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Abstract

In a smoothly bounded convex domain Ω ⊂ R
3, we consider the chemotaxis-Navier-Stokes model





nt + u · ∇n = ∆n−∇ · (n∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nc, x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,

(⋆)

proposed by Goldstein et al. to describe pattern formation in populations of aerobic bacteria inter-
acting with their liquid environment via transport and buoyancy. Known results have asserted that
under appropriate regularity assumptions on Φ and the initial data, a corresponding no-flux/no-
flux/Dirichlet initial-boundary value problem is globally solvable in a framework of so-called weak
energy solutions, and that any such solution eventually becomes smooth and classical.

Going beyond this, the present work focuses on the possible extent of unboundedness phenomena
also on short timescales, and hence investigates in more detail the set of times in (0,∞) at which
solutions may develop singularities. The main results in this direction reveal the existence of a
global weak energy solution which coincides with a smooth function throughout Ω × E, where E

denotes a countable union of open intervals which is such that |(0,∞) \ E| = 0. In particular,
this indicates that a similar feature of the unperturbed Navier-Stokes equations, known as Leray’s
structure theorem, persists even in the presence of the coupling to the attractive and hence poten-
tially destabilizing cross-diffusive mechanism in the full system (⋆).
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1 Introduction

Possible singularities in Navier-Stokes flows with given forces. Questions related to regular-
ity of weak solutions to the Navier-Stokes equations, especially due to their central role in correspond-
ing solution theories also at levels of existence issues, have greatly stimulated substantial developments
in PDE analysis even far beyond fluid-mechanical application areas ([42]). Although deciding about
the possibility of spontaneous singularity formation is still constituting a major problem in this field,
yet open despite remarkably comprehensive knowledge e.g. about nonexistence of self-similar blow-up
or genericity of smoothness in various flavors ([28], [2], [31]), a contribution of great relevance in this re-
gard, noticeably, even dates back to the first half of the last century: Namely, Jean Leray’s celebrated
structure theorem ([24], [42]) quite considerably reduces the subset of times at which a given and
widely arbitrary global weak solution to the Dirichlet problem for the incompressible Navier-Stokes
equations in bounded three-dimensional domains Ω may develop a singularity somewhere in space.
More precisely, in its simplest form this theorem states that if u is any such solution which satisfies a
certain energy-type inequality naturally associated with the Navier-Stokes system, then it is possible
to find T > 0 and an at most countable union of open subintervals of (0, T ) which complements a null
set of times, and which is such that u is smooth throughout each of these intervals, and additionally
in (T,∞), as an X-valued mapping, with convenient choices of the function space X compatible with
the regularity of ∂Ω, say, X = C2(Ω;R3) in case of smoothly bounded Ω ([24], [32], [38]).

Actually made already in 1934, this discovery can be viewed as a starting point for numerous substan-
tial further developments concerning possible structures and sizes of corresponding singularity sets,
e.g. including estimates for the Hausdorff dimension of the set of times at which singularities may
occur ([13]), and even considerably detailed information about genuine spatio-temporal smoothness
features in the context of studies on what is known as partial regularity enjoyed by certain further
subclasses of so-called suitable solutions ([2], [30]).

Some natural extensions of the above structure theorem address cases in which a considered fluid is
subject to a given external force, and a technique developed in [32] paved a way toward the conclusion
that Leray’s statement in fact remains unchanged in its essence whenever such a prescribed force is
suitably regular ([38, Theorem IV.5.5]).

In contrast to this, regularity properties of fluid flows seem much less understood in some biologically
significant situations in which the corresponding forces themselves are unknowns of the system. Such
potentially self-enhancing couplings are typically present in contexts of buoyancy-driven interplay of
chemotactically migrating microbial populations with a surrounding liquid environment, as experi-
mentally found to be of relevance for pattern generation in certain bioconvection processes ([7], [37]).
Indeed, in the recent few years several theoretical studies have gathered considerable evidence indi-
cating various noticeable effects of such chemotaxis-fluid interaction in frameworks of some particular
models accessible to rigorous analysis, including influences of fluid flows on spatial population spread-
ing ([18] and [19]), and even fluid-driven suppression of bacterial aggregation in the sense of blow-up
prevention ([20], [14]).

Buoyancy-induced fluid forcing in bioconvection processes. Exclusively relying on the com-
mon assumption that the respective velocity field is given, these findings predominantly focus on cases
in which any gravitational feedback of microbial masses on fluid flows can be neglected; if such ad-
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ditional additional couplings are accounted for, however, much less information seems available. For
instance, in the context of the particular model for oxytactic migration of swimming aerobic bacteria,
as proposed in [37] according to





nt + u · ∇n = ∆n−∇ · (nχ(c)∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nf(c), x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,

(1.1)

predominantly the presence of the source term n∇Φ in the Navier-Stokes subsystem thereof seems to
go along with substantial challenges already at the level of basic existence theories. Indeed, reflecting
a bouyancy-induced forcing of the fluid velocity u and associated pressure P by fluctuations in the
population density n through the given gravitational potential Φ, especially in light of well-known
caveats from the theory of chemotaxis-driven blow-up phenomena in related fluid-free Keller-Segel
systems ([16], [27], [1], [34], [45]) such sources seem quite far from being a priori known to fall into
any class of inhomogeneities accessible to well-established theories for the Navier-Stokes equations; in
contexts of general assumptions on the chemotactic sensitivity function χ and the rate f(c) at which
the chemical signal c is consumed by cells, for instance, available regularity information on n apparently
reduces to bounds in L1(Ω) obtained from mass conservation, but corresponding implications on the
fluid force seem far from sufficient to ensure applicability of classical Navier-Stokes theory ([31]).

Accordingly, most studies on global solvability in three-dimensional domains Ω either concentrate on
small-data smooth solutions ([8], [21], [5], [4]), or rely on considerable restrictions with respect to χ

and f ([8]); a comprehensive result on global existence of weak solutions, addressing (1.1) in bounded
convex domains Ω ⊂ R

3 under parameter conditions allowing for the prototypical choices χ ≡ 1 and
f(c) = c, c ≥ 0, could be established only more recently ([47]). Even for simplified variants of (1.1)
obtained upon suppressing the nonlinear convection term (u ·∇)u therein, clearly allowing for smooth
solution components u and P in the decoupled case when ∇Φ ≡ 0, in the presence of chemotactic
interaction only weak solutions seem available up to now ([44]), whereas global bounded solutions could
up to now be constructed only after further system modifications, introducing appropriate additional
relaxion such as diffusion enhancement at large population densities through porous medium-type
operators, or including certain saturation mechanisms in the cross-diffusive term, for instance; as a
selection out of an extensive literature in this direction, we may refer to [9], [6], [39], [3], [40] and [41],
and also to [17], [23], [35], [49].

In line with this, the knowledge becomes quite sparse as soon as the focus is set on qualitative
solution properties going beyond basic regularity features naturally obtained in the course of existence
theories. In fact, the apparently only information available in this direction to date asserts a certain
long-time relaxation effect in the sense that in bounded convex three-dimensional Ω, rather arbitrary
weak solutions to (1.1), if satisfying a certain quasi-energy inequality in fact enjoyed by each solution
obtained through some convenient approximation procedure, eventually become smooth and classical,
and that they stabilize toward a semi-trivial, and especially motion-free, equilibrium in the large time
limit ([48]; cf. also [46] and [50] for two-dimensional precedents partially even providing convergence
rates). Widely unfathomed, however, seem possible facets of potentially destabilizing influences that
well-conceivable taxis-driven cell aggregation phenomena may exert on the per se already quite delicate
fluid flow regularity, and vice versa, on short timescales.
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Main results. The purpose of this work is to address this issue from a perspective related to that
underlying Leray’s structure theorem for the unperturbed Navier-Stokes system, and we shall see that
despite the evidently more complex couplings than those present in the latter, the three-dimensional
version of the full chemotaxis-fluid system (1.1) in fact retains a certain generic smoothness feature
in quite a similar flavor.

In order to make this more precise and most transparent, let us concentrate on (1.1) in a prototypical
form, and hence throughout the sequel consider the initial-boundary value problem





nt + u · ∇n = ∆n−∇ · (n∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nc, x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν

= ∂c
∂ν

= 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.2)

in a bounded convex domain Ω ⊂ R
3 with smooth boundary, where accessibility to the existence

theory from [47] will be provided by our standing assumptions that

Φ ∈ W 2,∞(Ω), (1.3)

and that




n0 ∈ L logL(Ω) is nonnegative with n0 6≡ 0, that
c0 ∈ L∞(Ω) is nonnegative and such that

√
c0 ∈ W 1,2(Ω), and that

u0 ∈ L2
σ(Ω),

(1.4)

where as usual we let L2
σ(Ω) := {ϕ ∈ L2(Ω) | ∇ · ϕ = 0} denote the space of all solenoidal vector

fields in L2(Ω), and write L logL(Ω) to represent the standard Orlicz space associated with the Young
function (0,∞) ∋ z 7→ z ln(1 + z).

Within this framework, our main results will then reveal that at least some solutions enjoy a property
of generic regularity quite in the flavor of Leray’s statement:

Theorem 1.1 Let Ω ⊂ R
3 be a bounded convex domain with smooth boundary, and assume (1.3)

and (1.4). Then the problem (1.2) admits at least one global weak energy solution, in the sense of
Definition 2.1, which has the property that there exist T⋆ > 0, a countable set I ⊂ N and open intervals
Iι ⊂ (0, T⋆), ι ∈ I, such that Iι ∩ Iι′ = ∅ for all ι ∈ I and ι′ ∈ I with ι 6= ι′, that

∣∣∣∣(0, T⋆) \
⋃

ι∈I

Iι

∣∣∣∣ = 0, (1.5)

and that after re-definition of (n, c, u) on a null set in Ω× (0,∞) we have




n ∈ C2,1

(
Ω×

( ⋃
ι∈I

Iι ∪ (T⋆,∞)
))

,

c ∈ C2,1

(
Ω×

( ⋃
ι∈I

Iι ∪ (T⋆,∞)
))

and

u ∈ C2,1

(
Ω×

( ⋃
ι∈I

Iι ∪ (T⋆,∞)
)
;R3

)
.

(1.6)
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Challenges and overall strategy. A major difference between our analysis of (1.2) and stan-
dard approaches for the corresponding unperturbed Navier-Stokes problem, inter alia explaining the
restriction in Theorem 1.1 to particular weak solutions, is rooted in the circumstance that due to its
apparent sparseness, our available global a priori regularity information for (1.2) seems insufficient to
warrant some essential uniqueness features in the flavor of those known from the Navier-Stokes theory.
In fact, unlike in initial-value problems for the latter ([31]) it seems unknown whether an arbitrary
weak solution to (1.2), if merely known to enjoy some regularity properties inherently linked to some
natural energy-type features of (1.2) (cf. Definition 2.1 and especially (2.1) and (2.2) below), must
coincide with any suitably smooth solution whenever such a second solution exists.

Accordingly, besides the constitution of a local existence theory involving spaces Y of functions (n, c, u)
large enough so as to be consistent with the regularity information gained from (2.1) and (2.2), de-
riving Theorem 1.1 will require an adequate handling of this lacking uniqueness property in order to
make sure that a weak solution (n, c, u) in question indeed is smooth near each time t0 at which the
size of (n, c, u) in Y can conveniently be controlled.

In contrast to corresponding well-established arguments from the literature on the Navier-Stokes sys-
tem ([32], [38]), our approach will therefore predominantly operate at the level of solutions (nε, cε, uε)
to suitably regularized variants of (1.2) (see (2.3) below), and aim at deducing estimates, ultimately
in spaces of smooth functions, independent of the respective approximation parameter ε ∈ (0, 1).
Forming the origin of an additional technical complication, the temporally local character of such
quantitative regularity information will suggest to finally derive smoothness near an instant t0 under
consideration by providing estimates throughout a partially backward open interval J(t0) ∋ t0, instead
of merely concentrating on exclusively forward intervals, as known to be a possible and considerably
simpler procedure in the derivation of Leray’s theorem for the Navier-Stokes system ([32], [38]).

