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Abstract— Funnel control achieves output tracking with
guaranteed tracking performance for unknown systems and
arbitrary reference signals. In particular, the tracking error is
guaranteed to satisfy time-varying error bounds for all times
(it evolves in the funnel). However, convergence to zero cannot
be guaranteed, but the error often stays close to the funnel
boundary, inducing a comparatively large feedback gain. This
has several disadvantages (e.g. poor tracking performance and
sensitivity to noise due to the underlying high-gain feedback
principle). In this paper, therefore, the usually known reference
signal is taken into account during funnel controller design,
i.e. we propose to combine the well-known internal model
principle with funnel control. We focus on linear systems
with linear reference internal models and show that under
mild adjustments of funnel control, we can achieve asymptotic
tracking for a whole class of linear systems (i.e. without relying
on the knowledge of system parameters).

I. INTRODUCTION

Funnel control was developed in the seminal work [1], see
also the survey in [2]. The funnel controller proved to be the
appropriate tool for tracking problems in various applications
such chemical processes [3], industrial servo-systems [4],
underactuated multibody systems [5], [6], electrical cir-
cuits [7], [8], clinical applications [9], and autonomous
driving [10], [11]. Funnel control only relies on “structural
system knowledge” such as (strict) relative degree, bounded-
input bounded-output zero dynamics and known sign (or
positive definiteness) of the high-frequency gain. Therefore,
it is intrinsically robust but also achieves “tracking with pre-
scribed performance”, i.e. the tracking error evolves within a
prescribed region, the so-called performance funnel which is
designed by a time-varying funnel boundary. However, the
exact error evolution within the funnel is not known; e.g.,
the error may come arbitrarily close to the funnel boundary,
resulting in extraordinary large gains and, therefore, from
an implementation point of view, exhibiting massive noise
sensitivity.

In this contribution, the problem of asymptotic tracking
with concurrent prescribed transient behavior of the tracking
error is investigated for linear minimum phase systems
by exploiting the internal model principle [12], [13]. The
problem has already been solved for relative degree one
systems in [14] (using internal models as well) and [15],
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and, for (nonlinear) systems with arbitrary relative degree,
in [2]. However, all three works rely on the assumption of
a performance funnel whose width shrinks to zero as time
goes to infinity. Hence, all three approaches still exhibit
massive noise sensitivity during real-world implementation.
In the context of prescribed performance control (PPC), the
asymptotic tracking objective has been tackled by a con-
troller design comprising a locally asymptotically stabilizing
controller and an additional PPC module (see e.g. [16]).
However, this approach relies on the existence and availabil-
ity of the stabilizing controller part, which typically requires
some knowledge of the system parameters or the system
itself (in the sense of model inversion). Moreover, to the
best of our knowledge, so far internal models have not been
considered in the context of PPC in general.

In the present paper, we suggest an alternative where we
combine funnel control and the internal model principle.
Neither do we need such knowledge of a locally stabilizing
controller as required for PPC nor do we need a funnel
design where the funnel width shrinks to zero as time
tends to infinity. Nevertheless, our approach still guarantees
asymptotic tracking. To do so, we utilize internal models
associated with the reference signal (assumed to be known)
and employ only one time-varying gain function depending
on a number of design parameters which are chosen suffi-
ciently large such that the objective of asymptotic tracking
is achieved and the aforementioned problems are avoided
during implementation. In contrast to previous works on
funnel control for systems with arbitrary relative degree,
as e.g. in [2], [17], the proposed approach also avoids the
involvement of several gain functions.

A related, but different approach to the problem utilizes
control Lyapunov barrier functions (CLBFs), see e.g. [18],
[19]. A drawback of this approach is that either the CLBF
candidate is hard to determine and/or requires knowledge
of the system parameters, or adaptive laws to approximate
the uncertainties in the system parameters must be employed,
which severely increase the controller complexity. Compared
to this, here we present a simple controller of low complexity,
which does not need any knowledge of specific system
parameters.

A. System class

We consider linear systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn,

y(t) = Cx(t),
(1)

where A ∈ Rn×n, B,C⊤ ∈ Rn×m, with the same number
of inputs u : R≥0 → Rm and outputs y : R≥0 → Rm. We



assume that the system has a well-defined and known strict
relative degree and it is minimum phase, cf. [20], [21].

