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Abstract— We consider tracking control for a class of non-
linear functional differential-algebraic systems. Funnel control,
that is a static nonlinear proportional output error feedback, is
applied to achieve tracking of a reference signal by the output
signal with prescribed transient behavior.

Index Terms— Differential-algebraic equations, nonlinear
systems, functional differential equations, funnel control.

I. INTRODUCTION

Differential-algebraic equations (DAEs) are an appropriate
tool to model systems coming from applications such as
multibody dynamics [1] and electrical networks [2]. The dy-
namics and constraints of the system are modeled as a set of
differential and algebraic equations. If the internal dynamics
of the system are autonomous and the input does affect at
most the first derivative of the output (roughly speaking, the
largest relative degree part is one), then the DAE model may
be written in the form

Γ
(
y(t)

)
ẏ(t) = f1

(
y(t)

)
+ f2

(
d1(t), x(t)

)
+f3

(
d2(t), x(t)

)
u(t),

ẋ(t) = f4
(
x(t), y(t), d3(t)

)
.

(1.1)

The functions u : R → Rm and y : R → Rm are
called input and output of the system, resp., and d1, d2, and
d3 are bounded disturbances. The second equation in (1.1)
represents the internal dynamics, governed by the state x :
R→ Rq . It is possible, that there are also algebraic variables
in the system which depend on x and y and their derivatives,
but these do not affect the input-output behavior of the
system and hence we omit them in the model (1.1). The
differentiable functions f1, f2 and f4 are vector valued, f3
is scalar valued (for simplicity, cf. Remark 4.2) and Γ is
matrix valued; for more details see Section II.

If the internal dynamics of (1.1) are input-to-state stable
(ISS) [3], then system (1.1) can be rewritten, by the choice
of an appropriate operator T (which depends on f4, d3
and the initial value x(0)) explained in [4, Sect. 2.3], as a
nonlinear functional differential-algebraic multi-input, multi-
output systems of the form

Γ
(
y(t)

)
ẏ(t) = f1

(
y(t)

)
+ f2

(
d1(t), (Ty)(t)

)
+f3

(
d2(t), (Ty)(t)

)
u(t).

(1.2)
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In the present paper we consider DAE systems (1.2) which
may arise from different models or applications, i.e., T is not
necessarily a solution operator as in the motivation above but
some causal operator with a bounded input, bounded output
property, see Section II for details. This allows for (1.2)
to encompass various nonlinear and infinite-dimensional
effects, including delays and hysteresis phenomena.

We consider tracking control for systems (1.2). It is the
aim of the present paper to prove that the application of the
funnel controller

u(t) = −k(t) e(t), where e(t) = y(t)− yref(t),

k(t) =
k̂

1− ϕ(t)2‖e(t)‖2
.

(1.3)

to the system (1.2) achieves tracking of the reference sig-
nal yref by the output signal y within the pre-specified
performance funnel

Fϕ := { (t, e) ∈ R≥0 × Rm | ϕ(t)‖e‖ < 1 } , (1.4)

where ϕ is a nonnegative bounded function with ϕ(0) = 0
and otherwise ϕ is bounded away from 0, see Section IV.
Note that no exact tracking is pursued, but a tracking error
evolving in Fϕ. In contrast to approximate tracking, funnel
control achieves arbitrarily given transient behavior and the
funnel boundary is not necessarily monotonically decreasing
or even constant.

The concept of funnel control as a simple strategy for
trajectory tracking has been developed in [5] for ODEs, see
also the survey [6] and the references therein. Funnel control
for linear DAE systems has been investigated in the recent
papers [7], [8], [9], [10]. In the present paper we study
funnel control for nonlinear DAE systems. This generalizes
the results for nonlinear ODE systems obtained in [5], [11]
and the results for linear DAE systems obtained in [9]. The
essential difficulty, compared to our earlier work, was to
derive appropriate assumptions on the nonlinear functions
in (1.2), to treat the index of the closed-loop system together
with the assumption on the minimal gain, and to derive the
set of consistent initial values explicitly.

Due to space limitations, the following issues are not
addressed in the present paper, but similar results can be
expected for DAEs: Robustness of funnel control (see [12]
for ODEs) and funnel control in conjunction with a high-
pass filter or a PI-controller as pre-compensator (see [13]
for ODEs).

The paper is organized as follows: We introduce the
class of systems (1.2) considered in the present paper and,
in particular, the class of operators T allowed in (1.2) in
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Section II. Two preliminary results for the proof of our
main result - Theorem 4.1 - are provided in Section III. In
Section IV the concept of funnel control is introduced and
it is proved that the funnel controller achieves tracking with
prescribed transient behavior. This result is illustrated by an
academic example in Section V.

II. SYSTEM CLASS

We study nonlinear functional DAEs (1.2), where T is a
causal operator and d1, d2 are extraneous disturbances. We
extend a class of operators which has been introduced in [11].

Definition 2.1 (Operator class Tm,q): For t ≥ 0, w ∈
C([0, t];Rm), τ > t and δ > 0, define the following set
of extensions of w:

C(w; t, τ, δ)

:=

{
v ∈ C([0, τ ];Rm)

∣∣∣∣ v|[0,t] = w ∧ ∀ s ∈ [t, τ ] :

‖v(s)− w(t)‖ ≤ δ

}
.

