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Abstract

The parabolic-elliptic cross-diffusion system

{
ut = ∆u−∇ ·

(
uf(|∇v|2)∇v

)
,

0 = ∆v − µ+ u,
∫
Ω
v = 0, µ := 1

|Ω|

∫
Ω
udx,

is considered along with homogeneous Neumann-type boundary conditions in a smoothly bounded
domain Ω ⊂ R

n, n ≥ 1, where f generalizes the prototype given by

f(ξ) = (1 + ξ)−α, ξ ≥ 0, for all ξ ≥ 0,

with α ∈ R.

In this framework, the main results assert that if n ≥ 2, Ω is a ball and

α <
n− 2

2(n− 1)
,

then throughout a considerably large set of radially symmetric initial data, an associated initial
value problem admits solutions blowing up in finite time with respect to the L∞ norm of their first
components.

This is complemented by a second statement which ensures that in general and not necessarily
symmetric settings, if either n = 1 and α ∈ R is arbitrary, or n ≥ 2 and α > n−2

2(n−1) , then any

explosion is ruled out in the sense that for arbitrary nonnegative and continuous initial data, a
global bounded classical solution exists.
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1 Introduction

We consider nonnegative solutions of the parabolic-elliptic cross-diffusion system

{
ut = ∆u−∇ ·

(
uf(|∇v|2)∇v

)
,

0 = ∆v − µ+ u,
∫
Ω v = 0, µ := 1

|Ω|

∫
Ω udx,

(1.1)

where the given function f appropriately generalizes the prototype determined by

f(ξ) = (1 + ξ)−α, ξ ≥ 0, for all ξ ≥ 0, (1.2)

with α ∈ R. In mathematical biology, systems of this form arise as refinements of the classical
Keller-Segel model for chemotaxis processes, that is, for processes during which individuals within
a population, represented through its density u = u(x, t), partially orient their diffusive movement
toward increasing concentrations v = v(x, t) of a chemical substance produced by themselves ([22]).

Deviating from the simplest choice f ≡ 1 that underlies the minimal and most thoroughly studied
representative within the class of Keller-Segel systems ([22], [18]), (1.1) with more general f accounts
for refined approaches in the more recent modeling literature, according to which in several relevant
application frameworks an adequate description of chemotactic motion should include certain gradient-
dependent limitations of cross-diffusive fluxes in the style of (1.1)-(1.2) ([1], [31], [4], [5]).

In light of well-known results asserting the occurrence of finite-time blow-up in the case when f ≡ 1
([20], [27] , [28], [6], [33]), a natural question seems to be how far (1.1) retains a certain ability to
support singularity formation also in cases when f reflects some saturation effects al large signal
gradients in the sense that f(ξ) → 0 as ξ → ∞. Since it can readily be seen that no such explosion

arises when f(ξ) = (1 + ξ)−
1
2 for ξ ≥ 0 (cf. also Proposition 1.2), in the context of (1.1)-(1.2) and in

a slightly more ambitious formulation, this amounts to locating the number

αc := sup
{
α ∈ R

∣∣∣ (1.1)-(1.2) admits at least one solution blowing up in finite time
}
, (1.3)

and hence to deciding, in dependence on whether or not αc belongs to the open interval (0, 12), if αc

plays the role of a critical exponent that corresponds to a genuinely critical nonlinearity in (1.1).

The challenge of detecting critical parameter settings in Keller-Segel systems. Here we
remark that in the context of Keller-Segel type systems, the identification of explosion-critical con-
stellations has successfully been accomplished only in quite a small number of cases yet, which may
be viewed as reflecting an apparent lack of appropriate methods for blow-up detection in such classes
of cross-diffusion problems. Indeed, the literature provides a rich variety of techniques capable of
discovering situations in which the respective dissipative ingredients overbalance cross-diffusive desta-
bilization and hence blow-up is ruled out (cf. [19] and [2] for an incomplete overview). Only in a
relatively small number of cases, however, analytical approaches are available which allow for findings
on singularity formation in parameter settings complementary to those for which results on global
existence and boundedness are available. Comparatively well-understood in this respect are thus only
certain particular relatives of (1.1) which share some essential features with simpler classes of scalar
parabolic problems.
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Quite far-reaching results are available, e.g., for variants of (1.1) in which the respective chemotactic
sensitivity function depends on the population density u itself, rather than its gradient, such as in the
framework of quasilinear systems with their corresponding first equation given by

ut = ∇ · (D(u)∇u)−∇ · (uS(u)∇v). (1.4)

Namely, when supplemented either by elliptic equations of the form in (1.1), or even by more complex
fully parabolic equations for v, such modifications of (1.1) admit favorable gradient-like structures
that provide accessibility to energy-based arguments both in the development of global existence
theories and in the derivation of blow-up results, and accordingly a fairly comprehensive knowledge
concerning the emergence of singularities could be achieved: In the prototypical context determined
by the choices D(ξ) = (ξ + 1)m−1 and S(ξ) = (ξ + 1)q−1, ξ ≥ 0, for instance, associated Neumann
problems in bounded domains Ω ⊂ R

n admit global bounded solutions for widely arbitrary initial data
if m ∈ R and q ∈ R satisfy m−q > n−2

n
([34], [14], [32], [23]), whereas unbounded solutions exist when

Ω is a ball and m− q < n−2
n

([10], [11], [8], [37], [14]; cf. also [9]). In some subcases of the latter, the
use of Lyapunov functionals even allowed for the construction of certain global solutions which blow
up in infinite time ([10], [11], [24], [39]).

Beyond this, however, most classes of relevant chemotaxis systems appear to lack comparable energy
structures, and accordingly the few further studies concerned with rigorous blow-up detection rely on
adequately designed ad hoc methods. In consequence, the identification of explosion-critical parameter
settings has so far been achieved only in a small number of additional cases, in most of which either
the derivation of collapsing ordinary differential inequalities for moment-like functionals in the flavor
of classical blow-up proofs for semilinear heat equations ([21], [13]), or even a reduction to single
parabolic equations allowing for comparison with exploding subsolutions is possible; examples of this
flavor address critical exponents in nonlinear signal production rates ([26], [38]), optimal conditions
on zero-order degradation with respect to blow-up ([15], [36]), threshold mass levels for singularity
formation ([20], [29], [35]), or also critical interplay of several ingredients ([3]).