Specifically, our approach will rest on a local theory based on an analysis of

yε(t) :=

∫

Ω
np
ε(·, t) +

∫

Ω
|∇cε(·, t)|2p +

∫

Ω
|Aα

2 uε(·, t)|2, t ≥ 0, ε ∈ (0, 1), (1.7)

for suitably chosen p > 1 and α > 0, where, as throughout the sequel, we let A = −P∆ denote the
realization of the Stokes operator in L2

σ(Ω), with its domain given by D(A) = W 2,2(Ω;R3)∩W
1,2
0,σ (Ω),

W
1,2
0,σ (Ω) := W

1,2
0 (Ω;R3) ∩ L2

σ(Ω), and with P denoting the Helmholtz projection on L2(Ω;R3), and
for α ∈ R we let Aα represent the corresponding sectorial fractional powers.

Indeed, we shall firstly see that whenever

p >
3

2
and α ∈

(1
2
, 1
)
, (1.8)

the short-time growth of yε can conveniently be controlled due to the observation that yε satisfies a
superlinearly forced but autonomous ODI with ε-independent coefficients (Lemma 3.7 and Lemma
3.8). The a priori information thereby gained will turn out to form a suitable starting point for a

bootstrap procedure eventually providing local-in-time estimates in C2+θ,1+ θ
2 spaces (Lemma 4.6 and

Lemma 4.7) after each time at which yε remains controlled by any arbitrarily large but fixed number.

In order to ensure applicability of this local regularity theory to (1.2) through an elementary observa-
tion on the sizes of certain sets containing endpoints of intervals at which a given measurable function
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exceeds a prescribed level (Lemma 5.1 and Corollary 5.2), in Section 6 we will thereafter complement
this by making sure that the alternative hypotheses

p < 3 and α < 1 (1.9)

guarantee that the space Y := Lp(Ω)×W 1,2p(Ω)×D(A
α
2 ) underlying the choice of yε is large enough

so as to contain (n, c, u) throughout large sets of times due to the dissipation processes expressed
in (2.1) and (2.2) (Lemma 6.5). Thanks to a suitable approximation property of yε in the limit of
vanishing ε (Lemma 6.4), these arguments indeed become applicable to (nε, cε, uε), and the desired
overall conclusion can finally be obtained due to the fortunate circumstance that the requirements in
(1.8) and (1.9) can be fulfilled simultaneously.

Before going into details, let us finally remark that in line with this and our subsequent reasoning,
the statement from Theorem 1.1 immediately extends to any global weak energy solution that can be
gained as an accumulation point of the family of solutions to (2.3) as ε ց 0; actually, corresponding
limits obtained through more general approximation procedures can be covered as well, but pursuing
this in detail goes beyond the scope of this study.

2 Energy solutions, eventual regularity and approximation

In order to briefly specify the framework of our analysis, we firstly introduce the following solution
concept which combines [47, Definition 2.1] with the essential part of [48, Definition 1.1]. For vectors
v ∈ R

3 and w ∈ R
3, we here let v ⊗ w denote the matrix (aij)i,j∈{1,2,3} ∈ R

3×3 defined by letting
aij := viwj for i, j ∈ {1, 2, 3}.
Definition 2.1 Suppose that

n ∈ L4
loc(Ω̄× [0,∞)) ∩ L2

loc([0,∞);W 1,2(Ω)) is nonnegative with n
1
2 ∈ L2

loc([0,∞);W 1,2(Ω)), that

c ∈ L∞
loc(Ω× [0,∞)) is nonnegative and such that c

1
4 ∈ L4

loc([0,∞);W 1,4(Ω)), and that

u ∈ L∞
loc([0,∞);L2

σ(Ω)) ∩ L2
loc([0,∞);W 1,2

0 (Ω;R3)).

Then (n, c, u) will be called a global weak energy solution of (1.2) if

−
∫ ∞

0

∫

Ω
nφt −

∫

Ω
n0φ(·, 0) = −

∫ ∞

0

∫

Ω
∇n · ∇φ+

∫ ∞

0

∫

Ω
n∇c · ∇φ+

∫ ∞

0

∫

Ω
nu · ∇φ

for all φ ∈ C∞
0 (Ω̄× [0,∞)),

−
∫ ∞

0

∫

Ω
cφt −

∫

Ω
c0φ(·, 0) = −

∫ ∞

0

∫

Ω
∇c · ∇φ−

∫ ∞

0

∫

Ω
ncφ+

∫ ∞

0

∫

Ω
cu · ∇φ

for all φ ∈ C∞
0 (Ω̄× [0,∞)) as well as

−
∫ ∞

0

∫

Ω
u · φt −

∫

Ω
u0 · φ(·, 0) = −

∫ ∞

0

∫

Ω
∇u · ∇φ+

∫ ∞

0
u⊗ u · ∇φ+

∫ ∞

0

∫

Ω
n∇Φ · φ

for all φ ∈ C∞
0 (Ω× [0,∞);R3) satisfying ∇ · φ ≡ 0, if moreover

1

2

∫

Ω
|u(·, t)|2+

∫ t

t0

∫

Ω
|∇u|2 ≤ 1

2

∫

Ω
|u(·, t0)|2+

∫ t

t0

∫

Ω
nu ·∇Φ for a.e. t0 > 0 and all t > t0, (2.1)
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and if there exist κ > 0 and K > 0 such that

d

dt

{∫

Ω
n lnn+

1

2

∫

Ω

|∇c|2
c

+ κ

∫

Ω
|u|2

}
+

1

K

∫

Ω

{ |∇n|2
n

+
|∇c|4
c3

+ |∇u|2
}

≤ K in D′((0,∞)). (2.2)

For any such solution, the main result from [48] applies so as to assert the following statement on
eventual smoothness:

Theorem A Suppose that (n, c, u) is any global weak energy solution of (1.2) with some initial data
n0, c0 and u0 satisfying (1.4). Then there exist T⋆ > 0 and P ∈ C1,0(Ω × [T⋆,∞)) such that upon a
re-definition of (n, c, u) on a null set we have





n ∈ C2,1(Ω× [T⋆,∞)),

c ∈ C2,1(Ω× [T⋆,∞)) and

u ∈ C2,1(Ω× [T⋆,∞);R3),

and such that (n, c, u, P ) solves the boundary value problem in (1.2) classically in Ω× [T⋆,∞).

The corresponding existence theory from [47] utilizes the regularized problems




nεt + uε · ∇nε = ∆nε −∇ · (nεF
′
ε(nε)∇cε), x ∈ Ω, t > 0,

cεt + uε · ∇cε = ∆cε − Fε(nε)cε, x ∈ Ω, t > 0,

uεt + (Yεuε · ∇)uε = ∆uε +∇Pε + nε∇Φ, ∇ · uε = 0, x ∈ Ω, t > 0,
∂nε

∂ν
= ∂cε

∂ν
= 0, uε = 0, x ∈ ∂Ω, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,

(2.3)

for ε ∈ (0, 1), where the Yosida approximation Yε ([31], [26]) is defined by letting

Yεv := (1 + εA)−1v for v ∈ L2
σ(Ω) and ε ∈ (0, 1) (2.4)

and where setting

Fε(s) :=
1

ε
ln(1 + εs) for s ≥ 0 and ε ∈ (0, 1)

ensures that

0 ≤ F ′
ε(s) =

1

1 + εs
≤ 1 and 0 ≤ Fε(s) ≤ s for all s ≥ 0 and ε ∈ (0, 1), (2.5)

and that F ′
ε(s) ր 1 and Fε(s) ր s as ε ց 0 for all s > 0. As for the initial data in (2.3), from [47] we

import the requirements that
{

n0ε ∈ C∞
0 (Ω), n0ε ≥ 0 in Ω,

∫
Ω n0ε =

∫
Ω n0 for all ε ∈ (0, 1) and

n0ε → n0 in L logL(Ω) as ε ց 0,
(2.6)

that
{

c0ε ≥ 0 in Ω is such that
√
c0ε ∈ C∞

0 (Ω) and ‖c0ε‖L∞(Ω) ≤ ‖c0‖L∞(Ω) for all ε ∈ (0, 1) and
√
c0ε →

√
c0 a.e. in Ω and in W 1,2(Ω) as ε ց 0,

(2.7)
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and that
{

u0ε ∈ C∞
0,σ(Ω) with ‖u0ε‖L2(Ω) = ‖u0‖L2(Ω) for all ε ∈ (0, 1) and

u0ε → u0 in L2(Ω) as ε ց 0.
(2.8)

The following lemma summarizes some basic results concerning global existence of classical solutions
and some of their elementary properties, as obtained in [47, Lemma 2.2, Lemma 2.3, Lemma 3.9].

Lemma 2.2 For each ε ∈ (0, 1), there exist

nε ∈ C2,1(Ω× [0,∞)), cε ∈ C2,1(Ω× [0,∞)) and uε ∈ C2,1(Ω× [0,∞);R3)

such that nε > 0 and cε > 0 in Ω × (0,∞), and such that (nε, cε, uε, Pε) solves (2.3) classically in
Ω× (0,∞) with some Pε ∈ C1,0(Ω× (0,∞)). Moreover,

∫

Ω
nε(·, t) =

∫

Ω
n0 for all t > 0 (2.9)

and
‖cε(·, t)‖L∞(Ω) ≤ ‖c0‖L∞(Ω) for all t > 0. (2.10)

3 Local theory: Controlling the short-time growth of yε when p >
3
2

Forming the core quantity of all our subsequent analysis, our object of investigation in this section
will be the functional introduced in (1.7), with the parameters p > 1 and α > 0 appearing therein
still being at our disposal. Our goal will consist in making sure that the key assumptions therefor
in (1.8), and especially the requirement p > 3

2 therein, indeed enable us to develop a local regularity
theory by deriving the autonomous ODI (3.13) for yε, and a first step toward this can be achieved by
performing three quite straightforward testing procedures to (2.3):

Lemma 3.1 Let p > 1 and α > 0. Then there exists C > 0 such that with (yε)ε∈(0,1) taken from (1.7)
we have

y′ε(t) +
1

C
·
{∫

Ω
|∇n

p
2
ε |2 +

∫

Ω

∣∣∣∇|∇cε|p
∣∣∣
2
+

∫

Ω
|Aα+1

2 uε|2
}

≤ C ·
{∫

Ω
np
ε|∇cε|2 +

∫

Ω
n2
ε|∇cε|2p−2 +

∫

Ω
|∇cε|2p · |∇uε|

+

∣∣∣∣
∫

Ω
Aαuε · P

{
(Yεuε · ∇)uε

}∣∣∣∣+
∣∣∣∣
∫

Ω
Aαuε · P

{
nε∇Φ

}∣∣∣∣

}
(3.1)

for all t > 0 and ε ∈ (0, 1).