An operator T : C(R≥0;Rm) → C1(R≥0;Rq) is said to be
of class Tm,q if, and only if,

(i) T is a causal operator,
(ii) ∀ t ≥ 0 ∀w ∈ C([0, t];Rm) ∃ τ > t ∃ δ > 0
∃ c0 > 0 ∀u, v ∈ C(w; t, τ, δ) :

max
s∈[t,τ ]

‖(Tu)(s)−(Tv)(s)‖ ≤ c0 max
s∈[t,τ ]

‖u(s)−v(s)‖,

(iii) ∀ c1 > 0 ∃ c2 > 0 ∀ v ∈ C(R≥0;Rm) :

sup
s∈R≥0

‖v(s)‖ ≤ c1 =⇒ sup
t∈R≥0

‖(Tv)(t)‖ ≤ c2,

(iv) ∃h∈ C(Rm×Rq;Rq) ∃ T̃ : C(R≥0;Rm)→C(R≥0;Rq)
with Properties (i)–(iii) ∀ v ∈ C(R≥0;Rm) ∀ t ≥ 0 :

d
dt (Tv)(t) = h

(
v(t), (T̃ v)(t)

)
.

By allowing operators T ∈ Tm,q in (1.2), these systems
encompass infinite-dimensionality (e.g. delays, both point
and distributed) and hysteretic effects (e.g. backlash, Prandtl
and Preisach hysteresis), see also [11] for more details.
Property (i) in Definition 2.1 is clearly indispensible and
Property (ii) is a technical assumption of local Lipschitz
type which is required for well-posedness of the closed-loop
system. Property (iii) of the operators in Tm,q is a bounded-
input, bounded-output assumption and is the counterpart to
the assumption of asymptotically stable zero dynamics used
for linear systems e.g. in [6], [14].

Compared to [11], we have added Property (iv) which
is needed for the case where equation (1.2) has parts with
relative degree smaller or equal to zero - a differentiation of
these parts is required for the solvability of the closed-loop
system (1.2), (1.3). Assumption (iv) is not very restrictive
since usually T is an integral operator or a solution operator
of a differential equation.

Remark 2.2: Linear ODE minimum-phase systems with
positive definite high-frequency gain matrix can be written
in the form

ẏ(t) = p(t) + (Ty)(t) +Bu(t), (2.1)

where p ∈ C1(R≥0;Rm), B ∈ Rm×m satisfies B = B> > 0
and

(Ty)(t) := A1y(t) +A2

∫ t

0

eA4(t−s)A3y(s) ds , (2.2)

where A1 ∈ Rm×m, A2 ∈ Rm×p, A3 ∈ Rp×m, A4 ∈ Rp×p,
defines an operator T which satisfies properties (i) and (ii) in
Definition 2.1. Property (iii) is satisfied if A4 has spectrum
in the open left complex half plane. For property (iv) to hold,
the equality

d
dt (Ty)(t) = A1ẏ(t) +A2A3y(t)

+A2A4

∫ t

0

eA4(t−s)A3y(s) ds = h
(
y(t), (T̃ y)(t)

)
needs to be satisfied for some h∈ C(Rm×Rq;Rq) and T̃ :
C(R≥0;Rm)→C(R≥0;Rq) with properties (i)–(iii) and for
all y ∈ C(R≥0;Rm) and all t ≥ 0. Hence, property (iv) holds
if, and only if, A1 = 0. Therefore, the term A1y(t) in the
definition of T has to be delegated into the function f1 in
the formulation (1.2). Then T belongs to Tm,m.

The above observation for linear ODE systems implies
that the initial points of Ty are uniquely determined by y(0).
In the general case, by causality of T ∈ Tm,q there exists
j : Rm → Rq such that

∀ v ∈ C(R≥0;Rm) : (Tv)(0) = j
(
v(0)

)
. (2.3)

Definition 2.3 (System class Σm,p,q,r): The functional
differential-algebraic equation (1.2) is said to
define a system of class Σm,p,q,r, and we write
(Γ, f1, f2, f3, T, d1, d2) ∈ Σm,p,q,r, if, and only if,

(i) ∃R ∈ Rm×r ∃G ∈ C(Rm;Rr×r) ∀ y ∈ Rm :
G(y) > 0 ∧ Γ(y) = RG(y)R>,

(ii) f1 ∈ C1(Rm;Rm) and, for any basis matrix K of
kerR>, it holds that K>f ′1K is bounded,

(iii) f2 ∈ C1(Rp × Rq;Rm),
(iv) f3 ∈ C1(Rp × Rq;R) ∧ ∃α > 0 ∀ (d, v) ∈ Rp × Rq :

f3(d, v) ≥ α,
(v) T ∈ Tm,q ,

(vi) d1, d2 ∈ C1(R≥0;Rp) are bounded.
Linear ODE systems of the form (2.1) belong to

Σm,m,m,m with Γ = B−1. Furthermore, the system class
Σm,p,q,r encompasses even singular DAE systems (descrip-
tor systems). In (ii), the assumption on the derivative of
f1 is essential for the solvability of the closed-loop sys-
tem (1.2), (1.3). More precise, we will require that k̂ in (1.3)
is larger than the infimum norm of K>f ′1K multiplied
with ‖(K>K)−1‖ and divided by α from (iv) in order
to guarantee invertibility of αk̂I − ‖(K>K)−1‖K>f ′1K.
The latter is crucial for the explicit solution of the hidden
algebraic constraint on the output error in the closed-loop
system (1.2), (1.3), i.e., it guarantees that this system is
index-1, cf. [15], [16].

