Controlled invariance for nonlinear differential-algebraic systems

Thomas Berger

Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

Abstract

We study the concept of locally controlled invariant submanifolds for nonlinear differential-algebraic/descriptor systems. In contrast to classical approaches, we define controlled invariance as the property of solution trajectories to evolve in a given submanifold whenever they start in it. It is then proved that this concept is equivalent to the existence of a feedback which renders the closed-loop vector field invariant in the descriptor sense. This result is exploited to show that the outcome of the differential-algebraic version of the zero dynamics algorithm yields a maximal output zeroing submanifold. The latter is then used to characterize the zero dynamics of the system. In order to guarantee that the zero dynamics are locally autonomous (i.e., locally resemble the behavior of an autonomous dynamical system), sufficient conditions involving the locally maximal output zeroing submanifold are derived.

Key words: Differential-algebraic equations, nonlinear systems, descriptor systems, controlled invariance, output zeroing submanifold, zero dynamics.

1 Introduction

We consider nonlinear descriptor systems governed by differential-algebraic equations (DAEs) of the form

$$\frac{d}{dt}E(x(t)) = f(x(t)) + g(x(t)) u(t), y(t) = h(x(t)),$$
(1)

where $X \subseteq \mathbb{R}^n$ is open, $0 \in X$, $f \in \mathcal{C}(X; \mathbb{R}^l)$, $h \in \mathcal{C}(X; \mathbb{R}^p)$, $E \in \mathcal{C}^1(X; \mathbb{R}^l)$ are vector-valued functions such that f(0) = 0, h(0) = 0, and $g \in \mathcal{C}(X; \mathbb{R}^{l \times m})$ is a matrix-valued function. The set of these systems is denoted by $\Sigma_{l,n,m,p}^X$; and we write $[E, f, g, h] \in \Sigma_{l,n,m,p}^X$. Throughout the paper, \mathbb{N} denotes the set of natural numbers, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. $\mathcal{C}^k(X; Y)$ denotes the set of k-times continuously differentiable functions $f : X \to Y$ for $k \in \mathbb{N}_0 \cup \{\infty\}$; if $k = \infty$ the function f is called *smooth*. By dom f we denote the domain of f and $f|_I$ denotes the restriction of f to the set $I \subseteq \mathbb{R}$. Furthermore, $\mathbb{R}^{n \times m}$ is the set of real $n \times m$ matrices, rk A, im A denote the rank and image of $A \in \mathbb{R}^{n \times m}$, resp., and $\mathbf{Gl}_n(\mathbb{R})$ is the group of invertible matrices in $\mathbb{R}^{n \times n}$.

Note that the class $\Sigma_{l,n,m,p}^X$ encompasses any linear singular descriptor system and various important classes of nonlinear singular descriptor systems (e.g. chemical process systems [15], mechanical systems [29] and electrical circuits [28]). Nonlinear descriptor systems seem to have

been first considered by Luenberger [21]; see also the recent textbooks [16, 17].

The functions $u: I \to \mathbb{R}^m$ and $y: I \to \mathbb{R}^p$, $I \subseteq \mathbb{R}$, are called *input* and *output* of the system, resp. Since solutions not necessarily exist globally (e.g. finite escape times may arise) we consider maximal solutions of (1).

Definition 1 (Solutions) For $[E, f, g, h] \in \Sigma_{l,n,m,p}^{X}$ a trajectory $(x, u, y) \in C(I; X \times \mathbb{R}^m \times \mathbb{R}^p)$ is called a solution of (1), if $I = \operatorname{dom} x \subseteq \mathbb{R}$ is an open interval, $E \circ x \in C^1(I; \mathbb{R}^l)$ and (x, u, y) solves (1) for all $t \in I$. A solution (x, u, y) of (1) is called maximal, if any other solution $(\tilde{x}, \tilde{u}, \tilde{y})$ of (1) satisfies

$$\begin{split} J &:= \operatorname{dom} \tilde{x} \,\cap\, \operatorname{dom} x \neq \emptyset \,\wedge\, (\tilde{x}, \tilde{u}, \tilde{y})|_J = (x, u, y)|_J \\ &\implies \quad \operatorname{dom} \tilde{x} \subseteq \operatorname{dom} x. \end{split}$$

We use the behavioral approach due to Willems [33], see also [25], and define the *behavior* of (1) as the set of maximal solution trajectories

$$\mathfrak{B}_{(1)} := \{ (x, u, y) \in \mathcal{C}(I; X \times \mathbb{R}^m \times \mathbb{R}^p) \mid I \subseteq \mathbb{R} \text{ open} \\ \text{interval, } (x, u, y) \text{ is maximal solution of } (1) \}.$$

In the present paper, we consider questions related to controlled invariance and the zero dynamics of (1). The concept of (locally) controlled invariant submanifolds has been introduced by Isidori and Moog [14] (see also the textbooks [13, 23]) and it is an extension of the well-studied concept of controlled invariant subspaces

Email address: thomas.berger@uni-hamburg.de (Thomas Berger).

for linear systems. Loosely speaking, a locally controlled invariant submanifold M is a connected submanifold which is invariant under the flow of the closed-loop vector field f(x) + g(x)u(x) for some feedback u(x); in the case of DAEs this invariance has to be formulated with respect to $E(\cdot)$. In the present paper, we show that the above "classical" definition in terms of feedback is equivalent to the "natural" definition, that for any initial value in M there exists an input such that the corresponding state trajectory remains in M for all times or reaches its boundary in finite time.

Locally controlled invariant submanifolds which are output zeroing (i.e., $M \subseteq h^{-1}(0)$) are related to the zero dynamics of the system (1). The zero dynamics are, loosely speaking, those dynamics that are not visible at the output and they are defined as the set of trajectories

$$\mathcal{ZD}_{(1)} := \{ (x, u, y) \in \mathfrak{B}_{(1)} \mid y = 0 \}.$$

If the system (1) is governed by an ordinary differential equation (ODE), i.e., n = l and E(x) = x, then the concept of zero dynamics has been introduced by Byrnes and Isidori [10] and studied extensively since then, see e.g. the textbooks [13,23]. For linear DAEs, the zero dynamics are a real vector space (which is not true for nonlinear systems) and have been investigated in detail recently [1,3]; for nonlinear DAEs some results for a class of semi-explicit systems [31], for semi-explicit index-1 systems [32] and for systems which are affine in the algebraic variables [19] are available. In the present paper we investigate general systems (1).

The present paper is organized as follows: We consider the concept of controlled invariant subspaces for linear descriptor systems in Section 2 and prove characterizations of it. In Section 3 we give a brief summary of the differential geometric concepts used in the remainder of the paper. Motivated by the results for linear systems, local controlled invariance of submanifolds for nonlinear DAE systems is defined and characterized in Section 4; crucial preliminary results on constant rank matrix functions and the existence and extension of solutions to an important class of DAEs are provided. In Section 5 we consider locally controlled invariant submanifolds that are output zeroing and derive an extension of the zero dynamics algorithm (see e.g. [13, 23]) to DAE systems in order to compute a locally maximal output zeroing submanifold. This submanifold is exploited for a characterization of the zero dynamics of the system. The concept of locally autonomous zero dynamics, which has been successively used for the analysis of linear time-varying ODEs in [5] and of linear time-invariant DAEs in [3], is introduced in Section 6. We prove a sufficient condition for locally autonomous zero dynamics in terms of the locally maximal output zeroing submanifold. A conclusion is given in Section 7.

A summary of the present paper is also available at [2].

2 The linear case

The present section serves as a motivation for the nonlinear case. We study controlled invariance for linear differential-algebraic systems of the form

$$\frac{\mathrm{d}}{\mathrm{d}t}Ex(t) = Ax(t) + Bu(t),\tag{2}$$

where $E, A \in \mathbb{R}^{l \times n}$ and $B \in \mathbb{R}^{l \times m}$. The set of these systems is denoted by $\Sigma_{l,n,m}$ and we write $[E, A, B] \in$ $\Sigma_{l,n,m}$. Since [E, A, B] is linear we consider only global solutions and hence define the *behavior* of (2) as the set

$$\mathfrak{B}_{(2)} := \{ (x, u) \in \mathcal{C}(\mathbb{R}; \mathbb{R}^n \times \mathbb{R}^m) \mid Ex \in \mathcal{C}^1(\mathbb{R}; \mathbb{R}^l) \\ \text{and } (x, u) \text{ satisfies } (2) \text{ for all } t \in \mathbb{R} \}.$$

If (2) is an ODE, i.e., l = n and E = I, then a subspace $\mathcal{V} \subseteq \mathbb{R}^n$ is called controlled invariant (see e.g. [30]) if, loosely speaking, for all initial values in \mathcal{V} there exists an input such that the corresponding state trajectory remains in \mathcal{V} for all times. It is well-known that this is the case if, and only if, there exists a *friend* $F \in \mathbb{R}^{m \times n}$ such that $(A + BF)\mathcal{V} \subseteq \mathcal{V}$, or, equivalently, $A\mathcal{V} \subseteq \mathcal{V} + \operatorname{im} B$. We introduce controlled invariance for linear DAEs (2) and generalize the above characterizations. To the author's best knowledge these characterizations are new.