Proof. Since ∇ · uε = 0, from the first equation in (2.3) and Young’s inequality we obtain that for
all t > 0,

1

p

d

dt

∫

Ω
np
ε + (p− 1)

∫

Ω
np−2
ε |∇nε|2 = (p− 1)

∫

Ω
np−1
ε F ′

ε(nε)∇nε · ∇cε

≤ p− 1

2

∫

Ω
np−2
ε |∇nε|2 +

p− 1

2

∫

Ω
np
εF

′2
ε (nε)|∇cε|2
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and hence, by (2.5),

1

p

d

dt

∫

Ω
np
ε +

2(p− 1)

p

∫

Ω
|∇n

p
2
ε |2 ≤

p− 1

2

∫

Ω
np
ε|∇cε|2 for all t > 0. (3.2)

Next, using that ∂|∇cε|2

∂ν
≤ 0 on ∂Ω×(0,∞) by convexity of Ω ([25]), integrating by parts in the second

equation from (2.3) we see that again due to the solenoidality of uε and (2.5), and thanks to (2.10)
and Young’s inequality,

1

2p

d

dt

∫

Ω
|∇cε|2p =

∫

Ω
|∇cε|2p−2∇cε · ∇

{
∆cε − Fε(nε)cε − uε · ∇cε

}

=
1

2

∫

Ω
|∇cε|2p−2∆|∇cε|2 −

∫

Ω
|∇cε|2p−2|D2cε|2

+

∫

Ω
Fε(nε)cε ·

{
2(p− 1)|∇cε|2p−4∇cε · (D2cε · ∇cε) + |∇cε|2p−2∆cε

}

−
∫

Ω
|∇cε|2p−2∇cε · (∇uε · ∇cε)

≤ −2(p− 1)

p2

∫

Ω

∣∣∣∇|∇cε|p
∣∣∣
2
−
∫

Ω
|∇cε|2p−2|D2cε|2

+
(
2(p− 1) +

√
3
)
‖c0‖L∞(Ω)

∫

Ω
nε|∇cε|2p−2|D2cε|+

∫

Ω
|∇cε|2p · |∇uε|

≤ −2(p− 1)

p2

∫

Ω

∣∣∣∇|∇cε|p
∣∣∣
2

+

(
2(p− 1) +

√
3
)2

‖c0‖2L∞(Ω)

4

∫

Ω
n2
ε|∇cε|2p−2 +

∫

Ω
|∇cε|2p · |∇uε| (3.3)

for all t > 0. We finally test the third equation in (2.3), rewritten in the projected form uεt + Auε =
−P{(Yεuε · ∇)uε}+ P{nε∇Φ}, by Aαuε to obtain that

1

2

d

dt

∫

Ω
|Aα

2 uε|2 +
∫

Ω
|Aα+1

2 uε|2 = −
∫

Ω
Aαuε · P

{
(Yεuε · ∇)uε

}
+

∫

Ω
Aαuε · P

{
nε∇Φ

}
for all t > 0,

which combined with (3.2) and (3.3) entails (3.1). �

Now under the announced assumption that p > 3
2 , the first two of the five integrals on the right of

(3.1) can jointly be estimated in terms of the dissipated quantity therein, and of a superlinear power
of yε, by means of a Gagliardo-Nirenberg type interpolation.

Lemma 3.2 Let p > 3
2 and α > 0. Then for all η > 0 there exists C(η) > 0 such that whenever

ε ∈ (0, 1),

∫

Ω
np
ε|∇cε|2 +

∫

Ω
n2
ε|∇cε|2p−2 ≤ η

∫

Ω
|∇nε|2 + η

∫

Ω

∣∣∣∇|∇cε|2
∣∣∣
2
+C(η)y

2p−1
2p−3
ε (t) +C(η) for all t > 0,

(3.4)
where yε is as in (1.7).
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Proof. According to the Gagliardo-Nirenberg inequality, followed by two applications of Young’s
inequality which rely on the assumption p > 3

2 and the fact that 2(p+1)
p

<
2(2p−1)
2p−3 , we can fix C1 > 0

and C2 = C2(η) > 0 such that

2‖ϕ‖
2(p+1)

p

L
2(p+1)

p (Ω)

≤ C1‖∇ϕ‖
3
p

L2(Ω)
‖ϕ‖

2p−1
p

L2(Ω)
+ C1‖ϕ‖

2(p+1)
p

L2(Ω)

≤ η‖∇ϕ‖2L2(Ω) + C2(η)‖ϕ‖
2(2p−1)
2p−3

L2(Ω)
+ C1‖ϕ‖

2(p+1)
p

L2(Ω)

≤ η‖∇ϕ‖2L2(Ω) + C3(η)‖ϕ‖
2(2p−1)
2p−3

L2(Ω)
+ C1 for all ϕ ∈ W 1,2(Ω),

where C3(η) := C1+C2(η). Twice employing this shows that again thanks to Young’s inequality, with
some C4 > 0 we have

∫

Ω
np
ε|∇cε|2 +

∫

Ω
n2
ε|∇cε|2p−2 ≤ 2

∫

Ω
np+1
ε + 2

∫

Ω
|∇cε|2(p+1)

= 2‖n
p
2
ε ‖

L
2(p+1)

p (Ω)
+ 2

∥∥∥|∇cε|p
∥∥∥

2(p+1)
p

L
2(p+1)

p (Ω)

≤ η‖∇n
p
2
ε ‖2L2(Ω) + C3(η)‖n

p
2
ε ‖

2(2p−1)
2p−3

L2(Ω)
+ C1

+η
∥∥∥∇|∇cε|p

∥∥∥
2

L2(Ω)
+ C3(η)

∥∥∥|∇cε|p
∥∥∥

2(2p−1)
2p−3

L2(Ω)
+ C1

for all t > 0 and ε ∈ (0, 1). Since

‖n
p
2
ε ‖

2(2p−1)
2p−3

L2(Ω)
≤ y

2p−1
2p−3
ε (t) and

∥∥∥|∇cε|p
∥∥∥

2(2p−1)
2p−3

L2(Ω)
≤ y

2p−1
2p−3
ε (t) for all t > 0

by (1.7), this implies (3.4). �

In order to prepare our estimation of the three remaining integrals on the right-hand side of (3.1), but
also one of our subsequent higher order regularity arguments in Lemma 4.4, let us explicitly recall the
following well-known interpolation inequality (cf. e.g. [10, Theorem 2.14.1]).

Lemma 3.3 Let λ ∈ R, µ > λ and θ ∈ (λ, µ). Then there exists C = C(λ, µ, θ) > 0 such that

‖Aθϕ‖L2(Ω) ≤ C‖Aµϕ‖
θ−λ
µ−λ

L2(Ω)
‖Aλϕ‖

µ−θ
µ−λ

L2(Ω)
for all ϕ ∈ D(Aµ).

We can thereby control the second contribution to the right-hand side of (3.1), and hence the transport-
related part of the interaction in (2.3), in a flavor quite similar to that of Lemma 3.2, provided that
α > 1

2 .

Lemma 3.4 Let p > 1 and α ∈ (12 , 1). Then for all η > 0 there exists C(η) > 0 such that for each
ε ∈ (0, 1), with yε taken from (1.7) we have
∫

Ω
|∇cε|2p · |∇uε| ≤ η

∫

Ω

∣∣∣∇|∇cε|p
∣∣∣
2
+ η

∫

Ω
|Aα+1

2 uε|2 + C(η)y
2α+1
2α−1
ε (t) + C(η) for all t > 0. (3.5)
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Proof. By the Cauchy-Schwarz inequality,
∫

Ω
|∇cε|2p · |∇uε| ≤

∥∥∥|∇cε|p
∥∥∥
2

L4(Ω)
‖∇uε‖L2(Ω) for all t > 0, (3.6)

where due to the Gagliardo-Nirenberg inequality and (1.7), we can find C1 > 0 such that

∥∥∥|∇cε|p
∥∥∥
2

L4(Ω)
≤ C1

∥∥∥∇|∇cε|p
∥∥∥

3
2

L2(Ω)

∥∥∥|∇cε|p
∥∥∥

1
2

L2(Ω)
+ C1

∥∥∥|∇cε|p
∥∥∥
2

L2(Ω)

≤ C1

∥∥∥∇|∇cε|2
∥∥∥

3
2

L2(Ω)
y

1
4
ε (t) + C1yε(t) for all t > 0 and ε ∈ (0, 1), (3.7)

and where Lemma 3.3 enables us to pick C2 > 0 fulfilling

‖∇uε‖L2(Ω) = ‖A 1
2uε‖L2(Ω)

≤ C2‖A
α+1
2 uε‖1−α

L2(Ω)
‖Aα

2 uε‖αL2(Ω)

≤ C2‖A
α+1
2 uε‖1−α

L2(Ω)
y

α
2
ε (t) for all t > 0 and ε ∈ (0, 1),

because ‖Aα
2 uε‖2L2(Ω) ≤ yε(t) for any such t and ε. Since 4(1 − α) < 2 according to our hypothesis

that α > 1
2 , through Young’s inequality a combination of this with (3.7) and (3.6) yields C3(η) > 0

and C4(η) > 0 such that for all t > 0 and ε ∈ (0, 1),

∫

Ω
|∇cε|2p · |∇uε| ≤ C1C2

∥∥∥∇|∇cε|p
∥∥∥

3
2

L2(Ω)
‖Aα+1

2 uε‖1−α
L2(Ω)

y
2α+1

4
ε (t) + C1C2‖A

α+1
2 uε‖1−α

L2(Ω)
y

α+2
2

ε (t)

≤ η
∥∥∥∇|∇cε|p

∥∥∥
2

L2(Ω)
+ C3(η)‖A

α+1
2 uε‖4(1−α)

L2(Ω)
y2α+1
ε (t) + C1C2‖A

α+1
2 uε‖1−α

L2(Ω)
y

α+2
2

ε (t)

≤ η
∥∥∥∇|∇cε|p

∥∥∥
2

L2(Ω)
+ η‖Aα+1

2 uε‖2L2(Ω) + C4(η)y
2α+1
2α−1
ε (t) + C4(η)y

α+2
α+1
ε (t).

Since α+2
α+1 < 2α+1

2α−1 , a final application of Young’s inequality thus yields (3.5). �

Likewise, through Lemma 3.3 also the third of the integrals in question can be conveniently estimated
if α > 1

2 .

Lemma 3.5 Let p > 1, α ∈ (12 , 1) and ρ ∈ (34 ,
α+1
2 ). Then given any η > 0, one can find C(η) > 0

such that whenever ε ∈ (0, 1),
∣∣∣∣
∫

Ω
Aαuε · P

{
(Yεuε · ∇)uε

}∣∣∣∣ ≤ η

∫

Ω
|Aα+1

2 uε|2 + C(η)y
α−2ρ+2
α−2ρ+1
ε (t) for all t > 0, (3.8)

where again yε is as in (1.7).

Proof. According to the Cauchy-Schwarz inequality and the orthogonal projection property of P,
∣∣∣∣
∫

Ω
Aαuε · P

{
(Yεuε · ∇)uε

}∣∣∣∣ ≤ ‖Aαuε‖L2(Ω)‖(Yεuε · ∇)uε‖L2(Ω)

≤ ‖Aαuε‖L2(Ω)‖Yεuε‖L∞(Ω)‖∇uε‖L2(Ω) for all t > 0. (3.9)
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Here using that D(Aρ) →֒ L∞(Ω;R3) due to our restriction ρ > 3
4 ([15], [12]), we can find C1 > 0 such

that since Aρ and Yε commute on D(Aρ), and since Yε is nonexpansive on L2
σ(Ω),

‖Yεuε‖L∞(Ω) ≤ C1‖AρYεuε‖L2(Ω) = C1‖YεAρuε‖L2(Ω) ≤ C1‖Aρuε‖L2(Ω) for all t > 0.

As furthermore ρ < α+1
2 and α > 1

2 , each of the three rightmost factors in (3.9) therefore becomes
accessible to Lemma 3.3, whence application of the latter, followed by Young’s inequality, provides
C2 > 0 and C3(η) > 0 fulfilling

‖Aαuε‖L2(Ω)‖Yεuε‖L∞(Ω)‖∇uε‖L2(Ω)

≤ C2 ·
{
‖Aα+1

2 uε‖αL2(Ω)‖A
α
2 uε‖1−α

L2(Ω)

}
·
{
‖Aα+1

2 uε‖2ρ−α

L2(Ω)
‖Aα

2 uε‖α−2ρ+1
L2(Ω)

}
×

×
{
‖Aα+1

2 uε‖1−α
L2(Ω)

‖Aα
2 uε‖αL2(Ω)

}

= C2‖A
α+1
2 uε‖2ρ−α+1

L2(Ω)
‖Aα

2 uε‖α−2ρ+2
L2(Ω)

≤ η‖Aα+1
2 uε‖2L2(Ω) + C3(η)‖A

α
2 uε‖

2(α−2ρ+2)
α−2ρ+1

L2(Ω)
for all t > 0 and ε ∈ (0, 1),

because clearly 0 < 2ρ− α + 1. Again using that ‖Aα
2 uε‖2L2(Ω) ≤ yε(t) for all t > 0 and ε ∈ (0, 1), in

view of (3.9) we directly obtain (3.8) from this. �

The rightmost and buoyancy-induced term from Lemma 3.1 can finally be estimated in a manner
sufficient for our purposes, even for arbitrary α ∈ (0, 1) and any p from the range (43 ,∞) larger than
that determined through (1.8), by resorting to the L1 bound implied by (2.9).

