if Tmax ≤ 2 and hence τ = 1
2Tmax, then (4.23) implies that

∫ Tmax

0
h(t)dt =

∫ τ

0
h(t)dt+

∫ 2τ

τ

h(t)dt ≤ 2C2,

and that in the case when Tmax > 2 and thus τ = 1, for eack positive integer N and any k ∈
{0, ..., N − 1} we similarly obtain from (4.23) that

∫ N

k

h(t)dt ≤ C2 · (N − k),

meaning that for any such N and k,

∫ t

s

h(σ)dσ ≤ C2 ·
{

N − (k − 1)
}

≤ C2 · (t− s) + 2C2 for all t ∈ (N − 1, N ] and s ∈ (k − 1, k].

Therefore, in both these cases we find that

∫ t

s

h(σ)dσ ≤ C2 · (t− s) + 2C2 for all t ∈ (0, Tmax) and each s ∈ [0, t),

so that an integration of (4.29) shows that due to (4.24),

y(t) ≤ y(0)e
∫ t

0 (h(σ−B)dσ + C8

∫ t

0
e
∫ t

s
(h(σ)−B)dσds

≤ y(0)eC2t+2C2−Bt + C8

∫ t

0
eC2·(t−s)+2C2−B·(t−s)ds
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= y(0)e2C2 · e−B
2
t + C8e

2C2

∫ t

0
e−

B
2
(t−s)ds

= y(0)e2C2 · e−B
2
t +

2C8e
2C2

B
· (1− e−

B
2
t)

≤ y(0)e2C2 +
2C8e

2C2

B
for all t ∈ (0, Tmax).

By definition of y, this yields (4.19)-(4.21). �

5 Bounds for Aϑu in L2 and for n in L∞. Proof of Theorem 1.1

The following consequence of the integrability features in (4.19) and (4.21) on further fluid regularity
is quite straightforward.

Lemma 5.1 Assume (1.2) with some Kf > 0 and α > 0. Then for all ϑ ∈ (12 , 1) there exists
C = C(θ) > 0 such that

‖Aϑu(·, t)‖L2(Ω) ≤ C for all t ∈ (0, Tmax). (5.1)

Proof. Since ϑ < 1 and thus 3
2 − ϑ > 1

2 , we can pick r = r(ϑ) ∈ (1, 2) suitably close to 2 such that
1
r
< 3

2 − ϑ. Then by continuity of the embedding W 1,2(Ω) →֒ L
2r
2−r (Ω), utilizing (4.21) we see that

with some C1 = C1(ϑ) > 0 and C2 = C2(ϑ) > 0 we have

‖(u · ∇)u‖Lr(Ω) ≤ C1‖u‖
L

2r
2−r (Ω)

‖∇u‖L2(Ω) ≤ C2 for all t ∈ (0, Tmax),

which in conjunction with (4.19) and the boundedness of the Helmholtz projection on Lr(Ω;R2) ([13])
ensures the existence of C3 = C3(ϑ) > 0 such that h := −P[(u · ∇)u] + P[n∇Φ] satisfies

‖h(·, t)‖Lr(Ω) ≤ C3 for all t ∈ (0, Tmax).

Therefore, recalling known smoothing properties of the Stokes semigroup ([11], [15, p.201]) we obtain
that with some C4 = C4(ϑ) > 0 and µ > 0,

‖Aϑu(·, t)‖L2(Ω) =

∥

∥

∥

∥

Aϑe−tAu0 +

∫ t

0
e−(t−s)Ah(·, s)ds

∥

∥

∥

∥

L2(Ω)

≤ ‖Aϑu0‖L2(Ω) + C4

∫ t

0
(t− s)−ϑ− 1

r
+ 1

2 e−µ(t−s)‖h(·, s)‖Lr(Ω)ds

≤ ‖Aϑu0‖L2(Ω) + C3C4

∫ ∞

0
σ−ϑ− 1

r
+ 1

2 e−µσdσ

for all t ∈ (0, Tmax). As the latter integral is finite due to the inequality −ϑ− 1
r
+ 1

2 > −1, in view of
the inclusion u0 ∈ D(Aϑ) asserted by (1.4) this entails (5.1). �

Along with the fact that in (4.19) and (4.20) we have p > 2 and 2q > 2, the latter now provides
sufficient information on regularity in the cross-diffusive and transport-related contributions to the
first equation from (1.3) to ensure boundedness of n actually with respect to the spatial L∞ norm.
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Lemma 5.2 If (1.2) is satisfied with some Kf > 0 and α > 0, then there exists C > 0 fulfilling

‖n(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax). (5.2)

Proof. Using (1.2) and the fact that D(Aϑ) →֒ L∞(Ω) for all ϑ ∈ (12 , 1) ([14], [17]), on the
basis of (4.19), (4.20) and (5.1) we readily infer the existence of r > 2 and C1 > 0 such that h :=
f(|∇c|2)∇c+ nu satisfies

‖h(·, t)‖Lr(Ω) ≤ C1 for all t ∈ (0, Tmax). (5.3)

We then take any λ ∈ (2, r) and employ the comparison principle along with a known smoothing
estimate for the Neumann heat semigroup (et∆)t≥0 on Ω ([12]) to see that with some C2 > 0 and
µ > 0 we have

‖n(·, t)‖L∞(Ω) =

∥

∥

∥

∥

et∆n0 −
∫ t

0
e(t−s)∆∇ ·

{

n(·, s)h(·, s)
}

ds

∥

∥

∥

∥

L∞(Ω)

≤ ‖n0‖L∞(Ω) + C2

∫ t

0
(t− s)−

1
2
− 1

λ e−µ(t−s)‖n(·, s)h(·, s)‖Lλ(Ω)ds for all t ∈ (0, Tmax).

Since according to (2.2) and (5.3) we can estimate

‖n(·, s)h(·, s)‖Lλ(Ω) ≤ ‖n(·, s)‖θL∞(Ω)‖n(·, s)‖1−θ
L1(Ω)

‖h(·, s)‖Lr(Ω)

≤ C1 ·
{
∫

Ω
n0

}1−θ

· ‖n(·, s)‖θL∞(Ω) for all s ∈ (0, Tmax)

with θ := rλ−r+λ
rλ

∈ (0, 1), this implies that

sup
t∈(0,T )

‖n(·, t)‖L∞(Ω) ≤ C3 + C3 ·
{

sup
t∈(0,T )

‖n(·, t)‖L∞(Ω)

}θ

for all T ∈ (0, Tmax),

with

C3 := max

{

‖n0‖L∞(Ω) , C1C2 ·
{

∫

Ω
n0

}1−θ

·
∫ ∞

0
σ− 1

2
− 1

λ e−µσdσ

}

being finite due to the fact that λ > 2. As θ < 1, we thus obtain that

sup
t∈(0,T )

‖n(·, t)‖L∞(Ω) ≤ max
{

1 , (2C3)
1

1−θ

}

for all T ∈ (0, Tmax),

from which (5.2) follows upon letting T ր Tmax. �

We have thereby collected all ingredients needed to derive our main result from Lemma 2.1.

Proof of Theorem 1.1. We only need to combine the bounds provided by Lemma 5.2, (4.20) and
Lemma 5.1 with Lemma 2.1. �
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