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Abstract

The doubly degenerate nutrient taxis model

{

ut = ∇ · (uv∇u)−∇ · (u2v∇v) + ℓuv, x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0,

is considered in smoothly bounded convex subdomains of the plane, with ℓ ≥ 0. It is shown that for
any p > 2 and each fixed nonnegative u0 ∈ W 1,∞(Ω), a smallness condition exclusively involving
v0 can be identified as sufficient to ensure that an associated no-flux type initial-boundary value
problem with (u, v)|t=0 = (u0, v0) admits a global weak solution satisfying ess supt>0 ‖u(·, t)‖Lp(Ω) <

∞. The proof relies on the use of an apparently novel class of functional inequalities which provide
estimates from below for certain Dirichlet integrals involving possibly degenerate weight functions.
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1 Introduction

This manuscript is concerned with the parabolic system

{

ut = ∇ · (uv∇u)− χ∇ · (u2v∇v) + ℓuv,

vt = ∆v − uv,
(1.1)

which has been proposed as a refined model for the collective behavior in populations of E. coli when
exposed to nutrient-poor agars. Here the pure reaction-diffusion system, as obtained on letting χ = 0,
was already introduced in [10] to describe experimental results revealing a strikingly prevalent tendency
toward stabilization and formation of strongly structured distributions in such ensembles ([7], [6], [18]).
As theoretically argued more recently in [16] and [19], and further endorsed by numerical experiments
in [16], the accuracy of this description can significantly be enhanced by additionally accounting for
nutrient-directed chemotactic behavior, that is, by considering (1.1) with χ > 0. The hypotheses
underlying this full model hence include an absorption-diffusion type evolution of a nutrient, as quan-
tified via its concentration v = v(x, t), coupled to a combination of food-supported proliferation and
of random diffusive and cross-diffusive movement in the considered population, represented through
its density u = u(x, t); here the functional form of the corresponding migration operators particularly
accounts for certain limitations in motility especially at low nutrient levels ([19]).

From a mathematical perspective, considerable challenges going along with nontrivial choices of χ al-
ready appear at the stage of questions related to global solvability and boundedness: As impressively
indicated by an extensively developed theory of Keller-Segel type chemotaxis systems, attractive taxis
mechanisms such as present in (1.1) may well exert considerably destabilizing influences, as becoming
manifest in a number of results on the occurrence of blow-up phenomena in various particular mod-
eling contexts ([2], [13]); in the concrete framework of (1.1), especially the superlinear growth with
respect to u in the cross-diffusion rate u2v seems to come along with a noticeable potential to substan-
tially support such tendencies. Indications for this can be found in a rich literature on corresponding
effects that prescribed asymptotics in chemotactic sensitivity functions may have on the possibility of
singularity formation: In several of its versions, namely, the simple relative of (1.1) given by

{

ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v),
vt = ∆v + f(u, v),

(1.2)

in which especially any signal dependence of migration is disregarded, is accessible to a fairly compre-
hensive analysis in this direction. In the case when f(u, v) = −v + u, for instance, the asymptotics

of the fraction S(u)
D(u) at large values of u, relative to the spatial dimension n ≥ 2, is known to be

decisive in this respect: If, besides further technical conditions, S and D satisfy S(u)
D(u) ≤ Cuα for all

u ≥ 1 and some C > 0 and α < 2
n
, then associated Neumann type initial-boundary value problems

admit global bounded solutions for initial data of arbitrary size ([8]), [22]), while if S(u)
D(u) ≥ Cuα for all

u ≥ 1, some C > 0 and some α > 2
n
, then unbounded solutions in balls can always be found ([29], [3],

[4], [31]). Even when obviously not directly applicable to (1.1) with its more complex interactions
especially in the migration parts, this may be viewed as indicating that the choices S(u) = u2 and
D(u) = u associated with the parameter functions in (1.1), hence leading to linear growth of the
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quotient S(u)
D(u) = u, might go along with a nontrivial potential of destabilization. Also an inclusion of

the additional dissipative mechanism of signal consumption, related to the choice f(u, v) = −uv equiv-
alent to that in (1.1), is only partially known to yield significant explosion-inhibiting effects. Beyond
a scattered collection of findings on global solvability within certain regimes of S and D, possibly in
frameworks of weak and hence possibly unbounded solutions only ([21], [25], [26], [27], [5], [33], [23]),
a comprehensive picture about chemotaxis-absorption interplay even in simple contexts such as that
in (1.2) seems yet lacking; in particular, to date it even appears to be unknown whether the simplified
chemotaxis-consumption relative of (1.2) involving migration rates that exhibit growth with respect
to u as those in (1.1), that is, with D(u) = u and S(u) = u2, in any multi-dimensional setting.

The core challenge of signal-dependent diffusion degeneracy. Main results. In light of
the above discussion, a key issue in the development of any theory for (1.1) seems to consist in the
problem of adequately quantifying the action of the dissipative mechanisms therein, and especially
of appropriately coping with the signal-dependent degeneracy of cell diffusion. In fact, while diffu-
sion mechanisms that exclusively involve degeneracies depending on the population density u have
successfully been dealt with in a fairly effective and straightforward manner in numerous precedent
studies on Keller-Segel type problems (cf. e.g. [27], [9], [12]) the inclusion of the factor v as part of
the cell diffusivity in (1.1) seems to bring about quite considerable analytical demands; accordingly,
the literature on (1.1) up to now seems limited to one recent contribution that concentrates on its
one-dimensional version in which favorable embeddings significantly alleviate the analysis ([32]).

As an exemplary manifestation of this challenge which seems particularly relevant, the time evolution
of the functional

∫

Ω u
p for p > 1, constituting an apparently natural object of reasonings concerned

with fundamental regularity issues in taxis-type systems ([2]), can be seen to be essentially governed
by the competition between a taxis-driven contribution on the one hand, and a dissipated quantity
of the form

∫

Ω u
p−1v|∇u|2 on the other (cf. Lemma 3.1). To set up a cornerstone for our approach

toward a basic solution theory for (1.1), in a first crucial step we shall accordingly address the problem
of suitably estimating unfavorably weighted expressions of the latter type from below. Specifically, a
key role in our analysis will be played by the observation that in smoothly bounded two-dimensional
domains Ω and for each p ≥ 1, a functional inequality of the form

∫

Ω
ϕp+1ψ ≤ C(p)

∫

Ω
ϕp−1ψ|∇ϕ|2 + C(p) ·

{
∫

Ω
ϕp

}

·
∫

Ω

ϕ

ψ
|∇ψ|2 + C(p) ·

{
∫

Ω
ϕ

}p

·
∫

Ω
ϕψ (1.3)

holds for any reasonably regular functions ϕ ≥ 0 and ψ > 0. Relying on the essentially well-known fact
that, at least at a formal level, the integrals

∫

Ω
u
v
|∇v|2 and

∫

Ω uv are dissipated during the evolution

of
∫

Ω
|∇v|2
v

and of
∫

Ω v along trajectories of (1.1) (see Lemma 3.5 and (2.5)), we can utilize (1.3) to
identify a certain energy-like property of the coupled quantity

∫

Ω
up +

∫

Ω

|∇v|2
v

in such domains and for any fixed p > 2, provided that the corresponding initial data satisfy a certain
smallness condition in their second component (Lemma 3.7 and Lemma 3.8). Appropriate further
exploitation of this will thereupon enable us to construct, for any such initial data, some global weak
solutions through a limit procedure in suitably regularized approximate problems (Lemma 5.1).
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To make this more precise, let us henceforth concentrate on the case χ = 1 for definiteness, and
accordingly consider the full initial-boundary value problem given by



















ut = ∇ · (uv∇u)−∇ · (u2v∇v) + ℓuv, x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0,

(uv∇u− u2v∇v) · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.4)

in a smoothly bounded planar domain Ω, with ℓ ≥ 0, and with given nonnegative initial data u0
and v0. In this setting, the following solution concept to be subsequently pursued then seems fairly
natural:

Definition 1.1 Let Ω ⊂ R
2 be a dounded domain with smooth boundary, let ℓ ≥ 0, and let u0 ∈ L1(Ω)

and v0 ∈ L1(Ω) be nonnegative. Then a pair (u, v) of nonnegative functions

{

u ∈ L1
loc(Ω× [0,∞)) and

v ∈ L∞
loc(Ω× [0,∞)) ∩ L1

loc([0,∞);W 1,1(Ω))
(1.5)

will be called a global weak solution of (1.4) if

u2v ∈ L1
loc(Ω× [0,∞)) and u2∇v ∈ L1

loc(Ω× [0,∞);R2), (1.6)

and if

−
∫ ∞

0

∫

Ω
uϕt −

∫

Ω
u0ϕ(·, 0) =

1

2

∫ ∞

0

∫

Ω
u2∇v · ∇ϕ+

1

2

∫ ∞

0

∫

Ω
u2v∆ϕ

+

∫ ∞

0

∫

Ω
u2v∇v · ∇ϕ+ ℓ

∫ ∞

0

∫

Ω
uvϕ (1.7)

for all ϕ ∈ C∞
0 (Ω× [0,∞)) fulfilling ∂ϕ

∂ν
= 0 on ∂Ω× (0,∞), as well as

∫ ∞

0

∫

Ω
vϕt +

∫

Ω
v0ϕ(·, 0) =

∫ ∞

0

∫

Ω
∇v · ∇ϕ+

∫ ∞

0

∫

Ω
uvϕ (1.8)

for each ϕ ∈ C∞
0 (Ω× [0,∞)).