Lemma 3.6 Let p > 4
3 and α ∈ (0, 1). Then for each η > 0 there exists C(η) > 0 such that for any

ε ∈ (0, 1),
∣∣∣∣
∫

Ω
Aαuε · P

{
nε∇Φ

}∣∣∣∣ ≤ η

∫

Ω
|∇n

p
2
ε |2+ η

∫

Ω
|Aα+1

2 uε|2+C(η)y
(3p−1)(1−α)

(3p−1)(2−α)−3
ε (t)+C(η) for all t > 0,

(3.10)
with yε as given by (1.7).

Proof. Due to our overall assumption on boundedness of ∇Φ, we may again rely on the orthogonal
projection property of P, on Lemma 3.3 and on Young’s inequality to infer that with some C1 > 0
and C2(η) > 0 we have

∣∣∣∣
∫

Ω
Aαuε · P

{
nε∇Φ

}∣∣∣∣ ≤ ‖Aαuε‖L2(Ω)‖nε∇Φ‖L2(Ω)

≤ C1‖A
α+1
2 uε‖αL2(Ω)‖A

α
2 uε‖1−α

L2(Ω)
‖nε‖L2(Ω)

≤ η‖Aα+1
2 uε‖2L2(Ω) + C2(η)‖A

α
2 uε‖

2(1−α)
2−α

L2(Ω)
‖nε‖

2
2−α

L2(Ω)

≤ η‖Aα+1
2 uε‖2L2(Ω) + C2(η)y

1−α
2−α
ε (t)‖nε‖

2
2−α

L2(Ω)
(3.11)

for all t > 0 and ε ∈ (0, 1), once more because ‖Aα
2 uε‖2L2(Ω) ≤ yε(t) for t > 0 by (1.7). Here employing

the Gagliardo-Nirenberg inequality, since ‖n
p
2
ε ‖

2
p

L
2
p (Ω)

=
∫
Ω nε =

∫
Ω n0 for all t > 0 by (2.9) we see that
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with some C3(η) > 0 and C4(η) > 0 we have

C2(η)y
1−α
2−α
ε (t)‖nε‖

2
2−α

L2(Ω)
= C2(η)y

1−α
2−α
ε (t)‖n

p
2
ε ‖

4
p(2−α)

L
4
p (Ω)

≤ C3(η)y
1−α
2−α
ε (t)‖∇n

p
2
ε ‖

6
(3p−1)(2−α)

L2(Ω)
‖n

p
2
ε ‖

2(3p−2)
p(3p−1)(2−α)

L
2
p (Ω)

+ C3(η)y
1−α
2−α
ε (t)‖n

p
2
ε ‖

4
p(2−α)

L
2
p (Ω)

≤ C4(η)y
1−α
2−α
ε (t)‖∇n

p
2
ε ‖

6
(3p−1)(2−α)

L2(Ω)
+ C4(η)y

1−α
2−α
ε (t) (3.12)

for all t > 0 and ε ∈ (0, 1). Since our restrictions p > 4
3 and α < 1 warrant that 6

(3p−1)(2−α) < 2, and

since evidently 1−α
2−α

<
(3p−1)(1−α)

(3p−1)(2−α)−3 , two applications of Young’s inequality finally show that there

exists C5(η) > 0 fulfilling

C4(η)y
1−α
2−α
ε (t)‖∇n

p
2
ε ‖

6
(3p−1)(2−α)

L2(Ω)
+ C4(η)y

1−α
2−α
ε (t)

≤ η‖∇n
p
2
ε ‖2L2(Ω) + C5(η)y

(3p−1)(1−α)
(3p−1)(2−α)−3
ε (t) + C4(η)y

1−α
2−α
ε (t)

≤ η‖∇n
p
2
ε ‖2L2(Ω) + (C4(η) + C5(η))y

(3p−1)(1−α)
(3p−1)(2−α)−3
ε (t) + C4(η) for all t > 0 and ε ∈ (0, 1),

so that (3.10) results from (3.11) and (3.12). �

In summary, Lemma 3.2, Lemma 3.4 and Lemma 3.5 enable us to control the growth of yε on the
basis of Lemma 3.1 as follows.

Lemma 3.7 Let p > 3
2 and α ∈ (12 , 1). Then there exist ϑ = ϑ(p, α) > 1 and C = C(p, α) > 0 such

that for arbitrary ε ∈ (0, 1), the function yε defined in (1.7) satisfies

y′ε(t) ≤ Cyϑε (t) + C for all t > 0. (3.13)

Proof. We fix any ρ = ρ(α) ∈ (34 ,
α+1
2 ) and let

ϑ = ϑ(p, α) := max

{
2p− 1

2p− 3
,
2α+ 1

2α− 1
,
α− 2ρ+ 2

α− 2ρ+ 1
,

(3p− 1)(1− α)

(3p− 1)(2− α)− 3

}
> 1.

Then (3.13) readily results upon combining Lemma 3.1 with Lemma 3.2, Lemma 3.4, Lemma 3.5 and
Lemma 3.6 when applied to suitably small η = η(p, α) > 0, and employing Young’s inequality to
estimate

y
2p−1
2p−3
ε (t) + y

2α+1
2α−1
ε (t) + y

α−2ρ+2
α−2ρ+1
ε (t) + y

(3p−1)(1−α)
(3p−1)(2−α)−3
ε (t) ≤ 4yϑε (t) + 3

for all t > 0 and ε ∈ (0, 1). �

By integration of (3.13), as the main result of this section we obtain the following quantitative infor-
mation about lengths of time intervals within which the growth of yε can conveniently be controlled.
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Lemma 3.8 Let p > 3
2 and α ∈ (12 , 1). Then for all k ≥ 1 there exists T (k) = T (k; p, α) ∈ (0, 1

k
] with

the property that whenever ε ∈ (0, 1) and t0 ≥ 0 are such that with yε taken from (1.7) we have

yε(t0) ≤ k, (3.14)

it follows that
yε(t) ≤ 2k for all t ∈ (t0, t0 + T (k)). (3.15)

Proof. By means of Lemma 3.7, we can pick ϑ = ϑ(p, α) > 1 and C1 = C1(p, α) > 0 such that

y′ε(t) ≤ C1y
ϑ
ε (t) + C1 for all t > 0 and ε ∈ (0, 1), (3.16)

and given k ≥ 1 we thereupon define

T (k; p, α) := min
{
T (k; p, α) ,

1

k

}
, with T (k; p, α) :=

(1− 21−ϑ)k1−ϑ

2(ϑ− 1)C1
.

Then for fixed t0 ≥ 0,

y(t) :=
{
k1−ϑ − 2(ϑ− 1)C1 · (t− t0)

}− 1
ϑ−1

, t ∈ [t0, t0 + T (k; p, α)],

defines a function y ∈ C1([t0, t0 + T (k; p, α)]) which satisfies y′(t) = 2C1y
ϑ(t) for all t ∈ (t0, t0 +

T (k; p, α)) and y(t0) = k. In particular, y is nondecreasing and hence has the additional property that

1 ≤ k ≤ y(t) ≤ y(t0 + T (k; p, α)) = 2k for all t ∈ (t0, t0 + T (k; p, α)), (3.17)

whence especially

y′(t)− C1y
ϑ(t)− C1 = C1y

ϑ(t)− C1 ≥ 0 for all t ∈ (t0, t0 + T (k; p, α)).

Together with (3.16), through an ODE comparison this entails that whenever ε ∈ (0, 1) and t0 ≥ 0 are
such that (3.14) holds, we have yε ≤ y in (t0, t0+T (k; p, α)). Therefore, (3.15) becomes a consequence
of the upper estimate for y in (3.17), combined with the evident fact that T (k; p, α) ≤ T (k; p, α). �

4 Local theory for p >
3
2: Higher order estimates

The purpose of this section is to extend the above local regularity theory toward higher order esti-
mates, which will be achieved on the basis of Lemma 3.8 that will form a starting point of a bootstrap
procedure gradually improving our knowledge about smoothness in suitable time intervals past an
instant at which (3.14) is supposed to be valid. Accordingly, throughout this section we shall rely on
the assumptions p > 3

2 and α ∈ (12 , 1) already made in the previous section.

In preparation for both Lemma 4.2 and Lemma 4.3, let us first draw an essentially immediate con-
sequence of Lemma 3.8 on the non-diffusive part of the flux appearing in the first equation from
(2.3).
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Lemma 4.1 Let p > 3
2 and α ∈ (12 , 1), and for k ≥ 1 let T (k) = T (k; p, α) be as in Lemma 3.8. Then

there exist q0 = q0(p, α) > 3 and C(k) = C(k; p, α) > 0 such that whenever (3.14) is satisfied for some
ε ∈ (0, 1) and t0 ≥ 0, we have

∥∥∥F ′
ε(nε(·, t))∇cε(·, t) + uε(·, t)

∥∥∥
Lq0 (Ω)

≤ C(k) for all t ∈ (t0, t0 + T (k)). (4.1)

Proof. As our assumptions p > 3
2 and α > 1

2 warrant that min{2p , 6
3−2α} > 3, we can fix

q0 = q0(p, α) > 3 such that

q0 ≤ 2p and q0 <
6

3− 2α
.

Then since the latter condition herein ensures that D(A
α
2 ) →֒ Lq(Ω;R3) ([15], [12]), we readily infer

(4.1) from (2.5), Lemma 3.8 and our definition of (yε)ε∈(0,1). �

Essentially relying on the fact that the number q0 obtained above exceeds the size of the considered
spatial dimension, an argument based on regularization effects of the heat semigroup yields L∞ bounds
for the first solution component, involving temporal weight functions that dependon the distance to
the times at which (3.14) is supposed to hold.

Lemma 4.2 Let p > 3
2 and α ∈ (12 , 1), and let (T (k))k≥1 = (T (k; p, α))k≥1 be as accordingly provided

by Lemma 3.8. Then there exists C(k) = C(k; p, α) > 0 such that if ε ∈ (0, 1) and t0 ≥ 0 are such
that (3.14) holds, we have

‖nε(·, t)‖L∞(Ω) ≤ C(k) · (t− t0)
− 3

2p for all t ∈ (t0, t0 + T (k)). (4.2)

Proof. With q0 = q0(p, α) > 3 taken from Lemma 4.1, noting that clearly 3p
(p−3)+

> 3 we fix

q = q(p, α) > 3 such that

q ≤ q0(p) and q <
3p

(p− 3)+
, (4.3)

whence by boundedness of Ω, through Lemma 4.1 the first condition herein ensures the existence
of C1 = C1(k) > 0 such that whenever (3.14) holds for some ε ∈ (0, 1) and t0 ≥ 0, the function
hε := F ′

ε(nε)∇cε + uε satisfies

‖hε(·, t)‖Lq(Ω) ≤ C1 for all t ∈ (t0, t0 + T (k)). (4.4)

In order to appropriately estimate

M := sup
t∈(t0,t0+T (k))

{
(t− t0)

3
2p ‖nε(·, t)‖L∞(Ω)

}

on the basis of this, we pick any r = r(p, α) ∈ (3, q) and invoke known smoothing estimates for the
Neumann heat semigroup (eσ∆)σ≥0 on Ω ([43], [11]) to fix C2 = C2(p) > 0 and C3 = C3(p, α) > 0
such that whenever σ ∈ (0, 1),

‖eσ∆ϕ‖L∞(Ω) ≤ C2σ
− 3

2p ‖ϕ‖Lp(Ω) for all ϕ ∈ C0(Ω)
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and

‖eσ∆∇ · ϕ‖L∞(Ω) ≤ C3σ
− 1

2
− 3

2r ‖ϕ‖Lr(Ω) for all ϕ ∈ C1(Ω;R3) such that ϕ · ν = 0 on ∂Ω.