III. PRELIMINARY RESULTS

We show three lemmata which are important for the proof
of our main result.
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Lemma 3.1: Let D ∈ C(Rm;Rl×l) be such that D(y) > 0
for all y ∈ Rm and let K ⊆ Rm be compact. Then

∃β > 0 ∀ y ∈ K : minσ
(
D(y) +D(y)>

)
≥ β.

Proof: Since D + D> is pointwise symmetric and
positive definite, there exists a pointwise eigenvalue decom-
position of the form

D(y) +D(y)> = V (y)J(y)V (y)>,

J(y) = diag (λ1(y), . . . , λl(y)),

where V (y) is orthogonal and λi(y) > 0 for all i = 1, . . . , l
and all y ∈ Rm. Seeking a contradiction, we assume that

∀β > 0 ∃ y ∈ K ∃ i ∈ {1, . . . , l} : λi(y) < β.

Let β > 0 be arbitrary and choose y ∈ K and i ∈ {1, . . . , l}
such that λi(y) < β. Define x(y) := V (y)ei and observe
that(

D(y) +D(y)>
)
x(y) = V (y)J(y)ei

= λi(y)V (y)ei = λi(y)x(y).

This implies that

x(y)>
(
D(y) +D(y)>

)
x(y) = λi(y) < β,

and, since x(y) ∈ S1m = { x ∈ Rm | ‖x‖ = 1 }, we have

∀β > 0 ∃ y ∈ K ∃ x ∈ S1m : x>
(
D(y) +D(y)>

)
x < β.

We may hence choose sequences (yn) ∈ KN and (xn) ∈
(S1m)N such that

lim
n→∞

x>n
(
D(yn) +D(yn)>

)
xn = 0.

However, this contradicts the fact that the continuous map

Rl × Rm 3 (x, y) 7→ x>
(
D(y) +D(y)>

)
x

has a positive minimum on the compact set S1m ×K.
Lemma 3.2: Let D ∈ Rl×l be positive definite. Then

∀ z ∈ Rl : z>D−1z ≥ σmin(D +D>)

2σmax(DD>)
‖z‖2,

where σmin(D + D>) denotes the smallest eigenvalue of
D+D> and σmax(DD>) denotes the largest eigenvalue of
DD>, which are both real and positive.

Proof:

z>D−1z =
1

2
z>D−>(D +D>)D−1z

≥ 1

2
σmin(D +D>)‖D−1z‖2

=
1

2
σmin(D +D>)z>(DD>)−1z

≥ σmin(D +D>)

2σmax(DD>)
‖z‖2.

Lemma 3.3: Let K ∈ Rm×r with rkK = r and M ∈
Rm×m such that M = M> ≥ 0. Then∥∥(K>K +K>MK)−1

∥∥ ≤ ∥∥(K>K)−1
∥∥ .

Proof: It follows from [17, Prop. 8.6.6] that

0 < (K>K +K>MK)−1 ≤ (K>K)−1,

and this implies the assertion of the lemma.

IV. FUNNEL CONTROL

In this section we prove the main result of the paper:
the funnel controller (1.3) achieves tracking of a reference
trajectory by the output signal with prescribed transient
behavior. Let

B1(R≥0;Rm) :=
{
η ∈ C1(R≥0;Rm) | η, η̇ are bounded

}
and associate, for any function ϕ belonging to

Φ:=

{
ϕ ∈ B1(R≥0;R)

∣∣∣∣ ϕ(0) = 0, ϕ(s) > 0 for all s > 0
and lim infs→∞ ϕ(s) > 0

}
the performance funnel Fϕ, see (1.4) and Figure 1.

t

1
ϕ(t)

‖e(t)‖

Fig. 1: Error evolution in a funnel Fϕ with boundary 1/ϕ(t)
for t > 0 and a pole at t = 0.

The control objective is feedback control so that the
tracking error e = y − yref , where yref is the reference
signal, evolves within Fϕ and all variables are bounded.
More specific, the transient behavior is supposed to satisfy

∀ t > 0 : ‖e(t)‖ < 1/ϕ(t).

The bounded-input, bounded-output property of the op-
erator T ∈ Tm,q can be exploited for an inherent high-
gain property of the system (1.2) and hence to maintain
error evolution within the funnel: by the design of the
controller (1.3), the gain k(t) increases if the norm of the
error ‖e(t)‖ approaches the funnel boundary 1/ϕ(t). The
control design (1.3) has two advantages: k is non-monotone
and (1.3) is a simple static time-varying proportional output
feedback.