Main results. The present work now intends to address the corresponding issue of criticality in
(1.1) by a combination of an essentially moment-based approach with a comparison argument in a
crucial first step of an associated blow-up argument. To substantiate this in the context of a full
initial-boundary value problem, let us henceforth consider





ut = ∆u−∇ ·
(
uf(|∇v|2)∇v

)
, x ∈ Ω, t > 0,

0 = ∆v − µ+ u,
∫
Ω v = 0, x ∈ Ω, t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.5)

in a bounded domain Ω ⊂ R
n, n ≥ 1, where

f ∈ C2([0,∞)), (1.6)

and where

u0 ∈ C0(Ω) is nonnegative with −

∫

Ω
u0dx = µ > 0. (1.7)
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Indeed, we shall see in Section 2 that if Ω = BR(0) ⊂ R
n with some R > 0, and if u0 is radially

symmetric, then in the resulting radial framework the evolution can equivalently be described by
considering the accumulated densities w = w(s, t) := 1

n|B1(0)|

∫
Br(0)

u(x, t)dx, s = rn ∈ [0, Rn], t ≥ 0,
which namely solve a Dirichlet problem for

wt = n2s2−
2
nwss + n ·

(
w −

µ

n
s
)
· ws · f

(
s

2
n
−2 · (w −

µ

n
s)2
)

(1.8)

(cf. (3.3)). Here, to adequately quantify the destabilizing potential of the second summand on the
right-hand side we shall, in a first and yet quite basic step, rely on a comparison argument to make sure
that an appropriate monotonicity assumption on u0 entails nonnegativity of the expression w − µ

n
s

that appears in two crucial places. This will then enable us to suitably estimate the Burgers-type
and shock-supporting action of the nonlinearity in (1.8) from below; for nonlinearities which suitably
generalize that in (1.2) with α < n−2

2(n−1) when n ≥ 3, this will be accomplished in Section 3 by analyzing
the evolution of the moment-like functional

∫ s0

0
s−γ(s0 − s)

(
w(s, t)−

µ

n
s
)
ds (1.9)

along trajectories, and by thereby making sure that for smooth initial data sufficiently concentrated
near the origin, this quantity satisfies a superlinearly forced ordinary differential inequality (ODI) if
the free parameter γ herein is appropriately adjusted (Lemma 3.14). In consequence, this will establish
the following result which can be viewed as the main outcome of this study.

Theorem 1.1 Let Ω = BR(0) ⊂ R
n with n ≥ 3 and R > 0, and let f satisfy (1.6) as well as

f(ξ) ≥ kf · (1 + ξ)−α for all ξ ≥ 0 (1.10)

with some kf > 0 and α > 0 fulfilling

α <
n− 2

2(n− 1)
. (1.11)

Then for any choice of µ > 0 one can find R0 = R0(µ) ∈ (0, R) with the property that whenever u0
satisfies (1.7) and is such that

u0 is radially symmetric with −

∫

Br(0)
u0dx ≥ −

∫

Ω
u0dx for all r ∈ (0, R) (1.12)

as well as

−

∫

BR0
(0)
u0dx ≥

µ

2

( R
R0

)n
, (1.13)

the corresponding solution (u, v) of (1.5) blows up in finite time; that is, for the uniquely determined
local classical solution, maximally extended up to some time Tmax ∈ (0,∞] according to Proposition
2.1 below, we then have Tmax <∞ and

lim sup
tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (1.14)
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Remark. In order to construct simple examples of initial data which the above statement asserts to
enforce blow-up, we only need to observe that (1.12) is satisfied whenever u0 is radial and nonincreasing
with respect to |x|, and that (1.13) is trivially implied if suppu0 ⊂ BR0(0), for instance. Beyond this,
however, by means of an almost verbatim copy of the reasoning detailed in [3, Proposition 1.2] the
set of initial data fulfilling (1.12) and (1.13) can in fact be seen to contain an open subset of radial
functions with respect to the topology in L∞(Ω), and to furthermore even be dense in the set of all
radial functions fulfilling (1.7) in the framework of the topology in Lp(Ω) for each p ∈ (0, 1).

In order to secondly make sure that the above results cannot be substantially improved, let us next
consider the case when besides (1.6), f satisfies

f(ξ) ≤ Kf · (1 + ξ)−α for all ξ ≥ 0 (1.15)

with some Kf > 0 and α ∈ R. Then the following statement, valid even in general not necessarily
radial frameworks, provides an essentially exhausting complement to Theorem 1.1.

Proposition 1.2 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, and suppose

that f satisfies (1.6) and (1.15) with some Kf > 0 and

{
α ∈ R if n = 1,

α > n−2
2(n−1) if n ≥ 2.

(1.16)

Then for any choice of u0 coplying with (1.7), the problem (1.5) possesses a unique global classical
solution (u, v) ∈ (C0(Ω× [0,∞))∩C2,1(Ω× (0,∞)))∩C2,0(Ω× (0,∞)) which is bounded in the sense
that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0 (1.17)

with some C > 0.

A result similar to that of Proposition 1.2 has been the objective of a previous study ([30]) in which
boundedness statements have been derived for (1.5) in the particular case when f(ξ) = ξ−α, ξ > 0,
within the slightly restricted range determined by





α ∈ (−∞, 12) if n = 1,

α ∈
(

n−2
2(n−1) ,

1
2

)
if n ≥ 2.

Our approach toward Proposition 1.2, essentially reducing to a one-page argument presented in Section
4, apparently provides a somewhat shorter reasoning which, as we remark here without pursuing details
in this regard, can readily be extended so as to cover this result as well.

We have to leave open here the question how far the number α = n−2
2(n−1) , thus playing the role of

a critical exponent in the style of the definition in (1.3), belongs to either the blow-up range or the
opposite regime. In view of precedents concerned with, e.g., the case f ≡ 1 when n = 2, it may well be
conceivable that also for arbitrary n ≥ 3, choosing f as in (1.2) with α = n−2

2(n−1) may enforce critical
mass phenomena with respect to finite-time blow-up, and possible even go along with some global
unbounded solutions; a refined analysis in this direction, however, would go beyond the scope of this
study.
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2 Local existence and transformation to a scalar problem

In a straightforward manner adopting arguments well-established in the context of parabolic-elliptic
Keller-Segel type systems (see e.g. [27], [14] and [12] for suitable precedents), one can readily establish
the following statement on local existence and extensibility of solutions to (1.5):

Proposition 2.1 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, and assume

that f and u0 satisfy (1.6) and (1.7). Then there exist Tmax ∈ (0,∞] and a uniquely determined pair
(u, v) of functions

{
u ∈ C0(Ω× [0, Tmax)) ∩ C

2,1(Ω× (0, Tmax)),

v ∈
⋂

q>n L
∞
loc([0, Tmax);W

1,q(Ω)) ∩ C2,0(Ω× (0, Tmax)),

with u ≥ 0 and v ≥ 0 in Ω× (0, Tmax), such that (u, v) solves (1.5) classically in Ω× (0, Tmax), that
∫

Ω
u(·, t) =

∫

Ω
u0 for all t ∈ (0, Tmax), (2.1)

and that
if Tmax <∞, then lim sup

tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (2.2)

Moreover, if Ω = BR(0) with some R > 0 and u0 is radially symmetric with respect to x = 0, then
also u(·, t) and v(·, t) are radially symmetric for each t ∈ (0, Tmax).

3 Blow-up of radial solutions when α < n−2
2(n−1). Proof of Theorem 1.1

3.1 A basic differential inequality for a moment-like functional φ

Throughout this section assuming that Ω = BR(0) ⊂ R
n is a ball with some n ≥ 2 and R > 0, for

arbitrary u0 = u0(r) fulfilling (1.7) we let Tmax ∈ (0,∞] and the corresponding radial local solution
(u, v) = (u(r, t), v(r, t)) of (1.5) be as provided by Proposition 2.1, and in the spirit of [20] we introduce

w(s, t) :=

∫ s
1
n

0
ρn−1u(ρ, t)dρ, s ∈ [0, Rn], t ∈ [0, Tmax). (3.1)

Then

ws(s, t) =
1

n
u(s

1
n , t) ≥ 0 for all s ∈ (0, Rn) and t ∈ (0, Tmax), (3.2)

and




wt = n2s2−
2
nwss + n ·

(
w − µ

n
s
)
· ws · f

(
s

2
n
−2 · (w − µ

n
s)2
)
, s ∈ (0, Rn), t ∈ (0, Tmax),

w(0, t) = 0, w(Rn, t) = µRn

n
, t ∈ (0, Tmax),

w(s, 0) = w0(s) :=
∫ s

1
n

0 ρn−1u0(ρ)dρ, s ∈ (0, Rn).
(3.3)

The role of our extra assumption (1.12) in Theorem 1.1 will then become clear through the following
additional information.
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Lemma 3.1 Assume (1.6), (1.7) and (1.12). Then for w as in (3.1) we have

w(s, t) ≥
µ

n
· s for all s ∈ (0, Rn) and t ∈ (0, Tmax).