Assumption 1.1: System (1) has strict relative degree r ∈
N, i.e., CAkB = 0 for all k = 0, . . . , r − 2, and CAr−1B
is invertible. Furthermore, it is minimum phase, i.e.,

∀λ ∈ C with Reλ ≥ 0 : rk

[
A− λIn B

C 0

]
= n+m.

We introduce the following class of systems.
Definition 1.2: For m, r ∈ N, a system (1) belongs to the

class Σm,r, if Assumption 1.1 is satisfied and Γ = CAr−1B
is positive definite. We write (A,B,C) ∈ Σm,r.

B. Control objective

The objective is to design a dynamic output derivative
feedback of the form

ξ̇(t) = F
(
t, ξ(t), y(t), ẏ(t), . . . , y(r−1)(t)

)
, ξ(0) = ξ0,

u(t) = G
(
t, ξ(t), y(t), ẏ(t), . . . , y(r−1)(t)

)
,

(2)
which achieves that, for any reference signal yref : R≥0 →
Rm within a certain class (defined in Section I-C), the track-
ing error e(t) = y(t) − yref(t) evolves within a prescribed
performance funnel

Fφ := { (t, e) ∈ R≥0 × Rm |φ(t)∥e∥ < 1} , (3)

which is determined by a function φ belonging to

Φ:=

φ ∈ C1(R≥0 → R)

∣∣∣∣∣∣
φ, φ̇ are bounded,
φ(t) > 0 for all t > 0,
and lim inft→∞ φ(t) > 0

 .

Furthermore, all signals x, u, z in the closed-loop system
should remain bounded and asymptotic tracking should be
achieved, i.e., limt→∞ e(t) = 0. The funnel boundary is
given by the reciprocal of φ as depicted in Fig. 1. If
φ(0) = 0 , then there is no restriction on the initial value
since φ(0)∥e(0)∥ < 1 and the funnel boundary 1/φ has a
pole at t = 0.

t

•

λ

(0, e(0)) φ(t)−1

Fig. 1: Error evolution in a funnel Fφ with boundary φ(t)−1.

We like to point out that, in contrast to [2], [14], the
objective of asymptotic tracking cannot be achieved by
shrinking the width of the funnel to zero as t → ∞; this
would mean that φ becomes unbounded which is not allowed
by definition of the class Φr. Furthermore, such an approach
would drastically increase noise sensitivity. This problem is
also avoided in the present paper.

In fact, boundedness of φ implies that there exists λ > 0
such that 1/φ(t) ≥ λ for all t ≥ 0, so each performance

funnel Fφ is bounded away from zero. The funnel boundary
is not necessarily monotonically decreasing, which might be
advantageous in applications. In some situations widening
the funnel over some later time interval might be beneficial,
for instance in the presence of periodic disturbances or
strongly varying reference signals.

C. Class of reference signals

The reference signals to be tracked are functions yref :
R≥0 → Rm, whose components yi,ref , i = 1, . . . ,m, are
solutions of the scalar differential equation α( d

dt )yi,ref = 0,
where α(s) ∈ R[s] is a monic polynomial with the following
property:

∀λ ∈ C : α(λ) = 0 =⇒ rk

[
A− λIn B

C 0

]
= n+m.

(4)
In other words, yref belongs to the class

R(α) :=
{
w ∈ C∞(R≥0,Rm)

∣∣α( d
dt )w = 0

}
.

For example, admissible reference signals are constants,
ramps, polynomials, sinusoidals and linear combinations
thereof (see, e.g., [4, Section 7.3.1]). For those cases, α is
chosen to have purely imaginary roots, so that condition (4)
is automatically satisfied for minimum-phase systems. The
same is true for unbounded exponential reference signals,
however, for exponentially decreasing reference signals con-
dition (4) may be violated and, since the system parameters
are not assumed to be known, this situation cannot be
detected. On the other hand, the case of exponentially de-
creasing reference signals is usually not of practical relevance
and, furthermore, a random small perturbation of the roots
of α(s) makes condition (4) valid (with probability one).

II. INTERNAL MODELS

In a series of seminal works by Francis and Wonham,
see e.g. [12], the internal model principle was developed,
succinctly summarized in [13, p. 210] as

“every good regulator must incorporate a model
of the outside world [. . . being capable to replicate
. . . ] the dynamic structure of the exogenous signals
which the regulator is required to process”.

