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Input-constrained funnel control
of nonlinear systems

Thomas Berger

Abstract— We study tracking control for uncertain non-
linear multi-input, multi-output systems modelled by r-th
order functional differential equations (encompassing sys-
tems with arbitrary strict relative degree) in the presence
of input constraints. The objective is to guarantee the
evolution of the tracking error within a performance funnel
with prescribed asymptotic shape (thus achieving desired
transient and asymptotic accuracy objectives), for any suf-
ficiently smooth reference signal. We design a novel funnel
controller which, in order to satisfy the input constraints,
contains a dynamic component which widens the funnel
boundary whenever the input saturation is active. This
design is model-free, of low-complexity and extends earlier
funnel control approaches. We present a simulation where
the controller is compared to these approaches.

Index Terms— adaptive control, functional differential
equations, funnel control, input constraints, nonlinear sys-
tems.

I. INTRODUCTION

WE study funnel control for the class of nonlinear sys-
tems modelled by the r-th order functional differential

equation

y(r)(t) = f
(
d(t), T (y, ẏ, . . . , y(r−1))(t), u(t)

)
,

y|[−h,0] = y0 ∈ Cr−1([−h, 0],Rm),
(1)

with unknown nonlinear function f ∈ C(Rp×Rq ×Rm,Rm)
and unknown operator T which satisfy a sector bound property
(see Section I-B), unknown bounded disturbance d and un-
known initial trajectory y0 in the presence of input constraints

u(t) = sat(v(t)) (2)

with known saturation function sat and control function v
provided by the to-be-designed controller. Since the objective
of funnel control is to achieve a prescribed performance of
the tracking error, that is ∥y(t) − yref(t)∥ < ψ(t) for some
given reference signal yref and funnel function ψ, a conflict of
objectives arises: It is not possible to simultaneously satisfy the
input and output constraints for any given bounded reference
signal.

In this paper, we consider the input constraints to be hard
constraints, being imposed by the physical limitations of the
system. On the other hand, the output constraints are consid-
ered to be soft constraints, which can be weakened whenever
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this is inevitable in order to meet the input constraints. To
achieve this, we propose a novel control design, where the
funnel function ψ(t) is no longer prescribed for all t ≥ 0
as in classical funnel control (see e.g. [1], [2]), but it is
dynamically generated and becomes part of the controller
design. The generation mechanism for ψ(t) is such that it has
a prescribed shape (determined by the parameters in the differ-
ential equation which can be chosen a priori by the designer)
whenever the saturation is not active, that is u(t) = v(t). In
this case, the controller satisfies the input constraints imposed
by (2) and achieves the prescribed performance of the tracking
error; it further exhibits the same controller performance as the
funnel controllers proposed in [1], [3]. When the saturation is
active the performance funnel described by ψ(t) is widened
according to a dynamic equation so that the input constraints
are still met – in this case, it deviates from the prescribed
shape. As soon as the saturation becomes inactive again, the
performance funnel recovers its desired shape exponentially
fast.

The concept of funnel control was developed in the seminal
work [2] (see also the recent survey in [1]) and proved
advantageous in a variety of applications such as control
of industrial servo-systems [4] and underactuated multibody
systems [5], control of electrical circuits [6], control of peak
inspiratory pressure [7], adaptive cruise control [8] and even
the control of infinite-dimensional systems such as a boundary
controlled heat equation [9] and a moving water tank [10].

Funnel control with input saturation was first investigated
in [11] for the specific application of chemical reactor models
and in a more general context in [12], [13] for systems with
relative degree one and in [14] for systems with relative degree
two; this approach has been applied to funnel control with
anti-windup for synchronous machines in [15]. However, in
the aforementioned works it was simply shown that classical
funnel control is feasible for a sufficiently large saturation
level – in the present paper this level can be arbitrarily small.
Another approach to funnel control with guaranteed input
constraints is bang-bang funnel control, where the control
signal switches between only two values. This approach was
introduced in [16] for (undisturbed) nonlinear single-input,
single-output systems with arbitrary relative degree. However,
the bang-bang funnel control design requires various compli-
cated feasibility assumptions and in particular the two control
values must be sufficiently large (typically much larger than
actually needed).

A relative of funnel control is prescribed performance
control, developed in [17], see also the important work [18]
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where the complexity issue of this approach has been solved.
The problem of input constraints has been addressed within
this approach e.g. in [19], where neural networks are used to
approximate the nonlinearities, and in [20], where additionally
a neural observer is incorporated in the controller design. How-
ever, such approximation techniques can drastically increase
the controller complexity and are avoided in the present paper.
In the work [21] no approximations are needed (and hence the
controller is of low complexity), however the proof contains
an error and simulations also show that the proposed controller
is infeasible in general. The problem is that the scaling
parameter κ in the χ-dynamics is chosen as a constant, but
actually it needs to depend on the input. A similar controller
as proposed in the present paper was investigated in the recent
work [22] for a class of nonlinear scalar systems with relative
degree one and in [23] for nonlinear systems with arbitrary
relative degree. However, both works assume the saturation
level to be sufficiently large (although in [23] this is not
explicitly stated, but hidden in the analysis) and, additionally,
in [23] the nonlinearities are assumed to be known.

Funnel control for systems with arbitrary relative degree
was considered in [1], [3]. The novel input-constrained funnel
control design that we propose in this paper extends these
approaches in the following aspects:

• Compared to [3] a much more general class of systems is
allowed here, similar to [1]. However, we do not require
the restrictive high-gain property of the nonlinearity f or
the minimum phase property (characterized by a BIBO
property of the operator T ) imposed in [1]. On the other
hand, we require a sector bound property of f and T .
This condition cannot be dispensed in general, because
of the input saturation, see Remark 1.4 for more details.

• The new controller is able to handle arbitrary input
constraints (2). Even if the saturation is never active, i.e.,
u(t) = v(t) for all t ≥ 0 for any solution of the closed-
loop system, then the new controller is able to guarantee
a prescribed performance of the tracking error as in [1],
[3], with exponentially decaying funnel boundaries.

A. Nomenclature
In the following let N denote the natural numbers, N0 =

N∪{0}, and R≥0 = [0,∞). By ∥x∥ we denote the Euclidean
norm of x ∈ Rn. For some interval I ⊆ R, some V ⊆
Rm and k ∈ N, L∞(I,Rn)

(
L∞
loc(I,Rn)

)
is the Lebesgue

space of measurable, (locally) essentially bounded functions
f : I → Rn, W k,∞(I,Rn) is the Sobolev space of all
functions f : I → Rn with k-th order weak derivative f (k)

and f, f (1), . . . , f (k) ∈ L∞(I,Rn), and Ck(V,Rn) is the set
of k-times continuously differentiable functions f : V → Rn,
with C(V,Rn) := C0(V,Rn).