Proof. Since for w(s, t) := µ
n
· s, s ∈ [0, Rn], t ≥ 0, we have

wt − n2s2−
2
nwss − n ·

(
w −

µ

n
s
)
· ws · f

(
s

2
n
−2 · (w −

µ

n
s)2
)
= 0 in (0, Rn)× (0,∞)

with w(0, t) = 0 and w(Rn, t) = µRn

n
for all t > 0, observing that our assumption (1.12) precisely

asserts that

w0(s) =
s

n
−

∫

B
s1/n

(0)
u0dx ≥

s

n
· µ = w(s, 0) for all s ∈ (0, Rn),

this follows by applying a comparison principle (cf., e.g., [3, Lemma 5.1] for a version covering the
present degenerate setting) to (3.3). �

Based on the latter, namely, we can make use of a presupposed additional lower estimate of the form
(1.10) for f in establishing the following starting point of our subsequent blow-up analysis:

Lemma 3.2 Suppose that (1.6) and (1.10) hold with some kf > 0 and α > 0, and let (1.7) and (1.12)
be valid. Then with w and w0 taken from (3.1) and (3.3),

z(s, t) := w(s, t)−
µ

n
· s, s ∈ [0, Rn], t ∈ [0, Tmax), (3.4)

is nonnegative and satisfies

zt ≥ n2s2−
2
n zss + nkfz ·

(
1 + s

2
n
−2z2

)−α

· ws for all s ∈ (0, Rn) and t ∈ (0, Tmax). (3.5)

Proof. The nonnegativity of z has precisely been asserted by Lemma 3.1. Since moreover ws ≥ 0
by (3.2), in (3.3) we may use (1.10) to estimate

n ·
(
w −

µ

n
· s
)
· ws · f

(
s

2
n
−2(w −

µ

n
s)2
)

= nzws · f(s
2
n
−2z2)

≥ nzws · kf (1 + s
2
n
−2z2)−α

for s ∈ (0, Rn) and t ∈ (0, Tmax), and thus to obtain (3.5) from (3.3). �

We can thereby state a basic evolution property of a moment-type functional which, unlike those
considered in related precedents ([6], [38]), explicitly involves the shifted variable z instead of the
accumulated density w itself:

Lemma 3.3 Assume (1.7), (1.12), (1.6) and (1.10) with some kf > 0 and α > 0, and for γ ∈ (0, 1)
and s0 ∈ (0, Rn), let

φ(t) :=

∫ s0

0
s−γ(s0 − s)z(s, t)ds, t ∈ [0, Tmax), (3.6)
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where z is as given by (3.4). Then φ ∈ C0([0, Tmax)) ∩ C
1((0, Tmax)) with

φ′(t) ≥ −n2
(
2−

2

n
− γ)

(
γ − 1 +

2

n

)∫ s0

0
s−

2
n
−γ(s0 − s)z(s, t)ds

−2n2
(
2−

2

n
− γ
)∫ s0

0
s1−

2
n
−γz(s, t)ds

+ψ(t) for all t ∈ (0, Tmax), (3.7)

where

ψ(t) := nkf

∫ s0

0
s−γ(s0 − s)z(s, t) ·

(
1 + s

2
n
−2z2(s, t)

)−α

· ws(s, t)ds, t ∈ (0, Tmax), (3.8)

with w taken from (3.1).

Proof. Since u ∈ C0(Ω× [0, Tmax)) and ut ∈ C0(Ω× (0, Tmax)), a standard argument based on the
dominated convergence theorem ensures that indeed φ belongs to C0([0, Tmax)) and to C1((0, Tmax)),
and that for all t ∈ (0, Tmax),

φ′(t) =

∫ s0

0
s−γ(s0 − s)z(s, t)ds

≥ n2
∫ s0

0
s2−

2
n
−γ(s0 − s)zssds+ nkf

∫ s0

0
s−γ(s0 − s)z ·

(
1 + s

2
n
−2z2

)−α

· wsds (3.9)

according to (3.5). Here, two integrations by parts show that for all t ∈ (0, Tmax) we have

n2
∫ s0

0
s2−

2
n
−γ(s0 − s)zssds

= −n2
∫ s0

0

{(
2−

2

n
− γ
)
s1−

2
n
−γ(s0 − s)− s2−

2
n
−γ
}
zsds

≥ n2
∫ s0

0

{(
2−

2

n
− γ
)(

1−
2

n
− γ
)
s−

2
n
−γ(s0 − s)− 2

(
2−

2

n
− γ
)
s1−

2
n
−γ
}
zds,

because due to the fact that γ < 1 ≤ 2− 2
n
and z(·, t) ∈ C1([0, Rn]) with z(0, t) = 0 for all t ∈ (0, Tmax),

and hence s1−
2
n
−γz(s, t) → 0 as sր 0 for all t ∈ (0, Tmax), we have

n2s2−
2
n
−γ(s0 − s)zs

∣∣∣∣
s=s0

s=0

= 0 for all t ∈ (0, Tmax)

and

−n2 ·
{(

2−
2

n
− γ
)
s1−

2
n
−γ(s0 − s)− s2−

2
n
−γ
}
z

∣∣∣∣
s=s0

s=0

= n2s
2− 2

n
−γ

0 z(s0, t)

≥ 0 for all t ∈ (0, Tmax).

Therefore, (3.7) is a consequence of (3.9). �
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3.2 A first lower estimate for the cross-diffusive contribution ψ

Let us next approach the core of our analysis by quantifying the cross-diffusive contribution to (3.7)
through a first estimate for the rightmost summand therein from below. This will be achieved on the
basis of the following elementary observation.

Lemma 3.4 Let α ∈ R and β ∈ (0, 1]. Then

(1 + ξ)−α ≥ 1−
α+

β
ξβ for all ξ ≥ 0, (3.10)

where σ+ := max{σ, 0} for σ ∈ R.

Proof. If α ≤ 0, this is obvious. In the case when α is positive, (3.10) can be verified by observing
that ϕ(ξ) := (1 + ξ)−α − 1 + α

β
ξβ , ξ ≥ 0, satisfies ϕ(0) = 0 as well as ϕ′(ξ) = −α(1 + ξ)−α−1 + αξβ−1

and hence ϕ′(ξ) ≥ 0 for all ξ > 0, because if ξ ∈ (0, 1) then (1 + ξ)−α−1 ≤ 1 ≤ ξβ−1, while if ξ ≥ 1
then (1 + ξ)−α−1 ≤ ξ−1 ≤ ξβ−1. �

A straightforward application thereof shows that the function ψ in (3.8), up to perturbation terms to
be estimated later on after suitably fixing the artificial parameter β, essentially dominates an integral
containing both zs and a certain power of z as factors in the integrand.