Definition 2 (Controlled invariant subspaces)

Let $[E, A, B] \in \Sigma_{l,n,m}$ and $\mathcal{V} \subseteq \mathbb{R}^n$ be a subspace. Then \mathcal{V} is called controlled invariant, if

$$\forall x^0 \in \mathcal{V} \exists (x, u) \in \mathfrak{B}_{(2)} \forall t \ge 0 : x \in \mathcal{C}^1(\mathbb{R}; \mathbb{R}^n) \land x(0) = x^0 \land x(t) \in \mathcal{V}.$$

In order to prove that controlled invariance is equivalent to the existence of a friend we need the following crucial lemma which guarantees existence of solutions to a certain class of linear DAEs. This result is contained in [9, Cor. 11], however we provide a different proof here which serves as a basis for the generalization to the nonlinear case.

Lemma 3 (Existence lemma) Let $E, A \in \mathbb{R}^{l \times n}$ be such that im $A \subseteq \text{im } E$. Then, for all $x^0 \in \mathbb{R}^n$, there exists $x \in C^{\infty}(\mathbb{R}; \mathbb{R}^n)$ such that $x(0) = x^0$ and $E\dot{x}(t) = Ax(t)$ for all $t \in \mathbb{R}$.

PROOF. Since im $A \subseteq \text{im } E$ there exists $R \in \mathbb{R}^{n \times n}$ such that A = ER. Let $S, T \in \mathbf{Gl}_n(\mathbb{R})$ be such that $SET = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$, where $r = \operatorname{rk} E$. Then

$$SAT = SETT^{-1}RT = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix} T^{-1}RT =: \begin{bmatrix} T_1 & T_2\\ 0 & 0 \end{bmatrix}.$$

Now let $x^0 \in \mathbb{R}^n$ and let $x_1 \in \mathcal{C}^{\infty}(\mathbb{R};\mathbb{R}^r), x_2 \in \mathcal{C}^{\infty}(\mathbb{R};\mathbb{R}^{n-r})$ be such that, for all $t \in \mathbb{R}$,

$$\dot{x}_1(t) = T_1 x_1(t) + T_2 x_2(t)$$
, and $\begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = T^{-1} x^0$.

This is always possible as x_2 is free of choice (up to the initial value) and x_1 is the solution of an ODE. Define $x(\cdot) := T\begin{pmatrix} x_1(\cdot) \\ x_2(\cdot) \end{pmatrix} \in \mathcal{C}^{\infty}(\mathbb{R};\mathbb{R}^n)$ and observe that $x(0) = x^0$ and, for all $t \in \mathbb{R}$,

$$\begin{aligned} E\dot{x}(t) &= S^{-1} \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix} T^{-1} T \begin{pmatrix} \dot{x}_1(t)\\ \dot{x}_2(t) \end{pmatrix} = S^{-1} \begin{pmatrix} \dot{x}_1(t)\\ 0 \end{bmatrix} \\ &= S^{-1} \begin{pmatrix} T_1 x_1(t) + T_2 x_2(t)\\ 0 \end{bmatrix} = S^{-1} \begin{bmatrix} T_1 & T_2\\ 0 & 0 \end{bmatrix} \begin{pmatrix} x_1(t)\\ x_2(t) \end{pmatrix} \\ &= Ax(t). \quad \Box \end{aligned}$$

Note that the solution x in Lemma 3 is not unique. The non-uniqueness amounts to the freedom in choosing x_2 in the proof of the lemma.

We are now in the position to state and prove the main result of the present section. This is the differentialalgebraic analog of [30, Thm. 4.2]; note that its proof is also new in the ODE case as it uses Lemma 3.

Theorem 4 (Controlled invariance) Let

 $[E, A, B] \in \Sigma_{l,n,m}$ and $\mathcal{V} \subseteq \mathbb{R}^n$ be a subspace. Then the following statements are equivalent:

- (i) \mathcal{V} is controlled invariant.
- (ii) $A\mathcal{V} \subseteq E\mathcal{V} + \operatorname{im} B.$
- (iii) There exists $F \in \mathbb{R}^{m \times n}$ such that $(A+BF)\mathcal{V} \subseteq E\mathcal{V}$.

PROOF. (i) \Rightarrow (ii): Let $x^0 \in \mathcal{V}$. Then there exists $(x, u) \in \mathfrak{B}_{(2)}$ with $x \in \mathcal{C}^1(\mathbb{R}; \mathbb{R}^n)$, $x(0) = x^0$ and $x(t) \in \mathcal{V}$ for all $t \geq 0$. The latter implies that $\frac{\mathrm{d}}{\mathrm{d}t} Ex(t) \in E\mathcal{V}$ for all t > 0 and continuity gives $\frac{\mathrm{d}}{\mathrm{d}t} Ex(0) \in E\mathcal{V}$, thus $Ax^0 = \frac{\mathrm{d}}{\mathrm{d}t} Ex(0) + Bu(0) \in E\mathcal{V} + \mathrm{im} B$. This implies $A\mathcal{V} \subseteq E\mathcal{V} + \mathrm{im} B$.

(ii) \Rightarrow (iii): Let $V \in \mathbb{R}^{n \times k}$ be such that $\operatorname{rk} V = k$ and in $V = \mathcal{V}$. By assumption there exist $W \in \mathbb{R}^{k \times k}$ and $U \in \mathbb{R}^{m \times k}$ such that AV = EVW + BU. Setting $F := -U(V^{\top}V)^{-1}V^{\top} \in \mathbb{R}^{m \times n}$ gives (A + BF)V =AV - BU = EVW and hence $(A + BF)\mathcal{V} \subseteq E\mathcal{V}$. (iii) \Rightarrow (i): Let $x^0 \in \mathcal{V}$ and $V \in \mathbb{R}^{n \times k}$ be such that

(iii) \Rightarrow (i): Let $x^0 \in \mathcal{V}$ and $V \in \mathbb{R}^{n \times k}$ be such that rk V = k and im $V = \mathcal{V}$. Then there exists $w^0 \in \mathbb{R}^k$ such that $x^0 = Vw^0$. Since $(A + BF)\mathcal{V} \subseteq E\mathcal{V}$ we have that im $(A + BF)V \subseteq$ im EV and by Lemma 3 there exists $w \in \mathcal{C}^{\infty}(\mathbb{R};\mathbb{R}^k)$ such that $w(0) = w^0$ and $EV\dot{w}(t) =$ (A + BF)Vw(t) for all $t \in \mathbb{R}$. Then $x(\cdot) := Vw(\cdot)$ and $u(\cdot) := FVw(\cdot)$ satisfy $(x, u) \in \mathfrak{B}_{(2)}, x(0) = x^0$ and $x(t) = Vw(t) \in \mathcal{V}$ for all $t \ge 0$. \Box

Note that a subspace \mathcal{V} satisfying property (ii) in Theorem 4 is usually called a (A, E, B)-invariant subspace, see [22, 24] and also the survey [6].

3 Differential geometric preliminaries

We use the terminology of smooth manifolds and other differential geometric concepts as in [18]. Apart from that, by a *submanifold* we will always mean an embedded smooth k-submanifold of \mathbb{R}^n for some $k \leq n$. Furthermore, we define the *tangent space* to a submanifold M of \mathbb{R}^n at $x \in M$ as the linear subspace

$$T_x M := \left\{ v \in \mathbb{R}^n \mid \exists I \subseteq \mathbb{R} \text{ open interval } \exists \gamma \in \mathcal{C}^{\infty}(I; M) : \\ \gamma(0) = x \land \dot{\gamma}(0) = v \right\}.$$

The above definition is different from the standard concept of the tangent space, usually introduced as the set of all derivations at x. However, by [18, Lem. 3.11] the derivations can be identified with tangent vectors to smooth curves, which in turn can be embedded into \mathbb{R}^n ; cf. also [12, Thm. 2.2]. Again using smooth curves, we define the boundary ∂M of a submanifold M of \mathbb{R}^n (if it exists) as the set

$$\partial M := \left\{ v \in \mathbb{R}^n \, \middle| \, v \notin M, \; \exists \gamma \in \mathcal{C}^{\infty}((a,b);M), a < b : \\ \lim_{t \to b} \gamma(t) = v \right\}.$$

Let $X \subseteq \mathbb{R}^n$ be an open set (which is a manifold) and $M \subseteq X$ be submanifold. For any $x^0 \in M$ there exist $U \subseteq X$ open with $x^0 \in U$, $W \subseteq \mathbb{R}^k$ open for $k = \dim M \leq n$ and a diffeomorphism $\varphi : M \cap U \to W$. Without loss of generality, W and φ can be chosen such that $0 \in W$ and $\varphi(x^0) = 0$. (U, φ) is a coordinate chart for M at x^0 and φ is a coordinate map. Since φ is a diffeomorphism between submanifolds (in the sense of [18]) and $M \subseteq \mathbb{R}^n$, φ is a diffeomorphism in the sense of classical calculus, i.e., $\varphi \in \mathcal{C}^{\infty}(M \cap U; W)$ and $\varphi^{-1} \in \mathcal{C}^{\infty}(W; M \cap U)$. We call $\psi := \varphi^{-1}$ a parametrization for M at x^0 and record the following well known result for later use.