B. System Class
We consider functional differential equations of the form (1)

incorporating an operator T of the following class.
Definition 1.1: For n, q ∈ N and h ≥ 0 the set Tn,qh denotes

the class of operators T : C([−h,∞),Rn) → L∞
loc(R≥0,Rq)

with the following properties.

(P1) T is causal, i.e., for all ζ, ξ ∈ C([−h,∞),Rn) and all
t ≥ 0,

ζ|[−h,t] = ξ|[−h,t] =⇒ T (ζ)|[0,t] = T (ξ)|[0,t].

(P2) T is locally Lipschitz, i.e., for each t ≥ 0 and all ξ ∈
C([−h, t],Rn), there exist positive constants c0, δ, τ >
0 such that, for all ζ1, ζ2 ∈ C([−h,∞),Rn) with
ζi|[−h,t] = ξ and ∥ζi(s)− ξ(t)∥ < δ for all s ∈ [t, t+ τ ]
and i = 1, 2, we have

ess sup
s∈[t,t+τ ]

∥T (ζ1)(s)− T (ζ2)(s)∥

≤ c0 sup
s∈[t,t+τ ]

∥ζ1(s)− ζ2(s)∥.

(P3) T locally maps bounded functions to bounded functions,
i.e., for all τ > 0 and all c1 > 0, there exists c2 > 0
such that, for all ζ ∈ C([−h, τ ],Rn),

sup
t∈[−h,τ ]

∥ζ(t)∥ ≤ c1 =⇒ ess sup
t∈[0,τ ]

∥T (ζ)(t)∥ ≤ c2.

We note that an element T of the operator class Tn,qh
is usually the solution operator of a (partial) differential
equation describing the internal dynamics of the system.
Beyond that, the formulation embraces a large number of
processes and effects, such as nonlinear delay elements, back-
lash and relay hysteresis, and solution operators of infinite-
dimensional systems, cf. [1], [2], [24]. A practically relevant
example where infinite-dimensional internal dynamics appear
(and are modelled by an operator T ) is a moving water tank
system considered in [10]. The causality property (P1) in
the class Tn,qh is physically-motivated and entirely natural.
Properties (P2) and (P3) are technical conditions required to
guarantee the existence of solutions of (1) under feedback.
We stress that property (P3) is weaker than the respective
property required in [1], [3], where it essentially needs to hold
for “τ = ∞” (and hence corresponds to a minimum phase
property, cf. also Remark 1.6), while for our purposes a local
version suffices.

Next we introduce a sector bound property of f ∈ C(Rp ×
Rq × Rm,Rm) and T ∈ Trm,qh as follows.
(P4) For all y0 ∈ Cr−1([−h, 0],Rm) there exist

M1, . . . ,Mr+1 ∈ C(R≥0 × Rp × Rm,R≥0) such
that for all t ≥ 0, all (d, v) ∈ Rp × Rm and all
ζ1, . . . , ζr ∈ C([−h, t],Rm) with ζi|[−h,0] = (y0)(i−1)

for i = 1, . . . , r we have:

∥f(d, T (ζ1, . . . , ζr)(t), v)∥ ≤M1(t, d, v)

+M2(t, d, v)∥ζ1|[−h,t]∥∞+. . .+Mr+1(t, d, v)∥ζr|[−h,t]∥∞

Note that the functions Mi in (P4) depend on the initial
history y0 in (1).

We are now in the position to define the class of systems
to be considered in this paper. We stress that the high-gain
property of system (1) (see property (P6) below) required in
earlier approaches, see e.g. [1], is not needed here.

Definition 1.2: For m, r ∈ N we say that system (1)
belongs to the system class Nm,r, written (d, f, T ) ∈ Nm,r,
if d ∈ L∞(R≥0,Rp), f ∈ C(Rp×Rq×Rm,Rm), T ∈ Trm,qh

for some p, q ∈ N, h ≥ 0 and (f, T ) satisfy property (P4).
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Definition 1.2 reflects the spirit of funnel control: The con-
trol should work for any system within a class of systems and
the class is only described by a set of structural assumptions.
If additional information about a specific member of this class
is available – which we do not assume in this article – then
the proof of the main result may be tailored to this specific
system, if possible.

Remark 1.3: An important subclass of Nm,r are state-space
systems of the form

ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)),
(3)

where f : Rn → Rn, g : Rn → Rn×m and h : Rn → Rm
are sufficiently smooth and have the following properties.
First of all, the system has relative degree r ∈ N, which
means that (LgL

k
fh)(z) = 0 for all z ∈ Rn and all k =

0, . . . , r − 2 and (LgL
r−1
f h)(z) is invertible for all z ∈

Rn. Here (Lfh)(z) := h′(z)f(z) denotes the Lie derivative
of h along f at z ∈ Rn and we may gradually define
Lkfh := Lf (L

k−1
f h) with L0

fh := h. Furthermore, we set
(Lgh)(z) := [(Lg1h)(z), . . . , (Lgmh)(z)] for z ∈ Rn, where
g1(z), . . . , gm(z) denote the columns of g(z).

If (3) has relative degree r, then, under the additional tech-
nical assumptions of [25, Cor. 5.6], there exists a diffeomor-
phism Φ : Rn → Rn such that the coordinate transformation
(y(t), ẏ(t), . . . , y(r−1)(t), η(t)) = Φ(x(t)) puts the system (3)
into Byrnes-Isidori form

y(r)(t) = p(y(t), ẏ(t), . . . , y(r−1)(t), η(t))

+ γ(y(t), ẏ(t), . . . , y(r−1)(t), η(t))u(t),

η̇(t) = q(y(t), ẏ(t), . . . , y(r−1)(t), η(t)),

(4)

where p : Rn → Rm, q : Rn → Rn−rm and γ = LgL
r−1
f h :

Rn → Rm×m are continuously differentiable. In order to
satisfy (P4) we assume that p and γ are globally Lipschitz
continuous. The second of equations (4) is called the internal
dynamics of (3) and we assume that it satisfies the condition

∃M ∈C(R≥0,R) ∀ t≥0 ∀ η0∈Rn−rm ∀ ζ∈L∞
loc([0, t],Rrm) :

∥η(t; η0, ζ)∥ ≤M(t)
(
1 + ∥η0∥+ ∥ζ|[0,t]∥∞

)
,

where η(·; η0, ζ) denotes the unique solution of η̇(t) =
q(ζ(t), η(t)) with initial condition η(0) = η0. Note that under
this condition the maximal solution η(·; η0, ζ) can indeed be
extended to a global solution. It is now straightforward to
check that with the operator

Tη0 : ζ 7→
(

ζ
η(·; η0, ζ)

)
and the function f(d, z, u) = p(z) + γ(z)u we have that
(0, f, Tη0) ∈ Nm,r. Therefore, system (4) belongs to this
system class.