Theorem 4.1 (Funnel control): Let the system
(Γ, f1, f2, f3, T, d1, d2) ∈ Σm,p,q,r be given, let ϕ ∈ Φ
define a performance funnel Fϕ, and use the notation from
Definition 2.3. Furthermore, let yref ∈ B1(R≥0;Rm) be any
reference trajectory, K be a basis matrix of kerR>, and
assume that the initial gain satisfies

k̂ > α−1‖(K>K)−1‖ sup
y∈Rm

‖K>f ′1(y)K‖. (4.1)
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Then, using the function j from (2.3), for any initial value

y0∈

w ∈ Rm
∣∣∣∣∣∣ K
>
(
f1(w) + f2

(
d1(0), j(w)

)
−k̂ f3

(
d2(0), j(w)

)(
w − yref(0)

))
= 0

 ,
the application of the funnel controller (1.3) to (1.2), y(0) =
y0, yields a closed-loop initial-value problem that has a
solution and every solution can be extended to a global
solution. Furthermore, for every global solution y,

(i) the corresponding tracking error e = y − yref evolves
uniformly within the performance funnel Fϕ; more
precisely,

∃ ε > 0 ∀ t > 0 : ‖e(t)‖ ≤ ϕ(t)−1 − ε . (4.2)

(ii) the corresponding gain function k given by (1.3) is
bounded:

∀ t0 > 0 : sup
t≥t0
|k(t)| ≤ k̂

1− (1− ελt0)2
,

where λt0 := inft≥t0 ϕ(t) > 0 for all t0 > 0.

Proof: We proceed in several steps.

Step 1: We show existence of a local solution of the closed-
loop system (1.2), (1.3). Set

D̃ :=
{

(t, e, k) ∈ R≥0 × Rm+1
∣∣ ϕ(t)‖e‖ < 1

}
.

The closed-loop system (1.2), (1.3) may be written in the
form

Γ
(
y(t)

)
ė(t) = f1

(
y(t)

)
− k(t)f3

(
d2(t), (Ty)(t)

)
e(t)

+f2
(
d1(t), (Ty)(t)

)
− Γ

(
y(t)

)
ẏref(t),

k(t) = k̂ (1− ϕ(t)2‖e(t)‖2)−1,
(4.3)

where y = e + yref . If Γ
(
y0 − yref(0))

)
were invertible,

then the solution theory of functional differential equations
(see [11, Thm. B.1]) would guarantee the existence of a local
solution with (t, e(t), k(t)) ∈ D̃ and (t, e(t)) ∈ Fϕ at initial
data (

e
k

)
(0) =

(
y0 − yref(0)

k̂

)
. (4.4)

In the present case, we need to decompose equation (4.3)
into an ODE part and an algebraic constraint. By differenti-
ating the algebraic constraint we may obtain an ODE in all
system variables, the solution of which satisfies the algebraic
constraint. In this sense, equation (4.3) is an index-1 DAE,
cf. [15], [16].

Step 2: We will now rewrite (4.3) as an explicit functional
differential equation. Observe that, by the singular value
decomposition, there exists an orthogonal matrix U ∈ Rm×m
such that UR = [R̃>, 0]>, where R̃ ∈ Rl×r has full row
rank. This implies that, for all w ∈ Rm,

UΓ(w)U> =
[
D(w) 0

0 0

]
, D(w) = R̃G(w)R̃> > 0.

We introduce new variables e1 := [Il, 0]Ue and e2 :=
[0, Im−l]Ue. Then (4.3) may be written, by the use of

‖e(t)‖2 = ‖Ue(t)‖2 = ‖e1(t)‖2 + ‖e2(t)‖2, as the system

ė1(t) = [D
(
y(t)

)−1
, 0]U

(
f1
(
y(t)

)
+ f2

(
d1(t), (Ty)(t)

))
−k(t)f3

(
d2(t), (Ty)(t)

)
D
(
y(t)

)−1
e1(t)

−[Il, 0]U ẏref(t),

0 = [0, Im−l]U
(
f1
(
y(t)

)
+ f2

(
d1(t), (Ty)(t)

))
−k(t)f3

(
d2(t), (Ty)(t)

)
e2(t),

k(t) = k̂
(
1− ϕ(t)2(‖e1(t)‖2 + ‖e2(t)‖2)

)−1
.

(4.5)
Note that, since D is continuous, the map w 7→ D(w)−1

is continuous as well. Now, differentiation of the second
equation in (4.5), and using

F21(w) := [0, Im−l]Uf
′
1(w)U>[Il, 0]>,

F22(w) := [0, Im−l]Uf
′
1(w)U>[0, Im−l]

>, w ∈ Rm,

yields

0 = F21

(
y(t)

)
ė1(t) + F22

(
y(t)

)
ė2(t)

+ [0, Im−l]Uf
′
2

(
d1(t), (Ty)(t)

)( ḋ1(t)

h
(
y(t), (T̃ y)(t)

))
− k(t)e2(t)f ′3

(
d2(t), (Ty)(t)

)( ḋ2(t)

h
(
y(t), (T̃ y)(t)

))
− f3

(
d2(t), (Ty)(t)

)(
k̇(t)e2(t) + k(t)ė2(t)

)
. (4.6)

Observe that the derivative of k is given by

k̇(t) = 2k(t)
(
1− ϕ(t)2(‖e1(t)‖2 + ‖e2(t)‖2)

)−1
×
(
ϕ(t)ϕ̇(t)(‖e1(t)‖2 + ‖e2(t)‖2)

+ ϕ(t)2(e1(t)>ė1(t) + e2(t)>ė2(t))
)
. (4.7)