Lemma 3.5 Suppose that (1.7), (1.12), (1.6) and (1.10) hold with some kf > 0 and α ∈ R, and let
γ ∈ (0, 1) and s0 ∈ (0, Rn). Then for any choice of β ∈ (0, 1], the function ψ from (3.8) satisfies

ψ(t) ≥ nkf

∫ s0

0
s(2−

2
n
)α−γ(s0 − s)z1−2α(s, t)zs(s, t)ds

−
nkfα+

β

∫ s0

0
s(2−

2
n
)(α+β)−γ(s0 − s)z1−2(α+β)(s, t)zs(s, t)ds

−
µkfα+

β

∫ s0

0
s(2−

2
n
)(α+β)−γ(s0 − s)z1−2(α+β)(s, t)ds for all t ∈ (0, Tmax). (3.11)

Proof. By means of Lemma 3.4, again thanks to the nonnegativity of z and ws we can estimate

z ·
(
1 + s

2
n
−2z2

)−α

· ws = s(2−
2
n
)αz1−2α ·

(
1 + s2−

2
n z−2

)−α

· ws

≥ s(2−
2
n
)αz1−2α ·

{
1−

α+

β
(s2−

2
n z−2)β

}
· ws

= s(2−
2
n
)αz1−2αws −

α+

β
s(2−

2
n
)(α+β)z1−2(α+β)ws in (0, Rn)× (0, Tmax).

As ws = zs +
µ
n
≥ zs, this entails that

z ·
(
1 + s

2
n
−2z2

)−α

· ws ≥ s(2−
2
n
)αz1−2αzs

−
α+

β
s(2−

2
n
)(α+β)z1−2(α+β)zs −

µα+

nβ
s(2−

2
n
)(α+β)z1−2(α+β)

in (0, Rn)× (0, Tmax), so that (3.11) results from the definition (3.8) of ψ. �

Here another integration by parts enables us to further control the first summand on the right of
(3.11) from below by integral expressions no longer containing zs, provided that α satisfies a condition
weaker than that in Theorem 1.1, and that the free parameter γ lies above some threshold.
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Lemma 3.6 Let (1.6) and (1.10) be valid with some kf > 0 and α ∈ (−∞, n
2(n−1)), and let γ ∈ (0, 1)

be such that γ > (2− 2
n
)α. Then there exists k > 0 such that whenever (1.7) and (1.12) hold, with z

taken from (3.4) and for any choice of s0 ∈ (0, Rn) we have

nkf

∫ s0

0
s(2−

2
n
)α−γ(s0 − s)z1−2α(s, t)zs(s, t)ds ≥ k

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2α(s, t)ds

+k

∫ s0

0
s(2−

2
n
)α−γz2−2α(s, t)ds (3.12)

for all t ∈ (0, Tmax).

Proof. Using that α < 1, we may integrate by parts to see that for all t ∈ (0, Tmax),

nkf

∫ s0

0
s(2−

2
n
)α−γ(s0 − s)z1−2αzsds =

nkf

2− 2α

∫ s0

0
s(2−

2
n
)α−γ(s0 − s)(z2−2α)sds

= −
nkf

2− 2α

∫ s0

0
∂s

{
s(2−

2
n
)α−γ(s0 − s)

}
· z2−2−αds, (3.13)

where we note that the corresponding boundary terms vanish again due to the fact that for each fixed
t ∈ (0, Tmax), z(·, t) belongs to C

1([0,Rn]) with z(0, t) = 0 by Proposition 2.1: This, namely, implies
that for any such t,

s(2−
2
n
)α−γ(s0 − s)z2−2α(s, t) ≤ s0‖zs(·, t)‖

2−2α
L∞((0,Rn))s

(2− 2
n
)α−γ+2−2α → 0 as (0, s0) ∋ sց 0,

because (2 − 2
n
)α − γ + 2 − 2α = 2 − 2α

n
− γ ≥ 2 − 2

n
− γ > 0 as a consequence of the inequality

γ < 1 ≤ 2− 2
n
. Furthermore computing

∂s

{
s(2−

2
n
)α−γ(s0 − s)

}
= −

[
γ −

(
2−

2

n

)
α
]
s(2−

2
n
)α−γ−1(s0 − s)− s(2−

2
n
)α−γ , s ∈ (0, s0),

we readily infer (3.12) from (3.13) with k :=
nkf
2−2α · min{γ − (2 − 2

n
)α , 1} being positive since

γ > (2− 2
n
)α. �

3.3 Controlling the ill-signed summands in (3.11). A refined lower estimate for ψ

When next estimating the second and third summands on the right of (3.11), we may evidently
concentrate on the case when α is positive. By imposing a suitable smallness condition on the auxiliary
parameter β, we may first rewrite the first of the respective integrals through another integration by
parts.

Lemma 3.7 Let (1.6) and (1.10) be valid with some kf > 0 and α ∈ (0, n
2(n−1)), and let γ ∈ (0, 1).

Then for any β > 0 such that β < 1− α and each s0 ∈ (0, Rn), with z as in (3.4) we have
∫ s0

0
s(2−

2
n
)(α+β)−γ(s0 − s)z1−2(α+β)(s, t)zs(s, t)ds

=
γ − (2− 2

n
)(α+ β)

2− 2(α+ β)

∫ s0

0
s(2−

2
n
)(α+β)−γ−1(s0 − s)z2−2(α+β)(s, t)ds

+
1

2− 2(α+ β)

∫ s0

0
s(2−

2
n
)(α+β)−γz2−2(α+β)(s, t)ds (3.14)
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for all t ∈ (0, Tmax).

Proof. Since α+ β < 1, once more integrating by parts we compute

∫ s0

0
s(2−

2
n
)(α+β)−γ(s0− s)z

1−2(α+β)zsds = −
1

2− 2(α+ β)

∫ s0

0
∂s

{
s(2−

2
n
)(α+β)−γ(s0− s)

}
· z2−2(α+β)ds

(3.15)
for all t ∈ (0, Tmax), where again no additional boundary terms appear, because

s(2−
2
n
)(α+β)−γ(s0 − s)z2−2(α+β)(s, t) ≤ s0‖zs(·, t)‖

2−2(α+β)
L∞((0,Rn)s

2− 2
n
(α+β)−γ → 0 as (0, s0) ∋ sց 0

due to the fact that γ < 1 < 2− 2
n
< 2− 2

n
(α+ β). Evaluating the right-hand side in (3.15) directly

yields (3.14). �

By means of Young’s inequality, we can make sure that both integrals on the right of (3.14) can
appropriately be absorbed by expressions of the form in (3.12), up to addition of some error terms
merely depending on the potentially small parameter s0.

Lemma 3.8 Let (1.6) and (1.10) be valid with some kf > 0 and α ∈ (0, n
2(n−1)), and let γ ∈ (0, 1).