In contrast to earlier approaches as in [1], [3], in this work
we consider an additional function sat in (1), which represents
an input saturation. If sat = idRm , then the results from [1], [3]
could be applied. For this reason, we consider a proper input
saturation, which has the following, quite general, property.

(P5) sat∈C(Rm,Rm) is bounded and there exists θ > 0 such
that for all v ∈ Rm with ∥v∥ ≤ θ we have sat(v) = v.

We stress that the input saturation function sat must be
known to the controller and it can be viewed as a design
parameter, chosen according to the specific requirements of
the application at hand. The above property (P5) allows for a
large variety of possible saturations, apart from the standard
saturation sati(v) = vi for |vi| ≤M and sati(v) = sgn(vi)M
for |vi| > M for all i = 1, . . . ,m.

Remark 1.4: We like to expound, why the sector bound
property (P4) cannot be dispensed in the presence of (arbitrary)
input constraints in general. To this end, consider the following
prototype system, where such a linear bound is not satisfied:

ẏ(t) = y(t)2 + sat(v(t)), y(0) = y0 ∈ R. (5)

If sat = idR, then the classical funnel controller v(t) = (1−
w(t)2)−1 with w(t) = e(t)

ψ(t) and e(t) = y(t)−yref(t), for some
reference signal yref and funnel boundary ψ with appropriate
properties, achieves that the closed-loop differential equation
has a global solution – see [1] for more details. If

sat(v) =

{
v, |v| ≤M,

sgn(v)M, |v| > M,
(6)

where M > 0 is some constant, then the application of the
above controller (or any other controller) leads to a closed-
loop differential equation, which always has a solution with
finite escape time, when the saturation level M is too small.
To see this, consider y0 = 1 and let us assume that the
saturation is active with negative sign (a positive control value
would only lead to an earlier blow-up), i.e., sat(v(t)) = −M .
Then ẏ(t) ≥ y(t)2−M , from which it follows that y(t) ≥ z(t)
for all t ∈ [0, ω) with

z(t) =
√
M

√
M + 1 + (1−

√
M)e2

√
Mt

√
M + 1− (1−

√
M)e2

√
Mt

.

It is straightforward to see that for M ≥ 1 we have that z(t) is
defined for all t ≥ 0, thus ω = ∞ and hence a global solution
exists in this case. However, if M < 1, then the denominator
of z(t) has a zero at

ω =
1

2
√
M

ln
(

1+
√
M

1−
√
M

)
,

and hence the solution exhibits a blow-up on the finite interval
[0, ω) in this case. It is clear that, since the maximal possible
saturation is already active, no control law would be able to
prevent this blow-up; therefore, property (P4) is mandatory.
In fact, blow-up is a typical phenomenon also in higher-
dimensional ordinary differential equations of the form ẋ(t) =
p(x(t)), when p is a polynomial which (component-wise)
involves terms of degree larger than one. The rate of blow-
up can even be given in terms of the degree L = deg p:

∥x(t)∥ ∼ c(T − t)
− 1
L−1 for t→ T ; see [26, Thm. 4.1].

For purposes of comparison we also introduce the system
class Nm,r

BIR from [1], where “BIR” stands for the initials of
the surnames of the authors of that article. To this end, we
recall the high-gain property from [1, Def. 1.2].
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(P6) A function f ∈ C(Rp × Rq × Rm,Rm) satisfies the
high-gain property, if there exists ν∗ ∈ (0, 1) such that
for all compact Kp ⊂ Rp and Kq ⊂ Rq the function

χ : R→R, s 7→min

w⊤f(δ, z,−sw)

∣∣∣∣∣∣
(δ, z) ∈ Kp ×Kq,
w ∈ Rm,
ν∗ ≤ ∥w∥ ≤ 1


satisfies sups∈R χ(s) = ∞.

With this we may introduce Nm,r
BIR as follows.

Definition 1.5: For m, r ∈ N we say that system (1)
belongs to the system class Nm,r

BIR , written (d, f, T ) ∈ Nm,r
BIR ,

if d ∈ L∞(R≥0,Rp), f ∈ C(Rp×Rq×Rm,Rm), T ∈ Trm,qh

for some p, q ∈ N, h ≥ 0 and T satisfies (P3) for τ = ∞
and f satisfies property (P6).

We stress that in Nm,r
BIR property (P3) needs to hold with

“τ = ∞” and hence becomes a bounded-input, bounded-
output stability property. For linear systems this property typ-
ically corresponds to the minimum phase property as outlined
in the following remark.

Remark 1.6: As a consequence of Remark 1.3, the system
class Nm,r in particular contains all linear systems with strict
relative degree r, which can be put into Byrnes-Isidori form
(cf. [27], [28])

y(r)(t) =

r∑
i=1

Riy
(i−1)(t) + Sη(t) + Γu(t),

η̇(t) = Qη(t) + Py(t),

(7)

where Ri,Γ ∈ Rm×m, i = 1, . . . , r, S, P⊤ ∈ Rm×q and
Q ∈ Rq×q , with initial conditions y(i−1)(0) = y0i ∈ Rm,
i = 1, . . . , r, and η(0) = η0 ∈ Rq . It is straightforward to
check that with the operator

Tη0 : (ζ1, . . . , ζr) 7→
r∑
i=1

Riζi+Se
Q·η0+S

∫ ·

0

eQ(·−s)Pζ1(s)ds

and the function f(d, z, u) = z+Γu we have that (0, f, Tη0) ∈
Nm,r. Note that if all eigenvalues of Q have negative real part
(which means that system (7) is minimum phase) and Γ is
sign-definite (i.e., Γ+Γ⊤ is either positive or negative definite),
then we even have (0, f, Tη0) ∈ Nm,r

BIR , cf. [1, Sec. 2.1]. Let
us emphasize that the latter two requirements are not needed
for the class Nm,r: any Q ∈ Rq×q and any Γ ∈ Rm×m

(including Γ = 0) are allowed within this class. Therefore, the
class of linear systems amenable to funnel control by the new
controller design presented in this paper is much larger than
the class of linear systems considered in earlier works.

Remark 1.6 illustrates that the high-gain property (P6)
(typically associated to the concept of “control direction”)
required in [1] for funnel control is not demanded in the
system class Nm,r. It is not even required that f depends
on u; however, this would typically mean that the tracking
error grows unbounded.

C. Control objective

The objective is to design a dynamic output derivative
feedback strategy such that for any reference signal yref ∈

Cr(R≥0,Rm) the tracking error e = y − yref evolves within
a performance funnel

Fψ := { (t, e) ∈ R≥0 × Rm | ∥e∥ < ψ(t)} ,

see Fig. 1, which has a desired shape of the form ψdes(t) =
ae−bt + c whenever the saturation in (2) is not active, i.e.,
sat(v(t)) = v(t), and the actual funnel boundary ψ(t) is
allowed to deviate from this shape and become larger when
the saturation is active. The specific value of ψ(t) should be
determined by a dynamic part of the control law.

t

•

c

(0, e(0)) ψ(t)

ψdes(t)

Fig. 1: Error evolution in a funnel Fψ with boundary ψ(t)
and desired shape ψdes(t).