Our main result now reveals that in the presence of suitably small initial data v0, such a global weak
solution can indeed always be found.

Theorem 1.2 Let Ω ⊂ R
2 be a bounded convex domain with smooth boundary, and let ℓ ≥ 0. Then

for any choice of p > 2 and K > 0, one can find δ(p,K) > 0 and C(p,K) > 0 with the property that
whenever

u0 ∈W 1,∞(Ω) and v0 ∈W 1,∞(Ω) are such that u0 ≥ 0 and v0 > 0 in Ω (1.9)

with
‖u0‖Lp(Ω) ≤ K (1.10)
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and
‖v0‖L∞(Ω) ≤ δ(p,K) and

∥

∥∇√
v0
∥

∥

L∞(Ω)
≤ δ(p,K), (1.11)

the problem (1.4) admits a global weak solution (u, v) in the sense of Definition 1.1. Moreover, v > 0
a.e. in Ω× (0,∞), and we have

‖u(·, t)‖Lp(Ω) ≤ C(p,K) for a.e. t > 0

as well as

‖v(·, t)‖L∞(Ω) ≤ δ(p,K) and ‖∇v(·, t)‖L∞(Ω) ≤ 1 for a.e. t > 0.

We emphasize that since no condition on the size of the initial population density u0 is required,
the requirements in Theorem 1.2 seem well compatible with the underlying intention to use (1.1) in
application contexts determined by small nutrient concentrations ([16]).

2 Local existence and basic properties in an approximate problem

In order to construct a solution to (1.4) through approximation by solutions to conveniently regularized
problems, for ε ∈ (0, 1) let us consider



















uεt = ∇ · (uεvε∇uε)−∇ · (u2εvε∇vε) + ℓuεvε, x ∈ Ω, t > 0,

vεt = ∆vε − uεvε, x ∈ Ω, t > 0,
∂uε

∂ν
= ∂vε

∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x) + ε, vε(x, 0) = v0(x), x ∈ Ω,

(2.1)

which according to well-established approaches allow for the following statement on existence, exten-
sibility and basic properties.

Lemma 2.1 Suppose that n ≥ 1 and that Ω ⊂ R
n is a bounded domain with smooth boundary, and

assume that (1.9) holds. Then for each ε ∈ (0, 1) one can find Tmax,ε ∈ (0,∞] and functions

{

uε ∈ C0(Ω× [0, Tmax,ε)) ∩ C2,1(Ω× (0, Tmax,ε)) and

vε ∈
⋂

q≥1C
0([0, Tmax,ε);W

1,q(Ω)) ∩ C2,1(Ω× (0, Tmax,ε))
(2.2)

such that uε > 0 and vε > 0 in Ω × [0,∞), that (uε, vε) solves (2.1) in the classical sense in Ω ×
(0, Tmax,ε), and that

if Tmax,ε <∞, then lim sup
tրTmax,ε

‖uε(·, t)‖L∞(Ω) = ∞. (2.3)

This solution has the additional properties that

‖vε(·, t)‖L∞(Ω) ≤ ‖v0‖L∞(Ω) for all t ∈ (0, Tmax,ε), (2.4)

and that
∫ Tmax,ε

0

∫

Ω
uεvε ≤

∫

Ω
v0. (2.5)
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Proof. Standard arguments from local existence theories of taxis-type parabolic problems involving
nonlinear diffusion ([1], [12]) readily provide Tmax,ε ∈ (0,∞] and positive functions uε and vε which
are such that (2.2) holds, that (uε, vε) forms a classical solution of (2.1) in Ω× (0, Tmax,ε), and that

if Tmax,ε <∞, then

lim sup
tրTmax,ε

{

‖uε(·, t)‖W 1,∞(Ω) + ‖vε(·, t)‖W 1,∞(Ω) +
∥

∥

∥

1

uε(·, t)
∥

∥

∥

L∞(Ω)
+
∥

∥

∥

1

vε(·, t)
∥

∥

∥

L∞(Ω)

}

= ∞; (2.6)

the monotonicity property in (2.4) then immediately follows from the maximum principle, while (2.5)
directly results from an integration in the second equation from (2.1).

To see that we actually must have (2.3), let us assume that for some ε ∈ (0, 1) we had Tmax,ε < ∞
but

‖uε(·, t)‖L∞(Ω) ≤ c1(ε) for all t ∈ (0, Tmax,ε) (2.7)

with some c1(ε) > 0. Then a straightforward application of known semigroup estimates ([28]) to the
second equation in (2.1) would yield c2(ε) > 0 fulfilling

‖vε(·, t)‖W 1,∞(Ω) ≤ c2(ε) for all t ∈ (0, Tmax,ε), (2.8)

while standard parabolic Hölder regularity theory ([20]) would ensure the existence of θ1 = θ1(ε) ∈
(0, 1) such that

vε ∈ Cθ1,
θ1
2 (Ω× [0, Tmax,ε]). (2.9)

Apart from that, (2.7) would imply that vεt ≥ ∆vε− c1(ε)vε in Ω× (0, Tmax,ε), and that hence writing
c3 := infx∈Ω v0(x) > 0 we would have vε(x, t) ≥ v(x, t) := c3e

−c1(ε)t for all x ∈ Ω and t ∈ (0, Tmax,ε)
by the comparison principle, because v(x, 0) = c3 ≤ v0(x) = v(x, 0) for all x ∈ Ω, and because
vt −∆v + c1(ε)v = 0 in Ω× (0, Tmax,ε). In consequence, this would particularly show that

vε ≥ c4(ε) := c3e
−c1(ε)Tmax,ε in Ω× (0, Tmax,ε), (2.10)

whence in the identity

uεt = ∇ · aε(x, t, uε,∇uε) + bε(x, t, uε), x ∈ Ω, t ∈ (0, Tmax,ε),

due to (2.1) valid with

aε(x, t, z, ξ) := vε(x, t)|z|ξ − u
3
2
ε (x, t)vε(x, t)|z|

1
2∇vε(x, t) and

bε(x, t) := ℓuε(x, t)vε(x, t), (x, t, z, ξ) ∈ Ω× (0, Tmax,ε)× R× R
2,

a combination of (2.10) with (2.7), (2.8) and Young’s inequality would entail that with some c5(ε) > 0
and c6(ε) > 0, the key estimate

aε(x, t, z, ξ) · ξ = vε(x, t)|z| · |ξ|2 − u
3
2
ε (x, t)vε(x, t)|z|

1
2∇vε(x, t) · ξ

≥ c4(ε)|z| · |ξ|2 − c5(ε)|z|
1
2 |ξ|

≥ c4(ε)

2
|z| · |ξ|2 − c6(ε)
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would hold for all (x, t, z, ξ) ∈ Ω × (0, Tmax,ε) × R × R
2. As (2.7) and (2.8) would furthermore show

that there exist c7(ε) > 0 and c8(ε) > 0 satisfying

∣

∣aε(x, t, z, ξ)
∣

∣ ≤ c7(ε)|z| · |ξ|+ c7(ε)|z|
1
2 and

∣

∣bε(x, t)
∣

∣ ≤ c8(ε) for all (x, t, z, ξ) ∈ Ω× (0, Tmax,ε)× R× R
2,

again relying on the Hölder estimates provided by [20] we could find θ2 = θ2(ε) ∈ (0, 1) such that

uε ∈ Cθ2,
θ2
2 (Ω× [0, Tmax,ε]). (2.11)

This in turn would enable us to apply standard parabolic Schauder theory ([11]) to see that with some

θ3 = θ3(ε) ∈ (0, 1) we would have vε ∈ C2+θ3,1+
θ3
2 (Ω× [14Tmax,ε, Tmax,ε]), whence we could especially

pick c9(ε) > 0 such that

|∆vε| ≤ c9(ε) in Ω×
(1

4
Tmax,ε, Tmax,ε

)

. (2.12)

In the first equation from (2.1), now rearranged so as to become

uεt = Aε(x, t)∆uε +Bε(x, t) · ∇uε +Dε(x, t)uε, x ∈ Ω, t ∈ (0, Tmax,ε),

with

Aε(x, t) := uε(x, t)vε(x, t),

Bε(x, t) := vε(x, t)∇uε(x, t) + uε(x, t)∇vε(x, t)− 2uε(x, t)vε(x, t)∇vε(x, t) and