Introduce the set

D :=
{

(t, k, e1, e2) ∈ R≥0 × [k̂,∞)× Rl × Rm−l
∣∣∣

ϕ(t)2(‖e1‖2 + ‖e2‖2) < 1
}

and define

ξ : R≥0 × Rl × Rm−l → Rm,

(t, e1, e2) 7→ U>
(
e1
e2

)
+ yref(t),

Θ1 : C(R≥0;Rl)× C(R≥0;Rl) → C1(R≥0;Rq),
(e1, e2) 7→ T (ξ(·, e1(·), e2(·))),

Θ2 : C(R≥0;Rl)× C(R≥0;Rl) → C1(R≥0;Rq),
(e1, e2) 7→ T̃ (ξ(·, e1(·), e2(·))),

g1 : D × Rq → Rl, (t, k, e1, e2, η) 7→

[D
(
ξ(t, e1, e2)

)−1
, 0]U

(
f1
(
ξ(t, e1, e2)

)
+ f2

(
d1(t), η

))
− kf3

(
d2(t), η

)
D
(
ξ(t, e1, e2)

)−1
e1(t)− [Il, 0]Uẏref(t).

Now, the first equation in (4.5) can be written as

ė1(t) = g1
(
t, k(t), e1(t), e2(t),Θ(e1, e2)(t)

)
.
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Further define

M : D × Rq → Glm−l(R), (t, k, e1, e2, η) 7→

F22

(
ξ(t, e1, e2)

)
− k f3

(
d2(t), η

)(
Im−l+

2ϕ(t)2
(
1− ϕ(t)(‖e1‖2 + ‖e2‖2)

)−1
e2e
>
2

)
and

g2 : D × Rl × Rq × Rq → Rm−l,
(t, k, e1, e2, ẽ1, η1, η2) 7→ F21

(
ξ(t, e1, e2)

)
ẽ1

+ [0, Im−l]Uf
′
2

(
d1(t), η1

)( ḋ1(t)
h
(
ξ(t, e1, e2), η2

))
− k e2 f ′3

(
d2(t), η1

)( ḋ2(t)
h
(
ξ(t, e1, e2), η2

))
− 2k f3

(
d2(t), η1

) (
1− ϕ(t)2(‖e1‖2 + ‖e2‖2)

)−1
×
(
ϕ(t)ϕ̇(t)(‖e1‖2 + ‖e2‖2) + ϕ(t)2e>1 ẽ1

)
e2.

If M is well defined, then inserting k̇ from (4.7) into (4.6)
and rearranging according to ė2 gives

M
(
t, k(t), e1(t), e2(t),Θ1(e1, e2)(t)

)
ė2(t) =

g2
(
t, k(t), e1(t), e2(t), ė1(t),Θ1(e1, e2)(t),Θ2(e1, e2)(t)

)
.

Now we show that M is well defined, i.e., that M is
invertible everywhere on its domain. To this end, let K be the
basis matrix of kerR> as in the statement of the theorem.
Since K̃ := U>[0, Im−l]

> is another basis matrix of kerR>,
there exists T ∈ Glm−l(R) such that K̃ = K T . We may
now write

Im−l = K̃>K̃ = T>K>KT,

ẽ(e1, e2) := U>(e1, e
>
2 )>, e1 ∈ Rl, e2 ∈ Rm−l,

e2 = K̃>ẽ(e1, e2) = T>K>ẽ(e1, e2).

The matrix-valued function

E : D̃ → Rm×m, (t, e, k) 7→ 2ϕ(t)2
(
1− ϕ(t)2‖e‖2

)−1
ee>

is symmetric and positive semi-definite everywhere. Then we
have that

M(t, k, e1, e2, η) = T>K>f ′1
(
ξ(t, e1, e2)

)
KT

− kf3
(
d2(t), η

)
T>
(
K>K +K>E

(
t, ẽ(e1, e2), k

)
K
)
T

and clearly M is invertible everywhere if, and only
if, T−>MT−1 is invertible everywhere. By Lemma 3.3
and (4.1) we obtain, for all (t, k, e1, e2, η) ∈ D × Rq , that

‖k−1f3
(
d2(t), η

)−1(
K>K +K>E(t, ẽ(e1, e2), k)K

)−1
×K>f ′1

(
ξ(t, e1, e2)

)
K‖

≤ k̂−1α−1‖(K>K)−1‖‖K>f ′1
(
ξ(t, e1, e2)

)
K‖ < 1.

This implies that M is invertible everywhere. Now, with

g̃2 : D × Rq × Rq → Rm−l, (t, k, e1, e2, η1, η2) 7→
M(t, k, e1, e2, η1)−1g2

(
t, k, e1, e2, g1(t, k, e1, e2, η1), η1, η2

)
,

and

g3 : D × Rq × Rq → R, (t, k, e1, e2, η1, η2) 7→

2k
(
1− ϕ(t)2(‖e1‖2 + ‖e2‖2)

)−1 (
ϕ(t)ϕ̇(t)(‖e1‖2+‖e2‖2)

+ϕ(t)2
(
e>1 g1(t, k, e1, e2, η1)+e>2 g̃2(t, k, e1, e2, η1, η2)

))
we obtain the system

ė1(t) = g1
(
t, k(t), e1(t), e2(t),Θ1(e1, e2)(t)

)
ė2(t) = g̃2

(
t, k(t), e1(t), e2(t),Θ1(e1, e2)(t),Θ2(e1, e2)(t)