It is usually the hallmark of funnel control that the funnel
boundary is prescribed a priori and can be freely chosen by
the designer, see e.g. [1], [2], [3]. Here we do not allow for
an arbitrary funnel boundary in order to be able to change its
shape by means of a differential equation. However, we allow
to prescribe the “asymptotic shape” ψdes(t) = ae−bt+c under
inactive saturation, that is the positive parameters a, b, c can
be chosen as desired.

We also like to note that we do not assume that the reference
signal yref or any of its derivatives is bounded – this is also
different from classical approaches as mentioned above. In
the case of an unbounded reference signal the controller will
become saturated at some time and then force the funnel
boundary to grow unbounded, thus still guaranteeing the
existence of a global solution – although with a very bad
tracking performance.

D. Organization of the present paper

The paper is structured as follows. In Section II, we in-
troduce a novel funnel controller for systems (1) under input
constraints (2). Feasibility of the control is proved in the main
result in Section III: existence of a global solution for systems
of class Nm,r is shown in Theorem 3.1 and boundedness
of this solution (together with convergence of the funnel
functions) for sufficiently large saturation level and systems
of class Nm,r

BIR is shown in Theorem 3.2. The performance
of the funnel controller is compared to that from [1] by an
illustrative example in Section IV. The paper concludes with
Section V.

II. FUNNEL CONTROL STRUCTURE

We introduce the following input-constrained funnel con-
troller for systems (1), (2).
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e1(t) = e(t) = y(t)− yref(t),

ei+1(t) = e(i)(t) + ki(t)ei(t), i = 1, . . . , r − 1,

ki(t) =

(
1− ∥ei(t)∥2

ψi(t)2

)−1

, i = 1, . . . , r,

ψ̇i(t) = piψi+1(t)− αiψi(t) + βi − pi
βi+1

αi+1
,

ψi(0) = ψ0
i , i = 1, . . . , r − 1,

ψ̇r(t) = −αrψr(t) + βr + ψr(t)
κ(v(t))

∥er(t)∥
,

ψr(0) = ψ0
r ,

κ(v(t)) = ∥v(t)− sat(v(t))∥,
v(t) = N

(
kr(t)

)
er(t)

(8)

with the controller design parameters

α1>α2>. . .>αr>0, pi>1 for i = 1, . . . , r−1,

βi>0, ψ0
i >

βi
αi

for i = 1, . . . , r,

N ∈ C(R≥0,R) a surjection.

(9)

Furthermore, with reference to Fig. 2, in (8) we assume
that the instantaneous values of the tracking error e(t) and
its derivatives ė(t), . . . , e(r−1)(t) are available for feedback,
thus (8) is a dynamic error derivative feedback controller.

The first three equations of the controller (8) are basically
a combination of the two designs from [1], [3], appended by
the dynamics for the funnel boundaries in the subsequent three
equations. This contrasts classical funnel control approaches,
where the performance funnels are always prescribed a priori.
Here, they are determined by a dynamical system, which is
influenced by the input and an auxiliary error variable. Since
the funnel functions are then used to determine these quantities
in turn, a feedback structure arises (depicted in Fig. 2), for
which we seek to prove existence of global solutions.

The surjective function N in (9) serves the purpose of
accommodating for possibly unknown control directions. With
its help the controller is able to “probe” for the appropriate
sign of the control signal. A typical choice for N would be
N(s) = s sin s. For more details see also [1, Rem. 1.8].

The distinguishing feature of the novel control design (8)
is that it is feasible under arbitrary input constraints (2).
The controller (8) always guarantees the evolution of the
tracking error within a performance funnel, whose boundary is
determined by a dynamic part of the controller as mentioned
above. The term κ(v(t)) in the differential equation for ψr
determines whether the saturation is active (i.e., κ(v(t)) ̸= 0)
or inactive (i.e., κ(v(t)) = 0). If the saturation is inactive, then
ψr(t) =

(
ψ0
r −

βr

αr

)
e−αrt + βr

αr
; if the saturation is active,

then κ(v(t)) provides a positive contribution to ψ̇r and hence
widens the funnel – the larger the deviation between v(t) and
sat(v(t)), the larger the widening effect. If ψr thus deviates
from it’s desired shape it will contribute a larger positive part
to ψ̇r−1 and hence force the funnel boundary ψr−1 to widen.
This effect propagates through the dynamics of the funnel

boundaries back to ψ1. After a period of active saturation,
the boundaries recover to their prescribed shape exponentially
fast.

We emphasize that the controller (8) introduces several
possible singularities in the closed-loop differential equation,
via the gain functions ki(t) (when ∥ei(t)∥ = ψi(t)) and via
the last term in the expression for ψ̇r(t) (when ∥er(t)∥ = 0).
In order to prove the existence of a global solution, it must
be ensured that ∥ei(t)∥ ≤ εiψi(t) for some εi ∈ (0, 1) and
that κ(v(t)) = 0 whenever ∥er(t)∥ < δ for some δ > 0.
Furthermore, compared to classical funnel control approaches
as in [1], [3], the funnel boundaries ψi are not prescribed here,
and in particular it is not known a priori that they are bounded.
Hence, solutions may potentially get unbounded in finite time,
i.e., exhibit a blow-up. Therefore, the feasibility proof of the
control design is a highly nontrivial task.

III. FUNNEL CONTROL – MAIN RESULTS

In this section we show that the application of the funnel
controller (8) to a system (1) under input constraints (2) leads
to a closed-loop initial-value problem which has a global
solution. By a solution of (1), (2), (8) on [−h, ω) we mean
a tuple of functions (y, ψ1, . . . , ψr) ∈ Cr−1([−h, ω),Rm) ×
C([−h, ω),R)r with ω ∈ (0,∞], which satisfies y|[−h,0] = y0,
ψi(0) = ψ0

i for all i = 1, . . . , r and (y(r−1), ψ1, . . . , ψr)|[0,ω)
is locally absolutely continuous and satisfies the differential
equations in (1) and (8) with u defined by (2), (8) for almost
all t ∈ [0, ω); (y, ψ1, . . . , ψr) is called maximal, if it has no
right extension that is also a solution.