Dε(x, t) := −uε(x, t)vε(x, t)∆vε(x, t)− 2uε(x, t)|∇vε(x, t)|2 + ℓvε(x, t), (x, t) ∈ Ω× (0, Tmax,ε),

we could then identify a positive constant c10(ε) such that

Dε ≥ −c10(ε) in Ω×
(1

4
Tmax,ε, Tmax,ε

)

,

so that abbreviating c11(ε) := infx∈Ω uε(x,
1
4Tmax,ε) > 0, parabolic comparison of uε with u(x, t) :=

c11(ε)e
−c10(ε)·(t− 1

4
Tmax,ε), (x, t) ∈ Ω× [14Tmax,ε, Tmax,ε), would show that since

ut −Aε∆u−Bε · ∇u−Dεu = −c10(ε)u−Dεu ≤ 0 in Ω×
(1

4
Tmax,ε, Tmax,ε

)

and u(·, 14Tmax,ε) ≤ uε(·, 14Tmax,ε), we would have uε ≥ u in Ω × (14Tmax,ε, Tmax,ε) and hence, in
particular,

uε ≥ c11(ε)e
−c10(ε)· 34Tmax,ε in Ω×

(1

4
Tmax,ε, Tmax,ε

)

. (2.13)

Thereupon, first order parabolic Hölder regularity theory ([14]) would become applicable so as to yield

θ4 = θ4(ε) ∈ (0, 1) such that uε ∈ C1+θ4,
1+θ4

2 (Ω× [12Tmax,ε, Tmax,ε]), inter alia meaning that with some
c12(ε) > 0 we would have

‖uε(·, t)‖W 1,∞(Ω) ≤ c12(ε) for all t ∈
(1

2
Tmax,ε, Tmax,ε

)

.
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Together with (2.8), (2.13) and (2.10), however, this would contradict (2.6), so that indeed (2.3) must
hold. �

In our subsequent reasoning, we consider the convex domain Ω ⊂ R
2 and the parameter ℓ ≥ 0 as fixed,

and whenever functions u0 ∈ W 1,∞(Ω) and v0 ∈ W 1,∞(Ω) with u0 ≥ 0 and v0 > 0 in Ω have been
selected, without any further explicit mentioning we shall let (uε, vε) and Tmax,ε be as accordingly
provided by Lemma 2.1.

As an elementary but crucial preparation for our loop-type argument in the next section, let us note the
following consequence of the regularizing action of parabolicity on a certain preservation of smallness
in the second solution components, presupposing the presence of an Lp bound for the first solution
component. The restriction on p in Theorem 1.2 is precisely due to our argument in this direction:

Lemma 2.2 For all p > 2, L > 0 and η > 0, there exists δ0(p, L, η) > 0 with the property that if (1.9)
holds with

‖v0‖L∞(Ω) ≤ δ0(p, L, η) and ‖∇v0‖L∞(Ω) ≤ δ0(p, L, η), (2.14)

and if for some ε ∈ (0, 1) and T ∈ (0, Tmax,ε) we have
∫

Ω
upε(·, t) ≤ L for all t ∈ (0, T ), (2.15)

then
‖∇vε(·, t)‖L∞(Ω) ≤ η for all t ∈ (0, T ), (2.16)

Proof. We recall known smoothing properties of the Neumann heat semigroup (et∆)t≥0 on Ω ([28])
to fix c1 > 0, λ > 0 and c2(p) > 0 such that

‖∇et∆ϕ‖L∞(Ω) ≤ c1‖∇ϕ‖L∞(Ω) for all t > 0 and any ϕ ∈W 1,∞(Ω), (2.17)

and that

‖∇et∆ϕ‖L∞(Ω) ≤ c2(p) ·
(

1 + t
− 1

2
− 1

p
)

e−λt‖ϕ‖Lp(Ω) for all t > 0 and each ϕ ∈ C0(Ω). (2.18)

Since our assumption p > 2 implies that c3(p) :=
∫∞
0 (1 + σ

− 1
2
− 1

p )e−λσdσ is finite, given L > 0 and
η > 0 we can thereafter choose δ0(p, L, η) > 0 small enough such that

(

c1 + c2(p)c3(p)L
)

· δ0(p, L, η) ≤ η, (2.19)

and assuming (1.9), (2.14) and (2.15) to be satisfied for some ε ∈ (0, 1) and T ∈ (0, Tmax,ε), thanks to
the second equation in (2.1) and (2.4) we then obtain from (2.17)-(2.19) that, indeed,

‖∇vε(·, t)‖L∞(Ω) =

∥

∥

∥

∥

∇et∆v0 −
∫ t

0
∇e(t−s)∆

{

uε(·, s)vε(·, s)
}

ds

∥

∥

∥

∥

L∞(Ω)

≤ c1‖∇v0‖L∞(Ω) + c2(p)

∫ t

0

(

1 + (t− s)
− 1

2
− 1

p

)

e−λ(t−s)
∥

∥uε(·, s)vε(·, s)
∥

∥

Lp(Ω)
ds

≤ c1‖∇v0‖L∞(Ω) + c2(p)‖v0‖L∞(Ω)

∫ t

0

(

1 + (t− s)
− 1

2
− 1

p

)

e−λ(t−s)‖uε(·, s)‖Lp(Ω)ds

≤ c1δ0(p, L, η) + c2(p)δ0(p, L, η)c3(p)L

≤ η
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for all t ∈ (0, T ). �

3 A self-map type argument controlling uε in Lp for small v0

We next enter the key stage of our argument by carefully documenting the outcome of a standard
testing procedure associated with the first sub-problem of (2.1).

Lemma 3.1 Let p > 2, L > 0 and η > 0, and with δ0(p, L, η) taken from Lemma 2.2, suppose that
(1.9) as well as (2.14) and (2.15) hold for some ε ∈ (0, 1) and T ∈ (0, Tmax,ε). Then for any choice
of a > 0,

d

dt

∫

Ω
upε +

p(p− 1)

2

∫

Ω
up−1
ε vε|∇uε|2 + a

∫

Ω
u2εvε

≤ p2η2
∫

Ω
up+1
ε vε +

{

pℓp ·
( 2

η2

)p−1
+ a

p

p−1 ·
( 2

p2η2

)
1

p−1

}
∫

Ω
uεvε for all t ∈ (0, T ). (3.1)

Proof. We use the first equation in (2.1) and integrate by parts to see that due to Young’s
inequality and (2.16),

d

dt

∫

Ω
upε + p(p− 1)

∫

Ω
up−1
ε vε|∇uε|2

= p(p− 1)

∫

Ω
upεvε∇uε · ∇vε + pℓ

∫

Ω
upεvε

≤ p(p− 1)

2

∫

Ω
up−1
ε vε|∇uε|2 +

p(p− 1)

2

∫

Ω
up+1
ε vε|∇vε|2 + pℓ

∫

Ω
upεvε

≤ p(p− 1)

2

∫

Ω
up−1
ε vε|∇uε|2 +

p(p− 1)η2

2

∫

Ω
up+1
ε vε + pℓ

∫

Ω
upεvε for all t ∈ (0, T ).

Since two further applications of Young’s inequality show that

pℓ

∫

Ω
upεvε =

∫

Ω

(pη2

2
up+1
ε vε

)
p−1
p · pℓ

( 2

pη2

)
p−1
p
u

1
p
ε v

1
p
ε

≤ pη2

2

∫

Ω
up+1
ε vε +

{

pℓ ·
( 2

pη2

)
p−1
p

}p ∫

Ω
uεvε for all t ∈ (0, Tmax,ε)

and that

a

∫

Ω
u2εvε =

∫

Ω

(p2η2

2
up+1
ε vε

)
1
p · a

( 2

p2η2

)
1
p
u

p−1
p

ε v
p−1
p

ε

≤ p2η2

2

∫

Ω
up+1
ε vε +

{

a ·
( 2

p2η2

)
1
p

}
p

p−1
∫

Ω
uεvε for all t ∈ (0, Tmax,ε),

this implies (3.1), because
{

pℓ ·
(

2
pη2

)
p−1
p

}p

= pℓp ·
(

2
η2

)p−1
. �

Now a core task will consist in appropriately estimating the first summand on the right-hand side of
(3.1) against dissipated quantities, where a fundamental obstacle is linked to the circumstance that
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the diffusion-related contribution to (3.1) contains the expectedly small weight vε. In order to prepare
our approach to adequately overcome this, let us separately derive the following functional inequality
which does rely on our overall restriction on planarity of the spatial setting, but which actually does
not require Ω to be convex.