The goal of the internal model is to allow for reduplication
of reference signals of class R(α). For real-time imple-
mentation, a state space realization of the internal model is
required. The internal model can be designed as follows:

Step 1. For a monic polynomial α(s) ∈ R[s] find a Hurwitz
polynomial1 β(s) ∈ R[s] such that α(s) and β(s) are
coprime, degα(s) = deg β(s) =: p and lims→∞

β(s)
α(s) = 1.

Step 2. Find a minimal realization (Â, b̂, ĉ, 1) of β(s)
α(s)

with Â ∈ Rp×p and b̂, ĉ⊤ ∈ Rp. Then with Ã :=
diag(Â, . . . , Â) ∈ Rmp×mp, B̃ := diag(b̂, . . . , b̂) ∈ Rmp×m

and C̃ := diag(ĉ, . . . , ĉ) ∈ Rm×mp we have that the system

ż(t) = Ãz(t) + B̃w(t), z(0) = z0 ∈ Rmp,

u(t) = C̃z(t) + Imw(t)
(5)

1A polynomialβ(s) ∈ R[s] is Hurwitz, if all its roots have negative real part.
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Fig. 2: Illustration of control system with internal model.

is a minimal realization of β(s)
α(s)Im, i.e., (Ã, B̃, C̃, Im) is

controllable and observable and

C̃(sIm − Ã)−1B̃ + Im =
β(s)

α(s)
Im.

For more details on the design procedure see also [4,
Sec. 7.3]. The system (5) or, equivalently, (Ã, B̃, C̃, Im) will
be called internal model (of the class R(α)) in the following.
We summarize some important properties of the interconnec-
tion of the internal model with the linear system (1), which
is illustrated in Fig. 2.

Lemma 2.1: Consider a system (1) with (A,B,C) ∈
Σm,r, let α(s) ∈ R[s] be a monic polynomial and
(Ã, B̃, C̃, Im) be an internal model of the class R(α). Then
the serial interconnection of (1) and (5), given by(

ẋ(t)
ż(t)

)
= Aic

(
x(t)
z(t)

)
+Bicw(t),

y(t) = Cic

(
x(t)
z(t)

)
,

(
x(0)
z(0)

)
=

(
x0

z0

) (6)

where

(Aic, Bic, Cic) :=

([
A BC̃

0 Ã

]
,

[
B

B̃

]
,
[
C 0

])
,

is in class Σm,r with CicA
r−1
ic Bic = CAr−1B = Γ.

Proof: The proof is a straightforward extension of that
of [4, Lem. 7.2] to the multivariable case.

If (6) belongs to Σm,r and hence has strict relative degree
r ∈ N, then by [20, Lem. 3.5] there exists a state-space
transformation U ∈ Gln+mp(R) such that U

(
x(t)
z(t)

)
=(

y(t)⊤, ẏ(t)⊤, . . . , y(r−1)(t)⊤, η(t)⊤
)⊤

, with η : R≥0 →
Rn+(p−r)m, transforms (6) into Byrnes-Isidori form

y(r)(t) =

r∑
i=1

Riy
(i−1)(t) + Sη(t) + Γw(t),

η̇(t) = Qη(t) + Py(t),

(7)

with initial conditions
(y(0), . . . , y(r−1)(0)) = (y00 , . . . , y

0
r−1) ∈ Rrm,

η(0) = η0 ∈ Rn+(p−r)m,
(8)

where Ri ∈ Rm×m, i = 1, . . . , r, S, P⊤ ∈ Rm×(n+(p−r)m),
Q ∈ R(n+(p−r)m)×(n+(p−r)m) and Γ = CAr−1B. Further-
more, since (6) is minimum phase it follows that σ(Q) ⊆
C−. The second equation in (7) describes the internal dynam-
ics of (6). If y = 0 these dynamics are called zero dynamics.
For an extensive discussion of the minimum phase property
and its relation to the zero dynamics we refer to [22].