Then given any β > 0 such that β < 1 − α, for each ε > 0 one can find C = C(β, ε) > 0 such that
whenever (1.7) and (1.12) hold and s0 ∈ (0, Rn), with z taken from (3.4) we have

∫ s0

0
s(2−

2
n
)(α+β)−γ−1(s0 − s)z2−2(α+β)(s, t)ds

≤ ε

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2α(s, t)ds+ Cs

3− 2
n
−γ

0 for all t ∈ (0, Tmax) (3.16)

as well as
∫ s0

0
s(2−

2
n
)(α+β)−γz2−2(α+β)(s, t)ds

≤ ε

∫ s0

0
s(2−

2
n
)α−γz2−2α(s, t)ds+ Cs

3− 2
n
−γ

0 for all t ∈ (0, Tmax) (3.17)

Proof. According to our assumption that α + β < 1, we may use Young’s inequality to find
c1 = c1(β, ε) > 0 such that

∫ s0

0
s(2−

2
n
)(α+β)−γ−1(s0 − s)z2−2(α+β)ds

=

∫ s0

0

{
s(2−

2
n
)α−γ−1(s0 − s)z2−2α

} 1−α−β
1−α

·
{
s
(2− 2

n
)(α+β)−γ−1+

[γ+1−(2− 2
n )α]·(1−α−β)

1−α · (s0 − s)
β

1−α

}
ds

≤ ε

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds

+c1

∫ s0

0
s

[(2− 2
n )(α+β)−γ−1]·(1−α)+[γ+1−(2− 2

n )α]·(1−α−β)

β · (s0 − s)ds for all t ∈ (0, Tmax), (3.18)
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where simplifying in the last integrand shows that

∫ s0

0
s

[(2− 2
n )(α+β)−γ−1]·(1−α)+[γ+1−(2− 2

n )α]·(1−α−β)

β · (s0 − s)ds =

∫ s0

0
s1−

2
n
−γ(s0 − s)ds

≤ s0

∫ s0

0
s1−

2
n
−γds =

s
3− 2

n
−γ

0

2− 2
n
− γ

,

because γ < 1 < 2 − 2
n
. Therefore, (3.18) implies (3.16), whereas (3.17) can similarly be derived by

once more using Young’s inequality to obtain c2 = c2(β, ε) > 0 fulfilling

∫ s0

0
s(2−

2
n
)(α+β)−γz2−2(α+β)ds =

∫ s0

0

{
s(2−

2
n
)α−γz2−2α

} 1−α−β
1−α

·
{
s
(2− 2

n
)(α+β)−γ+

[γ−(2− 2
n )α]·(1−α−β)

1−α

}
ds

≤ ε

∫ s0

0
s(2−

2
n
)α−γz2−2αds

+c2

∫ s0

0
s

[(2− 2
n )(α+β)−γ]·(1−α)+[γ−(2− 2

n )α]·(1−α−β)

β ds

= ε

∫ s0

0
s(2−

2
n
)α−γz2−2αds+ c2

∫ s0

0
s2−

2
n
−γds

= ε

∫ s0

0
s(2−

2
n
)α−γz2−2αds+

c2s
3− 2

n
−γ

0

3− 2
n
− γ

for all t ∈ (0, Tmax) and any choice of s0 ∈ (0, Rn). �

The last integral on the right of (3.11) can directly be estimated in quite a similar manner.

Lemma 3.9 Let (1.6) and (1.10) be valid with some kf > 0 and α ∈ (0, 12), and let γ ∈ (0, 1) and
β > 0 satisfy 2(α + β) < 1. Then for all ε > 0 there exists C = C(β, ε) > 0 such that if (1.7) and
(1.12) are valid and s0 ∈ (0, Rn), then the function z from (3.4) has the property that
∫ s0

0
s(2−

2
n
)(α+β)−γ(s0 − s)z1−2(α+β)(s, t)ds

≤ ε

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2α(s, t)ds+ Cs

3− 2α
n −γ+2β(3− 2

n−γ)

1+2β

0 for all t ∈ (0, Tmax).(3.19)

Proof. Using that 1 − 2(α + β) is positive, again by means of Young’s inequality we can find
c1 = c1(β, ε) > 0 such that
∫ s0

0
s(2−

2
n
)(α+β)−γ(s0 − s)z1−2(α+β)ds

=

∫ s0

0

{
s(2−

2
n
)α−γ−1(s0 − s)z2−2α

} 1−2(α+β)
2−2α

·
{
s
(2− 2

n
)(α+β)−γ+

[γ+1−(2− 2
n )α]·[1−2(α+β)]

2−2α · (s0 − s)
1+2β
2−2α

}
ds

≤ ε

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds

+c1

∫ s0

0
s

[(2− 2
n )(α+β)−γ]·(2−2α)+[γ+1−(2− 2

n )α]·[1−2(α+β)]

1+2β · (s0 − s)ds for all t ∈ (0, Tmax). (3.20)
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Here,
∫ s0

0
s

[(2− 2
n )(α+β)−γ]·(2−2α)+[γ+1−(2− 2

n )α]·[1−2(α+β)]

1+2β · (s0 − s)ds

=

∫ s0

0
s

1− 2α
n −γ+2β(1− 2

n−γ)

1+2β · (s0 − s)ds

≤ s0

∫ s0

0
s

1− 2α
n −γ+2β(1− 2

n−γ)

1+2β ds

=
1 + 2β

2− 2α
n

− γ + 2β(2− 2
n
− γ)

· s
3− 2α

n −γ+2β(3− 2
n−γ)

1+2β

0

due to the fact that since β > 0, α < 1 and γ < 1 < 2− 2
n
,

2−
2α

n
− γ + 2β

(
2−

2

n
− γ
)
> 2−

2α

n
− γ > 2−

2

n
− γ > 0.

Therefore, (3.19) results from (3.20). �

We now combine Lemma 3.7 with Lemma 3.8 and Lemma 3.9 to see upon suitably fixing β that
Lemma 3.6 entails the following refined lower estimate for the function ψ in (3.8).

Lemma 3.10 Let (1.6) and (1.10) be valid with some kf > 0 and α ∈ (−∞, 12), and let γ ∈ (0, 1) be
such that γ > (2 − 2

n
)α. Then one can find C > 0 with the property that whenever (1.7) and (1.12)

hold, for any choice of s0 ∈ (0, Rn) the functions ψ and z from (3.8) and (3.4) satisfy

ψ(t) ≥
k

2

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2α(s, t)ds

+
k

2

∫ s0

0
s(2−

2
n
)α−γz2−2α(s, t)ds

−Cs
3− 2

n
−γ

0 for all t ∈ (0, Tmax), (3.21)

where k > 0 is as given by Lemma 3.6.

Proof. In view of Lemma 3.5 and Lemma 3.6, we only need to consider the case when α is positive,
in which we use that the restriction α < n

2(n−1) particularly requires that α < 1
2 , whence we can fix

β > 0 such that 2(α+β) < 1. An application of Lemma 3.8 to suitably small ε > 0 then yields c1 > 0
and c2 > 0 such that

nkfα

β
·
γ − (2− 2

n
)(α+ β)

2− 2(α+ β)

∫ s0

0
s(2−

2
n
)(α+β)−γ−1(s0 − s)z2−2(α+β)ds

≤
k

4

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds+ c1s

3− 2
n
−γ

0 for all t ∈ (0, Tmax)

and

nkfα

β
·

1

2− 2(α+ β)

∫ s0

0
s(2−

2
n
)(α+β)−γz2−2(α+β)ds

≤
k

2

∫ s0

0
s(2−

2
n
)α−γz2−2αds+ c2s

3− 2
n
−γ

0 for all t ∈ (0, Tmax),
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while using Lemma 3.9 we similarly find c3 > 0 fulfilling

µkfα

β

∫ s0

0
s(2−

2
n
)(α+β)−γ(s0 − s)z1−2(α+β)ds

≤
k

4

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds+ c3s

3− 2α
n −γ+2β(3− 2

n−γ)

1+2β

0 for all t ∈ (0, Tmax).