Lemma 3.2 For each p ≥ 1, one can find C(p) > 0 such that if ϕ ∈ C1(Ω) and ψ ∈ C1(Ω) are such
that ϕ ≥ 0 and ψ > 0 in Ω, then

∫

Ω
ϕp+1ψ ≤ C(p)

∫

Ω
ϕp−1ψ|∇ϕ|2 + C(p) ·

{
∫

Ω
ϕp

}

·
∫

Ω

ϕ

ψ
|∇ψ|2 + C(p) ·

{
∫

Ω
ϕ

}p

·
∫

Ω
ϕψ. (3.2)

Proof. According to the Sobolev inequality in the two-dimensional domain Ω, given p ≥ 1 we can
find c1(p) > 0 such that

∫

Ω
ρ2 ≤ c1(p)‖∇ρ‖2L1(Ω) + c1(p)‖ρ‖2

L
2

p+1 (Ω)
for all ρ ∈ C1(Ω),

which for fixed nonnegative ϕ ∈ C1(Ω) and positive ψ ∈ C1(Ω) we apply to ρ := ϕ
p+1
2 ψ

1
2 to infer that

∫

Ω
ϕp+1ψ ≤ c1(p) ·

{
∫

Ω

∣

∣

∣

p+ 1

2
ϕ

p−1
2 ψ

1
2∇ϕ+

1

2
ϕ

p+1
2 ψ− 1

2∇ψ
∣

∣

∣

}2

+c1(p) ·
{
∫

Ω
ϕψ

1
p+1

}p+1

≤ (p+ 1)2c1(p)

2
·
{
∫

Ω
ϕ

p−1
2 ψ

1
2 |∇ϕ|

}2

+
c1(p)

2
·
{
∫

Ω
ϕ

p+1
2 ψ− 1

2 |∇ψ|
}2

+c1(p) ·
{
∫

Ω
ϕψ

1
p+1

}p+1

. (3.3)

Here by the Cauchy-Schwarz inequality,

{
∫

Ω
ϕ

p−1
2 ψ

1
2 |∇ϕ|

}2

≤ |Ω|
∫

Ω
ϕp−1ψ|∇ϕ|2

and
{
∫

Ω
ϕ

p+1
2 ψ− 1

2 |∇ψ|
}2

≤
{
∫

Ω
ϕp

}

·
∫

Ω

ϕ

ψ
|∇ψ|2,

while using the Hölder inequality we see that

{
∫

Ω
ϕψ

1
p+1

}p+1

≤
{
∫

Ω
ϕ

}p

·
∫

Ω
ϕψ.

The claim therefore results from (3.3) if we let C(p) := max
{ (p+1)2c1(p)|Ω|

2 , c1(p)
}

. �

Indeed, employing the latter with (ϕ, ψ) = (uε, vε) yields the following as a consequence of Lemma
3.1 in which, for definiteness, we already specify a selection of the parameter a that will turn out to
be convenient later on.
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Lemma 3.3 Let p > 2. Then there exist η0(p) > 0 and C(p) > 0 with the property that if L > 0, and
if u0 and v0 are such that (1.9) and (2.14) as well as (2.15) hold for some η ∈ (0, η0(p)], ε ∈ (0, 1)
and T ∈ (0, Tmax,ε), with δ0(p, L, η) > 0 as given by Lemma 2.2, then

d

dt

∫

Ω
upε +

p(p− 1)

4

∫

Ω
up−1
ε vε|∇uε|2 + 2(7 + 4

√
2)

∫

Ω
u2εvε + η2

∫

Ω
up+1
ε vε

≤ C(p) · Lη2
∫

Ω

uε

vε
|∇vε|2 + C(p) · 1 + L

η2(p−1)

∫

Ω
uεvε for all t ∈ (0, T ). (3.4)

Proof. We first invoke Lemma 3.2 to fix c1(p) > 0 in such a way that whenever 0 ≤ ϕ ∈ C1(Ω)
and 0 < ψ ∈ C1(Ω),

∫

Ω
ϕp+1ψ ≤ c1(p)

∫

Ω
ϕp−1ψ|∇ϕ|2 + c1(p) ·

{
∫

Ω
ϕp

}

·
∫

Ω

ϕ

ψ
|∇ψ|2 + c1(p) ·

{
∫

Ω
ϕ

}p

·
∫

Ω
ϕψ, (3.5)

and we then pick η0(p) > 0 small enough such that

η0(p) ≤ min

{

1 ,

√

p(p− 1)

4(p2 + 1)c1(p)

}

. (3.6)

Then assuming that 0 ≤ u0 ∈ W 1,∞(Ω), and that v0 ∈ W 1,∞(Ω), ε ∈ (0, 1) and T ∈ (0, Tmax,ε) are
such that (2.14) and (2.15) hold for some L > 0 and η ∈ (0, η0(p)], we note that since η ≤ 1 we have

η
− 2

p−1 ≤ η−2(p−1) and hence

pℓp ·
( 2

η2

)p−1
+
{

2(7 + 4
√
2)
}p ·

( 2

p2η2

)
1

p−1 ≤ c2(p)η
2(p−1)

with c2(p) := 2p−1pℓp +
{

2(7 + 4
√
2)
}p ·

(

2
p2

)
1

p−1 . Therefore, Lemma 3.1 together with (3.5) implies
that

d

dt

∫

Ω
upε +

p(p− 1)

2

∫

Ω
up−1
ε vε|∇uε|2 + 2(7 + 4

√
2)

∫

Ω
u2εvε + η2

∫

Ω
up+1
ε vε

≤ (p2 + 1)η2
∫

Ω
up+1
ε vε + c2(p)η

−2(p−1)

∫

Ω
uεvε

≤ (p2 + 1)c1(p)η
2

∫

Ω
up−1
ε vε|∇uε|2 + (p2 + 1)c1(p)η

2 ·
{
∫

Ω
upε

}

·
∫

Ω

uε

vε
|∇vε|2

+(p2 + 1)c1(p)η
2 ·

{
∫

Ω
uε

}p

·
∫

Ω
uεvε + c2(p)η

−2(p−1)

∫

Ω
uεvε for all t ∈ (0, T ), (3.7)

where according to (3.6),

(p2 + 1)c1(p)η
2

∫

Ω
up−1
ε vε|∇uε|2 ≤

p(p− 1)

4

∫

Ω
up−1
ε vε|∇uε|2 for all t ∈ (0, T ),

and where thanks to (2.15) we know that

(p2 + 1)c1(p)η
2 ·

{
∫

Ω
upε

}

·
∫

Ω

uε

vε
|∇vε|2 ≤ (p2 + 1)c1(p)Lη

2

∫

Ω

uε

vε
|∇vε|2 for all t ∈ (0, T ).
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As due to the Hölder inequality, (2.15) moreover entails that again since η ≤ 1 we can estimate

(p2 + 1)c1(p)η
2 ·

{
∫

Ω
uε

}p

·
∫

Ω
uεvε ≤ (p2 + 1)c1(p)η

2|Ω|p−1 ·
{
∫

Ω
upε

}

·
∫

Ω
uεvε

≤ (p2 + 1)c1(p)|Ω|p−1Lη2
∫

Ω
uεvε

≤ (p2 + 1)c1(p)|Ω|p−1Lη−2(p−1)

∫

Ω
uεvε for all t ∈ (0, T ),

from (3.7) we infer that, in fact, (3.4) holds with C(p) := max
{

(p2+1)c1(p) , c2(p) , (p
2+1)c1(p)|Ω|p−1

}

.
�

While the second summand on the right of (3.4) allows for a suitable control via the global disspiation
property in (2.5), the corresponding first integral seems to require a separate treatment especially due
to the singular factor 1

vε
appearing therein. This will be faced in the course of a second, again fairly

well-established, testing-based argument which we prepare by expatiating an elementary functional
inequality which in its principal form and with appropriately adapted constants, as we may note
without explicit proof, actually continues to hold in any smoothly bounded n-dimensional domain
with n ≥ 1.

Lemma 3.4 Let ϕ ∈ C2(Ω) be such that ϕ > 0 in Ω. Then

∫

Ω
ϕ|D2 lnϕ|2 ≥ 1

2(7 + 4
√
2)

∫

Ω

|D2ϕ|2
ϕ

. (3.8)

Proof. According to [30, Lemma 3.3], we have

∫

Ω

|∇ϕ|4
ϕ3

≤ (2 +
√
2)2

∫

Ω
ϕ|D2 lnϕ|2,

which we combine with the observation that due to Young’s inequality,

∫

Ω
ϕ|D2 lnϕ|2 =

∫

Ω

|D2ϕ|2
ϕ

− 2

∫

Ω

1

ϕ2
∇ϕ · (D2ϕ · ∇ϕ) +

∫

Ω

|∇ϕ|4
ϕ3

≥ 1

2

∫

Ω

|D2ϕ|2
ϕ

−
∫

Ω

|∇ϕ|4
ϕ3

.