Next we present the main result of the present paper.
Theorem 3.1: Consider a system (1) with (d, f, T ) ∈ Nm,r

for m, r ∈ N, under input saturation (2) with saturation
function sat that satisfies (P5). Let y0 ∈ Cr−1([−h, 0],Rm)
be the initial trajectory, yref ∈ Cr(R≥0,Rm) the reference
signal and choose funnel control design parameters as in (9).
Set e = y − yref and assume that the instantaneous values
e(t), ė(t), . . . , e(r−1)(t) are available for feedback and satisfy,
using the variables e1, . . . , er defined in (8), that

∀ i = 1, . . . , r : ∥ei(0)∥ < ψ0
i . (10)

Then the funnel controller (8) applied to (1), (2) yields an
initial-value problem which has a solution, every solution
can be maximally extended and every maximal solution
(y, ψ1, . . . , ψr) : [−h, ω) → Rm+r, ω ∈ (0,∞], has the
following properties:

(i) global existence: ω = ∞;
(ii) the functions e1, . . . , er evolve in their respective per-

formance funnels in the sense:

∀ i = 1, . . . , r − 1 ∃ εi ∈ (0, 1) ∀ t ≥ 0 :

∥ei(t)∥ ≤ εiψi(t) and ∥er(t)∥ < ψr(t);

(iii) if the saturation is not active on some interval [t0, t1) ⊆
R≥0 with t1 ∈ (t0,∞], i.e., v(t) = sat(v(t)) for all
t ∈ [t0, t1), then the performance funnels exponentially
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y(r)(t) = f
(
d(t), T (y, ẏ, . . . , y(r−1))(t), u(t)

)
System (d, f, T ) ∈ Nm,r

(
y, . . . , y(r−1)

)

e1(t) = e(t) = y(t)− yref(t)

ei+1(t) = e(i)(t) + ki(t)ei(t)

ψ̇i(t) = piψi+1(t)− αiψi(t) + βi − pi
βi+1

αi+1
,

ψ̇r(t) = −αrψr(t) + βr + ψr(t)
κ(v(t))
∥er(t)∥

v(t) = N
(
kr(t)

)
er(t)

u(t) = sat(v(t))

v

er
(
yref , . . . , y

(r−1)
ref

)v

u

er

ψ1, . . . , ψr

Funnel controller (8)

Fig. 2: Construction of the funnel controller (8) and its internal feedback loops.

recover to their prescribed shape:

∀ i = 1, . . . , r ∀ t ∈ [t0, t1) :

ψi(t) ≤
βi
αi

+

r∑
j=i

µj(t0)νije
−αj(t−t0),

where µi(t0) := ψi(t0) − βi

αi
, νii := 1 and νij :=∏j−1

k=i
pk

αk−αj
for i = 1, . . . , r and j = i+ 1, . . . , r.

The proof is relegated to Appendix I.
We stress that although Theorem 3.1 provides the existence

of a global solution of the closed-loop system, it cannot be
concluded that the funnel boundaries ψ1, . . . , ψr are bounded
in general. However, statement (iii) provides that a posteriori
the funnel boundaries recover to their prescribed shape on any
interval where the saturation is not active; in particular, if t1 =
∞, then they are bounded.

Nevertheless, it is possible to show global boundedness of
ψ1, . . . , ψr for sufficiently large saturation level, i.e., sat(v) =
v for all v ∈ Rm with ∥v∥ ≤M and M > 0 sufficiently large.
For this we require additional assumptions, i.e., a bounded
reference signal with bounded derivatives and the system class
Nm,r

BIR from Definition 1.5.
Theorem 3.2: Consider a system (1) with (d, f, T ) ∈ Nm,r

BIR

for m, r ∈ N. Choose funnel control design parameters as
in (9), ε ∈ (0, 1) and K > 0. Then there exists M > 0
(depending on ε and K) such that

• for all saturation functions sat which satisfy (P5) with
θ =M ,

• for all y0 ∈ Cr−1([−h, 0],Rm) with ∥ei(0)∥ ≤ εψ0
i ,

i = 1, . . . , r, and
• for all yref ∈ W r,∞(R≥0,Rm) with ∥y(i)ref∥∞ ≤ K, i =

0, . . . , r,

there exists a solution (y, ψ1, . . . , ψr) : [−h, ω) → Rm+r,
ω ∈ (0,∞], of (1), (2), (8) which can be maximally extended
to a global solution (i.e., ω = ∞) that satisfies

(i) y ∈W r,∞([−h,∞),Rm) and, for all i = 1, . . . , r, ψi ∈

L∞(R≥0,R) with

lim sup
t→∞

ψi(t) ≤
βi
αi

;

(ii) ki ∈ L∞(R≥0,R) for i = 1, . . . , r and v ∈
L∞(R≥0,Rm) with ∥v(t)∥ < M for all t ≥ 0, for the
quantities defined in (8);

(iii) in particular, for i = 1, . . . , r there exists εi ∈ (0, 1)
such that ∥ei(t)∥ ≤ εiψi(t) for all t ≥ 0.

The proof is relegated to Appendix II.
We like to point out that by statement (ii) of Theorem 3.2 the

saturation is never active and hence the funnel boundaries do
not adjust themselves, but follow their desired shape. Also note
that the proof of Theorem 3.2 is constructive, the saturation
level M (depending on ε and K) is provided explicitly. We
further stress that Theorem 3.2 provides an explicit relation
between the initial values and the saturation level M . The
initial values y(0), ẏ(0), . . . , y(r−1)(0) are essentially confined
to a bounded set, the size of which is quantified by ε ∈ (0, 1),
for which the relations ∥ei(0)∥ ≤ εψ0

i hold for i = 1, . . . , r.
If ε is made smaller, allowing only a smaller set of initial
values, then it is also possible to choose a smaller saturation
level M in general (although M ≥ M∗ > 0 even for ε → 0
and K → 0, where M∗ depends on the system and controller
parameters).

With the same proof technique as in Appendix II it is
possible to show that there exists an invariant set for the
coordinates ei(t)/ψi(t) within which the saturation is never
active: There are ε1, . . . , εr such that whenever ∥ei(0)∥ ≤
εiψi(0) we have ∥ei(t)∥ ≤ εiψi(t) and ∥v(t)∥ ≤ M for all
t ≥ 0.

Corollary 3.3: Consider a system (1) with (d, f, T ) ∈
Nm,r

BIR for m, r ∈ N. Choose funnel control design parameters
as in (9). Then for all K > 0 there exist ε̂1, . . . , ε̂r ∈ (0, 1)
such that for all εi ∈ [ε̂i, 1), i = 1, . . . , r there exists M > 0
such that

• for all saturation functions sat which satisfy (P5) with
θ =M ,
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• for all y0 ∈ Cr−1([−h, 0],Rm) with ∥ei(0)∥ ≤ εiψ
0
i ,

i = 1, . . . , r, and
• for all yref ∈ W r,∞(R≥0,Rm) with ∥y(i)ref∥∞ ≤ K, i =

0, . . . , r,
there exists a solution (y, ψ1, . . . , ψr) : [−h, ω) → Rm+r,
ω ∈ (0,∞], of (1), (2), (8) which can be maximally extended
to a global solution (i.e., ω = ∞) that satisfies (i) and (ii) as
in Theorem 3.2 and additionally we have
(iii) ∥ei(t)∥ ≤ εiψi(t) for all t ≥ 0 and all i = 1, . . . , r.