Lemma 5 (Parametrization and tangent space) Let M be a submanifold of an open set $X \subseteq \mathbb{R}^n$ and let $\psi: W \to M \cap U$ be a parametrization of M at $x^0 \in M$. Then

$$\forall x \in M \cap U : T_x M = \operatorname{im} \psi'(\psi^{-1}(x)).$$

4 Local controlled invariance

In Section 2 controlled invariant subspaces have been characterized for linear descriptor systems (2). In the present section we extend this approach to nonlinear systems (1) by considering a local version of controlled invariance for submanifolds of X (instead of subspaces). In classical textbooks [13,23] on nonlinear ODE systems a locally controlled invariant submanifold M is, loosely speaking, defined by the existence of a feedback u(x)such that the vector field f(x) + g(x)u(x) is locally tangent to M. In the linear case f(x) = Ax, g(x) = B, as considered in Section 2, this is equivalent to the existence of a friend F such that $(A + BF)M \subseteq M$, i.e., property (iii) in Theorem (4). However, the characterization in terms of solution trajectories as in Definition 2 is usually not considered for nonlinear systems.

In the following we extend Definition 2 to nonlinear DAE systems (1) by considering controlled invariance locally on a connected submanifold of X. Then we derive, as a characterization, the existence of a feedback which (in some sense) renders the closed-loop vector field invariant, see Theorem 9. The idea for the proof comes from the consideration of the linear case discussed in Section 2: First we generalize Lemma 3 to nonlinear DAE systems, where additionally some care must be taken of the extendability of solutions, which results in Lemma 8. Then we prove the characterizations of locally controlled invariant submanifolds in Theorem 9.

A special feature of local controlled invariance in the nonlinear case which has to be heeded is that a submanifold may be bounded, for instance it may be an open ball in \mathbb{R}^n . Thus solutions starting in it may reach the boundary in finite time and this cannot be prevented in general. For example, consider the system $\dot{x}(t) = x(t)$ and the submanifold $M = (-1, 1) \subseteq \mathbb{R}$. Choosing u(x) = 0 we find that the vector field f(x) + g(x)u(x) = x is clearly locally tangent to M, as $T_x M = \mathbb{R}$ for all $x \in M$. Hence, M is locally controlled invariant in the sense of the classical definition given in [13, 23]. However, every solution $x(t) = e^t x(0)$ starting at $x(0) \in M \setminus \{0\}$ eventually leaves M in finite time. This has to be accounted for in the definition.

Definition 6 (Controlled invariant submanifolds) Let $[E, f, g, h] \in \sum_{l,n,m,p}^{X}$ and M be a connected submanifold of X such that $0 \in M$. Then M is called locally controlled invariant, if there exists an open neighborhood $U \subseteq X$ of the origin in \mathbb{R}^n such that

$$\forall x^{0} \in M \cap U \exists (x, u, y) \in \mathfrak{B}_{(1)}, x \in \mathcal{C}^{1}(\operatorname{dom} x; \mathbb{R}^{n}) \\ \exists t_{0} \in \operatorname{dom} x, x(t_{0}) = x^{0}: \\ (\forall t \in \operatorname{dom} x, t \geq t_{0}: x(t) \in M \cap U) \lor (\exists \hat{t} \in \operatorname{dom} x \\ \hat{t} > t_{0} \forall t \in [t_{0}, \hat{t}): x(t) \in M \cap U \land x(\hat{t}) \in \partial(M \cap U))$$

In Definition 6 only the existence of a maximal solution (x, u, y) with x starting at x^0 and staying in $M \cap U$ or reaching its boundary is required. For DAE systems, this solution is not unique, not even if we fix x^0 and u. Therefore, in contrast to ODE systems, it is possible to find at the same time solutions staying in $M \cap U$ and solutions leaving $M \cap U$ generated by the same input. Furthermore, possible state constraints restrict the set of locally controlled invariant submanifolds in a natural way (for ODEs, the whole set X is always locally controlled invariant, but not necessarily for DAEs) and possible input constraints make it harder to find a suitable control which establishes evolution in the submanifold. Next, we record a result on smooth constant rank matrix functions as an important lemma. This result is a consequence of the implicit function theorem. It is also mentioned in [23, Exercise 2.4], however there the constant transformation S from the left is missing.

Lemma 7 (Constant rank matrix functions) Let $U \subseteq \mathbb{R}^n$ be open, $x^0 \in U$ and $A \in \mathcal{C}^k(U; \mathbb{R}^{p \times q})$, $k \in \mathbb{N} \cup \{\infty\}$, be such that $\operatorname{rk} A(x) = r$ for all $x \in U$. Then there exists an open neighborhood $V \subseteq U$ of x^0 and $S \in \operatorname{Gl}_p(\mathbb{R}), T \in \mathcal{C}^k(V; \operatorname{Gl}_q(\mathbb{R})), L \in \mathcal{C}^k(V; \mathbb{R}^{(p-r) \times r})$ such that

$$\forall x \in V : SA(x)T(x) = \begin{bmatrix} I_r & 0\\ L(x) & 0 \end{bmatrix}.$$

If moreover $\operatorname{rk} A(x) = p$ for all $x \in U$, then there exists $T \in \mathcal{C}^k(V; \operatorname{Gl}_q(\mathbb{R}))$ such that $A(x)T(x) = [I_r, 0]$ for all $x \in V$.

The proof of the equivalence between controlled invariance and the existence of a desired feedback as explained above relies on the following lemma which guarantees existence and extendability of solutions to a certain class of DAE systems; this is the nonlinear version of Lemma 3.

Lemma 8 (Existence and extension lemma) Let $U \subseteq \mathbb{R}^n$ be open and $E \in \mathcal{C}^{k+1}(U; \mathbb{R}^l)$, $f \in \mathcal{C}^k(U; \mathbb{R}^l)$, $k \in \mathbb{N} \cup \{\infty\}$, be such that, for all $x \in U$, $f(x) \in E'(x)T_xU$ and $\operatorname{rk} E'(x) = r$. Then the following statements are true:

- a) For all $(t_0, x^0) \in \mathbb{R} \times U$, there exists an open interval $I \subseteq \mathbb{R}$, $t_0 \in I$, and $x \in \mathcal{C}^{k+1}(I;U)$ such that $\frac{\mathrm{d}}{\mathrm{d}t}E(x(t)) = f(x(t))$ for all $t \in I$ and $x(t_0) = x^0$.
- $\begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}t}E(x(t)) = f(x(t)) \ \text{for all } t \in I \ \text{and } x(t_0) = x^0. \\ b) \ \text{If } x \in \mathcal{C}^{k+1}((a,b);U) \ \text{is such that } \frac{\mathrm{d}}{\mathrm{d}t}E(x(t)) = f(x(t)) \ \text{for all } t \in (a,b) \ \text{and } x^0 := \lim_{t \to b} x(t) \in U \ \text{exists, then there exists } \varepsilon > 0 \ \text{and } \tilde{x} \in \mathcal{C}^{k+1}((a,b+\varepsilon);U) \\ with \ \frac{\mathrm{d}}{\mathrm{d}t}E(\tilde{x}(t)) = f(\tilde{x}(t)) \ \text{for all } t \in (a,b+\varepsilon) \ \text{and} \\ \tilde{x}|_{(a,b)} = x. \end{array}$

PROOF. a): Lemma 7 applied to the transpose of $E'(\cdot)$ yields existence of an open neighborhood $V \subseteq U$ of x^0 and $S \in \mathbf{Gl}_n(\mathbb{R}), T \in \mathcal{C}^k(V; \mathbf{Gl}_l(\mathbb{R})), L \in \mathcal{C}^k(V; \mathbb{R}^{r \times (n-r)})$ such that

$$\forall x \in V : T(x)E'(x)S = \begin{bmatrix} I_r & L(x) \\ 0 & 0 \end{bmatrix}.$$

Since $f(x) \in E'(x)T_xU \subseteq \operatorname{im} E'(x)$ it follows that $\begin{bmatrix} I_r & L(x) \\ 0 & 0 \end{bmatrix} T(x)f(x) = T(x)f(x)$ for all $x \in V$, and hence with

$$w(\cdot) := S \left[\begin{smallmatrix} I_r & L(\cdot) \\ 0 & 0 \end{smallmatrix} \right] T(\cdot) f(\cdot) \in \mathcal{C}^k(V; \mathbb{R}^n)$$

we have that there exists $f_1 \in \mathcal{C}^k(V; \mathbb{R}^r)$ such that for all $x \in V$

$$T(x)f(x) = T(x)E'(x)w(x)$$

= $\begin{bmatrix} I_r & L(x) \\ 0 & 0 \end{bmatrix} S^{-1}w(x) = \begin{pmatrix} f_1(x) \\ 0 \end{bmatrix}.$