According to a Duhamel representation associated with the first equation from (2.3), this entails that
for all t ∈ (t0, t0 + T (k)),

‖nε(·, t)‖L∞(Ω) =

∥∥∥∥e
(t−t0)∆nε(·, t0)−

∫ t

t0

e(t−s)∆∇ ·
{
nε(·, s)hε(·, s)

}
ds

∥∥∥∥
L∞(Ω)

≤ C2(t− t0)
− 3

2p ‖nε(·, t0)‖Lp(Ω) + C3

∫ t

t0

(t− s)−
1
2
− 3

2r ‖nε(·, s)hε(·, s)‖Lr(Ω)ds,

because T (k) ≤ 1
k
≤ 1. Since furthermore

‖nε(·, t)‖Lp(Ω) ≤ y
1
p
ε (t) ≤ (2k)

1
p for all t ∈ [t0, t0 + T (k))

thanks to (3.15), and since the second requirement in (4.3) along with the restriction r > 3 implies
that

qr

q − r
− p >

3q

q − 3
− p =

3p− (p− 3)q

q − 3
> 0

and hence qr
q−r

> p, we may use the Hölder inequality to infer that due to (4.4), writing a := qr−pq+pr
qr

∈
(0, 1) we have

‖nε(·, t)‖L∞(Ω) ≤ C2(t− t0)
− 3

2p ‖nε(·, t0)‖Lp(Ω)

+C3

∫ t

t0

(t− s)−
1
2
− 3

2r ‖nε(·, s)‖
L

qr
q−r (Ω)

‖hε(·, s)‖Lq(Ω)ds

≤ C2(t− t0)
− 3

2p ‖nε(·, t0)‖Lp(Ω)

+C3

∫ t

t0

(t− s)−
1
2
− 3

2r ‖nε(·, s)‖aL∞(Ω)‖nε(·, s)‖1−a
Lp(Ω)‖hε(·, s)‖Lq(Ω)ds

≤ (2k)
1
pC2(t− t0)

− 3
2p

+(2k)
1−a
p C1C3M

a

∫ t

t0

(t− s)−
1
2
− 3

2r (s− t0)
− 3a

2p ds

= (2k)
1
pC2(t− t0)

− 3
2p

+(2k)
1−a
p C1C3C4M

a(t− t0)
1
2
− 3

2r
− 3a

2p for all t ∈ (t0, t0 + T (k))

with C4 :=
∫ 1
0 (1 − σ)−

1
2
− 3

2r σ
− 3a

2p dσ being finite thanks to the inequalities r > 3, a < 1 and p > 3
2 .

Observing that according to the definition of a,

3

2p
+

1

2
− 3

2r
− 3a

2p
=

q − 3

2q
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is positive, we thus infer that

M ≤ (2k)
1
pC2 + (2k)

1−a
p C1C3C4M

aT
q−3
2q (k),

so that

M ≤ max

{
1 ,

{
(2k)

1
pC2 + (2k)

1−a
p C1C3C4T

q−3
2q (k)

} 1
1−a

}

due to the fact that a < 1. �

Now due to the latter, standard parabolic Hölder theory becomes applicable to the first equation in
(2.3):

Lemma 4.3 Fix p > 3
2 and α ∈ (12 , 1) and let T (k) = T (k; p, α) be as in Lemma 3.8. Then for all

τ ∈ (0, T (k)) there exist γ = γ(k, τ, p, α) ∈ (0, 1) and C(k, τ) = C(k, τ ; p, α) > 0 with the property that
whenever (3.14) is valid for some ε ∈ (0, 1) and t0 ≥ 0, we have

‖nε‖
Cγ,

γ
2 (Ω×[t0+τ,t0+T (k)])

≤ C(k, τ). (4.5)

Proof. Again using that Lemma 4.1 implies an (ε, t0)-independent estimate for (F ′
ε(nε(·, t))∇cε(·, t)+

uε(·, t))t∈(t0,t0+T (k)) in Ls((t0, t0 + T (k));Lq0(Ω)) with s := ∞ and q0 > 3 as provided there, based on

the bound for nε in L∞
loc(Ω× (t0, t0+T (k)]) provided by Lemma 4.2 we may derive this from standard

Hölder regularity theory for scalar parabolic equations due to the fact that these choices ensure that
1
s
+ 3

2q0
= 3

2q0
< 1

2 ([29]). �

In order to create a temporal localization setting for our derivation of appropriate estimates for uε
from this information on nε, let us fix a function ζ0 ∈ C∞([0,∞)) such that 0 ≤ ζ0 ≤ 1 and that
ζ0 ≡ 0 on [0, 12 ] as well as ζ0 ≡ 1 throughout [1,∞), and let

ζ(t0,τ)(t) := ζ0

( t− t0

τ

)
, t ≥ t0, (4.6)

for t0 ≥ 0 and τ > 0. Then for arbitrary ε ∈ (0, 1) and any such t0 and τ ,

vε(x, t) := ζ(t0,τ)(t)uε(x, t), x ∈ Ω, t ≥ t0, (4.7)

satisfies




vεt = ∆vε − (Yεuε · ∇)vε +∇(ζ(t0,τ)(t)Pε) + gε(x, t), ∇ · vε = 0, x ∈ Ω, t > t0,

vε = 0, x ∈ ∂Ω, t > t0,

vε = 0, x ∈ Ω, t ∈ [t0, t0 +
τ
2 ],
(4.8)

with
gε(x, t) := ζ(t0,τ)(t)nε(x, t)∇Φ(x) + ζ

(t0,τ)
t (t)uε(x, t), x ∈ Ω, t > t0. (4.9)

A first conclusion of Lemma 4.3 then asserts local-in-time L∞ and even Hölder bounds for Aβvε, when
considered as an L2(Ω)-valued function, thereby providing the following information about uε:
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Lemma 4.4 Let p > 3
2 , α ∈ (12 , 1), k ≥ 1 and T (k) = T (k;α) be as in Lemma 3.8, and let β ∈

(5−2α
4 , 1). Then for all τ ∈ (0, T (k)) there exists C(k, τ) = C(k, τ ; p, α, β) > 0 such that if ε ∈ (0, 1)

and t0 ≥ 0 are such that (3.14) holds,

‖Aβuε(·, t)‖L2(Ω) ≤ C(k, τ) for all t ∈ (t0 + τ, t0 + T (k)) (4.10)

and

‖Aβuε(·, t)−Aβuε(·, t⋆)‖L2(Ω) ≤ C(k, τ) · (t− t⋆)
1−β for all t⋆ ∈ (t0 + τ, t0 + T (k))

and t ∈ (t⋆, t0 + T (k)). (4.11)

Proof. Once more using that α > 1
2 implies the inequality 6

3−2α > 3, we fix q = q(α) > 3 such

that q < 6
3−2α and that hence D(A

α
2 ) →֒ Lq(Ω;R3) according to [15] and [12]. Since YεA

α
2 = A

α
2 Yε

on D(A
α
2 ), and since ‖Yεϕ‖L2(Ω) ≤ ‖ϕ‖L2(Ω) for all ϕ ∈ L2

σ(Ω), by means of Lemma 4.2 we thus find
C1 = C1(k, p, α) > 0, C2 = C2(k, p, α) > 0 and C3 = C3(k, τ, p, α) > 0 such that whenever (3.14)
holds for some ε ∈ (0, 1) and t0 ≥ 0, the functions vε, Yεuε and gε in (4.8) and (4.9) satisfy

‖Aα
2 vε(·, t)‖L2(Ω) ≤ C1 for all t ∈ (t0, t0 + T (k)) (4.12)

and
‖Yεuε(·, t)‖Lq(Ω) ≤ C2 for all t ∈ (t0, t0 + T (k)) (4.13)

as well as
‖gε(·, t)‖L2(Ω) ≤ C3 for all t ∈ (t0, t0 + T (k)). (4.14)

To make appropriate use of this, we fix β0 = β0(α, β) ∈ (5−2α
4 , β) and note that then D(Aβ0) →֒

W
1, 2q

q−2 (Ω;R3) ([15], [12]), whence besides taking C4 = C4(β) > 0 and C5 = C5(β) > 0 such that

‖Aβe−ξAϕ‖L2(Ω) ≤ C4ξ
−β‖ϕ‖L2(Ω) for all ϕ ∈ L2

σ(Ω) and ξ > 0 (4.15)

and
‖Aβ+1e−ξAϕ‖L2(Ω) ≤ C5ξ

−β−1‖ϕ‖L2(Ω) for all ϕ ∈ L2
σ(Ω) and ξ > 0, (4.16)

by using Lemma 3.3 we can choose C6 = C6(α, β) > 0, a = a(α, β) ∈ (0, 1) and C7 = C7(α, β) > 0
fulfilling

‖∇ϕ‖
L

2q
q−2 (Ω)

≤ C6‖Aβ0ϕ‖L2(Ω) ≤ C7‖Aβϕ‖aL2(Ω)‖A
α
2 ϕ‖1−a

L2(Ω)
for all ϕ ∈ D(Aβ). (4.17)

We now apply Aβ to a variation-of-constants representation of the accordingly defined function vε
from (4.7) to see that for arbitrary t⋆ ∈ [t0, t0 + T (k)) and t ∈ (t⋆, t0 + T (k)),

‖Aβvε(·, t)−Aβvε(·, t⋆)‖L2(Ω) =

∥∥∥∥−
∫ t⋆

t0

Aβ [e−(t−s)A − e−(t⋆−s)A]P
{(

Yεuε(·, s) · ∇
)
vε(·, s)

}
ds

−
∫ t

t⋆

Aβe−(t−s)AP
{(

Yεuε(·, s) · ∇
)
vε(·, s)

}
ds

+

∫ t⋆

t0

Aβ [e−(t−s)A − e−(t⋆−s)A]Pgε(·, s)ds

+

∫ t

t⋆

Aβe−(t−s)APgε(·, s)ds
∥∥∥∥
L2(Ω)

, (4.18)
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where by (4.16), the Cauchy-Schwarz inequality, (4.13) and (4.17),

∥∥∥∥−
∫ t⋆

t0

Aβ [e−(t−s)A − e−(t⋆−s)A]P
{(

Yεuε(·, s) · ∇
)
vε(·, s)

}
ds

∥∥∥∥
L2(Ω)

=

∥∥∥∥
∫ t⋆

t0

∫ t

t⋆

Aβ+1e−(σ−s)AP
{(

Yεuε(·, s) · ∇
)
vε(·, s)

}
dσds

∥∥∥∥
L2(Ω)

≤ C4

∫ t⋆

t0

∫ t

t⋆

(σ − s)−β−1
∥∥∥P

{(
Yεuε(·, s) · ∇

)
vε(·, s)

}∥∥∥
L2(Ω)

dσds

≤ C4

∫ t⋆

t0

∫ t

t⋆

(σ − s)−β−1‖Yεuε(·, s)‖Lq(Ω)‖∇vε(·, s)‖
L

2q
q−2 (Ω)

dσds

≤ C2C5C7

∫ t⋆

t0

∫ t

t⋆

(σ − s)−β−1‖Aβvε(·, s)‖aL2(Ω)‖A
α
2 vε(·, s)‖1−a

L2(Ω)
dσds

≤ C1−a
1 C2C5C7M

a
ε

∫ t⋆

t0

∫ t

t⋆

(s− σ)−β−1dσds

=
C1−a
1 C2C5C7M

a
ε

β(1− β)
·
{
(t− t⋆)