)
k̇(t) = g3

(
t, k(t), e1(t), e2(t),Θ1(e1, e2)(t),Θ2(e1, e2)(t)

)
(4.8)

with initial data

(k, e1, e2)(0) =
(
k̂, U(y0 − yref(0))

)
=: ζ (4.9)

Step 3: We show existence of a maximal local solution
of (4.8), (4.9) which evolves in D and leaves every compact
subset of D. We may write (4.8), (4.9) for appropriate F :
D × R2q → Rm+1 in the form

ż(t) = F
(
t, z(t), (Sz)(t)

)
, z(0) = ζ, (4.10)

where Sz =
(
Θ1(e1, e2)>,Θ2(e1, e2)>

)>
and S :

C(R≥0;Rm+1) → C1(R≥0;R2q) is an operator with the
properties as in [11, Def. 2.1] (note that in [11] only
operators with domain C(R≥0;R) are considered, but the
generalization to domain C(R≥0;Rm+1) is straightforward),
which follows by invoking that yref and ẏref are bounded.

It is clear that g1, g̃2 and g3 are continuous and hence F
is continuous.

Then [11, Thm. B.1] is applicable to the system (4.10)
(note that in [11] a domain D ⊆ R≥0×R is considered, but
the generalization to the higher dimensional case is only a
technicality) and we may conclude that
(a) there exists a solution of (4.10), i.e., a function z ∈
C([0, ρ);Rm+1) for some ρ ∈ (0,∞] such that z is
locally absolutely continuous, z(0) = ζ, (t, z(t)) ∈ D
for all t ∈ [0, ρ) and (4.10) holds for almost all t ∈ [0, ρ),

(b) every solution can be extended to a maximal solution
z ∈ C([0, ω);Rm+1), i.e., z has no proper right extension
that is also a solution,

(c) if z ∈ C([0, ρ);Rm+1) is a maximal solution, then the
closure of graph z is not a compact subset of D.

Property (c) follows since F is locally essentially bounded,
as it is continuous. Let z ∈ C([0, ω);Rm+1) be a maximal
solution of (4.10) and observe that z is continuously differen-
tiable since F is continuous. It is clear that z is a maximal
solution of (4.8), (4.9) which leaves every compact subset
of D.

Step 4: We show that there exists a maximal solution
of (4.3), (4.4) which evolves in D̃ and leaves every compact
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subset of D̃. The solution (e1, e2, k) ∈ C([0, ω);Rm+1)
of (4.8) in particular satisfies (4.6). Integration gives, for all
t ∈ [0, ω),

[0, Im−l]U
(
f1
(
y(t)

)
+ f2

(
d1(t), (Ty)(t)

))
− k(t)f3

(
d2(t), (Ty)(t)

)
e2(t)

− [0, Im−l]U
(
f1
(
y0
)

+ f2
(
d1(0), j(y0)

))
+ k̂f3

(
d2(0), j(y0)

)
[0, Im−l]U

(
y0 − yref(0)

)
= 0,

where y = e + yref and j is from (2.3). Since
ker[0, Im−l]U = kerK it follows from the choice of y0

that (e1, e2, k) satisfies the second equation in (4.5), and
hence all equations in (4.5) are satisfied on [0, ω). This leads
to a maximal solution (e, k) ∈ C1([0, ω);Rn+1) of (4.3)
with graph (e, k) ⊆ D̃. Note that the solution is maximal,
since the existence of a right extension would lead to a right
extension of z, a contradiction. Furthermore, by (c) we have

the closure of graph (e, k) is not a compact subset of D̃.
(4.11)

Step 5: We show that k is bounded. Seeking a contradic-
tion, assume that k(t)→∞ for t→ ω.

Step 5a: We show that e2(t) → 0 for t → ω. Seeking a
contradiction, assume that there exist κ > 0 and a sequence
(tn) ⊆ R≥0 with tn ↗ ω such that ‖e2(tn)‖ ≥ κ for all
n ∈ N. Let H(t) := [0, Im−l]Uf2

(
d1(t), (Ty)(t)

)
, t ≥ 0,

and f̃1(y) := [0, Im−l]Uf1(y), y ∈ Rm. Then, from (4.5)
we obtain, for all t ≥ 0,

‖H(t)‖ = ‖f̃1
(
y(t)

)
− k(t)f3

(
d2(t), (Ty)(t)

)
e2(t)‖

≥
∣∣∣‖f̃1(y(t)

)
‖ − k(t)f3

(
d2(t), (Ty)(t)

)
‖e2(t)‖

∣∣∣ .
Since y is bounded and f1 is continuous, there exists γ >
0 such that supt≥0 ‖f̃1

(
y(t)

)
‖ ≤ γ. Since k(t) → ∞,

‖e2(tn)‖ ≥ κ and f3
(
d2(tn), (Ty)(tn)

)
≥ α, we find that

for n ∈ N large enough

‖f̃1
(
y(tn)

)
‖ < k(tn)f3

(
d2(tn), (Ty)(tn)

)
‖e2(tn)‖

and hence

‖H(tn)‖ ≥ ακk(tn)− β →∞ for n→∞.

However, this contradicts the fact that H is bounded, as d1
and Ty are bounded (the latter follows from boundedness of
y and Property (iii) in Definition 2.1).