The proof is relegated to Appendix III.
The purpose of Corollary 3.3 is to obtain recursive feasibil-

ity for the extension of Funnel MPC to higher relative degree
systems and is used for the proof of [29, Thm. 2.3].

IV. SIMULATIONS

We compare the controller (8) to the controllers presented
in [1], [3] and, to this end, consider the mass-on-car system
example presented therein, which is from [30]. As illustrated
in Fig. 3, the mass m2 (in kg) moves on a ramp inclined
by the angle ϑ ∈ [0, π2 ) (in rad) and is mounted on a car
with mass m1 (in kg). We assume that the control input is the
force u = F (in N) acting on the car. The equations of motion
for the system are given by[
m1 +m2 m2 cosϑ
m2 cosϑ m2

](
z̈(t)
s̈(t)

)
+

(
0

ks(t)+dṡ(t)

)
=

(
u(t)
0

)
,

(11)
where t is the current time (in s), z (in m) is the horizontal
car position and s (in m) the relative position of the mass on
the ramp. The constants k > 0 (in N/m), d > 0 (in Ns/m)
are the coefficients of the spring and damper, resp. The output
y (in m) is the horizontal position of the mass on the ramp,

y(t) = z(t) + s(t) cosϑ.

It is easy to see that (11) with output y can be transformed into

F

y

a=const

s

Fig. 3: Mass-on-car system.

the form (7) and hence, as outlined in Remark 1.6, belongs to
the class N 1,r with r = 2 if ϑ ∈ (0, π2 ), and r = 3 if ϑ = 0.
As derived in [1, Sec. 3.1], it even belongs to N 1,r ∩ N 1,r

BIR

in both cases.
For the simulation, we choose the parameters m1 = 4,

m2 = 1, k = 2, d = 1, the initial values z(0) = s(0) = 0,
ż(0) = ṡ(0) = 0 and the reference signal yref : t 7→ cos t. All
simulations are MATLAB generated (solver: ode45, rel. tol.:

10−10, abs. tol.: 10−8) and over the time interval [0, 15]. We
consider two cases.

Case 1: ϑ = π
4 . Then system (11) belongs to N 1,2. For

the controller (8) we choose the controller design parameters
from (9) as

α1 = 1.5, α2 = 0.9 · α1, β1 = 0.15, β2 = 0.5 · α2,

p1 = 1.1, ψ0
1 = 4.1, ψ0

2 = 2

and N(s) = −s2 cos s. The saturation function in (2) is chosen
as in (6) with M = 10.

The controller from [1] takes the form

w(t) = φ(t)ė(t) + α
(
φ(t)2e(t)2

)
φ(t)e(t),

u(t) = N
(
α
(
w(t)2

))
w(t),

(12)

where α(s) = 1/(1 − s) for s ∈ [0, 1). We choose φ(t) =
(4e−3t/2+0.1)−1 for t ≥ 0, so that d

dt

(
1/φ(t)

)
= −α1/φ(t)+

β1.

0 5 10 15
-1

-0.5

0

0.5

1

Fig. 4a: Performance funnels and tracking errors

0 5 10 15
-40

-30

-20

-10

0

10

Fig. 4b: Input functions

Fig. 4: Simulation, under controllers (8) and (12), of sys-
tem (11) with ϑ = π

4 .

The application of the controllers (8) and (12) to (11) is
depicted in Fig. 4. The corresponding tracking errors and fun-
nel boundaries are shown in Fig. 4a, while Fig. 4b shows the
respective input functions. It is evident that the performance
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of both controllers is comparable (if not identical) whenever
the saturation is not active. When the saturation is active the
tracking error generated by the new controller (8) leaves the
performance funnel F1/φ, but stays within the widened funnel
Fψ1

. It can be seen that the enforced widening of the funnel
is not very significant, but the saturated control signal of (8)
avoids the undesirable peak of (12) (which is a common phe-
nomenon in earlier funnel control approaches). Furthermore, it
is important to note that after the saturation was last active on
(approximately) [3, 3.8] the funnel boundary ψ1 exponentially
converges to 1/φ, thus retaining the tracking error within the
desired region again.

Case 2: ϑ = 0. Then system (11) belongs to N 1,3. For the
controller (8) we choose the parameters from (9) as

α1 = 1.5, α2 = 0.9 · α1, α3 = 0.9 · α2,

β1 = 0.1, β2 = 0.5 · α2, β3 = 0.5 · α3

p1 = p2 = 1.1, ψ0
1 = 3.1, ψ0

2 = ψ0
3 = 1.6

and again N(s) = −s2 cos s. The saturation function is chosen
as in (6) with M = 8.

The funnel controller from [1] with r = 3 takes the form

w(t) = φ(t)ë(t) + γ
(
φ(t)ė(t) + γ

(
φ(t)e(t)

))
,

u(t) = N
(
α
(
w(t)2

))
w(t),

(13)

where γ(s) = α(s2)s for s ∈ (−1, 1), and we choose
φ(t) = (3e−t+0.1)−1 for t ≥ 0 and compare the controller (8)
with (13).

The simulation depicted in Fig. 5 shows that the con-
troller (13) generates unnecessarily large input signals. In
contrast, the new controller (8) is able to satisfy the input
constraints and achieves a comparable performance of the
tracking error.

V. CONCLUSION

In the present paper we proposed a new funnel controller
for a large class of nonlinear systems modelled by functional
differential equations in the presence of input constraints. The
funnel control law incorporates a novel dynamic adaptation
scheme for the funnel boundaries, the asymptotic shape of
which can be prescribed by the choice of controller design
parameters, but which are widened according to the dynamics
whenever the input saturation is active. We have rigorously
proved that this controller achieves the control objective and,
for the system class from the recent work [1], all involved
signals are bounded for sufficiently large saturation level. The
new controller extends the earlier funnel controller design
from [1] and shows a favorable performance in the presence
of input constraints in comparative simulations.

Simulations have also shown that the controller performance
strongly depends on the choice of the design parameters (9).
In particular, the surjection N seems to influence the results
a lot. Further research should reveal which choices should be
preferred over others.

0 5 10 15 20
-1

-0.5

0

0.5

1

Fig. 5a: Performance funnels and tracking errors

0 5 10 15 20
-25

-20

-15

-10

-5

0

5

10

$u
$ 

/ N

Fig. 5b: Input functions

Fig. 5: Simulation, under controllers (8) and (13), of sys-
tem (11) with ϑ = 0.

APPENDIX I
PROOF OF THEOREM 3.1

The proof consists of several steps.
Step 1: We recast the closed-loop system in the form of an

initial-value problem to which a well-known existence theory
applies. First define

D1 := { (η, ψ) ∈ Rm × R | ∥η∥ < ψ } ,

γ : D1 → Rm, (η, ψ) 7→
(
1− ∥η∥2

ψ2

)−1

η.