Partition $S^{-1}x^0 = \begin{pmatrix} z_1^0 \\ z_2^0 \end{pmatrix} \in \mathbb{R}^r \times \mathbb{R}^{n-r}$ and let $z_1 \in \mathcal{C}^{k+1}(I;\mathbb{R}^r), I \subseteq \mathbb{R}$ an open interval with $t_0 \in I$, be a

local solution of the ODE

$$\dot{z}_1(t) = f_1\left(S\left({z_1(t)\atop z_2^0}\right)\right), \quad z_1(t_0) = z_1^0$$

which exists since $x^0 \in \text{dom } f_1$ and f_1 is continuously differentiable. Then $x(\cdot) := S\begin{pmatrix} z_1(\cdot) \\ z_2^0 \end{pmatrix} \in \mathcal{C}^{k+1}(I; \mathbb{R}^n)$ satisfies $x(t) \in V \subseteq U$ for all $t \in I$ by construction and, furthermore,

$$\frac{\mathrm{d}}{\mathrm{d}t} E(x(t)) = E'(x(t))\dot{x}(t) = T(x(t))^{-1} \begin{bmatrix} I_r & L(x(t)) \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{z}_1(t) \\ 0 \end{pmatrix}$$

= $T(x(t))^{-1} \begin{pmatrix} f_1(x(t)) \\ 0 \end{pmatrix} = f(x(t))$

for all $t \in I$ as well as $x(t_0) = x^0$.

b): Using the notation from a) and choosing $V \subseteq U$ as a neighborhood of x^0 , we find that there exists h > 0such that $\binom{z_1(\cdot)}{z_2(\cdot)} := S^{-1}x(\cdot) \in \mathcal{C}^{k+1}((b-h,b);S^{-1}V)$ and it can be extended continuously to t = b. Let $z_1^0 := \lim_{t \to b} z_1(t)$. Similar to a) we obtain that, for all $t \in (b-h,b)$,

$$\dot{z}_1(t) = f_1\left(S\left(\begin{array}{c}z_1(t)\\z_2(t)\end{array}\right)\right) - L\left(S\left(\begin{array}{c}z_1(t)\\z_2(t)\end{array}\right)\right)\dot{z}_2(t).$$
(3)

Now, let $\tilde{h} > 0$ and $\tilde{z}_2 \in C^{k+1}((b-h, b+\tilde{h}); \mathbb{R}^{n-r})$ be such that $\tilde{z}_2|_{(b-h,b]} = z_2$ and for all $t \in (b-h, b+\tilde{h})$ there exists $v \in \mathbb{R}^r$ such that $\binom{v}{z_2(t)} \in S^{-1}V$, which is clearly possible. Then there exists a local solution $\tilde{z}_1 \in C^{k+1}((b-\varepsilon, b+\varepsilon); \mathbb{R}^r)$ of the initial value problem (3), $\tilde{z}_1(b) = z_1^0$. Define the continuous function

$$\hat{z}_1: (b-h, b+\varepsilon) \to \mathbb{R}^r, \ t \mapsto \begin{cases} z_1(t), \ t \in (b-h, b] \\ \tilde{z}_1(t), \ t \in (b, b+\varepsilon). \end{cases}$$

Since \hat{z}_1 satisfies (3) on (b-h, b) and on $(b, b+\varepsilon)$ it follows from continuity of $\hat{z}_1, \tilde{z}_2, \frac{d}{dt}\tilde{z}_2, f_1$ and L that $\frac{d}{dt}\hat{z}_1$ is continuous and hence, because \hat{z}_1 is a continuously differentiable solution of (3), $\hat{z}_1 \in C^{k+1}((b-h, b+\varepsilon); \mathbb{R}^r)$. Similar to a), we may now calculate that $\tilde{x}(\cdot) := S\begin{pmatrix} \hat{z}_1(\cdot)\\ \tilde{z}_2(\cdot) \end{pmatrix} \in C^{k+1}((b-h, b-\varepsilon); V)$ satisfies $\frac{d}{dt}E(\tilde{x}(t)) = f(\tilde{x}(t))$ for all $t \in \operatorname{dom} \tilde{x}$ and $\tilde{x}|_{(b-h,b)} = x|_{(b-h,b)}$. Gluing together x and \tilde{x} yields an extension of x on $(a, b+\varepsilon)$ and finishes the proof of the lemma. \Box

We are now in the position to prove the main result of this section. This is the local, nonlinear analog of Theorem 4.

Theorem 9 (Local controlled invariance) Let $[E, f, g, h] \in \Sigma_{l,n,m,p}^X$ be such that $E \in C^2(X; \mathbb{R}^l)$, $f \in C^1(X; \mathbb{R}^l)$ and $g \in C^1(X; \mathbb{R}^{l \times m})$ and let M be a smooth connected submanifold of X such that $0 \in M$. Suppose that there exists an open neighborhood V of $0 \in X$ such that both dim $E'(x)T_xM$ and

 $\dim (E'(x)T_xM + \operatorname{im} g(x))$ are constant for $x \in M \cap V$. Then the following statements are equivalent:

- (i) M is locally controlled invariant.
- (ii) There exists an open neighborhood U of $0 \in X$ such that $f(x) \in E'(x)T_xM + \operatorname{im} g(x)$ for all $x \in M \cap U$.
- (iii) There exists an open neighborhood U of $0 \in X$ and $u \in C^1(M \cap U; \mathbb{R}^m)$ such that $f(x) + g(x)u(x) \in E'(x)T_xM$ for all $x \in M \cap U$.

PROOF. (i) \Rightarrow (ii): Let U be as in Definition 6 and $x^0 \in M \cap U$. Then there exists $(x, u) \in \mathfrak{B}_{(1)}$ with $x \in \mathcal{C}^1(\operatorname{dom} x; \mathbb{R}^n)$ and some $t_0 \in \operatorname{dom} x$ such that $x(t_0) = x^0$ and $x(t) \in M \cap U$ for all $t \in \operatorname{dom} x \cap [t_0, \infty) =: I$. Therefore, $\frac{d}{dt} E(x(t)) = E'(x(t))\dot{x}(t) \in E'(x(t))T_{x(t)}M$ for all $t \in I$ and hence

$$f(x^{0}) = \frac{\mathrm{d}}{\mathrm{d}t} E(x(t)) \big|_{t=0} - g(x^{0})u(0) \\ \in E'(x^{0})T_{x^{0}}M + \mathrm{im}\,g(x^{0}).$$

(ii) \Rightarrow (iii): Let $\psi : G \to M \cap W$ be a parametrization of M at $0 \in M$ and let $U_1 := U \cap V \cap W$, $G_1 := \psi^{-1}(M \cap U_1)$. Then, by Lemma 5 and the assumption we have

$$f(x) \in \operatorname{im} E'(x)\psi'(\psi^{-1}(x)) + \operatorname{im} g(x) = \operatorname{im} K(\psi^{-1}(x))$$

for all $x \in U_1 \cap M$, where $K(\cdot) := [E'(\psi(\cdot))\psi'(\cdot), g(\psi(\cdot))] \in \mathcal{C}^1(G_1; \mathbb{R}^{l \times (q+m)})$ and $q = \dim M$. Since dim $(E'(x)T_xM + \operatorname{im} g(x))$ is constant for $x \in M \cap V$, we have that, for some $r \leq q+m$, rk K(z) = r for all $z \in G_1$. From Lemma 7 it then follows that there exists an open neighborhood $G_2 \subseteq G_1$ of $0 \in \mathbb{R}^q$ and $S \in \operatorname{\mathbf{Gl}}_l(\mathbb{R}), T \in \mathcal{C}^1(V_3; \operatorname{\mathbf{Gl}}_{q+m}(\mathbb{R})), L \in \mathcal{C}^1(V_3; \mathbb{R}^{(l-r) \times r})$ such that

$$\forall z \in G_2 : SK(z)T(z) = \begin{bmatrix} I_r & 0\\ L(z) & 0 \end{bmatrix}.$$

Let the open set U_2 be such that $M \cap U_2 = \psi(G_2)$ and observe that $0 \in U_2$. Now, we find that

$$Sf(x) \in \operatorname{im} SK(\psi^{-1}(x)) = \operatorname{im} \begin{bmatrix} I_r & 0\\ L(\psi^{-1}(x)) & 0 \end{bmatrix} T(\psi^{-1}(x))^{-1}$$

by which $\begin{bmatrix} I_r & 0\\ L(x) & 0 \end{bmatrix} Sf(x) = Sf(x)$ for all $x \in M \cap U_2$. Therefore, with

$$v(\cdot) := T(\psi^{-1}(\cdot)) \begin{bmatrix} I_r & 0\\ L(\psi^{-1}(\cdot)) & 0 \end{bmatrix} Sf(\cdot)$$

$$\in \mathcal{C}^1(M \cap U_2; \mathbb{R}^{q+m}),$$

we obtain that K(x)v(x) = f(x) for all $x \in M \cap U_2$. Partitioning $v(x) = (v_1(x)^{\top}, u(x)^{\top})^{\top}$ with $v_1(x) \in \mathbb{R}^q$ and $u(x) \in \mathbb{R}^m$ for all $x \in M \cap U_2$ yields that

$$\forall x \in M \cap U_2 : f(x) + g(x)u(x) \in E'(x)T_xM$$

with $u \in \mathcal{C}^1(M \cap U_2; \mathbb{R}^m)$. (iii) \Rightarrow (i): Let ψ , U_1 and G_1 be as above. Step 1: We show that for all $x^0 \in M \cap U_1$ there exists a local solution $(x, u, y) \in C^1(I; X \times \mathbb{R}^m \times \mathbb{R}^p)$ of (1) with $x(t) \in M \cap U_1$ for all $t \in I$. Define

$$\begin{split} \dot{E} &: G_1 \to \mathbb{R}^l, \; x \mapsto E(\psi(x)), \\ \tilde{f} &: G_1 \to \mathbb{R}^l, \; x \mapsto f(\psi(x)) + g(\psi(x))u(\psi(x)). \end{split}$$