Step 5b: Now, if l = 0 then e = e2 and we have
limt→ω ‖e(t)‖ = 0, which implies, by boundedness of
ϕ, limt→ω ϕ(t)2‖e(t)‖2 = 0, hence limt→ω k(t) = k̂, a
contradiction. Hence, in the following we assume that l > 0.

Let δ ∈ (0, ω) be arbitrary but fixed and λ :=
inft∈(0,ω) ϕ(t)−1 > 0. Since ϕ̇ is bounded and
lim inft→∞ ϕ(t) > 0 we find that d

dt ϕ|[δ,∞) (·)−1 is
bounded and hence there exists a Lipschitz bound L > 0
of ϕ|[δ,∞) (·)−1. Furthermore, observe that by continuity of
D(·), D(·)−1 is continuous as well and since y, Ty, d1 and

ẏref are bounded, the number

µ := sup
t∈[0,ω)

∥∥∥[D
(
y(t)

)−1
, 0]U

(
f1
(
y(t)

)
+ f2

(
d1(t), (Ty)(t)

))
− [Il, 0]U ẏref(t)

∥∥∥
is well defined. Moreover, Lemma 3.1 implies

∃β1 > 0 ∀ t ∈ [0, ω) : minσ
(
D(y(t)) +D(y(t))>

)
≥ β1.

Continuity of D and boundedness of y give

∃β2 > 0 ∀ t ∈ [0, ω) : maxσ
(
D(y(t))D(y(t))>

)
≤ β2.

We may now conclude from Lemma 3.2 that

∀ t ∈ [0, ω) ∀ z ∈ Rl : z>D
(
y(t)

)−1
z ≥ β1

2β2
‖z‖2. (4.12)

Define ν := λ2k̂αβ1

8β2
. Now, choose ε > 0 small enough so

that
ε ≤ min

{
λ

2
, min
t∈[0,δ]

(ϕ(t)−1 − ‖e1(t)‖)
}

and
L ≤ −µ+

ν

ε
. (4.13)

We show that

∀ t ∈ (0, ω) : ϕ(t)−1 − ‖e1(t)‖ ≥ ε. (4.14)

By definition of ε this holds on (0, δ]. Seeking a contradiction
suppose that

∃ t1 ∈ [δ, ω) : ϕ(t1)−1 − ‖e1(t1)‖ < ε.

Then for

t0 := max
{
t ∈ [δ, t1)

∣∣ ϕ(t)−1 − ‖e1(t)‖ = ε
}

we have for all t ∈ [t0, t1] that

ϕ(t)−1 − ‖e1(t)‖ ≤ ε and

‖e1(t)‖ ≥ ϕ(t)−1 − ε ≥ λ− ε ≥ λ

2

and

k(t) =
k̂

1− ϕ(t)2‖e(t)‖2
≥ k̂

1− ϕ(t)2‖e1(t)‖2

=
k̂

(1− ϕ(t)‖e1(t)‖)(1 + ϕ(t)‖e1(t)‖
≥ k̂

2εϕ(t)
≥ λk̂

2ε
.

Now we have, for all t ∈ [t0, t1],

1

2
d
dt‖e1(t)‖2 = e1(t)>ė1(t)

(4.5)
≤ µ‖e1(t)‖ − αk(t)e1(t)>D

(
y(t)

)−1
e1(t)>

(4.12)
≤ µ‖e1(t)‖ − λk̂αβ1

4εβ2
‖e1(t)‖2

This yields that

1

2
d
dt‖e1(t)‖2 ≤

(
µ− ν

ε

)
‖e1(t)‖

(4.13)
≤ −L‖e1(t)‖.
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Therefore, using

1

2
d
dt‖e1(t)‖2 = ‖e1(t)‖ d

dt‖e1(t)‖,

we find that

‖e1(t1)‖ − ‖e1(t0)‖ =

∫ t1

t0

1

2
‖e1(t)‖−1 d

dt‖e1(t)‖2 dt

≤ −L(t1 − t0) ≤ −|ϕ(t1)−1 − ϕ(t0)−1|
≤ ϕ(t1)−1 − ϕ(t0)−1,

and hence

ε = ϕ(t0)−1 − ‖e1(t0)‖ ≤ ϕ(t1)−1 − ‖e1(t1)‖ < ε,

a contradiction.
Therefore, (4.14) holds and as e2(t)→ 0 there exists t̃ ∈

[0, ω) such that ‖e2(t)‖ ≤ ε for all t ∈ [t̃, ω). Then, invoking
ε ≤ λ

2 , we obtain for all t ∈ [t̃, ω)

‖e(t)‖2 = ‖e1(t)‖2 + ‖e2(t)‖2 ≤ (ϕ(t)−1 − ε)2 + ε2

≤ ϕ(t)−2 − 2ελ+ 2ε2 ≤ ϕ(t)−2 − 2ε2.

This implies boundedness of k, a contradiction.
Step 6: We show that ω = ∞. First note that by Step 2

and Step 3 we have that (e, k) : [0, ω)→ Rm+1 is bounded.
Further noting that boundedness of k is equivalent to (4.2)
(for t ∈ [0, ω)), the assumption ω <∞ implies existence of
a compact subset K ⊆ D̃ such that graph (x1, e, x3, k) ⊆ K.
This contradicts (4.11).