III. CONTROLLER DESIGN

In order to achieve the control objective described in Sec-
tion I-B we introduce the following novel funnel controller
with additional adaptive gain terms, which is to be applied
to the interconnection of (1) with an internal model (5) of
the class R(α), where yref ∈ R(α):

e1(t) = e(t) = y(t)− yref(t),

ei+1(t) = ėi(t) + kiei(t), i = 1, . . . , r − 1,

k(t) =
kr

1− φr(t)2∥er(t)∥2
,

w(t) = −k(t)er(t)

(9)

with the controller design parameters

k1, . . . , kr > 0, φr ∈ Φ. (10)

Compared to standard funnel control designs [2], [17], the
gains k1, . . . , kr in the controller (9) are selected as con-
stants, which need to be sufficiently large – for k1, . . . , kr−1

this will be made explicit in due course. The gain k(t)
is still time-varying and increases whenever the error er
is close to the boundary of the performance funnel Fφr ,
so that evolution inside the funnel is guaranteed. We will
show that this also ensures that the tracking error e evolves
in a prescribed performance funnel, when φr is chosen
accordingly. The feasibility of asymptotic tracking is ensured
by the incorporation of the internal model of the reference
signal, which renders the tracking problem a stabilization
problem for the interconnected system (6) with output e.

We like to note that the actual controller consists of
the combination of the internal model (5) with the funnel
controller (9), which is a dynamic output derivative feedback
of the form (2). In the sequel we investigate existence of
solutions of the initial value problem resulting from the
application of the funnel controller (9) to the interconnec-
tion (6). By a solution of (6), (9) we mean a function
(x, z) : [0, ω) → Rn × Rmp, ω ∈ (0,∞], which is locally
absolutely continuous and satisfies x(0) = x0, z(0) = z0,
as well as the differential equations in (6), (9) for almost all
t ∈ [0, ω). A solution is called maximal, if it has no right
extension that is also a solution.

IV. FUNNEL CONTROL – MAIN RESULT

Before stating the main result, we discuss how the gains
k1, . . . , kr−1 must be chosen so that the evolution of the
tracking error in a performance funnel Fφ1

for some φ1 ∈
Φ is guaranteed. To this end, choose φ2, . . . , φr ∈ Φ and
k1, . . . , kr−1 > 0 such that

(K1) ki >
∥∥∥ φ̇i

φi

∥∥∥
∞

+
∥∥∥ φi

φi+1

∥∥∥
∞

for i = 1, . . . , r − 1,
(K2) φi(0)∥ei(0)∥ < 1 for i = 1, . . . , r.
Note that, by definition, ei depends on k1, . . . , ki−1, so both
(K1) and (K2) are conditions relating the functions φi and
the gains ki. Invoking the control law (9), we can make
the following observation, which is independent from the
application to a specific system.



Lemma 4.1: Let y, yref ∈ Cr−1([0, ω),Rm), ω ∈ (0,∞],
and consider the signals defined in the control law (9) for
design parameters as in (10). If φr(t)∥er(t)∥ < 1 for all
t ∈ [0, ω), then for all φ1, . . . , φr−1 ∈ Φ which satisfy (K1)
and (K2) we have for i = 1, . . . , r − 1:

∀ t ≥ 0 : φi(t)∥ei(t)∥ ≤ εi < 1, (11)

where

εi := max
{
φi(0)∥ei(0)∥, 1

ki

(∥∥∥ φ̇i

φi

∥∥∥
∞

+
∥∥∥ φi

φi+1

∥∥∥
∞

)}
.

In particular, the signals ei evolve within the performance
funnel Fφi .

Proof: By induction we may assume that
φi+1(t)∥ei+1(t)∥ < 1 for all t ∈ [0, ω). Then

1
2

d
dtφi(t)

2∥ei(t)∥2 = φ̇i(t)φi(t)∥ei(t)∥2

+ φi(t)
2ei(t)

⊤(ei+1 − kiei(t)
)

≤
(
φ̇i(t)

φi(t)
− ki

)
φi(t)

2∥ei(t)∥2 +
φi(t)

2∥ei(t)∥
φi+1(t)

≤
(∥∥∥ φ̇i

φi

∥∥∥
∞

+
∥∥∥ φi

φi+1

∥∥∥
∞

− kiφi(t)∥ei(t)∥
)
φi(t)∥ei(t)∥.

for all t ∈ [0, ω). Seeking a contradiction, assume that
there exists t1 ∈ [0, ω) with φi(t1)∥ei(t1)∥ > εi. Set
t0 := sup { t ∈ [0, t1) |φi(t)∥ei(t)∥ = εi }, which is well
defined by φi(0)∥ei(0)∥ ≤ εi. Then the above estimate
implies 1

2
d
dtφi(t)

2∥ei(t)∥2 ≤ 0 for all t ∈ [t0, t1], whence

εi = φi(t0)∥ei(t0)∥ ≥ φi(t1)∥ei(t1)∥ > εi,

a contradiction. This completes the proof.
The above conditions (K1) and (K2) will be used as suffi-

cient condition on the controller design parameters as in (10).
We are now in the position to show that the control (9) in
conjunction with the internal model (5) achieves the control
objective.