Therefore, namely, writing θ := 1
1+(2+

√
2)2

≡ 1
7+4

√
2
we see that, indeed,

∫

Ω
ϕ|D2 lnϕ|2 ≥ (1− θ) · 1

(2 +
√
2)2

∫

Ω

|∇ϕ|4
ϕ3

+ θ ·
{

1

2

∫

Ω

|D2ϕ|2
ϕ

−
∫

Ω

|∇ϕ|4
ϕ3

}

=
θ

2

∫

Ω

|D2ϕ|2
ϕ

,

because (1− θ) · 1
(2+

√
2)2

− θ = 1
(2
√
2)2

−
(

1
(2+

√
2)2

+ 1
)

· 1
1+(2+

√
2)2

= 0. �
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We can now proceed to identify the integral
∫

Ω
uε

vε
|∇vε|2 as part of the dissipation-induced contribution

to the outcome of a testing procedure applied to the second equation from (2.1). Our derivation of
this is the only place in this manuscript where convexity of Ω is explicitly needed, and we remark
without detailing a corresponding argument here that at the cost of moderately extended technical
efforts, this assumption could actually be removed.

Lemma 3.5 Assume (1.9), and let ε ∈ (0, 1). Then

d

dt

∫

Ω

|∇vε|2
vε

+

∫

Ω

uε

vε
|∇vε|2 ≤ 2(7 + 4

√
2)

∫

Ω
u2εvε for all t ∈ (0, Tmax,ε). (3.9)

Proof. Using integration by parts in a straightforward manner (cf. [30, Lemma 3.2] for details),
from the second equation in (2.1) we obtain the identity

d

dt

∫

Ω

|∇vε|2
vε

+ 2

∫

Ω
vε|D2 ln vε|2 +

∫

Ω

uε

vε
|∇vε|2

= −2

∫

Ω
∇uε · ∇vε +

∫

∂Ω

1

vε
· ∂|∇vε|

2

∂ν
for all t ∈ (0, Tmax,ε), (3.10)

where as a consequence of another integration by parts and Young’s inequality,

−2

∫

Ω
∇uε · ∇vε = 2

∫

Ω
uε∆vε

≤ 1

2(7 + 4
√
2)

∫

Ω

|∆vε|2
vε

+ 2(7 + 4
√
2)

∫

Ω
u2εvε for all t ∈ (0, Tmax,ε).

Since |∆vε|2 ≤ 2|D2vε|2 by the Cauchy-Schwarz inequality, and since thus

1

2(7 + 4
√
2)

∫

Ω

|∆vε|2
vε

≤ 1

7 + 4
√
2

∫

Ω

|D2vε|2
vε

≤ 2

∫

Ω
vε|D2 ln vε|2 for all t ∈ (0, Tmax,ε)

thanks to Lemma 3.4, from (3.10) we thus infer (3.9) upon noting that ∂|∇vε|2
∂ν

≤ 0 on ∂Ω× (0, Tmax,ε)
by convexity of Ω ([17]). �

As, fortunately, the expression on the right-hand side of (3.9) can be absorbed by the third summand
on the left of (3.4), we are now in the position to close the loop in our argument by combining Lemma
3.3 with Lemma 3.5. In order to be able to thereby draw a conclusion that simultaneosly includes
some bound for the gradient of a suitably chosen quantity, and that hence serves as a preparation for
an Aubin-Lions type compactness reasoning in Lemma 5.1 below, let us briefly add the following basic
observation.

Lemma 3.6 Let p ≥ 1, and let ϕ ∈ C1(Ω) and ψ ∈ C1(Ω) be such that ϕ ≥ 0 and ψ > 0 in Ω. Then

{
∫

Ω

∣

∣

∣
∇
(

ϕ
p+1
2 ψ

)

∣

∣

∣

}2

≤ (p+ 1)2

2
·
{
∫

Ω
ψ

}

·
∫

Ω
ϕp−1ψ|∇ϕ|2+2‖ψ‖L∞(Ω) ·

{
∫

Ω
ϕp

}

·
∫

Ω

ϕ

ψ
|∇ψ|2. (3.11)
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Proof. We expand

∇
(

ϕ
p+1
2 ψ

)

=
p+ 1

2
ϕ

p−1
2 ψ∇ϕ+ ϕ

p+1
2 ∇ψ

and use Young’s inequality to see that thus

{
∫

Ω

∣

∣

∣
∇
(

ϕ
p+1
2 ψ

)

∣

∣

∣

}2

≤ 2 · (p+ 1)2

4
·
{
∫

Ω
ϕ

p−1
2 ψ|∇ϕ|

}2

+ 2 ·
{
∫

Ω
ϕ

p+1
2 |∇ψ|

}2

.

Since

{
∫

Ω
ϕ

p−1
2 ψ|∇ϕ|

}2

≤
{
∫

Ω
ψ

}

·
∫

Ω
ϕp−1ψ|∇ϕ|2

and

{
∫

Ω
ϕ

p+1
2 |∇ψ|

}2

≤ ‖ψ‖L∞(Ω) ·
{
∫

Ω
ϕp

}

·
∫

Ω

ϕ

ψ
|∇ψ|2

by the Cauchy-Schwarz inequality, this already establishes (3.11). �

We can now conveniently accomplish the main step of the analysis in this section:

Lemma 3.7 Let p > 2 and L > 0. Then there exist δ1(p, L) > 0 and C(p, L) > 0 such that if (1.9)
holds with

‖v0‖L∞(Ω) ≤ δ1(p, L) and ‖∇√
v0‖L∞(Ω) ≤ δ1(p, L), (3.12)

and if (2.15) is fulfilled for some ε ∈ (0, 1) and T ∈ (0, Tmax,ε), then

∫

Ω
upε(·, t) +

|∇vε(·, t)|2
vε(·, t)

≤
∫

Ω
(u0 + 1)p +

1

2
for all t ∈ (0, T ) (3.13)

and
‖∇vε(·, t)‖L∞(Ω) ≤ 1 for all t ∈ (0, T ) (3.14)

as well as
∫ t

0

∫

Ω
up−1
ε vε|∇uε|2 ≤ C(p, L) for all t ∈ (0, T ) (3.15)

and
∫ t

0

∫

Ω
up+1
ε vε ≤ C(p, L) for all t ∈ (0, T ) (3.16)

and
∫ t

0

∥

∥

∥
∇
(

u
p+1
2

ε (·, s)vε(·, s)
)

∥

∥

∥

2

L1(Ω)
ds ≤ C(p, L) for all t ∈ (0, T ). (3.17)
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Proof. For fixed p > 2, we employ Lemma 3.3 to find η0(p) > 0 and c1(p) > 0 such that whenever
u0, v0, ε ∈ (0, 1) and T ∈ (0, Tmax,ε) are such that (1.9), (2.14) and (2.15) hold with some L > 0 and
η ∈ (0, η0(p)], and with δ0(p, L, η) as in Lemma 2.2, we have

d

dt

∫

Ω
upε +

p(p− 1)

4

∫

Ω
up−1
ε vε|∇uε|2 + 2(7 + 4

√
2)

∫

Ω
u2εvε + η2

∫

Ω
up+1
ε vε

≤ c1(p)Lη
2

∫

Ω

uε

vε
|∇vε|2 + c1(p) ·

1 + L

η2(p−1)

∫

Ω
uεvε for all t ∈ (0, T ). (3.18)

Given L > 0, we here fix

η := min
{

η0(p) ,
1

√

2c1(p)L
, 1

}

, (3.19)

and abbreviating c2(p, L) := c1(p) · 1+L
η2(p−1) we let

δ1(p, L) := min

{

δ0(p, L, η) ,
(δ0(p, L, η)

2

)
2
3
,

1

4
√

|Ω|
,

1

4c2(p, L)|Ω|

}

. (3.20)

Henceforth assuming that (1.9) be satisfied, and that (3.12) and (2.15) hold with some ε ∈ (0, 1)
and T ∈ (0, Tmax,ε), we then first observe that Lemma 2.2 is applicable, because the restriction
δ1(p, L) ≤ δ0(p, L, η) clearly ensures that ‖v0‖L∞(Ω) ≤ δ0(p, L, η), and because the second requirement
contained in (3.20) guarantees that moreover

|∇v0| = 2
√
v0|∇

√
v0| ≤ 2δ

3
2
1 (p, L) ≤ δ0(p, L, η) in Ω.

In particular, we may thus apply (3.18) to (uε, vε) and T , and combine the outcome with Lemma 3.5,
to see that since c1(p)Lη

2 ≤ 1
2 by (3.19), according to our definition of c2(p, L) we have

d

dt

{
∫

Ω
upε +

∫

Ω

|∇vε|2
vε

}

+
p(p− 1)

4

∫

Ω
up−1
ε vε|∇uε|2 +

1

2

∫

Ω

uε

vε
|∇vε|2 + η2

∫

Ω
up+1
ε vε

≤ c2(p, L)

∫

Ω
uεvε for all t ∈ (0, T ).