1−β − (t− t0)
1−β + (t⋆ − t0)

1−β
}

≤ C1−a
1 C2C5C7M

a
ε

β(1− β)
· (t− t⋆)

1−β , (4.19)

with Mε := maxs∈[t0,t0+T (k)] ‖Aβvε(·, s)‖L2(Ω). Likewise, (4.16) and (4.14) imply that for all t⋆ ∈
[t0, t0 + T (k)) and t ∈ (t⋆, t0 + T (k)),

∥∥∥∥
∫ t⋆

t0

Aβ [e−(t−s)A − e−(t⋆−s)A]Pgε(·, s)ds
∥∥∥∥
L2(Ω)

=

∥∥∥∥−
∫ t⋆

t0

∫ t

t⋆

Aβ+1e−(σ−s)APgε(·, s)dσds
∥∥∥∥
L2(Ω)

≤ C3C5

∫ t⋆

t0

∫ t

t⋆

(σ − s)−β−1dσds

≤ C3C5

β(1− β)
· (t− t⋆)

1−β , (4.20)

and furthermore we can combine (4.15) with (4.13) and (4.17) to estimate

∥∥∥∥−
∫ t

t⋆

Aβe−(t−s)AP
{(

Yεuε(·, s) · ∇
)
vε(·, s)

}
ds

∥∥∥∥
L2(Ω)

≤ C4

∫ t

t⋆

(t− s)−β
∥∥∥P

{(
Yεuε(·, s) · ∇

)
vε(·, s)

}∥∥∥
L2(Ω)

ds

≤ C4

∫ t

t⋆

(t− s)−β‖Yεuε(·, s)‖Lq(Ω)‖∇vε(·, s)‖
L

2q
q−2 (Ω)

ds

≤ C1−a
1 C2C4C7M

a
ε

∫ t

t⋆

(t− s)−βds

=
C1−a
1 C2C4C7M

a
ε

1− β
· (t− t⋆)

1−β for all t⋆ ∈ [t0, t0 + T (k)) and t ∈ (t⋆, t0 + T (k)), (4.21)
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whereas (4.15) together with (4.14) shows that
∥∥∥∥
∫ t

t⋆

Aβe−(t−s)APgε(·, s)ds
∥∥∥∥
L2(Ω)

≤ C4

∫ t

t⋆

(t− s)−β‖Pgε(·, s)‖L2(Ω)ds

≤ C3C4

∫ t

t⋆

(t− s)−βds

=
C3C4

1− β
· (t− t⋆)

1−β (4.22)

for all t⋆ ∈ [t0, t0 + T (k)) and t ∈ (t⋆, t0 + T (k)). In view of (4.17)-(4.22), on letting t⋆ := t0 we firstly

obtain from (4.18) that since vε(·, t0) = 0, Mε ≤ C8 + C8M
a
ε and hence Mε ≤ max

{
1 , (2C8)

1
1−a

}

with

C8 = C8(k, α, β) :=
T 1−β(k)

1− β
·max

{
C3C5

β
+ C3C4 ,

C1−a
1 C2C5C7

β
+ C1−a

1 C2C4C7

}
.

Having thereby asserted (4.10), inserting this information into (4.19) and (4.21) we thereupon obtain
(4.11) from (4.18)-(4.22) and our definition of vε. �

A particular consequence asserts Hölder bounds not only for uε itself, but also for the expression Yεuε
forming an essential part of the nonlinear convection term in (2.3).

Corollary 4.5 Let p > 3
2 , α ∈ (12 , 1) and k ≥ 1, and let T (k) = T (k; p, α) be as given by Lemma 3.8,

Then for all τ ∈ (0, T (k)) there exist γ = γ(k, τ, p, α) ∈ (0, 1) and C(k, τ) = C(k, τ ; p, α) > 0 with the
property that if ε ∈ (0, 1) and t0 ≥ 0 are such that (3.14) is satisfied, the inequality

‖uε‖
Cγ,

γ
2 (Ω×[t0+τ,t0+T (k)])

+ ‖Yεuε‖
Cγ,

γ
2 (Ω×[t0+τ,t0+T (k)])

≤ C(k, τ) (4.23)

holds.

Proof. We apply Lemma 4.4 to any fixed β ∈ (5−2α
4 , 1) and then infer (4.23) from (4.10) and

(4.11) upon observing that, in particular, β > 3
4 and hence D(Aβ) →֒ Cγ(Ω;R3) for all γ ∈ (0, 2β− 3

2)
([15], [12]), and again using that ‖AβYεϕ‖L2(Ω) ≤ ‖Aβϕ‖L2(Ω) for all ϕ ∈ D(Aβ). �

Once more explicitly operating on the localized problem (4.8), combining the latter with, again,
Lemma 4.3 enables us to derive the following higher order estimate through standard literature on
Schauder theory for the Stokes evolution equations.

Lemma 4.6 Let p > 3
2 , α ∈ (12 , 1), k ≥ 1 and T (k) = T (k; p, α) be as in Lemma 3.8, Then for each

τ ∈ (0, T (k)) one can find γ = γ(k, τ, p, α) ∈ (0, 1) and C(k, τ) = C(k, τ ; p, α) > 0 with the property
that whenever ε ∈ (0, 1) and t0 ≥ 0 are such that (3.14) holds, we have

‖uε‖
C2+γ,1+

γ
2 (Ω×[t0+τ,t0+T (k)])

≤ C(k, τ). (4.24)

Proof. According to Corollary 4.5 and Lemma 4.3, we can pick γi = γi(k, τ, p, α) ∈ (0, 1) and
Ci = Ci(k, τ, p, α) > 0, i ∈ {1, 2}, with the property that if (3.14) is satisfied with some ε ∈ (0, 1) and
t0 ≥ 0, then taking gε as accordingly introduced in (4.9) we have

‖Yεuε‖
Cγ1,

γ1
2 (Ω×[t0+

τ
2
,t0+T (k)])

≤ C1 (4.25)
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and
‖gε‖

Cγ2,
γ2
2 (Ω×[t0+

τ
2
,t0+T (k)])

≤ C2. (4.26)

Now due to a well-known result from Schauder theory for the Stokes evolution system ([33]), there

exist γ3 = γ3(k, τ, p, α) ∈ (0, 1) and C3 = C3(k, τ, p, α) > 0 such that if t0 ≥ 0, a ∈ Cγ1,
γ1
2 (Ω × [t0 +

τ
2 , t0 + T (k)];R3×3) and b ∈ Cγ2,

γ2
2 (Ω× [t0 +

τ
2 , t0 + T (k)];R3) are such that b(·, t0 + τ

2 ) = 0 on ∂Ω as
well as

‖a‖
Cγ1,

γ1
2 (Ω×[t0+

τ
2
,t0+T (k)])

≤ C1 and ‖b‖
Cγ2,

γ2
2 (Ω×[t0+

τ
2
,t0+T (k)])

≤ C2,

then the problem





wt = ∆w + a(x, t) · ∇w + b(x, t) +∇Q, ∇ · w = 0, x ∈ Ω, t ∈ (t0 +
τ
2 , t0 + T (k)),

w = 0, x ∈ ∂Ω, t ∈ (t0 +
τ
2 , t0 + T (k)),

w(x, t0 +
τ
2 ) = 0, x ∈ Ω,

admits a solution (w,Q) with a uniquely determined w ∈ C2+γ3,1+
γ3
2 (Ω × [t0 + τ

2 , t0 + T (k)];R3)
fulfilling

‖w‖
C2+γ3,1+

γ3
2 (Ω×[t0+

τ
2
,t0+T (k)])

≤ C3.

In view of (4.8), (4.25) and (4.26), an application thereof to a := Yεuε and b := gε immediately yields
(4.24), because actually gε(·, t0 + τ

2 ) ≡ 0 throughout Ω by (4.9) and (4.6). �

According to this and to Lemma 4.3, we are now in a position to twice invoke classical Schauder
theory for scalar parabolic problems to successively deduce second order estimates also for the first
two solution components.

Lemma 4.7 Suppose that p > 3
2 and α ∈ (12 , 1), that k ≥ 1, and that T (k) = T (k; p, α) is as in

Lemma 3.8. Then for arbitrary τ ∈ (0, T (k)) there exist γ = γ(k, τ, p, α) ∈ (0, 1) and C(k, τ) =
C(k, τ ; p, α) > 0 such that if (3.14) holds with some ε ∈ (0, 1) and t0 ≥ 0, the inequalities

‖nε‖
C2+γ,1+

γ
2 (Ω×[t0+τ,t0+T (k)])

≤ C(k, τ) (4.27)

and
‖cε‖

C2+γ,1+
γ
2 (Ω×[t0+τ,t0+T (k)])

≤ C(k, τ) (4.28)

hold.

Proof. Using Lemma 4.3 and Corollary 4.5 as a starting point, we can firstly derive (4.28) from
(2.3) and standard parabolic Schauder theory ([22]) through a reasoning of quite the same flavor
as that in the proof of Lemma 4.6. Thereafter, (4.28) can be seen to provide sufficient regularity
information so as to warrant accessibility of (4.27) to the same token. �
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5 Quantifying exceptionality of largeness: A general endpoint lemma

Our next goal will be to apply the local theory developed above, with appropriately selected parameters
p and α, for suitably chosen values of t0 at which solutions remain conveniently far from singular
behavior, in the sense of (3.14). In Section 6 this will be achieved by means of bounds on energy
dissipation rates which however, through their temporally integrated nature do not entirely rule out
singular behavior, but after all provide some information about a certain exceptional character of
times at which solutions may become inconveniently large.

Our quantitative exploitation of corresponding integral estimates, and hence our selection of instants t0
to be used above, will be motivated by the following general observation, possibly being of independent
interest, concerning endpoints of intervals of prescribed length throughout which a given function y

essentially exceeds some fixed value. The estimate (5.2) on the size of the set of all such points
generalizes an inequality trivially valid for continuous y to arbitrary measurable functions, and thereby
warrants accessibility to the possibly discontinuous limit object of the quantities yε discussed before,
to be precisely defined in (6.10) below.

Lemma 5.1 Let T > 0 and y : (0, T ) → R be measurable. Then for each τ ∈ (0, T ) and k > 0,

S(k, τ) :=
{
t⋆ ∈ (τ, T )

∣∣∣ y(t) ≥ k for a.e. t ∈ (t⋆ − τ, t⋆)
}

(5.1)

has the property that its outer Lebesgue measure |S(k)|⋆ satisfies

|S(k, τ)|⋆ ≤
∣∣∣
{
t ∈ (0, T )

∣∣∣ y(t) ≥ k
}∣∣∣. (5.2)

Proof. Assuming without loss of generality that S(k, τ) not be empty, we let t1 := supS(k, τ) ∈
(τ, T ] and

t̂1 := inf
{
t⋆ ∈ (0, t1)

∣∣∣ y(t) ≥ k for a.e. t ∈ (t⋆, t1)
}
,

and note that t̂1 then is well-defined and nonnegative with

t̂1 ≤ t1 − τ (5.3)

according to the definitions of t1 and S(k, τ). Moreover, the construction of t̂1 enables us to fix a null
set N1 ⊂ [0, T ] such that

y(t) ≥ k for all t ∈ [t̂1, t1] \N1.

Now in the case when t̂1 ≤ τ , we must have y(t) ≥ k for all t ∈ (τ, t1) \ N1 and hence, again by

definition of S(k, τ), trivially infer that S(k, τ) ⊂ (τ, t1] ⊂
{
t ∈ (0, T )

∣∣∣ y(t) ≥ k
}
∪N1 and that thus

(5.2) holds due to the fact that |N1| = 0.