In light of Lemma 3.5, Lemma 3.6 and Lemma 3.7, combining these inequalities shows that

ψ(t) ≥
(
k −

k

4
−
k

4

)∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds+

(
k −

k

2

)∫ s0

0
s(2−

2
n
)α−γz2−2αds

−(c1 + c2)s
3− 2

n
−γ

0 − c3s

3− 2α
n −γ+2β(3− 2

n−γ)

1+2β

0 for all t ∈ (0, Tmax). (3.22)

Since

3− 2α
n

− γ + 2β(3− 2
n
− γ)

1 + 2β
−
(
3−

2

n
− γ
)
=

2(1− α)

n(1 + 2β)

is positive, and since thus

c3s

3− 2α
n −γ+2β(3− 2

n−γ)

1+2β

0 ≤ c3R
2(1−α)
1+2β s

3− 2
n
−γ

0

for any s0 ∈ (0, Rn), from (3.22) we directly obtain (3.21). �

3.4 Estimating the first two integrals on the right of (3.7)

Let us next examine how far also the two first integrals appearing on the right-hand side of (3.7) can
be controlled by ψ. Indeed, further applications of Young’s inequality show that each of these integrals
can essentially be estimated against one of the first two summands on the right of (3.21), provided
that γ satisfies an additional smallness condition which can be fulfilled within a range of α which is
yet larger than that indicated in Theorem 1.1.

Lemma 3.11 Suppose that (1.6) and (1.10) hold with some kf > 0 and α ∈ (−∞, n−2
2n−3), and assume

that γ ∈ (0, 1) is such that

(1− 2α)γ < 2−
4

n
− 4α+

6α

n
. (3.23)

Then for all ε > 0 there exists C = C(ε) > 0 such that if (1.7) and (1.12) are valid, then for arbitrary
s0 ∈ (0, Rn) the function z in (3.4) satisfies

∫ s0

0
s−

2
n
−γ(s0 − s)z(s, t)ds ≤ ε

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2α(s, t)ds

+Cs
3− 4

n−6α+6α
n −(1−2α)γ

1−2α

0 for all t ∈ (0, Tmax) (3.24)

and ∫ s0

0
s1−

2
n
−γz(s, t)ds ≤ ε

∫ s0

0
s(2−

2
n
)α−γz2−2α(s, t)ds

+Cs
3− 4

n−6α+6α
n −(1−2α)γ

1−2α

0 for all t ∈ (0, Tmax). (3.25)
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Proof. Based on the fact that 2 − 2α > 1, we once again invoke Young’s inequality and thereby
find c1 = c1(ε) > 0 such that for all t ∈ (0, Tmax),
∫ s0

0
s−

2
n
−γ(s0 − s)zds

=

∫ s0

0

{
s(2−

2
n
)α−γ−1(s0 − s)z2−2α

} 1
2−2α

·
{
s
− 2

n
−γ+

γ+1−(2− 2
n )α

2−2α (s0 − s)
1−2α
2−2α

}
ds

≤ ε

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds+ c1

∫ s0

0
s

(− 2
n−γ)(2−2α)+γ+1−(2− 2

n )α

1−2α (s0 − s)ds, (3.26)

and note that here the assumption (3.23) warrants that the exponent in the latter integral satisfies

κ :=
(− 2

n
− γ)(2− 2α) + γ + 1− (2− 2

n
)α

1− 2α

=
1− 4

n
− 2α+ 6α

n
− (1− 2α)γ

1− 2α

>
1− 4

n
− 2α+ 6α

n
−
{
2− 4

n
− 4α+ 6α

n

}

1− 2α
= −1.

Therefore,

∫ s0

0
s

(− 2
n−γ)(2−2α)+γ+1−(2− 2

n )α

1−2α (s0 − s)ds ≤ s0

∫ s0

0
sκds

=
1

1 + κ
· s2+κ

0

=
1

1 + κ
· s

3− 4
n−6α+6α

n −(1−2α)γ

1−2α

0 ,

whence (3.26) implies (3.24).
Likewise, Young’s inequality provides c2 = c2(ε) > 0 such that

∫ s0

0
s1−

2
n
−γzds =

∫ s0

0

{
s(2−

2
n
)α−γz2−2α

} 1
2−2α

·
{
s
1− 2

n
−γ+

γ−(2− 2
n )α

2−2α

}
ds

≤ ε

∫ s0

0
s(2−

2
n
)α−γz2−2αds+ c2

∫ s0

0
s

(1− 2
n−γ)(2−2α)+γ−(2− 2

n )α

1−2α ds

= ε

∫ s0

0
s(2−

2
n
)α−γz2−2αds+ c2

∫ s0

0
s

2− 4
n−4α+6α

n −(1−2α)γ

1−2α ds

= ε

∫ s0

0
s(2−

2
n
)α−γz2−2αds

+c2 ·
1− 2α

3− 4
n
− 6α+ 6α

n
− (1− 2α)γ

· s
3− 4

n−6α+6α
n −(1−2α)γ

1−2α

0 for all t ∈ (0, Tmax),

and thus establishes (3.25). �
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3.5 A superlinearly forced ODI for φ. The role of the condition α < n−2
2(n−1)

Finally, if γ satisfies one further smallness condition, then the first integral on the right of (3.21) can
be identified as a potentially explosion-enforcing contribution: Namely, for such γ the following lemma
reveals that the superlinear and actually convex growth of 0 ≤ ẑ 7→ ẑ2−2α allows for an estimation of
said integral in terms of a superlinear expression of φ:

Lemma 3.12 Assume (1.6) and (1.10) with constants kf > 0 and α ∈ (−∞, 12), and let γ ∈ (0, 1)
satisfy

(1− 2α)γ < 2− 4α+
2α

n
. (3.27)

Then there exists C > 0 such that whenever (1.7) and (1.12) hold and z and φ are as in (3.4) and
(3.6), we have
∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2α(s, t)ds ≥ Cs

−3+6α− 2α
n
+(1−2α)γ

0 φ2−2α(t) for all t ∈ (0, Tmax). (3.28)

Proof. Again relying on the property that 2 − 2α > 1, we may use the Hölder inequality to
estimate

φ(t) =

∫ s0

0

{
s(2−

2
n
)α−γ−1(s0 − s)z2−2α

} 1
2−2α

·
{
s
−γ+

γ+1−(2− 2
n )α

2−2α (s0 − s)
1−2α
2−2α

}
ds

≤

{∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds

} 1
2−2α

·

{∫ s0

0
s

−(2−2α)γ+γ+1−(2− 2
n )α

1−2α (s0 − s)ds

} 1−2α
2−2α

(3.29)

for all t ∈ (0, Tmax), where using that 2− 4α+ 2α
n

− (1− 2α)γ is positive by (3.27), we see that

∫ s0

0
s

−(2−2α)γ+γ+1−(2− 2
n )α

1−2α (s0 − s)ds ≤ s0

∫ s0

0
s

−(2−2α)γ+γ+1−(2− 2
n )α

1−2α ds

= c1s

3−6α+2α
n −(1−2α)γ

1−2α

0

with c1 :=
1−2α

2−4α+ 2α
n
−(1−2α)γ

> 0. Rearranging (3.29) thus shows that

{∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds

} 1
2−2α

≥ c
− 1−2α

2−2α

1 s
−

3−6α+2α
n −(1−2α)γ

2−2α

0 φ(t) for all t ∈ (0, Tmax),

from which (3.28) immediately follows. �

Now a crucial issue consists of clarifying how far our above, and at first glance quite technical, con-
ditions on γ can simultaneously be fulfilled. That this can indeed be achieved under the assumption
from Theorem 1.1, essentially optimal in view of Proposition 1.2, results from a simple consideration:

Lemma 3.13 Let n ≥ 2 and α ∈ R be such that α < n−2
2(n−1) . Then

(
4−

4

n

)
α2 −

(
6−

8

n

)
α+ 2−

4

n
> 0, (3.30)

and there exists γ ∈ (0, 1) such that γ > (2− 2
n
)α and that moreover (3.23) as well as (3.27) are valid.
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Proof. Since
(
4−

4

n

)
α2 −

(
6−

8

n

)
α+ 2−

4

n
=
(
4−

4

n

)
·
( n− 2

2(n− 1)
− α

)
· (1− α),

it is evident that our assumption on α implies (3.30). We can thereby ensure simultaneous availability
of (3.23) and the condition that γ > (2− 2

n
)α: Namely, since

{
2−

4

n
− 4α+

6α

n

}
−
{(

2−
2

n

)
α · (1− 2α)

}
=
(
4−

4

n

)
α2 −

(
6−

8

n

)
α+ 2−

4

n
,

from (3.30) it follows that the interval J :=
(
(2− 2

n
)α ,

2− 4
n
−4α+ 6α

n
1−2α

)
is not empty, so that noting that

moreover (2 − 2
n
)α < (2 − 2

n
) · n−2

2(n−1) = n−2
n

< 1, we see that it is possible to fix γ ∈ (0, 1) such that
γ ∈ J . Since

2−
4

n
− 4α+

6α

n
= 2− 4α+

2α

n
−

4(1− α)

n
< 2− 4α+

2α

n

due to the fact that α < 1, this furthermore entails (3.27). �

Upon choosing γ as thus specified, we can indeed turn (3.7) into an autonomous and superlinearly
forced ODI for φ in the following style.

Lemma 3.14 Let n ≥ 2, assume (1.6) and (1.10) with some kf > 0 and α ∈ R fulfilling α < n−2
2(n−1) ,

and let γ ∈ (0, 1) be as provided by Lemma 3.13. Then there exists C > 0 such that if (1.7) and (1.12)
hold, for any choice of s0 ∈ (0, Rn) the function φ from (3.6) satisfies

φ′(t) ≥
1

C
s
−3+6α− 2α

n
+(1−2α)γ

0 φ2−2α(t)− Cs

3− 4
n−6α+6α

n −(1−2α)γ

1−2α

0 for all t ∈ (0, Tmax). (3.31)

Proof. Since γ satisfies (3.23), we may employ Lemma 3.11 to find c1 > 0 such that with k > 0

given by Lemma 3.6 and λ :=
3− 4

n
−6α+ 6α

n
−(1−2α)γ

1−2α ,

n2
(
2−

2

n
− γ
)(
γ − 1 +

2

n

)∫ s0

0
s−

2
n
−γ(s0 − s)zds ≤

k

4

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds+ c1s

λ
0

and

n2
(
2−

2

n
− γ
)∫ s0

0
s1−

2
n
−γzds ≤

k

2

∫ s0

0
s(2−

2
n
)α−γz2−2αds+ c1s

λ
0

for all t ∈ (0, Tmax). As furthermore γ > (2 − 2
n
)α, we may use this in conjunction with Lemma 3.3

and Lemma 3.10 to see that with some c2 > 0 we have

φ′(t) ≥
k

4

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds− 2c1s

λ
0 − c2s

3− 2
n
−γ

0 for all t ∈ (0, Tmax), (3.32)

where we note that

(
3−

2

n
− γ
)
− λ =

2(1− α)

n(1− 2α)
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is positive and hence

c2s
3− 2

n
−γ

0 = c2s
2(1−α)
n(1−2α)

0 · sλ0 ≤ c3s
λ
0 (3.33)

with c3 := c2R
2(1−α)
1−2α .

Apart from that, we may rely on the fact that γ also satisfies (3.27) to infer from Lemma 3.12 the
existence of c4 > 0 such that

k

4

∫ s0

0
s(2−

2
n
)α−γ−1(s0 − s)z2−2αds ≥ c4s

−3+6α− 2α
n
+(1−2α)γ

0 φ2−2α(t) for all t ∈ (0, Tmax).

Therefore, (3.32) together with (3.33) establishes (3.31) if we let C := max{ 1
c4
, 2c1 + c3}. �

3.6 Selection of concentrated initial data. Proof of Theorem 1.1

In order to derive a blow-up result from Lemma 3.14 by means of a contradiction argument, it remains
to select the free parameter s0, along with initial data which reflect appropriate mass concentration
near the origin, in such a way that (3.31) at the initial instant, and hence throughout evolution
by comparison, can be turned into a genuine superlinear ODI without appearance of any negative
summand on its right:

Lemma 3.15 Let n ≥ 2, and suppose that (1.6) and (1.10) hold with some kf > 0 and α ∈ R such
that α < n−2

2(n−1) . Then for each µ > 0 one can find s0 = s0(µ) ∈ (0, R
n

4 ) such that whenever (1.7) and

(1.12) hold and w0 from (3.3) satisfies

w0

(s0
2

)
≥
µRn

2n
, (3.34)

the solution of (1.5) has the property that Tmax <∞.

Proof. Relying on our assumption α < n−2
2(n−1) , we can fix γ ∈ (0, 1) as given by Lemma 3.13, and

then invoke Lemma 3.14 to find c1 > 0 and c2 > 0 with the property that if (1.7) and (1.12) hold,
then for arbitrary s0 ∈ (0, Rn), the function φ as accordingly defined through (3.6) satisfies

φ′(t) ≥ c1s
−3+6α− 2α

n
+(1−2α)γ

0 φ2−2α(t)− c2s

3− 4
n−6α+6α

n −(1−2α)γ

1−2α

0 for all t ∈ (0, Tmax). (3.35)

We now use that γ < 1 in introducing

c3 = c3(µ) :=
µRn

16n
·
(34)

1−γ − (12)
1−γ

1− γ
> 0

and then choose s0 = s0(µ) ∈ (0, R
n

4 ) small enough such that

1

2
c1c

2−2α
3 s

1+2α− 2α
n
−γ

0 ≥ c2s

3− 4
n−6α+6α

n −(1−2α)γ

1−2α

0 , (3.36)

noting that the latter is possible due to (3.30), which indeed ensures that

3− 4
n
− 6α+ 6α

n
− (1− 2α)γ

1− 2α
−
{
1 + 2α−

2α

n
− γ
}
=

(4− 4
n
)α2 − (6− 8

n
)α+ 2− 4

n

1− 2α
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is positive, and that hence (3.36) holds for all suitably small s0 > 0. Keeping this value of s0 fixed, we
now assume to be given initial data which besides (1.7) and (1.12) fulfill (3.34). Then by monotonicity
of w0, we have w0(s) ≥