Next, we introduce continuous maps ρk : Dk → Rm, k =
1, . . . , r, recursively as follows:

ρ1 : D1 → Rm, (η1, ψ1) 7→ η1,

Dk :=

{
(η1, . . . , ηk, ψ1, . . . , ψk) ∈ Rkm+k

∣∣∣∣∣
(η1, . . . , ηk−1, ψ1, . . . , ψk−1) ∈ Dk−1,(
ηk+γ(ρk−1(η1, . . . , ηk−1, ψ1, . . . , ψk−1), ψk−1), ψk

)
∈D1

}
,

ρk : Dk → Rm, (η1, . . . , ηk, ψ1, . . . , ψk) 7→ ηk

+ γ(ρk−1(η1, . . . , ηk−1, ψ1, . . . , ψk−1), ψk−1)).
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Note that each of the sets Dk is non-empty and open. Set n =
r(m + 1) and write ξ ∈ Rn as (ξ1, . . . , ξ2r) with ξi ∈ Rm
for i = 1, . . . , r and ξi ∈ R for i = r + 1, . . . , 2r. Define, for
k = 1, . . . , r,

πk : R≥0 × Rn → Rkm+k,

(t, ξ) 7→
(
ξ1 − yref(t), . . . , ξk − y

(k−1)
ref (t), ξr+1, . . . , ξr+k

)
,

D :=

{
(t, ξ) ∈ R≥0 × Rn

∣∣∣∣ πr(t, ξ) ∈ Dr,
ξr+i >

βi

αi
for i = 1, . . . , r

}
,

where D is non-empty and relatively open. Further define

V : D → Rm, (t, ξ) 7→ N

 1

1−
∥ρr(πr(t,ξ))∥2

ξ22r

 ρr(πr(t, ξ)).

and

F : D × Rq → Rn,

(t, ξ, η) 7→



ξ2
...
ξr

f
(
d(t), η, sat(V (t, ξ))

)
p1ξr+2 − α1ξr+1 + β1 − p1

β2

α2

...
pr−1ξ2r − αr−1ξ2r−1 + βr−1 − pr−1

βr

αr

−αrξ2r + βr + ξ2r
∥V (t,ξ)−sat(V (t,ξ))∥

∥ρr(πr(t,ξ))∥


.

Note that the function F , and in particular its last component,
is well-defined on D ×Rq: Since N is continuous and ξ2r >
βr

αr
, there exists δ > 0 such that for all (t, ξ) ∈ D with

∥ρr(πr(t, ξ))∥ < δ we have that ∥V (t, ξ)∥ < θ for θ as in (P5),
and hence ∥V (t, ξ)− sat(V (t, ξ))∥ = 0.

Writing

x(t) =
(
y(t)⊤, . . . , y(r−1)(t)⊤, ψ1(t), . . . , ψr(t)

)
we see that the closed-loop initial-value problem (1), (2), (8)
may now be formulated as

ẋ(t) = F
(
t, x(t), T (x)(t)

)
,

x|[−h,0] = x0 ∈ C([−h, 0],Rn),
(14)

where, for t ∈ [−h, 0],

x0(t) :=
(
y0(t)⊤, . . . , (y0)(r−1)(t)⊤, ψ0

1 , . . . , ψ
0
r

)⊤
.

The function F is measurable in t, continuous in (ξ, η) and
locally essentially bounded. By (10) we see that (0, x0(0)) ∈
D. Therefore, an application of a variant of [31, Thm. B.1]1

yields the existence of a solution of (14) and every solution can
be extended to a maximal solution. Furthermore, any maximal
solution x : [−h, ω) → Rn, ω ∈ (0,∞], of (14) has the
property that its graph

G := { (t, x(t)) | t ∈ [0, ω)} ⊂ D

has a closure which is not a compact subset of D.

1Although the property (P3) of the operator T is weaker than required
in [31], this “local” property suffices for the proof.

Step 2: In this step we record some observations for later
use. First observe that (t, x(t)) ∈ D for t ∈ [0, ω) implies that
πi(t, x(t)) ∈ Di and hence we may define

ei(t) := ρi(πi(t, x(t))), ψi(t) := xr+i(t),

ki(t) :=

(
1− ∥ei(t)∥2

ψi(t)2

)−1

, γi(t) := ki(t)ei(t),

for i = 1, . . . , r, with which we arrive at the quantities in the
control law (8); in particular V (t, x(t)) = N(kr(t))er(t) =
v(t). Clearly, we have ∥ei(t)∥ < ψi(t) for all t ∈ [0, ω) and
i = 1, . . . , r. Finally, from (8) it follows that for almost all
t ∈ [0, ω) we have

ėi(t) = ei+1(t)− γi(t) + γ̇i−1(t), i = 1, . . . , r − 1,

ėr(t) = e(r)(t) + γ̇r−1(t),
(15)

where γ0(t) := 0. For brevity, set κi := βi − pi
βi+1

αi+1
for

i = 1, . . . , r − 1.
Step 3: We show that ψi(t) ≥ µi(0)e

−αit + βi

αi
for all

t ∈ [0, ω) and i = 1, . . . , r, where µi(·) is defined in
statement (iii). By (t, x(t)) ∈ D we have that ψi(t) > 0, thus
ψ̇r(t) ≥ −αrψr(t) + βr and hence ψr(t) ≥ µr(0)e

−αrt + βr

αr

for all t ∈ [0, ω). Then, inductively for i = r − 1, . . . , 1,

ψ̇i(t) ≥ piµi+1(0)e
−αi+1t + pi

βi+1

αi+1
− αiψi(t) + βi − pi

βi+1

αi+1

≥ −αiψi(t) + βi,

from which the claim follows.
Step 4: We show that ψi

ψr
∈ L∞([0, ω),R) for i = 1, . . . , r−

1. Define

Mr−1 := max

{
ψ0
r−1

ψ0
r

,
pr−1βr + βr−1αr
βr(αi − αr)

}
and, recursively for i = r − 2, . . . , 1,

Mi := max

{
ψ0
i

ψ0
r

,
1

αi − αr

(
piMi+1 +

βiαr
βr

)}
.