Since $\psi: G_1 \to M \cap U_1$ is a diffeomorphism, it is immediate that

$$\forall x \in G_1: \ \psi'(x)T_xG_1 = T_{\psi(x)}(M \cap U_1) = T_{\psi(x)}M.$$

By assumption we obtain

$$\forall x \in G_1 : \tilde{f}(x) \in E'(\psi(x))T_{\psi(x)}M$$
$$= E'(\psi(x))\psi'(x)T_xG_1 = \tilde{E}'(x)T_xG_1.$$

Furthermore,

$$\operatorname{rk} \tilde{E}'(x) = \operatorname{rk} E'(\psi(x))\psi'(x)$$

= dim im $E'(\psi(x))\psi'(x) \stackrel{\text{Lem. 5}}{=} \dim E'(\psi(x))T_{\psi(x)}M$

for all $x \in G_1$ and since $\psi(x) \in V$ it follows that \tilde{E}' has constant rank. We may now conclude from Lemma 8 a) that for arbitrary $x^0 \in M \cap U_1$ there exists an open interval $I \subseteq \mathbb{R}, 0 \in I$, and $z \in \mathcal{C}^2(I; G_1)$ such that $z(0) = \psi^{-1}(x^0)$ and $\frac{d}{dt}\tilde{E}(z(t)) = \tilde{f}(z(t))$. Then $x(\cdot) :=$ $\psi(z(\cdot)) \in \mathcal{C}^2(I; U_1)$ satisfies, for all $t \in I$,

$$\frac{\mathrm{d}}{\mathrm{d}t}E(x(t)) = f(x(t)) + g(x(t))u(x(t)), \quad x(0) = x^0,$$

and $x(t) \in \operatorname{im} \psi|_{G_1} = M \cap U_1$ for all $t \in I$ with $t \ge 0$. Step 2: We show that $(x, u \circ x, h \circ x)$ can be extended to a differentiable maximal solution of (1) of the same structure which evolves in $M \cap U_1$ or reaches its boundary in finite time. We prove this by using a standard technique which invokes Zorn's Lemma (cf. for instance [20, Thm. 4.8]): Denote I = (a, b) and define

$$\mathcal{E} := \left\{ (\omega, z) \middle| \begin{array}{l} \omega \ge b, \ J = (a, \omega), \ z \in \mathcal{C}^1(J; X), \\ z(t) \in M \cap U_1 \text{ for all } 0 \le t < \omega, \\ (z, u \circ z, h \circ z) \text{ is a solution of } (1), \\ z|_I = x \end{array} \right\}.$$

Since $(b, x) \in \mathcal{E}$, the set is nonempty. We endow \mathcal{E} with a partial order \leq defined by

$$\begin{aligned} (\omega_1, z_1) \preceq (\omega_2, z_2) \\ \vdots \Longleftrightarrow \quad \omega_1 \leq \omega_2 \ \land \ \forall t \in (a, \omega_1) : \ z_1(t) = z_2(t) \end{aligned}$$

Now let \mathcal{O} be a totally ordered subset of \mathcal{E} . Define $\omega^* := \sup \{ \omega \mid (\omega, z) \in \mathcal{O} \}$ and $z^* \in \mathcal{C}^1((a, \omega^*); X)$ by $z^*|_{(a,\omega)} = z$ for all $(\omega, z) \in \mathcal{O}; (\omega^*, z^*)$ is well-defined

since \mathcal{O} is totally ordered. It is clear that $(\omega^*, z^*) \in \mathcal{E}$ is an upper bound for \mathcal{O} . Zorn's Lemma now implies existence of at least one maximal element of \mathcal{E} . Let (ω, \tilde{x}) denote such an element and let $(\tilde{x}, u \circ \tilde{x}, h \circ \tilde{x})$ be a corresponding solution of (1).

Using the same technique, this solution can be extended to a maximal solution $(\hat{x}, \hat{u}, \hat{y}) \in \mathcal{C}((\tilde{a}, \tilde{\omega}); X \times \mathbb{R}^m \times \mathbb{R}^p)$ of (1) with $\hat{x} \in \mathcal{C}^1((\tilde{a}, \tilde{\omega}); X)$, $\tilde{a} \leq a, \omega \leq \tilde{\omega}$ and $\hat{x}|_{(a,\omega)} = \tilde{x}$. If $\omega = \tilde{\omega}$, then we have found a maximal solution that evolves in $M \cap U_1$, so there is nothing to show. Hence, assume that $\omega < \tilde{\omega}$. Since $\tilde{x}(t) \in M \cap U_1$ for all $t \in (a, \omega)$, $\alpha := \lim_{t \to \omega} \tilde{x}(t)$ exists. If $\alpha \in \partial(M \cap U_1)$, then we have found a maximal solution that reaches the boundary of $M \cap U_1$ in finite time. If $\alpha \notin \partial(M \cap U_1)$, then $\alpha \in M \cap U_1$ by definition of the boundary. Then $\tilde{z}(\cdot) := \psi^{-1}(\tilde{x}(\cdot)) \in \mathcal{C}^1((a,\omega); G_1) \text{ and similar to Step 1}$ we find that $\frac{\mathrm{d}}{\mathrm{d}t}\tilde{E}(\tilde{z}(t)) = \tilde{f}(\tilde{z}(t)) \text{ for all } t \in (a,\omega).$ Since $z^0 = \psi^{-1}(\alpha) = \lim_{t \to \omega} \tilde{z}(t) \in G_1 \text{ exists, it following the states of the$ lows from Lemma 8 b) that there exists $\varepsilon > 0$ and $\hat{z} \in \mathcal{C}^1((a, \omega + \varepsilon); G_1)$ with $\frac{\mathrm{d}}{\mathrm{d}t}\tilde{E}(\hat{z}(t)) = \tilde{f}(\hat{z}(t))$ for all $t \in (a, \omega + \varepsilon)$ and $\hat{z}|_{(a,\omega)} = \tilde{z}$. But then $\check{x}(\cdot) := \psi(\hat{z}(\cdot)) \in$ $\mathcal{C}^1((a, \omega + \varepsilon); M \cap U_1)$ satisfies $(\omega + \varepsilon, \check{x}) \in \mathcal{E}$ as can be easily checked and this contradicts the fact that (ω, \tilde{x}) is a maximal element of \mathcal{E} . Hence, $\alpha \notin \partial(M \cap U_1)$ is not possible. \Box

Remark 10 If, under the assumptions of Theorem 9, additionally E is (k+1)- and f, g, h are k-times continuously differentiable, then the feedback u(x) for the locally controlled invariant submanifold M in (iii) can be chosen to be k-times continuously differentiable, $k \in \mathbb{N}_0 \cup \{\infty\}$. Furthermore, the implication (ii) \Rightarrow (iii) is true without the assumption that dim $E'(x)T_xM$ is constant in a certain region, (iii) \Rightarrow (i) holds true without the assumption that dim $(E'(x)T_xM + \operatorname{im} g(x))$ is constant in a certain region, and the implication (i) \Rightarrow (ii) does not need any of these assumptions.

5 Output zeroing submanifolds

In this section we investigate the concept of output zeroing submanifolds for nonlinear DAEs (1). This is important for the characterization of the zero dynamics of the system.

Definition 11 (Output zeroing submanifold) Let $[E, f, g, h] \in \Sigma_{l,n,m,p}^X$ and M be a connected submanifold of X such that $0 \in M$. Then M is called output zeroing, if M is locally controlled invariant and h(x) = 0 for all $x \in M$.

To illustrate the above definition we consider the following example.

Example 12 Consider the system (1) with $X = \mathbb{R}^2$ and $E(x) = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$, $f(x) = \begin{pmatrix} 0 \\ x_1 \end{pmatrix}$, $g(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{array}{l} h(x) \,=\, x_1 - x_2^2 \ for \ x \,=\, \left(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix} \right). \ It \ is \ clear \ that \ the \ submatrix black manifold \\ M \,:=\, \left\{ \begin{array}{l} (x_1, x_2)^\top \in \mathbb{R}^2 \ \mid x_1 = x_2^2 \end{array} \right\} \ is \ a \ submatrix black submatrix black matrix black ma$ set of $h^{-1}(0)$. For any $x^0 = (x_1^0, x_2^0)^\top \in \tilde{M}$, the choice $x_1(\cdot) \equiv x_1^0, x_2(\cdot) \equiv x_2^0$ and $u(\cdot) \equiv -x_1^0$ yields a solution $((x_1, x_2)^{\top}, u, 0) \in \mathfrak{B}_{(1)}$ which is globally defined, smooth and evolves in M for all times, starting at x^0 . Therefore, M is an output zeroing submanifold. Note that it was necessary to make an appropriate choice of $u(\cdot)$ so that the algebraic constraint of the DAE system is satisfied.