Theorem 4.2: Consider a system (1) with (A,B,C) ∈
Σm,r, let α(s) ∈ R[s] be a monic polynomial satisfying
condition (4) and (Ã, B̃, C̃, Im) be an internal model of
the class R(α), resulting in the interconnection (6). Let
x0 ∈ Rn, z0 ∈ Rmp be initial values, yref ∈ R(α) be a
reference signal, φ1 ∈ Φ define the desired performance
funnel for the tracking error and choose φ2, . . . , φr ∈ Φ and
k1, . . . , kr−1 > 0 such that conditions (K1) and (K2) are
satisfied. Then the application of the funnel controller (9) to
the interconnection (6) yields an initial-value problem which
has a unique maximal solution (x, z) : [0, ω) → Rn × Rmp,
ω ∈ (0,∞], with the following properties:

(i) global existence: ω = ∞;
(ii) all errors evolve uniformly in their respective per-

formance funnels, that is for all i = 1, . . . , r there
exists εi ∈ (0, 1) such that for all t ≥ 0 we have
φi(t)∥ei(t)∥ ≤ εi;

(iii) all signals x, z, u and k in the closed-loop system are
bounded;

(iv) if kr > 0 is sufficiently large, then the tracking error
and its first r − 1 derivatives converge to zero, i.e.,

∀ i = 0, . . . , r − 1 : lim
t→∞

e(i)(t) = 0;

Proof: Step 1: We show existence and uniqueness of
a maximal solution of the closed-loop system consisting of
the controller (9) applied to (6). Define the polynomials

p1(s) = 1, pi(s) = (s+ k1) · · · (s+ ki−1), i = 2, . . . , r,

and observe that for ei as in (9) we have that ei = pi(
d
dt )e.

Further define the relatively open set D in (12) and the
function F : D → Rn × Rmp by

F (t, x, z)

=


Ax+BC̃z − krB(Cpr(A)x−pr(

d
dt )yref (t))

1−φr(t)2∥Cpr(A)x−pr(
d
dt )yref (t)∥2

Ãz − krB̃(Cpr(A)x−pr(
d
dt )yref (t))

1−φr(t)2∥Cpr(A)x−pr(
d
dt )yref (t)∥2

∥Cpr(A)x− pr(
d
dt )yref(t)∥

2

 .

Then the closed-loop system is equivalent to(
ẋ(t)
ż(t)

)
= F (t, x(t), z(t)),

(
x(0)
z(0)

)
=

(
x0

z0

)
.

Since it follows from Assumption 1.1 that y(i)(t) = CAix(t)
for i = 0, . . . , r − 1, it is clear that (0, x0, z0) ∈ D.
Furthermore, F is measurable in t and locally Lipschitz in
(x, z). Hence, by the theory of ordinary differential equations
(see e.g. [23, § 10, Thm. XX]) there exists a unique maximal
solution (x, z) : [0, ω) → Rn ×Rmp, ω ∈ (0,∞], of (6), (9)
satisfying the initial conditions. Moreover, the closure of the
graph of this solution is not a compact subset of D. We
also note that, by definition of D, φi(t)∥ei(t)∥ < 1 for all
t ∈ [0, ω) and all i = 1, . . . , r.

Step 2: We show (ii) for i = 1, . . . , r− 1 on [0, ω). Since
φr(t)∥er(t)∥ < 1 for all t ∈ [0, ω) was shown in Step 1,
this follows directly from Lemma 4.1.

Step 3: We derive a differential equation for er. By [24,
Lem. 5.1.2]2 there exists v ∈ C1(R≥0,Rn+mp) such that,
using the notation from Lemma 2.1,

v̇(t) = Aicv(t), yref(t) = Cicv(t).

Set xe(t) :=
(

x(t)
z(t)

)
− v(t), then

ẋe(t) = Aicxe(t) +Bicw(t), e(t) = Cicxe(t).

By Lemma 2.1, (Aic, Bic, Cic) ∈ Σm,r and hence the above
system can be transformed into the form (7), i.e., we have

e(r)(t) =

r∑
i=1

Rie
(i−1)(t) + Sη(t) + Γw(t),

η̇(t) = Qη(t) + Pe(t).