Similarly, if t̂1 > τ and

Σ1 :=
{
t ∈ S(k, τ)

∣∣∣ t ≤ t̂1

}
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is empty, then S(k, τ) ⊂ (t̂1, t1] ⊂
{
t ∈ (0, T )

∣∣∣ y(t) ≥ k
}
∪N1 and hence we may conclude as before.

If t̂1 > τ and Σ1 6= ∅, however, then

t2 := supΣ1

is a well-defined element of (τ, t̂1] which, due to (5.3), in fact even satisfies t2 ≤ t1 − τ .

Repeating this selection process if necessary, we thus obtain an integer j0 ≤ T
τ
as well as finite families

(tj)j∈{1,...,j0} and (t̂j)j∈{1,...,j0} such that writing t̂0 := T , for all j ∈ {1, ..., j0} we have

tj = inf
{
t ∈ S(k, τ)

∣∣∣ t ≤ t̂j−1

}
and t̂j = inf

{
t⋆ ∈ (0, tj)

∣∣∣ y(t) ≥ k for a.e. t ∈ (t⋆, tj)
}

with tj ≤ t̂j−1 ≤ tj−1 − τ , and that there exist null sets Nj ⊂ [0, T ], j ∈ {1, ..., j0}, fulfilling

y(t) ≥ k for all t ∈ [t̂j , tj ] \Nj , j ∈ {1, ..., j0}.

As accordingly

S(k, τ) ⊂
j0⋃

j=1

[t̂j , tj ] ⊂
{
t ∈ (0, T )

∣∣∣y(t) ≥ k
}
∪

j0⋃

j=1

Nj ,

due to an evident null set property of the rightmost union herein we again arrive at (5.2) also in this
general case. �

An evident consequence of the latter will be of importance for our subsequent reasoning.

Corollary 5.2 Let T > 0 and y ∈ Lq((0, T )) for some q > 0. Then the sets S(k, τ), (k, τ) ∈
(0,∞)× (0, T ), defined in (5.1) satisfy

sup
τ∈(0,T )

|S(k, τ)|⋆ → 0 as k → ∞.

Proof. This is evident from Lemma 5.1 and the fact that
∫ T

0 |y|q ≥ kq ·
∣∣∣
{
t ∈ (0, T )

∣∣∣ y(t) ≥ k
}∣∣∣

for all k > 0. �

6 Quantifying exceptionality of largeness: Exploiting a quasi-energy

structure

In accordance with Corollary 5.2, we shall next intend to identify conditions on the parameters p and
α which firstly ensure convergence of the functions from (1.7) as ε ց 0 in some appropriate sense,
and which secondly warrant that the limit function y thereby obtained belongs to some Lq space.

The following implications of a quasi-energy structure associated with (2.1) and (2.2) have been
observed in [47].
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Lemma 6.1 For all T > 0 there exists C(T ) > 0 such that

∫ T

0

∫

Ω

{ |∇nε|2
nε

+|∇nε|
5
4 +n

5
3
ε +

|D2cε|2
cε

+
|∇cε|4
c3ε

+|∇uε|2+|uε|
10
3

}
≤ C(T ) for all ε ∈ (0, 1) (6.1)

and

∫ T

0

{
‖nεt(·, t)‖

10
9

(W 1,10(Ω))⋆
+‖(√cε)t(·, t)‖

5
3

(W 1, 52 (Ω))⋆
+‖uεt(·, t)‖

5
4

(W 1,5
0,σ (Ω))⋆

}
dt ≤ C(T ) for all ε ∈ (0, 1).

(6.2)
Moreover,

sup
ε∈(0,1)

sup
t>0

{∫

Ω

|∇cε(·, t)|2
cε

+

∫

Ω
|uε(·, t)|2

}
< ∞. (6.3)

Proof. This can be obtained by simply collecting the outcomes of [47, Lemma 3.8], [47, Lemma
3.10] and [47, Lemma 3.11]. �

A straightforward interpolation between (2.9) and the first estimate implicitly contained in (6.1) yields
the following further regularity information of order zero for the first solution component.

Lemma 6.2 Let p ∈ (1, 3]. Then for all T > 0 there exists C(p, T ) > 0 such that

∫ T

0
‖nε(·, t)‖

2p
3(p−1)

Lp(Ω) dt ≤ C(p, T ) for all ε ∈ (0, 1). (6.4)

Proof. By means of a Gagliardo-Nirenberg interpolation, we find C1 = C1(p) > 0 such that for all
t > 0 and ε ∈ (0, 1),

‖nε‖
2p

3(p−1)

Lp(Ω) = ‖√nε‖
4p

3(p−1)

L2p(Ω)

≤ C1‖∇
√
nε‖2L2(Ω)‖

√
nε‖

2(3−p)
3(p−1)

L2(Ω)
+ C1‖

√
nε‖

4p
3(p−1)

L2(Ω)

=
C1

4
·
{∫

Ω
n0

} 3−p
3(p−1)

·
∫

Ω

|∇nε|2
nε

+ C1 ·
{∫

Ω
n0

} 2p
3(p−1)

, (6.5)

because ‖√nε‖2L2(Ω) =
∫
Ω nε =

∫
Ω n0 for any such t and ε due to (2.9). In view of Lemma 6.1, an

integration of (6.5) yields (6.4). �

In conjunction again with (6.1), the latter lemma implies a gradient estimate involving a space inte-

grability exponent larger than that appearing in the expression |∇nε|
5
4 appearing in (6.1), at the cost

of a reduced regularity in time.

Lemma 6.3 If r ∈ (1, 32 ], then given any T > 0 one can find C(r, T ) > 0 fulfilling

∫ T

0
‖∇nε(·, t)‖

2r
4r−3

Lr(Ω)dt ≤ C(r, T ) for all ε ∈ (0, 1). (6.6)
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Proof. Two applications of the Hölder inequality show that for all T > 0 and each ε ∈ (0, 1),

∫ T

0
‖∇nε(·, t)‖

2r
4r−3

Lr(Ω)dt =

∫ T

0

{∫

Ω

{ |∇nε|2
nε

} r
2 · n

r
2
ε dx

} 2
4r−3

dt

≤
∫ T

0

{∫

Ω

|∇nε|2
nε

dx

} r
4r−3

·
{∫

Ω
n

r
2−r
ε dx

} 2−r
4r−3

dt

≤
{∫ T

0

∫

Ω

|∇nε|2
nε

dxdt

} r
4r−3

·
{∫ T

0

{∫

Ω
n

r
2−r
ε dx

} 2−r
3(r−1)

dt

} 3(r−1)
4r−3

.(6.7)

Since our assumptions r > 1 and r ≤ 3
2 warrant that p := r

2−r
satisfies both p > 1 and p ≤ 3, and

since moreover

2p

3(p− 1)
=

2

3− 3 · 2−r
r

=
r

3(r − 1)
,

Lemma 6.2 applies so as to guarantee that for each T > 0 we can pick C1 = C1(r, T ) > 0 satisfying

∫ T

0

{∫

Ω
n

r
2−r
ε dx

} 2−r
3(r−1)

dt =

∫ T

0
‖nε(·, t)‖

r
3(r−1)

L
r

2−r (Ω)
dt ≤ C1(r, T ) for all ε ∈ (0, 1).

Therefore, (6.6) results from (6.7) and Lemma 6.1. �

The compactness features thereby collected now prepare us for an appropriate passage to the limit
ε ց 0, and especially for the definition and a convenient approximation of a function y to be used in
the statement from Corollary 5.2.

Lemma 6.4 Let p ∈ (1, 3) and α ∈ (0, 1). Then there exist a null set N ⊂ (0,∞) and (εj)j∈N ⊂ (0, 1)
such that εj ց 0 as j → ∞, that

(nε, cε, uε) → (n, c, u) a.e. in Ω× (0,∞) as ε = εj ց 0 (6.8)

with some global weak energy solution (n, c, u) of (1.2), and that furthermore the functions yε from
(1.7) satisfy

yε(t) → y(t) for all t ∈ (0,∞) \N as ε = εj ց 0, (6.9)

where

y(t) ≡ y(p,α)(t) :=

∫

Ω
np(·, t) +

∫

Ω
|∇c(·, t)|2p +

∫

Ω
|Aα

2 (·, t)|2, t > 0. (6.10)

Proof. According to the detailed derivation in [47, Lemma 4.1], a combination of the estimates
from Lemma 6.1 with a straightforward extraction procedure based on an Aubin-Lions type lemma
yields (εj)j∈N ⊂ (0, 1) and functions n, c and u defined a.e. on Ω× (0,∞) such that εj ց 0 as j → ∞,
that n ≥ 0 and c > 0 a.e. in Ω× (0,∞), that (6.8) holds, and that (n, c, u) forms a global weak energy
solution of (1.2) in the sense of Definition 2.1.

To see that furthermore also (6.9) can be achieved for fixed p ∈ (1, 3) and α ∈ (0, 1), given any such
p and α we use that p < 3, and that hence 3p

p+3 < 3
2 , in choosing r ∈ (1, 32) such that r > 3p

p+3 , and we
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moreover take some q ∈ (3, 6) fulfilling q ≥ 2p. Then from Lemma 6.3, Lemma 6.1, (2.9) and (2.10)
we actually know that

(nε)ε∈(0,1) is bounded in L
2r

4r−3 ((0, T );W 1,r(Ω)) and (nεt)ε∈(0,1) is bounded in L
10
9 ((0, T ); (W 1,10(Ω))⋆),

that

(
√
cε)ε∈(0,1) is bounded in L2((0, T );W 2,2(Ω)) and ((

√
cε)t)ε∈(0,1) is bounded in L

5
3 ((0, T ); (W 1, 5

2 (Ω))⋆),

and that

(uε)ε∈(0,1) is bounded in L2((0, T );W 1,2
0,σ (Ω)) and (uεt)ε∈(0,1) is bounded in L

5
4 ((0, T ); (W 1,5

0,σ (Ω))
⋆)

for all T > 0. Since herein 2r
4r−3 > 1 due to the fact that r < 3

2 , and since the inequalities r >
3p
p+3 , q < 6 and α

2 < 1
2 ensure that the embeddings W 1,r(Ω) →֒ Lp(Ω), W 2,2(Ω) →֒ W 1,q(Ω) and

W
1,2
0,σ (Ω) →֒ D(A

α
2 ) are all compact in the considered three-dimensional setting, upon passing to a

suitably relabeled further subsequence if necessary we may assume that again due to an Aubin-Lions
lemma, with some null set N ⊂ (0,∞) we moreover have

nε(·, t) → n(·, t) in Lp(Ω) for all t ∈ (0,∞) \N, (6.11)√
cε(·, t) →

√
c(·, t) in W 1,q(Ω) for all t ∈ (0,∞) \N and (6.12)

uε(·, t) → u(·, t) in D(A
α
2 ) for all t ∈ (0,∞) \N (6.13)

as ε = εj ց 0. Since (6.12) in particular entails that
√
cε(·, t) →

√
c(·, t) in L∞(Ω) for all t ∈ (0,∞)\N

as ε = εj ց 0 by continuity of W 1,q(Ω) →֒ L∞(Ω), as guaranteed by our requirement that q > 3, it
follows from (6.12) that as ε = εj ց 0 we also have

∇cε(·, t) = 2
√
cε(·, t)∇

√
cε(·, t)

→ 2
√
c(·, t)∇

√
c(·, t)

= ∇c(·, t) in Lq(Ω) →֒ L2p(Ω) for all t ∈ (0,∞) \N

due to the restriction that q ≥ 2p. In conjunction with (6.11) and (6.13), this establishes (6.9). �

Indeed, y enjoys some integrability feature in the spirit of Corollary 5.2:

Lemma 6.5 Let p ∈ (1, 3) and α ∈ (0, 1). Then the function y = y(p,α) from (6.10) has the property
that ∫ T

0
yq(p,α)(t)dt < ∞ for all T > 0, (6.14)

where q(p, α) := min{ 2
3(p−1) ,

1
α
}.