In the following we seek an output zeroing submanifold M that is *locally maximal*, i.e., there exists an open neighborhood U of $0 \in X$ such that any output zeroing submanifold \tilde{M} satisfies $\tilde{M} \cap U \subseteq M \cap U$. To this end, we extend the zero dynamics algorithm developed in [11,14] to nonlinear DAE systems (1), where we stay close to the representation in [13, Sec. 6.1] and [23, Sec. 11.1].

Theorem 13 (Zero dynamics algorithm) Let

 $[E, f, g, h] \in \dot{\Sigma}^X_{l,n,m,p}$ be such that E, f, g and h are smooth. Define $M_0 := h^{-1}(0)$ and for any $k \in \mathbb{N}$ the set M_k recursively as follows: Suppose that for some open neighborhood U_{k-1} of $0 \in X$, $M_{k-1} \cap U_{k-1}$ is a submanifold, define

$$\tilde{M}_{k-1} := \bigcup \left\{ \begin{array}{l} M_{k-1} \cap U \\ is \ a \ submanifold \end{array} \right\},$$

let M_{k-1}^c be the connected component of M_{k-1} which contains $0 \in X$ and define

$$M_k := \left\{ x \in M_{k-1}^c \mid f(x) \in E'(x)T_x M_{k-1}^c + \operatorname{im} g(x) \right\}.$$
(4)

Then we have the following:

(i) The sequence (M_k) is nested, terminates and satisfies

$$\exists k^* \in \mathbb{N}_0 \ \forall j \in \mathbb{N} : \ M_0 \supsetneq M_1 \supsetneq \dots \supsetneq M_{k^*} \\ \supseteq M_{k^*}^c = M_{k^*+j} = M_{k^*+j}^c.$$

- (ii) If $Z^* := M_{k^*}^c$ satisfies, for some open neighborhood U of $0 \in X$, that dim $E'(x)T_xZ^*$ and dim $(E'(x)T_xZ^* + \operatorname{im} g(x))$ are both constant for $x \in Z^* \cap U$, then Z^* is a locally maximal output zeroing submanifold.
- (iii) There exists an open neighborhood U of $0 \in X$ such that for all open $O \subseteq U$ and all solutions $(x, u, y) \in$ $\mathcal{C}(I; X \times \mathbb{R}^m \times \mathbb{R}^p)$ of (1) with $x \in \mathcal{C}^1(I; X)$ and $x(t) \in O$ for all $t \in I$ we have

$$y = 0 \iff x(t) \in Z^* \cap O \quad \forall t \in I.$$

PROOF. Step 1: We show (i). It is clear that for all $k \in \mathbb{N}_0, M_k \supseteq M_k^c \supseteq M_{k+1} \supseteq M_{k+1}^c.$ Step 1a: We show that if, for some $k \in \mathbb{N}$, dim $M_k^c =$

dim M_{k-1}^c , then $M_k^c = M_{k+j} = M_{k+j}^c$ for all $j \in \mathbb{N}$. Let $(U_i, \varphi_i), i \in I$, be an atlas for M_k^c . Since dim $M_k^c =$ dim M_{k-1}^c , for all $i \in I$, (U_i, φ_i) is also a coordinate chart for M_{k-1}^c , and hence U_i is open in M_{k-1}^c . Since the U_i cover M_k^c , it follows that each point in M_k^c has an open neighborhood in M_{k-1}^c , thus M_k^c is open in M_{k-1}^c . This implies that there exists an open subset U of X such that $M_{k-1}^c \cap U = M_k^c$. Then we find that

$$\begin{aligned} x \in M_k \cap U \\ \iff x \in M_{k-1}^c \land f(x) \in E'(x)T_x M_{k-1}^c + \operatorname{im} g(x) \\ \land x \in U \\ \iff x \in M_{k-1}^c \cap U \\ \land f(x) \in E'(x)T_x (M_{k-1}^c \cap U) + \operatorname{im} g(x) \\ \iff x \in M_k^c \land f(x) \in E'(x)T_x M_k^c + \operatorname{im} g(x) \\ \iff x \in M_{k+1}, \end{aligned}$$

by which $M_k \cap U = M_{k+1}$. Therefore, $M_k^c = M_k^c \cap U \subseteq$ $M_k \cap U$ and $M_k^c = M_{k-1}^c \cap U \supseteq M_k \cap U$, thus $M_k^c = M_k \cap U = M_{k+1}$. Hence, M_{k+1} is a connected submanifold containing zero, by which $M_{k+1}^c = M_{k+1} = M_{k+1}$. By the formula (4) it then follows that $M_{k+1}^c = M_{k+2}$ and continuing these arguments finally gives the assertion.

Step 1b: Since each of the M_k^c is a finite dimensional submanifold and they are nested, there exists some $k^* \in \mathbb{N}$ such that dim $M_{k^*}^c = \dim M_{k^*-1}^c$. Then, by Step 1a the sequence (M_k) terminates and the proof of (i) is complete.

Step 2: We show (ii). Since $Z^* = M_{k^*+1}$ it follows from (4) that

$$\forall x \in Z^* \cap U : f(x) \in E'(x)T_xZ^* + \operatorname{im} g(x).$$

Then Theorem 9 implies that Z^* is locally controlled invariant. As $Z^* \subseteq M_0 = h^{-1}(0)$ it follows that Z^* is an output zeroing submanifold. It remains to show that Z^* is locally maximal. To this end, let Z' be any other output zeroing submanifold. By local controlled invariance of Z', there exists an open neighborhood O of $0 \in X$ with the property as in Definition 6. We show that $Z' \cap O \subseteq M_k$ by induction over $k \in \mathbb{N}_0$. Since Z' is output zeroing, it follows that $Z' \subseteq h^{-1}(0) = M_0$. Assume that $Z' \cap O \subseteq M_k$ for some $k \in \mathbb{N}_0$. Then $Z' \cap O \subseteq M_k^c$ since $Z' \cap O$ is a submanifold with $0 \in Z' \cap O$. Now, for $x^0 \in$ $Z' \cap O$ there exists $(x, u, y) \in \mathfrak{B}_{(1)}$ with $x \in \mathcal{C}^1(I; X)$, $I \subseteq \mathbb{R}$ an open interval with $t_0 \in I$, such that $x(t_0) = x^0$ and $x(t) \in Z' \cap O$ for all $t \in I$ with $t \ge t_0$. Therefore, $\dot{x}(0) \in T_{x^0}Z'$ and hence

$$f(x^{0}) = \frac{\mathrm{d}}{\mathrm{d}t} E(x(t)) \Big|_{t=0} - g(x^{0})u(0)$$

$$\in E'(x^{0})T_{x^{0}}Z' + \mathrm{im}\,g(x^{0}) \subseteq E'(x^{0})T_{x^{0}}M_{k}^{c} + \mathrm{im}\,g(x^{0}),$$

thus $x^0 \in M_{k+1}$. We may now deduce that in particular $Z' \cap O \subseteq M_{k^*+1} \cap O = Z^* \cap O$, thus Z^* is locally maximal.

Step 3: We show (iii). Choose the open set U small enough so that $M_k \cap U = M_k^c \cap U$ for all $k = 0, \ldots, k^*$. Now, it is easy to see the implication " \Leftarrow ". For " \Rightarrow ", observe that since $O \subseteq U$ we have

$$M_k \cap O = (M_k \cap U) \cap O = (M_k^c \cap U) \cap O = M_k^c \cap O$$

for all $k = 0, ..., k^*$. Furthermore, we have from (x, u, y)being a solution of (1) with y = 0 and differentiability of x that $f(x(t)) = E'(x(t))\dot{x}(t) + g(x(t))u(t)$ and h(x(t)) = 0 for all $t \in I$. Therefore, $x(t) \in M_0 \cap O =$ $M_0^c \cap O$ and $\dot{x}(t) \in T_{x(t)}M_0^c$ for all $t \in I$, whence $x(t) \in M_1 \cap O = M_1^c \cap O$. Inductively, we obtain that $x(t) \in M_{k^*}^c \cap O = Z^* \cap O$ for all $t \in I$. \Box

Note that in the case $g(\cdot) = 0$ the sequence (M_k) resembles the sequences of submanifolds derived in [26, 27]. If the system (1) is linear, then the sequence (M_k) becomes a modification of the first Wong sequence [8, 34], see [1, Lem. 4.1.2]. Furthermore, Theorem 13 (iii) has been proved in [1, Prop. 4.1.4] in the case of a linear DAE system.