After an integration in time, this reveals that
∫

Ω
upε(·, t) +

∫

Ω

|∇vε(·, t)|2
vε(·, t)

+
p(p− 1)

4

∫ t

0

∫

Ω
up−1
ε vε|∇uε|2 +

1

2

∫ t

0

∫

Ω

uε

vε
|∇vε|2 + η2

∫ t

0

∫

Ω
up+1
ε vε

≤
∫

Ω
(u0 + ε)p +

∫

Ω

|∇v0|2
v0

+ c2(p, L)

∫ t

0

∫

Ω
uεvε for all t ∈ (0, T ), (3.21)

where due to (3.12) and the third condition in (3.20),

∫

Ω

|∇v0|2
v0

≤ 4|Ω| ·
∥

∥∇√
v0
∥

∥

2

L∞(Ω)
≤ 4|Ω|δ21(p, L) ≤

1

4
,

and where thanks to (2.5) and (3.12), the rightmost restriction in (3.20) warrants that

c2(p, L)

∫ t

0

∫

Ω
uεvε ≤ c2(p, L)

∫

Ω
v0 ≤ c2(p, L)δ1(p, L)|Ω| ≤

1

4
for all t ∈ (0, T ).
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From (3.21) we therefore obtain that since ε < 1,

∫

Ω
upε(·, t) +

∫

Ω

|∇vε(·, t)|2
vε(·, t)

+
p(p− 1)

4

∫ t

0

∫

Ω
up−1
ε vε|∇uε|2 +

1

2

∫ t

0

∫

Ω

uε

vε
|∇vε|2 + η2

∫ t

0

∫

Ω
up+1
ε vε

≤
∫

Ω
(u0 + 1)p +

1

2
for all t ∈ (0, T ),

and that thus, with some suitably large C(p, L) > 0, both (3.13) and (3.15)-(3.17) hold due to the
fact that according to Lemma 3.6, (2.4), (2.15) and (3.12) we have

∫ t

0

∥

∥

∥
∇
(

u
p+1
2

ε (·, s)vε(·, s)
)

∥

∥

∥

2

L1(Ω)
ds

≤
(p+ 1)2|Ω| · ‖v0‖L∞(Ω)

2
·
∫ t

0

∫

Ω
up−1
ε vε|∇uε|2 + 2‖v0‖L∞(Ω) ·

∫ t

0

∫

Ω

uε

vε
|∇vε|2

≤ (p+ 1)2|Ω|δ1(p, L)
2

· 4(L+ 1
2)

p(p− 1)
+ 2Lδ1(p, L) · 2

(

L+
1

2

)

for all t ∈ (0, T ).

The inequality in (3.14), finally, is an obvious consequence of Lemma 2.2 because of the requirement
η ≤ 1 contained in (3.19). �

Through a standard self-map type reasoning, the latter immediately entails the following consequence
which now does no longer involve any hypotheses on the solutions to (2.1) themselves.

Lemma 3.8 Let p > 2 and K > 0. Then there exist δ(p,K) > 0 and C(p,K) > 0 such that whenever
u0 and v0 satisfy (1.9) and are such that (1.10) and (1.11) are valid, for any choice of ε ∈ (0, 1) we
have

∫

Ω
upε(·, t) +

∫

Ω

|∇vε(·, t)|2
vε(·, t)

≤
∫

Ω
(u0 + 1)p + 1 for all t ∈ (0, Tmax,ε) (3.22)

and
‖∇vε(·, t)‖L∞(Ω) ≤ 1 for all t ∈ (0, Tmax,ε) (3.23)

as well as
∫ t

0

∫

Ω
up−1
ε vε|∇uε|2 ≤ C(p,K) for all t ∈ (0, Tmax,ε) (3.24)

and
∫ t

0

∫

Ω
up+1
ε vε ≤ C(p,K) for all t ∈ (0, Tmax,ε) (3.25)

and
∫ t

0

∥

∥

∥
∇
(

u
p+1
2

ε (·, s)vε(·, s)
)

∥

∥

∥

2

L1(Ω)
ds ≤ C(p,K) for all t ∈ (0, Tmax,ε). (3.26)

Proof. Given K > 0, we apply Lemma 3.7 to L := 2p−1Kp+2p−1|Ω|+1 and let δ(p,K) := δ1(p, L)
with δ1(·, ·) as provided there. Then assuming that u0 and v0 comply with (1.9) and are such that
(1.10) and (1.11) hold, and letting

Sε :=

{

T ∈ (0, Tmax,ε)

∣

∣

∣

∣

∫

Ω
upε(·, t) < L for all t ∈ (0, T )

}

, ε ∈ (0, 1),
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for each ε ∈ (0, 1) we then infer from (1.10) and the continuity of uε that Sε is not empty and hence
Tε := supSε is a well-defined element of (0, Tmax,ε] ⊂ (0,∞]. Now since Lemma 3.7 along with (1.10)
ensures that

∫

Ω
upε(·, t) ≤

∫

Ω
(u0 + 1)p +

1

2
≤ 2p−1

∫

Ω
(up0 + 1) +

1

2
≤ 2p−1Kp + 2p−1|Ω|+ 1

2
≤ L− 1

2

for all t ∈ (0, Tε), again by continuity of uε the hypothesis that Tε be smaller than Tmax,ε is absurd for
any such ε. In consequence, we must have Tε = Tmax,ε for all ε ∈ (0, 1), so that (3.22) and (3.23)-(3.26)
immediately follow upon recalling (3.14)-(3.17). �

4 Global existence of (uε, vε). Further time-dependent regularity

properties

As a by-product of (3.22) and (3.23), with only few additional efforts we can now make sure that
under the smallness assumption made in Lemma 3.8, each of our solutions to (2.1) is actually global
in time.

Lemma 4.1 Let p > 2 and K > 0, and with δ(p,K) taken from Lemma 3.8, suppose that u0 ∈
W 1,∞(Ω) and v0 ∈W 1,∞(Ω) are nonnegative with v0 6≡ 0 and such that (1.10) and (1.11) hold. Then
Tmax,ε = +∞ for all ε ∈ (0, 1).

Proof. Supposing on the contrary that Tmax,ε be finite for some ε ∈ (0, 1), we first claim that
writing t0 :=

1
2Tmax,ε, we could then find c1(ε) > 0 fulfilling

vε(x, t) ≥ c1(ε) for all x ∈ Ω and t ∈ (t0, Tmax,ε). (4.1)

Indeed, from the inclusion vε ∈ C2,1(Ω× (0, Tmax,ε)) and the strict positivity of vε in Ω× (0, Tmax,ε),
as asserted by Lemma 2.1, from (2.1) it follows that the function zε := ln 1

vε
belongs to C2,1(Ω ×

[t0, Tmax,ε)) and satisfies

zεt = ∆zε − |∇zε|2 + uε ≤ ∆zε + uε in Ω× (t0, Tmax,ε).

Using the comparison principle along with known regularization features of the Neumann heat semi-
group (et∆)t≥0 on Ω ([28]), we thus infer that with some c2(ε) > 0 and c3(ε) > 0,

zε(·, t) ≤ e(t−t0)∆zε(·, t0) +
∫ t

t0

e(t−s)∆uε(·, s)ds

≤ sup
x∈Ω

zε(x, t0) + c2(ε)

∫ t

t0

(t− s)
−1+ 1

p ‖uε(·, s)‖Lp(Ω)ds

≤ sup
x∈Ω

zε(x, t0) + c3(ε) sup
s∈(t0,Tmax,ε)

‖uε(·, s)‖Lp(Ω) in Ω for all t ∈ (t0, Tmax,ε),

because p > 1. Recalling (3.22), we readily infer (4.1) from this and the continuity of zε(·, t0) through-
out Ω.
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In order to next make sure that for any q > p we can find c4(ε, q) > 0 such that
∫

Ω
uqε(·, t) ≤ c4(ε, q) for all t ∈ (t0, Tmax,ε), (4.2)

given any such q we go back to (2.1) and use Young’s inequality along with (2.4) as well as (3.23) to
obtain that

1

q

d

dt

∫

Ω
uqε + (q − 1)

∫

Ω
uq−1
ε vε|∇uε|2 = (q − 1)

∫

Ω
uqεvε∇uε · ∇vε + ℓ

∫

Ω
uqεvε

≤ q − 1

2

∫

Ω
uq−1
ε vε|∇uε|2 +

q − 1

2

∫

Ω
uq+1
ε vε|∇vε|2

+ℓ

∫

Ω
uq+1
ε + ℓ

∫

Ω
vq+1
ε

≤ q − 1

2

∫

Ω
uq−1
ε vε|∇uε|2

+c5(q)

∫

Ω
uq+1
ε + c6(q) for all t ∈ (t0, Tmax,ε) (4.3)

with c5(q) :=
q−1
2 ‖v0‖L∞(Ω) + ℓ and c6(q) := ℓ|Ω| · ‖v0‖q+1

L∞(Ω). Here, a combination of a Poincaré type

inequality with (3.22) and (4.1) shows that with some c7(ε, q) > 0 and c8(q) > 0 we have

c5(q)

∫

Ω
uq+1
ε = c5(q)‖u

q+1
2

ε ‖2L2(Ω)

≤ 2(q − 1)c1(ε)

(q + 1)2
‖∇u

q+1
2

ε ‖2L2(Ω) + c7(ε, q)‖u
q+1
2

ε ‖2
L

2p
q+1 (Ω)

=
(q − 1)c1

2

∫

Ω
uq−1
ε |∇uε|2 + c7(ε, q) ·

{
∫

Ω
upε

}
q+1
p

≤ q − 1

2

∫

Ω
uq−1
ε vε|∇uε|2 + c8(ε, q) for all t ∈ (t0, Tmax,ε),

so that from (4.3) we infer that

1

q

d

dt

∫

Ω
uqε ≤ c8(ε, q) + c6(q) for all t ∈ (t0, Tmax,ε),

and that hence indeed (4.2) is valid with some appropriately large c4(ε, q) > 0.