Proof. Given T > 0, from Lemma 6.1 and (2.10) we infer the existence of Ci = Ci(T ) > 0,
i ∈ {1, 2, 3, 4}, such that ∫ T

0

∫

Ω
|D2cε|2 ≤ C1 for all ε ∈ (0, 1) (6.15)
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and ∫ T

0

∫

Ω
|∇uε|2 ≤ C2 for all ε ∈ (0, 1) (6.16)

as well as ∫

Ω
|∇cε(·, t)|2 ≤ C3 for all t ∈ (0, T ) and ε ∈ (0, 1) (6.17)

and ∫

Ω
|uε(·, t)|2 ≤ C4 for all t ∈ (0, T ) and ε ∈ (0, 1). (6.18)

By an application of the Gagliardo-Nirenberg inequality based on the assumption that p < 3, we can
interpolate between (6.15) and (6.17) to see that with some C5 = C5(p) > 0 we have

∫ T

0
‖∇cε(·, t)‖

4p
3(p−1)

L2p(Ω)
dt ≤ C5

∫ T

0
‖D2cε(·, t)‖2L2(Ω)‖∇cε(·, t)‖

2(3−p)
3(p−1)

L2(Ω)
dt

≤ C1C
3−p

3(p−1)

3 C5 for all ε ∈ (0, 1), (6.19)

and utilizing Lemma 3.3 we similarly find C6 = C6(α) > 0 such that

∫ T

0
‖Aα

2 uε(·, t)‖
2
α

L2(Ω)
dt ≤ C6

∫ T

0
‖∇uε(·, t)‖2L2(Ω)‖uε(·, t)‖

2(1−α)
α

L2(Ω)
dt

≤ C2C
1−α
α

4 C6 for all ε ∈ (0, 1), (6.20)

because α ∈ (0, 1). Since, apart from that, Lemma 6.2 provides C7 = C7(p, T ) > 0 fulfilling

∫ T

0
‖nε(·, t)‖

2p
3(p−1)

Lp(Ω) dt ≤ C7 for all ε ∈ (0, 1),

by means of Young’s inequality we can use that pq(p, α) ≤ 2p
3(p−1) and 2q(p, α) ≤ 2

α
to estimate

∫ T

0
yq(p,α)ε (t)dt ≤ 3q(p,α) ·

{∫ T

0

{∫

Ω
np
εdx

}q(p,α)

dt+

∫ T

0

{∫

Ω
|∇cε|2pdx

}q(p,α)

+

∫ T

0

{∫

Ω
|Aα

2 uε|2dx
}q(p,α)

dt

}

≤ 3q(p,α) ·
{∫ T

0
‖nε(·, t)‖

2p
3(p−1)

Lp(Ω) dt+

∫ T

0
‖∇cε(·, t)‖

4p
3(p−1)

L2p(Ω)
dt

+

∫ T

0
‖Aα

2 uε(·, t)‖
2
α

L2(Ω)
dt+ 2T

}

≤ 3q(p,α) ·
{
C7 + C1C

3−p
3(p−1)

3 C5 + C2C
1−α
α

4 C6 + 2T
}

for all ε ∈ (0, 1).

Since Lemma 6.4 in particular says that with (εj)j∈N as provided there we have y
q(p,α)
ε → yq(p,α) a.e. in

(0, T ) as ε = εj ց 0, Fatou’s lemma therefore implies (6.14). �
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7 Genericity of smoothness. Proof of Theorem 1.1

We are now prepared to identify suitably large sets of times within which the limit (n, c, u) gained
in Lemma 6.4 coincides with a smooth solution to the boundary value problem in (1.2). This will
be achieved in a parameter regime consistent with both (1.8) and (1.9), whence in particular both
the second order local estimates from Section 4 and the approximation and integrability results from
Section 6 become applicable.

A first conclusion in this direction yields open smoothness intervals around each time outside any of
the sets S(k, τ) from (5.1), for arbitrarily large k ∈ N and suitably chosen τ = τ(k):

Lemma 7.1 Fix p ∈ (32 , 3), α ∈ (12 , 1), T > 0 and k0 :=
1
T
, and for integers k > k0, let S(k, T (k)) be

as correspondingly defined by (5.1), with y = y(p,α) given by (6.10), and with T (k) ∈ (0, 1
k
] ⊂ (0, T )

taken according to Lemma 3.8. Then for each t⋆ ∈ (T (k), T ) \ S(k, T (k)) there exist an open interval
J(t⋆) ⊂ (0, T ) and functions 




ñ(t⋆) ∈ C2,1(Ω× J(t⋆)),

c̃(t⋆) ∈ C2,1(Ω× J(t⋆)) and

ũ(t⋆) ∈ C2,1(Ω× J(t⋆);R
3)

(7.1)

such that t⋆ ∈ J(t⋆) and that the functions n, c and u from Lemma 6.4 satisfy

(n, c, u) = (ñ(t⋆), c̃(t⋆), ũ(t⋆)) a.e. in Ω× J(t⋆). (7.2)

Proof. We take N = N (α) as introduced in Lemma 6.4, and given k ∈ N such that k > k0 we let
T (k) ∈ (0, 1

k
] be as provided by Lemma 3.8. Then for fixed t⋆ ∈ (T (k), T ) \ S(k, T (k)), recalling the

definition of S(k, T (k)) we may rely on the density of (t⋆−T (k), t⋆) \N in (t⋆−T (k), t⋆) to find some
t0 = t0(t⋆) ∈ (t⋆ − T (k), t⋆) \N ⊂ (0, T ) such that y(t0) < k. According to Lemma 6.4, the fact that
t0 does not belong to N ensures that with (yε)ε∈(0,1) given by (1.7) and (εj)j∈N taken from Lemma
6.4 we have yε(t0) → y(t0) as ε = εj ց 0, whence we can pick ε⋆ = ε⋆(t⋆) ∈ (0, 1) such that

yε(t0) ≤ k for all ε ∈ (εj)j∈N such that εj < ε⋆.

Now in view of Lemma 4.7, the latter warrants that if we pick any τ = τ(t⋆) ∈ (0, T (k)) such that
t0 + τ < t⋆, then there exist γ = γ(t⋆) ∈ (0, 1) and C1 = C1(t⋆) > 0 with the property that writing
J(t⋆) := (t0 + τ, t0 + T (k)) we have

‖nε‖
C2+γ,1+

γ
2 (Ω×J(t⋆))

+ ‖cε‖
C2+γ,1+

γ
2 (Ω×J(t⋆))

+ ‖uε‖
C2+γ,1+

γ
2 (Ω×J(t⋆))

≤ C1

for all ε ∈ (εj)j∈N such that ε < ε⋆. By means of the Arzelà-Ascoli theorem, from this we infer the
existence of a subsequence (εji)i∈N of (εj)j∈N ∩ (0, ε⋆), and of functions ñ(t⋆), c̃(t⋆) and ũ(t⋆) which are
such that (7.1) holds and that

nεji
→ ñ(t⋆) in C2,1(Ω× J(t⋆)),

cεji → c̃(t⋆) in C2,1(Ω× J(t⋆)) and

uεji → ũ(t⋆) in C2,1(Ω× J(t⋆))

as i → ∞. In light of (6.8), this identifies (ñ(t⋆), c̃(t⋆), ũ(t⋆)) in the sense of (7.2). �
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Now the crucial size information provided by Corollary 5.2 enables us to make sure that a suitable
collection of accordingly gained time intervals from Lemma 7.1 indeed complements a null set of times.

Lemma 7.2 Let p ∈ (32 , 3) and α ∈ (12 , 1), and let n, c and u be as accordingly be obtained in Lemma
6.4. Then given any T > 0 one can find an open set E ⊂ (0, T ) and functions





n̂ ∈ C2,1(Ω× E),

ĉ ∈ C2,1(Ω× E) and

û ∈ C2,1(Ω× E;R3)

(7.3)

such that
(n, c, u) = (n̂, ĉ, û) a.e. in Ω× E, (7.4)

and such that ∣∣∣(0, T ) \ E
∣∣∣ = 0. (7.5)

Proof. For k ∈ N with k > k0 := 1
T

we let S(k, T (k)) be as defined through (5.1), with y = y(α)

taken from (6.10). Then given t⋆ ∈ (T (k), T ) \ S(k, T (k)) we let J(t⋆) ⊂ (0, T ) and (ñ(t⋆), c̃(t⋆), ũ(t⋆))
be as obtained in Lemma 7.1, and first observe that whenever t⋆ ∈ (T (k), T ) \ S(k, T (k)) and t⋆⋆ ∈
(T (k), T )\S(k, T (k)), from (7.2) we clearly infer that necessarily (ñ(t⋆), c̃(t⋆), ũ(t⋆)) ≡ (ñ(t⋆⋆), c̃(t⋆⋆), ũ(t⋆⋆))
throughout Ω× (J(t⋆) ∩ J(t⋆⋆)). Writing

E(k) :=
⋃

t⋆∈(T (k),T )\S(k,T (k))

J(t⋆), k ∈ N ∩ (k0,∞),

and noting that clearly E(k) is open for any such k, from Lemma 7.1 we thus actually infer the
existence of a uniquely determined triple (n(k), c(k), u(k)) of functions

n(k) ∈ C2,1(Ω× E(k)), c(k) ∈ C2,1(Ω× E(k)) and u(k) ∈ C2,1(Ω× E(k);R3) (7.6)

such that
(n, c, u) = (n(k), c(k), u(k)) a.e. in Ω× E(k). (7.7)

Moreover, the trivial inclusion (T (k), T ) \ S(k, T (k)) ⊂ E(k) enables us to estimate
∣∣∣(0, T ) \ E(k)

∣∣∣ ≤ |S(k, T (k))|⋆ + T (k) for all k ∈ N ∩ (k0,∞),

so that an application of Corollary 5.2 to q := q(p, α) shows that due to Lemma 6.5 we have
∣∣∣(0, T ) \ E(k)

∣∣∣ → 0 as k → ∞,

because T (k) → 0 as k → ∞ by Lemma 3.8. Therefore, letting

E :=
⋃

k∈N, k>k0

E(k)

defines an open set fulfilling (7.5), and similarly to the above observation noting that

(n(k), c(k), u(k)) ≡ (n(l), c(l), u(l)) in Ω× (E(k) ∩ E(l)) for all k ∈ N ∩ (k0,∞) and l ∈ N ∩ (k0,∞),
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setting

(n̂, ĉ, û)(x, t) := (n(k), c(k), u(k))(x, t) if (x, t) ∈ Ω× E is such that t ∈ E(k) for some k ∈ N ∩ (k0,∞),

we obtain functions n̂, ĉ and û which are well-defined on all of Ω×E, which satisfy (7.3) due to (7.6),
and for which (7.4) holds as a consequence of (7.7). �

Along with the statement on eventual smoothness from Theorem A, this readily establishes our final
result on generic regularity in (1.2):

Proof of Theorem 1.1. We apply Lemma 6.4 to any p ∈ (32 , 3) and α ∈ (12 , 1), and employ
Theorem A to fix T⋆ > 0 such that the global weak energy solution (n, c, u), as thereby obtained, upon
modification on a null set in Ω× (T⋆,∞) satisfies

n ∈ C2,1(Ω× (T⋆,∞)), c ∈ C2,1(Ω× (T⋆,∞)) and u ∈ C2,1(Ω× (T⋆,∞);R3).

Invoking Lemma 7.2 thereafter yields an open set E ⊂ (0, T⋆) such that |(0, T⋆) \ E| = 0, and that
(n, c, u) = (n̂, ĉ, û) a.e. in Ω×E with some (n̂, ĉ, û) ∈ (C2,1(Ω×E))2×C2,1(Ω×E;R3). Upon an evident
re-definition of (n, c, u) on a null set in Ω× (0, T⋆), we readily arrive at the intended conclusion if, by
suitably choosing the countable set I, we let (Iι)ι∈I denote a family of mutually disjoint connected
components of E. �
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