Now let µ1, . . . , µr−1 ∈ R be such that pr(s) = sr−1 +∑r−1
i=1 µis

i−1. Then we find

ėr(t) =
d
dtpr(

d
dt )e(t) = e(r)(t) +

r−1∑
i=1

µie
(i)(t)

=

r∑
i=1

Rie
(i−1)(t) + Sη(t) + Γw(t) +

r−1∑
i=1

µie
(i)(t).

2The result of [24, Lem. 5.1.2] requires α(s) to have only roots with
non-negative real parts, however a careful inspection of the proof reveals
that condition (4) suffices.



D :=
{
(t, x, z) ∈ R≥0 × Rn × Rmp

∣∣φi(t)∥Cpi(A)x− pi(
d
dt )yref(t)∥ < 1, i = 1, . . . , r

}
(12)

Step 4: We show (ii) for i = r or, equivalently, that k is
bounded on [0, ω). First observe that, since yref and e are
bounded, and Q is Hurwitz, it follows that η is bounded.
Furthermore, a straightforward induction utilizing (9) gives
that

e(i) = ei+1 −
i∑

j=1

kje
(i−j)
j = ei+1 +

i∑
j=1

ci,jej

for some ci,j ∈ R, i = 1, . . . , r − 1, j = 1, . . . , i.
Therefore, since e1, . . . , er are bounded on [0, ω), it follows
that e, ė, . . . , e(r−1) are bounded on [0, ω). Hence, there
exists C > 0 such that

1
2

d
dt∥er(t)∥

2 ≤ −k(t)er(t)⊤(Γ + Γ⊤)er(t) + C∥er(t)∥
≤

(
C − k(t)γ∥er(t)∥

)
∥er(t)∥,

where γ is the smallest eigenvalue of the positive definite
matrix Γ + Γ⊤. Then, with standard arguments in funnel
control as used e.g. in [17] it follows that there exists εr ∈
(0, 1) such that φr(t)∥er(t)∥ ≤ εr for all t ∈ [0, ω).

Step 5: We show ω = ∞. Seeking a contradiction, assume
that ω < ∞. Then, by Steps 2–4, it follows that the graph
of the solution (x, z) is a compact subset of D, which
contradicts the findings of Step 1.

Step 6: We show that if kr > 0 is large enough, then
then limt→∞ xe(t) = 0. Invoking e(i) = Ai

icxe for i =
0, . . . , r − 1 it follows that

er = pr(
d
dt )e = Cicpr(Aic)xe.

Hence, with Ĉ := Cicpr(Aic) we find that the system

ẋe(t) = Aicxe(t) +Bicw(t), er(t) = Ĉxe(t) (13)

has strict relative degree one as ĈBic = Cicpr(Aic)Bic =
CicA

r−1
ic Bic = Γ by Lemma 2.1. Furthermore, the system is

minimum phase as

det

[
Aic − λIn Bic

Cicpr(Aic) 0

]
= pr(λ) det

[
Aic − λIn Bic

Cic 0

]
̸= 0

for all λ ∈ C with Reλ ≥ 0, where we have used that
pr(s) is Hurwitz and (Aic, Bic, Cic) is minimum phase by
Lemma 2.1. Then, since k(t) ≥ kr, it follows from classical
results (see e.g. [24, Rem. 2.2.5]) that there exists k∗r > 0
large enough such that for all kr ≥ k∗r the control w(t) =
−k(t)er(t) applied to (13) achieves that limt→∞ xe(t) = 0.

Step 7: Assertions (i)–(iii) are shown and it remains to
prove (iv). This follows directly from the observation that
e(i) = Ai

icxe for i = 0, . . . , r − 1 and Step 6.
Statement (iv) of Theorem 4.2 asserts achievement of

asymptotic tracking, provided that the parameter kr is suf-
ficiently large. In order to relax this, future work will
concentrate on choosing this parameter adaptively.

V. ILLUSTRATIVE SIMULATIONS

To illustrate the benefits of using internal models in
combination with funnel control, comparative simulations
have been implemented for the following third-order system:

ẋ(t) =

 0 1 0
−3 4 0
−5 0 −1

x(t) +
0
1
0

u(t), x(0) =

0
0
5


y(t) =

(
1 0 0

)
x(t).