Recalling (3.23), we may therefore invoke a standard result on L∞ bounds in scalar parabolic equations
involving nonlinear diffusion of porous medium type ([22, Lemma A.1]) to obtain c9(ε) > 0 such that

‖uε(·, t)‖L∞(Ω) ≤ c9(ε) for all t ∈ (t0, Tmax,ε),

which in view of (2.3) is incompatible with our hypothesis and hence shows that, in fact, we must
have Tmax,ε = ∞ for any ε ∈ (0, 1). �

We next prepare an argument concerned with the time derivative of the product u
p+1
2

ε vε, as appearing
in (3.26), by documenting the following consequence of (3.22) and (3.23) when applied in the course
of an analysis of

∫

Ω u
q
ε for q ∈ (0, 1).
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Lemma 4.2 Let p > 2, and assume that (1.9), (1.10) and (1.11) hold with some K > 0 and with
δ(p,K) as in Lemma 3.8. Then for all q ∈ (0, 1) and any T > 0 there exists C(q, T ) > 0 such that

∫ T

0

∫

Ω
uq−1
ε vε|∇uε|2 ≤ C(q, T ) for all ε ∈ (0, 1). (4.4)

Proof. We again integrate by parts in the first equation from (2.1) and use Young’s inequality
together with (3.23) and (2.4) to find that

−1

q

d

dt

∫

Ω
uqε + (1− q)

∫

Ω
uq−1
ε vε|∇uε|2

= (1− q)

∫

Ω
uqεvε∇uε · ∇vε − ℓ

∫

Ω
uqεvε

≤ 1− q

2

∫

Ω
uq−1
ε vε|∇uε|2 +

1− q

2

∫

Ω
uq+1
ε vε|∇vε|2

≤ 1− q

2

∫

Ω
uq−1
ε vε|∇uε|2 +

1− q

2
‖v0‖L∞(Ω)

∫

Ω
uq+1
ε

≤ 1− q

2

∫

Ω
uq−1
ε vε|∇uε|2 + c1(q) for all t > 0, (4.5)

where c1(q) :=
1−q
2 ‖v0‖L∞(Ω) · supε∈(0,1) supt>0

∫

Ω u
q+1
ε (·, t) is finite due to Lemma 3.8 and the fact

that q + 1 < 2 < p. As the same source also provides c2(q) > 0 such that 1
q

∫

Ω u
q
ε(·, t) ≤ c2(q) for all

t > 0 and each ε ∈ (0, 1), an integration of (4.5) shows that

1− q

2

∫ T

0

∫

Ω
uq−1
ε vε|∇uε|2 ≤ c1(q)T + c2(q) for all ε ∈ (0, 1),

and hence yields (4.4). �

By suitable interpolation with the information already observed in Lemma 3.8, the latter indeed entails

the following time regularity feature of u
p+1
2

ε vε.

Lemma 4.3 Let p > 2, and suppose that (1.9), (1.10) and (1.11) are satisfied with some K > 0 and
with δ(p,K) as given by Lemma 3.8. Then for all T > 0 there exists C(T ) > 0 such that

∫ T

0

∥

∥

∥
∂t
(

u
p+1
2

ε (·, t)vε(·, t)
)

∥

∥

∥

(W 3,2(Ω))⋆
dt ≤ C(T ) for all ε ∈ (0, 1). (4.6)

Proof. Drawing on the continuity of the embedding W 3,2(Ω) →֒W 1,∞(Ω), we fix c1 > 0 such that
‖ψ‖L∞(Ω) + ‖∇ψ‖L∞(Ω) ≤ c1 for all ψ ∈ C3(Ω) fulfilling ‖ψ‖W 3,2(Ω) ≤ 1. Fixing any such ψ and an

19



arbitrary t > 0, for ε ∈ (0, 1) we then use (2.1) to compute

∫

Ω
∂t
(

u
p+1
2

ε vε
)

· ψ =
p+ 1

2

∫

Ω
u

p−1
2

ε vεψ ·
{

∇ · (uεvε∇uε)−∇ · (u2εvε∇vε) + ℓuεvε

}

+

∫

Ω
u

p+1
2

ε ψ ·
{

∆vε − uεvε
}

= −p+ 1

2

∫

Ω
∇
(

u
p−1
2

ε vεψ
)

·
{

uεvε∇uε − u2εvε∇vε
}

+
(p+ 1)ℓ

2

∫

Ω
u

p+1
2

ε v2εψ

−
∫

Ω
∇
(

u
p+1
2

ε ψ
)

· ∇vε −
∫

Ω
u

p+3
2

ε vεψ

= −p+ 1

2

6
∑

i=1

Ii(ε) +

10
∑

i=7

Ii(ε), (4.7)

where

I1(ε) :=
p− 1

2

∫

Ω
u

p−1
2

ε v2ε |∇uε|2ψ, I2(ε) :=

∫

Ω
u

p+1
2

ε vε(∇uε · ∇vε)ψ and

I3(ε) :=

∫

Ω
u

p+1
2

ε v2ε∇uε · ∇ψ,

where

I4(ε) := −p− 1

2

∫

Ω
u

p+1
2

ε v2ε(∇uε · ∇vε)ψ, I5(ε) := −
∫

Ω
u

p+3
2

ε vε|∇vε|2ψ and

I6(ε) := −
∫

Ω
u

p+3
2

ε v2ε∇vε · ∇ψ,

and where

I7(ε) := −p+ 1

2

∫

Ω
u

p−1
2

ε (∇uε · ∇vε)ψ and I8(ε) := −
∫

Ω
u

p−1
2

ε ∇vε · ∇ψ

as well as

I9(ε) :=
(p+ 1)ℓ

2

∫

Ω
u

p+1
2

ε v2εψ and I10(ε) := −
∫

Ω
u

p+3
2

ε vεψ.

In order to estimate I1(ε) appropriately, we pick any q ∈ (0, 1) and observe that then q − 1 ≤ p−1
2 ≤

p − 1, so that an interpolation based on Young’s inequality shows that thanks to (2.4) and the fact
that ε < 1, writing c2 := ‖v0‖L∞(Ω) we have

|I1(ε)| ≤ (p− 1)c1
2

∫

Ω
(up−1

ε + uq−1
ε )v2ε |∇uε|2

≤ (p− 1)c1c2
2

∫

Ω
up−1
ε vε|∇uε|2 +

(p− 1)c1c2
2

∫

Ω
uq−1
ε vε|∇uε|2. (4.8)
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Next, several further applications of Young’s inequality, again combined with the restriction ε < 1,
reveal that

|I7(ε)| ≤ (p+ 1)c1

∫

Ω
up−1
ε vε|∇uε|2 +

(p+ 1)c1
8

∫

Ω

|∇vε|2
vε

, (4.9)

that since |∇vε| ≤ 1 by (3.23), and since p+ 1 ≥ max
{

1 , p+3
2 , p+1

2

}

, we have

|I2(ε)| ≤ c1

∫

Ω
up−1
ε vε|∇uε|2 +

c1

4

∫

Ω
u2εvε

≤ c1

∫

Ω
up−1
ε vε|∇uε|2 +

c1

4

∫

Ω
up+1
ε vε +

c1c2|Ω|
4

(4.10)

and that

|I3(ε)|+ |I4(ε)| ≤ (p+ 1)c1
2

∫

Ω
up−1
ε vε|∇uε|2 +

(p+ 1)c1
8

∫

Ω
u2εv

3
ε

≤ (p+ 1)c1
2

∫

Ω
up−1
ε vε|∇uε|2 +

(p+ 1)c1c
2
2

8

∫

Ω
up+1
ε vε +

(p+ 1)c1c
3
2|Ω|

8
(4.11)

as well as

|I5(ε)|+ |I6(ε)|+ |I9(ε)|+ |I10(ε)|

≤ c1

∫

Ω
u

p+3
2

ε vε + c1

∫

Ω
u

p+3
2

ε v2ε +
(p+ 1)ℓc1

2

∫

Ω
u

p+1
2

ε v2ε + c1

∫

Ω
u

p+3
2

ε vε

≤
(

c1 + c1c2 +
(p+ 1)ℓc1c2

2
+ c1

)

∫

Ω
up+1
ε vε +

(

c1c2 + c1c
2
2 +

(p+ 1)ℓc1c
2
2

2
+ c1c2

)

· |Ω|.(4.12)

As, similarly,

|I8(ε)| ≤ c1

∫

Ω

|∇vε|2
vε

+
c1

4

∫

Ω
up−1
ε vε

≤ c1

∫

Ω

|∇vε|2
vε

+
c1

4

∫

Ω
up+1
ε vε +

c1c2|Ω|
4

,

we may collect (4.8)-(4.12) to infer from (4.7) that there exists c3 > 0 fulfilling

∥

∥

∥
∂t
(

u
p+1
2

ε vε
)

∥

∥

∥

(W 3,2(Ω))⋆
≤ c3 ·

{
∫

Ω
up−1
ε vε|∇uε|2 +

∫

Ω
uq−1
ε vε|∇uε|2

+

∫

Ω

|∇vε|2
vε

+

∫

Ω
up+1
ε vε + 1

}

for all t > 0 and ε ∈ (0, 1).