µRn

2n for all s ∈ ( s02 ,
3s0
4 ) and hence, by (3.4) and our definition of c3,

φ(0) ≥
s0

4

∫ 3s0
4

s0
2

s−γz0(s)ds

=
s0

4

∫ 3s0
4

s0
2

s−γ
(
w0(s)−

µ

n
· s
)
ds

≥
µs0

4n

∫ 3s0
4

s0
2

s−γ
(Rn

2
− s
)
ds

≥
µRns0

16n

∫ 3s0
4

s0
2

s−γds

= c3s
2−γ
0 ,

because s0 ≤
Rn

4 . As a consequence of (3.36), we thus obtain that

c1s
−3+6α− 2α

n
+(1−2α)γ

0 φ2−2α(0)− c2s

3− 4
n−6α+6α

n −(1−2α)γ

1−2α

0

≥
1

2
c1s

−3+6α− 2α
n
+(1−2α)γ

0 φ2−2α(0), (3.37)

whence an ODE comparison argument shows that thanks to (3.35),

φ′(t) ≥
1

2
c1s

−3+6α− 2α
n
+(1−2α)γ

0 φ2−2α(t) for all t ∈ (0, Tmax), (3.38)

for writing

φ(t) :=

(
2c2s

3− 4
n−6α+6α

n −(1−2α)γ

1−2α

0

c1s
−3+6α− 2α

n
+(1−2α)γ

0

) 1
2−2α

, t ≥ 0,

we directly observe that

φ
t
− c1s

−3+6α− 2α
n
+(1−2α)γ

0 φ2−2α(t) + c2s

3− 4
n−6α+6α

n −(1−2α)γ

1−2α

0 = −c2s
3− 4

n−6α+6α
n −(1−2α)γ

1−2α

0

≤ 0 for all t > 0,

whereas (3.37) ensures that φ(0) ≤ φ(0). Since 2 − 2α > 1, by positivity of φ(0) the inequality in
(3.38), however implies that φ, and thus clearly also (u, v), must cease to exist in finite time. �

Our main result on the occurrence of blow-up in (1.5) can now be obtained by simply transforming
the above back to the original variables:

Proof of Theorem 1.1. With s0 = s0(µ) ∈ (0, R
n

4 ) as provided by Lemma 3.15, we let R0 =

19



R0(µ) := ( s02 )
1
n ∈ (0, R), and assume u0 to satisfy (1.7), (1.12) as well as (1.13). We then only need

to observe that when rewritten in terms of the function w0 defined in (3.3), (1.13) says that

w0

(s0
2

)
=
Rn

0

n
−

∫

BR0
(0)
u0dx ≥

Rn
0

n
·
µ

2

( R
R0

)n
=
µRn

2n
.

Therefore, namely, the claim becomes a direct consequence of Lemma 3.15. �

4 Global boundedness for supercritical α. Proof of Proposition 1.2

Let us finally make sure that our blow-up result indeed is essentially optimal with respect to the
parameter range therein. Our brief reasoning in this direction will rely on a basic integrability feature
of the taxis gradient which immediately results from the L1 bound for u implied by (2.1) due to
standard elliptic regularity theory:

Lemma 4.1 Under the assumptions of Proposition 1.2, for all q ∈ [1, n
n−1) one can find C = C(q) > 0

such that

‖∇v(·, t)‖Lq(Ω) ≤ C for all t ∈ (0, Tmax).

Proof. In view of (2.1), this is a direct consequence of the second equation in (1.5) when combined
with well-known regularity theory for elliptic problems with L1 inhomogeneities ([7]). �

We can thereby easily derive the claimed statement on global existence and boundedness by means
of a suitably designed L∞ estimation procedure based on smoothing properties of the Neumann heat
semigroup:

Proof of Proposition 1.2. Without loss of generality assuming that α < 1
2 , we note that since

2(n − 1)α > n − 2 and hence (1 − 2α)n < n
n−1 , we can fix q ∈ [1, n

n−1) such that q > (1 − 2α)n,
whereupon it becomes possible to pick r > n such that still q > (1− 2α)r.
Then according to known smoothing properties of the Neumann heat semigroup (et∆)t≥0 in Ω ([16]),
there exist c1 > 0 and θ > 0 such that for all ϕ ∈ C1(Ω;Rn) such that ϕ · ν = 0 on ∂Ω,

‖et∆∇ · ϕ‖L∞(Ω) ≤ c1t
− 1

2
− n

2r e−θt‖ϕ‖Lr(Ω) for all t > 0.

Therefore, using that 0 ≤ et∆u0 ≤ ‖u0‖L∞(Ω) for all t > 0 by the maximum principle, we infer that
for all t ∈ (0, Tmax),

‖u(·, t)‖L∞(Ω) =

∥∥∥∥∥e
t∆u0 −

∫ t

0
e(t−s)∆∇ ·

{
u(·, s)f

(
|∇v(·, s)|2

)
∇v(·, s)

}
ds

∥∥∥∥∥
L∞(Ω)

≤ ‖et∆u0‖L∞(Ω) + c1

∫ t

0

∥∥∥∥e
(t−s)∆∇ ·

{
u(·, s)f

(
|∇v(·, s)|2

)
∇v(·, s)

}∥∥∥∥
L∞(Ω)

ds

≤ ‖u0‖L∞(Ω) + c1

∫ t

0
(t− s)−

1
2
− n

2r e−θ(t−s)

∥∥∥∥u(·, s)f
(
|∇v(·, s)|2

)
∇v(·, s)

∥∥∥∥
Lr(Ω)

ds,(4.1)
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where by (1.15) and the Hölder inequality, for all s ∈ (0, Tmax) we see that

∥∥∥∥u(·, s)f
(
|∇v(·, s)|2

)
∇v(·, s)

∥∥∥∥
Lr(Ω)

≤ Kf

∥∥∥u(·, s)
(
1 + |∇v(·, s)|2

)−α

∇v(·, s)
∥∥∥
Lr(Ω)

≤ Kf

∥∥∥u(·, s)|∇v(·, s)|1−2α
∥∥∥
Lr(Ω)

≤ Kf‖u(·, s)‖
L

qr
q−(1−2α)r (Ω)

‖∇v(·, s)‖1−2α
Lq(Ω)

≤ Kf‖u(·, s)‖
a
L∞(Ω)‖u(·, s)‖

1−a
L1(Ω)

‖∇v(·, s)‖1−2α
Lq(Ω)

with a := 1 − q−(1−2α)r
qr

∈ (0, 1). As ‖u(·, s)‖L1(Ω) =
∫
Ω u0 for all s ∈ (0, Tmax), by means of Lemma

4.1 we thus find c2 > 0 such that writing M(T ) := supt∈(0,T ) ‖u(·, t)‖L∞(Ω) for T ∈ (0, Tmax), we have

∥∥∥∥u(·, s)f
(
|∇v(·, s)|2

)
∇v(·, s)

∥∥∥∥
Lr(Ω)

≤ c2‖u(·, s)‖
a
L∞(Ω) ≤ c2M

a(T ) for all s ∈ (0, T ),

whence (4.1) shows that

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + c1c2M
a(T )

∫ t

0
(t− s)−

1
2
− n

2r e−θ(t−s)ds

≤ c3 + c3M
a(T ) for all t ∈ (0, T ) (4.2)

if we let c3 := max
{
‖u0‖L∞(Ω) , c1c2

∫∞
0 σ−

1
2
− n

2r e−θσ
}
and note that c3 is finite due to the restriction

that r > n. In consequence, (4.2) entails that

M(T ) ≤ c3 + c3M
a(T ) for all T ∈ (0, Tmax)

and thereby asserts that ‖u(·, t)‖L∞(Ω) ≤ max{1 , (2c3)
1

1−a } for all t ∈ (0, Tmax). Thanks to (2.2), this
firstly ensures that Tmax = ∞, and that secondly moreover (1.17) holds. �
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