(14)
The system is unstable with eigenvalues {−1, 3, 1}, but
minimum-phase. Moreover, it has relative degree r = 2
and positive high-frequency gain Γ = 1, thus it belongs to
Σ1,2. It is assumed that the instantaneous values y(t) and
ẏ(t) are available for feedback. For ω0 = 10π, we choose
the reference signal yref(t) = 2 + sin(ω0t) with derivative
ẏref(t) = 10π cos(ω0t), which is clearly an element of the
class R(α) for α(s) = s3 + sω2

0 with roots λ ∈ {0,±ȷω0}.
Laplace expansion yields

∀λ ∈ C : det

[
−λ 1 0 0
−3 4 − λ 0 1
−5 0 −1 − λ 0
1 0 0 0

]
= 1 + λ,

which shows that (4) is satisfied. Hence, according to Sec-
tion II, an appropriate internal model of the form (5) is given
by (for design details, see [4, Sec. 7.3.2])

ż(t) =

0 1 0
0 0 1
0 −ω2

0 0

 z(t) +
0
0
1

w(t), z(0) =

0
0
0


u(t) =

(
27 (27− ω2

0) 0
)
z(t) + w(t).

(15)
Example system (14) in conjunction with internal

model (15) and under funnel control (9) has been imple-
mented in Matlab/Simulink (R2023b) using the solver ode4
(Runge-Kutta) with fixed step-size h = 0.1ms. The
controller tuning parameters were selected as k1 = 74.13
and k2 = 100 (note that the selections are not trivial as
those depend on the funnel boundaries and vice-versa; for
details see [25]). Moreover, exponential funnel boundaries
were implemented as follows ψ1(t) = 1/φ1(t) = (Λ1 −
λ1) exp(−t/T1) + λ1 and ψ2(t) = 1/φ2(t) = (Λ2 −
λ2) exp(−t/T2) + λ2 with Λ1 = 10, λ1 = 0.2, T1 = 0.1 s
and Λ2 = 369.76, λ2 = 10.4, T2 = 0.1 s, respectively.

Comparative simulation results are plotted in Fig. 3 for
(i) closed-loop system (9),(14) [ w/o IM: funnel con-
troller (9) is directly applied to example system (14) without
internal model, i.e. u = w] and (ii) closed-loop system (9),
(15),(14) [ : funnel controller (9) and internal model (15)
are applied to example system (14)]. From top to bottom, the
plotted time series in the six subplots are: reference yref and
output y, boundary ±ψ1 := ± 1

φ1
and error e = e1, reference

derivative ẏref and output derivative ẏ, boundary ±ψ2 :=
± 1

φ2
and auxiliary error e2, gain k, and, finally, controller

output w and control action u. The time series plots show that



Fig. 3: Simulation results for system (14) using funnel
controller (9) without internal model [ w/o IM] and
funnel controller (9) with internal model (15) [ ].

with internal model [ ] and without internal model [
w/o IM], the errors e1 and e2 evolve within their respective
funnel regions. However, for the closed-loop system (9),(14)
without internal model [ w/o IM], both errors do not
tend to zero but rather oscillate; which in turn leads to
significant oscillations in gain k as well as in controller
output w. In contrast to that, closed-loop system (9),(14),(15)
with internal model [ ] achieves asymptotic tracking with
less oscillations in gain k and controller output w.

Remark 5.1 (Measurement noise): The use of internal
models does not only guarantee asymptotic tracking, but
also achieves larger distances to the funnel boundaries.
Hence, funnel control with internal models is intrinsically
less sensitive to measurement noise. Future research should
focus on a rigorous proof of this behavior.

REFERENCES

[1] A. Ilchmann, E. P. Ryan, and C. J. Sangwin, “Tracking with prescribed
transient behaviour,” ESAIM: Control, Optimisation and Calculus of
Variations, vol. 7, pp. 471–493, 2002.

[2] T. Berger, A. Ilchmann, and E. P. Ryan, “Funnel control of nonlinear
systems,” Math. Control Signals Syst., vol. 33, pp. 151–194, 2021.

[3] A. Ilchmann and S. Trenn, “Input constrained funnel control with
applications to chemical reactor models,” Syst. Control Lett., vol. 53,
no. 5, pp. 361–375, 2004.

[4] C. M. Hackl, Non-identifier Based Adaptive Control in Mechatronics–
Theory and Application, ser. Lecture Notes in Control and Information
Sciences. Cham, Switzerland: Springer-Verlag, 2017, vol. 466.
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