In view of (3.24), (4.4), (3.22) and (3.25), a time integration therefore readily leads to (4.6). �

Now the intention to turn compactness features of
(

u
p+1
2

ε vε
)

ε∈(0,1) into knowledge on uε seems promis-

ing only when accomanied by appropriate information on positivity of the weight functions vε appear-
ing therein. Unlike all previous arguments in this manuscript, the following observation in this regard
relies on our overall positivity assumption on v0 in an indispensable manner.
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Lemma 4.4 Let p > 2 and u0 ∈W 1,∞(Ω) be a nonnegative function fulfilling (1.10) for some K > 0,
and assume that v0 ∈ W 1,∞(Ω) is positive in Ω and satisfies (1.11) with δ(p,K) as in Lemma 3.8.
Then for all T > 0 there exists C(T ) > 0 such that

∫

Ω
ln

‖v0‖L∞(Ω)

vε(·, t)
≤ C(T ) for all t ∈ (0, T ) and ε ∈ (0, 1). (4.13)

Proof. According to the second equation in (2.1) and Young’s inequality,

d

dt

∫

Ω
ln

‖v0‖L∞(Ω)

vε
= − d

dt

∫

Ω
ln vε = −

∫

Ω

|∇vε|2
v2ε

+

∫

Ω
uε ≤

∫

Ω
upε + |Ω| for all t > 0 and ε ∈ (0, 1),

which upon an integration in time already yields (4.13), because ln
‖v0‖L∞(Ω)

v0
belongs to L1(Ω) by

positivity of v0 in Ω. �

5 The limit ε ց 0. Proof of Theorem 1.2

After the above preparations, the extraction of a subsequence converging to a global weak solution of
(1.4) now becomes rather straightforward:

Lemma 5.1 Assume that p > 2, that K > 0 and that u0 and v0 are such that (1.9), (1.10) and (1.11)
hold with δ(p,K) as in Lemma 3.8. Then there exist (εj)j∈N ⊂ (0, 1) and functions

{

u ∈ L∞((0,∞);Lp(Ω)) and

v ∈ L∞((0,∞);W 1,∞(Ω))
(5.1)

such that εj ց 0 as j → ∞, that u ≥ 0 and v > 0 a.e. in Ω× (0,∞), that

uε → u a.e. in Ω× (0,∞) and in Lq
loc(Ω× [0,∞)) for all q ∈ [1, p), (5.2)

vε → v a.e. in Ω× (0,∞) and in Lq
loc(Ω× [0,∞)) for all q ∈ [1,∞) and (5.3)

∇vε ⋆
⇀ ∇v in L∞(Ω× (0,∞)) (5.4)

as ε = εj ց 0, and that (u, v) forms a global weak solution of (1.4) in the sense of Definition 1.1.

Proof. From (2.4) and (3.23) we know that

(vε)ε∈(0,1) is bounded in L∞((0,∞);W 1,∞(Ω)),

while in view of the boundedness of (uεvε)ε∈(0,1) in L
2
loc(Ω× (0, T )) for all T > 0, as implied by (3.22)

and (2.4) due to the inequality p ≥ 2, it can readily be verified that

(vεt)ε∈(0,1)) is bounded in L2
(

(0, T ); (W 1,2(Ω))⋆
)

for all T > 0.

Apart from that, a combination of (3.26) with (3.25) shows that

(

u
p+1
2

ε vε
)

ε∈(0,1) is bounded in L2((0, T );W 1.1(Ω)) for all T > 0,
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while Lemma 4.3 asserts that

(

∂t
(

u
p+1
2

ε vε
)

)

ε∈(0,1)
is bounded in L1

(

(0, T ); (W 3,2(Ω))⋆
)

for all T > 0.

Two applications of an Aubin-Lions type lemma ([24]) therefore enable us to pick (εj)j∈N ⊂ (0, 1)
such that εj ց 0 as j → ∞, and such that with two nonnegative functions z ∈ L1

loc(Ω × [0,∞)) and
v ∈ L∞((0,∞);W 1,∞(Ω)) we have (5.3) and (5.4) as well as

u
p+1
2

ε vε → z a.e. in Ω× (0,∞) and in L1
loc(Ω× [0,∞)) (5.5)

as ε = εj ց 0. Since v ≤ ‖v0‖L∞(Ω) by (2.4) and (5.3), and since thus Lemma 4.4 together with

Fatou’s lemma guarantees that ln v belongs to L1
loc(Ω × [0,∞)), and that hence, in particular, v is

actually positive a.e. in Ω × (0,∞), letting u :=
(

z
v

)
2

p+1 we obtain an a.e. in Ω × (0,∞) well-defined

nonnegative function u for which we have uε =
(

zε
vε

)
2

p+1 → u a.e. in Ω×(0,∞) as ε = εj ց 0 according
to (5.5) and (5.3). Since (3.22) asserts that (uε)ε∈(0,1) is bounded in L∞((0,∞);Lp(Ω)), this limit
must as well belong to this space, and must moreover satisfy (5.2) as a consequence of the Vitali
convergence theorem.

Now given ϕ ∈ C∞
0 (Ω× [0,∞)) such that ∂ϕ

∂ν
= 0 on ∂Ω× (0,∞), from (2.1) we obtain that

−
∫ ∞

0

∫

Ω
uεϕt −

∫

Ω
u0ϕ(·, 0) =

1

2

∫ ∞

0

∫

Ω
u2ε∇vε · ∇ϕ

+
1

2

∫ ∞

0

∫

Ω
u2εvε∆ϕ+

∫ ∞

0

∫

Ω
u2εvε∇vε · ∇ϕ

+ℓ

∫ ∞

0

∫

Ω
uεvεϕ for all ε ∈ (0, 1),

where we may use that by (5.2) and (5.3), as ε = εj ց 0 we have

uε → u, u2ε → u2 u2εvε → u2v and uεvε → uv in L1
loc(Ω× [0,∞)),

to infer (1.7) upon taking ε = εj ց 0 and utilizing (5.4). Since (1.8) can similarly be derived for any
ϕ ∈ C∞

0 (Ω × [0,∞)), and since the regularity requirements in Definition 1.1 are clearly implied by
(5.1), it thus follows that indeed (u, v) solves (1.4) in the claimed sense. �

Our main result has thereby been achieved already:

Proof of Theorem 1.2. We only need to employ Lemma 5.1 and combine (2.4) and (3.23) with
(1.11). �
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[4] Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller-Segel
system and applications to volume filling models. J. Differ. Eq. 258 (6), 2080-2113 (2015)

[5] Fan, L., Jin, H.: Global existence and asymptotic behavior to a chemotaxis system with con-
sumption of chemoattractant in higher dimensions. J. Math. Phys. 58, 011503 (2017)

[6] Fujikawa, H.: Periodic growth of Bacillus subtilis colonies on agar plates. Physica A 189, 15-21
(1992)

[7] Fujikawa, H., Matsushita, M.: Fractal growth of Bacillus subtilis on agar plates.
J. Phys. Soc. Japan 47, 2764-2767 (1989)

[8] Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-
parabolic type on non-convex bounded domains. J. Differential Eq. 256, 2993-3010 (2014)

[9] Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller-Segel
systems of parabolic-parabolic type with small data. J. Differential Eq. 252, 2469-2491 (2012)

[10] Kawasaki, K., Mochizuki, A., Matsushita, M., Umeda, T., Shigesada, N.: Modeling
Spatio-Temporal Patterns Generated by Bacillus subtilis J. Theor. Biol. 188, 177-185 (1997)

[11] Ladyzenskaja, O. A., Solonnikov, V. A., Ural’ceva, N. N.: Linear and Quasi-Linear
Equations of Parabolic Type. Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968

[12] Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular
sensitivity and nonlinear diffusion. J. Differential Eq. 262, 4052-4084 (2017)

[13] Lankeit, J., Winkler, M.: Facing low regularity in chemotaxis systems. Jahres-
ber. Deutsch. Math. Ver. 2019, https://doi.org/10.1365/ s13291-019-00210-z (2019)
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