Remark 14 (Zero dynamics algorithm) We consider the algorithm for the construction of the sequence (M_k) in Theorem 13. Note that in the corresponding algorithm for ODE systems as in Isidori's book [13, p. 294] and several other papers on that topic, usually the statement "suppose that, for some neighborhood U_{k-1} of 0, $M_{k-1} \cap \overline{U_{k-1}}$ is a smooth submanifold, let M_{k-1}^c denote the connected component of $M_{k-1} \cap U_{k-1}$ which contains the point 0 [...]" can be found, which defines M_{k-1}^c in a different way than in Theorem 13, but still the claim is that (i) is true. However, this is not quite correct, since the "dimensionality argument" used by Isidori in his proof does not apply to submanifolds; in general his construction of (M_k) does not lead to a terminating sequence, if the open sets U_k are not chosen maximal so that $M_k \cap U_k = \tilde{M}_k$. For instance, for the system $\dot{x}(t) = x(t) + u(t), y(t) = 0$, we have $M_0 = \mathbb{R}$ and the choice $U_k = (-\frac{1}{k+1}, \frac{1}{k+1}), k \ge 0$, leads to $M_{k+1} = U_k$ and therefore to a constant accurate of submanifolds of the and therefore to a nested sequence of submanifolds of the same dimension which does not terminate after finitely many steps. Hence, the intermediate step of defining M_k as in Theorem 13 is indispensable.

That the assumption of constant dimension of $E'(x)T_xZ^*$ and $E'(x)T_xZ^* + \operatorname{im} g(x)$ in Theorem 13 (ii) cannot be omitted in general has been shown in [23, p. 325]. However, it is not necessary for Z^* to be locally maximal output zeroing as the following example illustrates.

Example 15 (Example 12 revisited) Consider

the system $[E, f, g, h] \in \Sigma_{2,2,1,1}^{\mathbb{R}^2}$ from Example 12. The output zeroing submanifold $M = \{ (x_1, x_2)^\top \in \mathbb{R}^2 \mid x_1 = x_2^2 \}$ is locally maximal, since $M = M_0 \supseteq Z^*$, which implies $M \cap U = Z^* \cap U$ for

some open $U \subseteq X$ with $0 \in U$ by Theorem 13. A simple calculation actually yields that $M = M_0 = M_1 = Z^*$. However,

$$\dim E'(x)T_xZ^* = \dim \operatorname{im} \begin{bmatrix} 2x_2 \\ 0 \end{bmatrix}$$

and
$$\dim \left(E'(x)T_xZ^* + \operatorname{im} g(x)\right) = \dim \operatorname{im} \begin{bmatrix} 2x_2 & 0 \\ 0 & 1 \end{bmatrix}$$

are not constant on $Z^* \cap U$ for any open neighborhood U of $0 \in \mathbb{R}^2$, since there is a drop of dimension in x = 0.

Locally autonomous zero dynamics 6

Statement (iii) of Theorem 13 shows that the submanifold Z^* allows to characterize the zero dynamics of (1) locally. However, this does not imply that the zero dynamics are (locally) autonomous, i.e., are the (local) behavior of a dynamical system governed ODEs. This problem is treated in the present section.

Here we use the behavioral approach [25, 33] to dynamical systems and treat them as a set of trajectories; the solution behavior $\mathfrak{B}_{(1)}$ and the zero dynamics $\mathcal{ZD}_{(1)}$ have already been defined as behaviors. In the following we introduce the notion of locally autonomous zero dynamics by generalizing the concept of autonomy introduced for linear behaviors in [25, Sec. 3.2].

Definition 16 (Autonomous zero dynamics) Let $[E, f, g, h] \in \Sigma_{l,n,m,p}^X$. We call the zero dynamics $\mathcal{ZD}_{(1)}$ locally autonomous, if there exists an open neighborhood $U \text{ of } 0 \in X \text{ such that for all } (x_1, u_1, 0), (x_2, u_2, 0) \in$ $\mathcal{ZD}_{(1)}, J := \operatorname{dom} x_1 \cap \operatorname{dom} x_2 \neq \emptyset$, and for all open intervals $I \subseteq J$ we have:

$$(\forall t \in J : x_1(t), x_2(t) \in U \land \binom{x_1}{u_1}|_I = \binom{x_2}{u_2}|_I) \implies \operatorname{dom} x_1 = \operatorname{dom} x_2 \land \binom{x_1}{u_1} = \binom{x_2}{u_2}.$$

Note that locally autonomous zero dynamics carry in a certain sense the structure of a dynamical system. In the following, we derive sufficient conditions for locally autonomous zero dynamics. To this end, we use the submanifold Z^* from Theorem 13, which is a locally maximal output zeroing submanifold if dim $E'(x)T_xZ^*$ and dim $(E'(x)T_xZ^* + \operatorname{im} g(x))$ are constant for $x \in$ $Z^* \cap U$. In order to obtain uniqueness of the feedback u(x) in the characterization of local controlled invariance in Theorem 9 (iii), we need to strengthen the latter condition to dim $(E'(x)T_xZ^* + \operatorname{im} g(x)) = q + m$ for all $x \in Z^* \cap U$, where $q = \dim Z^*$; in fact, for this it is sufficient to assume dim $(E'(0)T_0Z^* + \operatorname{im} g(0)) = q + m$. It is also necessary to consider only those trajectories in the zero dynamics which have a continuously differentiable state trajectory, i.e., under the above assumptions (specified in the following theorem) we prove that

$$\mathcal{ZD}_{(1)}^{\mathcal{C}^1} := \left\{ (x, u, 0) \in \mathcal{ZD}_{(1)} \mid x \in \mathcal{C}^1(\operatorname{dom} x; X) \right\}$$

is locally autonomous, using the same definition as for local autonomy of $\mathcal{ZD}_{(1)}$. This requirement seems unsatisfactory (since it is not necessary in the linear case) and it is an open problem whether it can be omitted.

Theorem 17 (Autonomous zero dynamics) Let $[E, f, g, h] \in \Sigma_{l,n,m,p}^X$ be such that E, f, g and h are smooth and assume, for the sets M_k as in (4), that for some open neighborhood U_k of $0 \in X$, $M_k \cap U_k$ is a submanifold, for all $k \in \mathbb{N}_0$. Use the notation from Theorem 13 and assume that

$$\dim \left(E'(0)T_0Z^* + \operatorname{im} g(0) \right) = q + m, \tag{5}$$

where $q = \dim Z^*$. Then the zero dynamics $\mathcal{ZD}_{(1)}^{\mathcal{C}^1}$ are locally autonomous.

PROOF. Let $\psi : V \to Z^* \cap U$ be a parametrization of Z^* at $0 \in Z^*$. By (5) and the fact that by Lemma 5 $T_x Z^* = \operatorname{im} \psi'(\psi^{-1}(x))$ for all $x \in Z^* \cap U$, it follows that $[E'(0)\psi'(\psi^{-1}(0)), g(0)]$ has full column rank q + m. From continuity we may infer existence of an open neighborhood $U_1 \subseteq U$ of $0 \in X$ such that $\operatorname{rk}[E'(x)\psi'(\psi^{-1}(x)), g(x)] = q + m$ for all $x \in Z^* \cap U_1$. Let $V_1 := \psi^{-1}(Z^* \cap U_1)$ and observe that by full column rank of $[E'(\psi(z))\psi'(z), g(\psi(z))]$ for all $z \in V_1$, Lemma 7 applied to its transpose gives existence of an open neighborhood $V_2 \subseteq V_1$ of $0 \in \mathbb{R}^q$ and $S \in \mathcal{C}^{\infty}(V_2; \operatorname{Gl}_l(\mathbb{R}))$ such that

$$\forall z \in V_2: S(z)[E'(\psi(z))\psi'(z), g(\psi(z))] = \begin{bmatrix} I_q & 0\\ 0 & I_m\\ 0 & 0 \end{bmatrix}.$$

Let the open neighborhood $U_2 \subseteq U_1, 0 \in U_2$, be such that $Z^* \cap U_2 = \psi(V_2)$. Furthermore, let U_3 be an open neighborhood of $0 \in X$ as in Theorem 13 (iii).

Now, define $\tilde{U} := U_2 \cap U_3 \cap U_4$, let $(x_1, u_1, 0), (x_2, u_2, 0) \in \mathcal{ZD}_{(1)}^{C^1}$ be such that $J := \operatorname{dom} x_1 \cap \operatorname{dom} x_2 \neq \emptyset$ and $x_1(t), x_2(t) \in \tilde{U}$ for all $t \in J$, and let $I \subseteq J$ be an open interval such that $\binom{x_1}{u_1}|_I = \binom{x_2}{u_2}|_I$. Let $i \in \{1, 2\}$. Then Theorem 13 (iii) implies that $x_i(t) \in Z^* \cap \tilde{U}$ for all $t \in J$. Therefore, $x_i(t) \in \psi(V_2)$ and thus there exists $z_i(t) \in V_2$ such that $x_i(t) = \psi(z_i(t)), t \in J$. Since x_i is continuously differentiable and ψ has a smooth inverse it follows that $z_i \in \mathcal{C}^1(J; V_2)$ and $\dot{x}_i(t) = \psi'(z_i(t))\dot{z}_i(t)$ for all $t \in J$. Furthermore, by $(x_i, u_i, 0) \in \mathcal{ZD}_{(1)}$ we find that, for all $t \in J$,

$$E'(\psi(z_i(t)))\psi'(z_i(t))\dot{z}_i(t) - g(\psi(z_i(t)))u_i(t) = f(\psi(z_i(t)))$$

and a multiplication from the left by $S(z_i(t))$ yields

$$\begin{pmatrix} \dot{z}_i(t) \\ -u_i(t) \\ 0_{l-q-m} \end{pmatrix} = S(z_i(t))f(\psi(z_i(t))) =: \begin{pmatrix} f_1(z_i(t)) \\ f_2(z_i(t)) \\ f_3(z_i(t)) \end{pmatrix},$$

where $f_1 \in \mathcal{C}^{\infty}(V_2; \mathbb{R}^q), f_2 \in \mathcal{C}^{\infty}(V_2; \mathbb{R}^m), f_3 \in \mathcal{C}^{\infty}(V_2; \mathbb{R}^{l-q-m}).$ Since

$$z_1(t) = \psi^{-1}(x_1(t)) = \psi^{-1}(x_2(t)) = z_2(t), \quad t \in I,$$

it follows from uniqueness of solutions of the ODE $\dot{w}(t) = f_1(w(t))$ that $z_1|_J = z_2|_J$ and hence $x_1|_J = x_2|_J$ and $u_1|_J = u_2|_J$. From maximality of solutions it then follows that dom $x_1 = \text{dom } x_2 = J$. This concludes the proof of the theorem. \Box