Step 7: It remains to show (ii). This follows from

∀ t > 0 : k(t) = k̂ + k(t)ϕ(t)2‖e(t)‖2
(4.2)
≤ k̂ + k(t)ϕ(t)2(ϕ(t)−1 − ε)2 = k̂ + k(t)(1− ϕ(t)ε)2.

This completes the proof of the theorem.
We like to stress again that the condition (4.1) in Theo-

rem 4.1 is sufficient for the closed-loop system to be index-1.
It is an open problem as to whether (4.1) is also necessary
for the index-1 property, although it seems that this is the
case.

Remark 4.2: It is only a technicality to extend the proof
of Theorem 4.1 to incorporate disturbances and the operator
dependency in Γ, i.e., on the left hand side of (1.2) we have

Γ
(
y(t), (Ty)(t), d4(t)

)
ẏ(t).

Furthermore, one could allow for f3 to be matrix valued,
incorporate disturbances in f1 and replace u(t) by f5

(
u(t)+

d5(t)
)

for some appropriate function f5 and disturbance d5.

V. SIMULATION

In this section we illustrate Theorem 4.1 by an academic
example. We consider the 2-input 2-output system

0 = sin(t) · (Ty)(t)2 + u1(t),

(y1(t)2 + y2(t)2 + 1) ẏ2(t) = y1(t)3 − y2(t)2

+ cos(t) · (Ty)(t) + u2(t),
(5.1)

which is of class Σ2,2,1,1 with

R =

[
0
1

]
, G(y1, y2) = y21+y22+1, f1(y1, y2) =

(
0

y31 − y22

)
f2(d11, d

2
1, v) =

(
d11v

2

d21v

)
, f3(d11, d

2
1, v) = 1,

operator(
T (y1, y2)

)
(t) := e−tx0 +

∫ t

0

e−(t−s)y1(s) ds , t ≥ 0,

for any fix x0 ∈ R, and bounded disturbance

d1(t) =

(
sin(t)
cos(t)

)
, t ≥ 0.

It is easy to verify that T satisfies the conditions in Defini-
tion 2.1 and is therefore in class T2,1.

Note that the first equation in (5.1) can be written as the
system

ẋ(t) = −x(t) + y1(t), x(0) = x0

0 = sin(t) · x(t)2 + u1(t),

and T is the solution operator of ẋ(t) = −x(t) + y1(t),
x(0) = x0, for fix x0 ∈ R and given y1 ∈ C(R≥0;R).

As reference signal we take yref = (sin, cos)> ∈
B1(R≥0;R2). We may choose k̂ = 1, since with K = [1, 0]>

we have that imK = kerR> and

sup
y∈R2

‖K>f ′1(y)K‖ = sup
y∈R2

∥∥∥∥[1, 0]

[
0 0
∗ ∗

] [
1
0

]∥∥∥∥ = 0.

Furthermore, the function j from (2.3) is given by j(v) = x0

for v ∈ R2. Then an initial value y0 ∈ R2 is consistent
for the closed-loop system (5.1), (1.3) (i.e., the condition in
Theorem 4.1 is satisfied) if, and only if, y01 = yref,1(0) = 0.
We may hence choose y0 = (0,−1)>. We also choose x0 =
1.

The funnel Fϕ is determined by the function

ϕ : R≥0 → R≥0, t 7→ 0.5 te−t + 2 arctan t . (5.2)

Note that this prescribes an exponentially (exponent 1)
decaying funnel in the transient phase [0, T ], where T ≈ 3,
and a tracking accuracy quantified by λ = 1/π thereafter,
see Fig. 2d.

The simulation has been performed in MATLAB (solver:
ode15s, relative tolerance: 10−14, absolute tolerance: 10−10).
In Figure 2 the simulation, over the time interval [0, 10], of
the funnel controller (1.3) with funnel boundary specified
in (5.2) and reference signal yref = (sin, cos)> applied to
system (5.1) with initial data y0 = (0,−1)> and x0 = 1
is depicted. Fig. 2a shows the output components y1 and y2
tracking the reference signal yref within the funnel shown in
Fig. 2d. Note that an action of the input components u1 and
u2 in Fig. 2b and the gain function k in Fig. 2c is required
only if the error ‖e(t)‖ is close to the funnel boundary
ϕ(t)−1. This in particular shows that the gain function k
is non-monotone.
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Fig. a: Solution components y1 and y2
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Fig. d: Norm of error ‖e(·)‖ and funnel boundary ϕ(·)−1

Fig. 2: Simulation of the funnel controller (1.3) with funnel
boundary specified in (5.2) and reference signal yref =
(sin, cos)> applied to system (5.1) with initial data y0 =
(0,−1)> and x0 = 1.

VI. CONCLUSIONS

We have shown that funnel control is feasible for a
class of nonlinear functional differential-algebraic systems
which in particular encompasses delays and hysteretic ef-
fects. Tracking of a reference signal by the output signal
with prescribed transient behavior of the tracking error is
achieved. The required properties of the system class, most
important the bounded-input bounded output property of the
of the operator T and the uniform positive semi-definiteness
of Γ, are discussed. The condition (4.1) on the minimal gain
is characterized as an index-1 condition on the closed-loop
system and the set of consistent initial values for the latter is
derived explicitly. The results are illustrated by an academic
example.
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