In the case of a linear DAE system, (locally) autonomous zero dynamics are equivalent to the assumption (5) in Theorem 17, which is equivalent to the assumptions (A1)–(A3) in [3]. Although it is possible to show that locally autonomous zero dynamics always imply that $\operatorname{rk} g(0) = m$, the converse of the statement of Theorem 17 is not true in general for nonlinear DAE systems, not even in the case where $E'(\cdot)$ is constant. This is illustrated by the following example.

Example 18 (Examples 12, 15 revisited)

Consider the system $[E, f, g, h] \in \Sigma_{2,2,1,1}^{\mathbb{R}^2}$ from Examples 12 and 15. As already calculated, the locally maximal output zeroing submanifold Z^* satisfies

$$\dim (E'(0)T_0Z^* + \operatorname{im} g(0)) = 1 \neq 2 = q + m,$$

and thus (5) is violated. However, the zero dynamics are locally autonomous, since the system equations (1) read $\dot{x}_1(t) = 0$, $x_1(t) = -u(t)$ and $x_1(t) = x_2(t)^2$, by which we may infer that any solution satisfies $x_2 \equiv c$ for some $c \in \mathbb{R}$, $x_1 \equiv c^2$ and $u \equiv -c^2$. Note that the system does not have a solution if the initial value for x_1 is negative.

7 Conclusion

In the present paper we have introduced the concept of local controlled invariance for connected submanifolds as the property of local solution trajectories to evolve in a given submanifold whenever they start in it. Motivated by the observations in the linear case, we have shown that local controlled invariance is equivalent to the existence of a feedback which renders the closed-loop vector field invariant. Furthermore, the zero dynamics algorithm has been extended to DAE systems and the resulting locally maximal output zeroing submanifold has been exploited for a characterization of the zero dynamics. Under some appropriate conditions on the latter submanifold, the zero dynamics are proved to be locally autonomous.

The concept of (locally) autonomous zero dynamics can be used to derive conditions for the application of adaptive controllers to nonlinear DAE systems. For instance, in [3] it is shown for linear descriptor systems, that autonomous zero dynamics and right invertibility of the system are required for the application of funnel control. Further studies have the aim to derive a local zero dynamics form for nonlinear DAE systems (1) under the assumption of locally autonomous zero dynamics; this normal form would provide the basis for the application of adaptive control techniques. In particular, it is our aim to use the results of [4] and show feasibility of funnel control for nonlinear descriptor systems which encompass nonlinear electrical circuits, extending the results for the linear case [7].

Acknowledgements

I am indebted to Achim Ilchmann (TU Ilmenau) for several helpful discussions.

References

- T. Berger. On differential-algebraic control systems. PhD thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Ilmenau, Germany, 2014.
- [2] T. Berger. Controlled invariance for DAEs. Submitted to PAMM (Proc. Appl. Math. Mech.), preprint available from the website of the author, 2015.
- [3] T. Berger. Zero dynamics and funnel control of general linear differential-algebraic systems. ESAIM Control Optim. Calc. Var., 2015. In press, doi: 10.1051/cocv/2015010.
- [4] T. Berger, A. Ilchmann, and T. Reis. Funnel control for nonlinear functional differential-algebraic systems. In *Proceedings of the MTNS 2014*, pages 46–53, Groningen, NL, 2014.
- [5] T. Berger, A. Ilchmann, and F. Wirth. Zero dynamics and stabilization for analytic linear systems. Acta Applicandae Mathematicae, 2014. Online First, doi: 10.1007/s10440-014-9956-2.
- [6] T. Berger and T. Reis. Controllability of linear differentialalgebraic systems - a survey. In A. Ilchmann and T. Reis, editors, *Surveys in Differential-Algebraic Equations I*, Differential-Algebraic Equations Forum, pages 1–61. Springer-Verlag, Berlin-Heidelberg, 2013.
- [7] T. Berger and T. Reis. Zero dynamics and funnel control for linear electrical circuits. J. Franklin Inst., 351(11):5099– 5132, 2014.
- [8] T. Berger and S. Trenn. The quasi-Kronecker form for matrix pencils. SIAM J. Matrix Anal. & Appl., 33(2):336–368, 2012.
- M. Bonilla E. and M. Malabre. On the control of linear systems having internal variations. *Automatica*, 39:1989– 1996, 2003.
- [10] C. I. Byrnes and A. Isidori. A frequency domain philosophy for nonlinear systems, with application to stabilization and to adaptive control. In *Proc. 23rd IEEE Conf. Decis. Control*, volume 1, pages 1569–1573, 1984.
- [11] C. I. Byrnes and A. Isidori. Local stabilization of minimumphase nonlinear systems. Syst. Control Lett., 11(1):9–17, 1988.
- [12] C. J. Isham. Modern Differential Geometry for Physicists. Allied Publishers, 2nd edition, 2002.
- [13] A. Isidori. Nonlinear Control Systems. Communications and Control Engineering Series. Springer-Verlag, Berlin, 3rd edition, 1995.

- [14] A. Isidori and C. H. Moog. On the nonlinear equivalent of the notion of transmission zeros. In Modelling and Adaptive Control, volume 105 of Lecture Notes in Control and Information Sciences, pages 146–158. Springer-Verlag, Berlin-Heidelberg, 1988.
- [15] A. Kumar and P. Daoutidis. Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes, volume 397 of Chapman and Hall/CRC Research Notes in Mathematics. Chapman and Hall, Boca Raton, FL, 1999.
- [16] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich, Switzerland, 2006.
- [17] R. Lamour, R. März, and C. Tischendorf. Differential Algebraic Equations: A Projector Based Analysis, volume 1 of Differential-Algebraic Equations Forum. Springer-Verlag, Heidelberg-Berlin, 2013.
- [18] J. M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2nd edition, 2012.
- [19] X. Liu and S. Čelikovský. Feedback control of affine nonlinear singular control systems. Int. J. Control, 68(4):753–774, 1997.
- [20] H. Logemann and E. P. Ryan. Ordinary Differential Equations. Springer-Verlag, London, 2014.
- [21] D. G. Luenberger. Nonlinear descriptor systems. J. Econ. Dyn. Contr., 1:219–242, 1979.
- [22] M. Malabre. Generalized linear systems: geometric and structural approaches. *Lin. Alg. Appl.*, 122,123,124:591–621, 1989.
- [23] H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control Systems. Springer-Verlag, Berlin-Heidelberg-New York, 1990.
- [24] K. Özçaldiran. A geometric characterization of the reachable and controllable subspaces of descriptor systems. *IEEE Proc. Circuits, Systems and Signal Processing*, 5:37–48, 1986.
- [25] J. W. Polderman and J. C. Willems. Introduction to Mathematical Systems Theory. A Behavioral Approach. Springer-Verlag, New York, 1998.
- [26] P. J. Rabier and W. C. Rheinboldt. A geometric treatment of implicit differential-algebraic equations. J. Diff. Eqns., 109:110–146, 1994.
- [27] S. Reich. On a geometrical interpretation of differentialalgebraic equations. *Circuits Systems Signal Process.*, 9(4):367–382, 1990.
- [28] R. Riaza. Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific Publishing, Basel, 2008.
- [29] B. Simeon. Computational Flexible Multibody Dynamics. Differential-Algebraic Equations Forum. Springer-Verlag, Heidelberg-Berlin, 2013.
- [30] H. L. Trentelman, A. A. Stoorvogel, and M. L. J. Hautus. *Control Theory for Linear Systems*. Communications and Control Engineering. Springer-Verlag, London, 2001.
- [31] W. Wang, X. Liu, and J. Zhao. The zero dynamics of nonlinear singular control systems. In Proc. American Control Conf. 2002, pages 3564–3569, 2002.
- [32] W. Wang, H. Yang, Y. Li, and Y. Zhang. The zero dynamics for a class of nonlinear differential algebraic systems. In Proc. Chinese Control Decis. Conf. 2011, pages 3942–3946, 2011.
- [33] J. C. Willems. System theoretic models for the analysis of physical systems. *Ricerche di Automatica*, 10:71–106, 1979.
- [34] K.-T. Wong. The eigenvalue problem $\lambda Tx + Sx$. J. Diff. Eqns., 16:270–280, 1974.