We prove the statement by showing

∀ i = 1, . . . , r − 1 ∀ t ∈ [0, ω) :
ψi(t)

ψr(t)
≤Mi (16)

by induction over i = r − 1, . . . , 1. For i = r − 1, seeking
a contradiction, assume there exists t1 ∈ [0, ω) such that
ψr−1(t1)
ψr(t1)

> Mr−1, then t1 > 0 and

t0 := max
{
t ∈ [0, t1)

∣∣∣ ψr−1(t)
ψr(t)

=Mr−1

}
is well-defined. Therefore, ψr−1(t)

ψr(t)
≥Mr−1 for all t ∈ [t0, t1]

and hence

d
dt
ψr−1(t)

ψr(t)
=
ψ̇r−1(t)ψr(t)− ψr−1(t)ψ̇r(t)

ψr(t)2

(8)
= pr−1 − αr−1

ψr−1(t)

ψr(t)
+
κr−1

ψr(t)
+ αr

ψr−1(t)

ψr(t)

− βr
ψr(t)

· ψr−1(t)

ψr(t)
− κ(v(t))

∥er(t)∥
· ψr−1(t)

ψr(t)
Step 3

≤ pr−1 − (αr−1 − αr)︸ ︷︷ ︸
>0 by (9)

ψr−1(t)

ψr(t)
+
βr−1αr
βr

≤ pr−1 − (αr−1 − αr)Mr−1 +
βr−1αr
βr

≤ 0
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for almost all t ∈ [t0, t1], from which we infer

Mr−1 <
ψr−1(t1)

ψr(t1)
≤ ψr−1(t0)

ψr(t0)
=Mr−1,

a contradiction. Now let i ∈ {1, . . . , r − 2} and assume the
statement (16) is true for i + 1. Again, assume there exists
t1 ∈ [0, ω) such that ψi(t1)

ψr(t1)
> Mi and define

t0 := max
{
t ∈ [0, t1)

∣∣∣ ψi(t)
ψr(t)

=Mi

}
so that ψi(t)

ψr(t)
≥Mi for all t ∈ [t0, t1]. Then

d
dt
ψi(t)

ψr(t)
= pi

ψi+1(t)

ψr(t)
− αi

ψi(t)

ψr(t)
+

κi
ψr(t)

+ αr
ψi(t)

ψr(t)

− βr
ψr(t)

· ψi(t)
ψr(t)

− κ(v(t))

∥er(t)∥
· ψi(t)
ψr(t)

≤ piMi+1 − (αi − αr)Mi +
βiαr
βr

≤ 0,

which again yields a contradiction and completes the proof
of (16).

Step 5: We show that ψi

ψi+1
∈ L∞([0, ω),R) for i =

1, . . . , r − 2. Fix i ∈ {1, . . . , r − 2}, define

M := max

{
ψ0
i

ψ0
i+1

,
piβi+1 + βiαi+1

βi+1(αi − αi+1)

}
and assume there exists t1 ∈ [0, ω) such that ψi(t1)

ψi+1(t1)
> M .

Further define

t0 := max
{
t ∈ [0, t1)

∣∣∣ ψi(t)
ψi+1(t)

=M
}
,

so that ψi(t)
ψi+1(t)

≥M for all t ∈ [t0, t1]. Then

d
dt

ψi(t)

ψi+1(t)

(8)
= pi − αi

ψi(t)

ψi+1(t)
+

κi
ψi+1(t)

+ αi+1
ψi(t)

ψi+1(t)

− pi+1
ψi(t)ψi+2(t)

ψi+1(t)2
− κi+1ψi(t)

ψi+1(t)2

Step 3

≤ pi − (αi − αi+1)︸ ︷︷ ︸
>0 by (9)

ψi(t)

ψi+1(t)
+ βi

αi+1

βi+1

− ψi
ψi+1

(
βi+1

ψi+1
+
pi+1

ψi+1

(
ψi+2 −

βi+2

αi+2

))
Step 3

≤ pi − (αi − αi+1)M +
βiαi+1

βi+1
≤ 0

for almost all t ∈ [t0, t1], from which we infer

M <
ψi(t1)

ψi+1(t1)
≤ ψi(t0)

ψi+1(t0)
=M,

a contradiction.
Step 6: We show

∀ i = 2, . . . , r :
(
k1, . . . , ki−1 ∈ L∞([0, ω),R)

=⇒ γ̇i−1

ψi
∈ L∞([0, ω),Rm)

)

by induction over i. For i = 2 we have that

γ̇1(t) = 2k1(t)
2

(
∥e1(t)∥2

ψ1(t)3
ψ̇1(t) +

e1(t)
⊤ė1(t)

ψ1(t)2

)
e1(t)

+ k1(t)ė1(t)

(8),(15)
= 2k1(t)

2

(
− ∥e1(t)∥2

ψ1(t)3
(
p1ψ2(t)− α1ψ1(t) + κ1

)
e1(t)

+
∥e1(t)∥2

ψ1(t)2
(
e2(t)−k1(t)e1(t)

))
+ k1(t)

(
e2(t)−k1(t)e1(t)

)
for almost all t ∈ [0, ω). Since ∥ei(t)∥

ψi(t)
< 1 for i = 1, 2 and

k1(·) is bounded by assumption, we find that

∥γ̇1(t)∥
ψ2(t)

≤ 2∥k1∥2∞
(
2p1+α1

ψ1(t)

ψ2(t)
+

κ1
ψ2(t)

+∥k1∥∞
ψ1(t)

ψ2(t)

)
+ ∥k1∥∞

(
1 + ∥k1∥∞

ψ1(t)

ψ2(t)

)
for almost all t ∈ [0, ω) and by Step 3 and Step 5 it follows
that γ̇1

ψ2
is bounded. Now assume the assertion is true for i ∈

{2, . . . , r − 1}. Then we have that

γ̇i(t) = 2ki(t)
2

(
∥ei(t)∥2

ψi(t)3
ψ̇i(t) +

ei(t)
⊤ėi(t)

ψi(t)2

)
ei(t)

+ ki(t)ėi(t)

(8),(15)
= 2ki(t)

2

(
− ∥ei(t)∥2

ψi(t)3
(
piψi+1(t)−αiψi(t)+κi

)
ei(t)

+
∥ei(t)∥2

ψi(t)2
(
ei+1(t)− ki(t)ei(t) + γ̇i−1(t)

))
+ ki(t)

(
ei+1(t)− ki(t)ei(t) + γ̇i−1(t)

)
for almost all t ∈ [0, ω), by which

∥γ̇i(t)∥
ψi+1(t)

≤ 2∥ki∥2∞
(
2pi+αi

ψi(t)

ψi+1(t)
+

κi
ψi+1(t)

+
∥γ̇i−1(t)∥
ψi+1(t)

+∥ki∥∞
ψi(t)

ψi+1(t)

)
+∥ki∥∞

(
1+∥ki∥∞

ψi(t)

ψi+1(t)
+
∥γ̇i−1(t)∥
ψi+1(t)

)
for almost all t ∈ [0, ω). By presupposition and Step 5 we
have that

γ̇i−1

ψi+1
=
γ̇i−1

ψi
· ψi
ψi+1

∈ L∞([0, ω),Rm),

and hence boundedness of γ̇i
ψi+1

follows from Steps 3 and 5.
Step 7: We show that, if ω < ∞, then for all i = 1, . . . , r

the continuous functions

ρi : [0, ω) → R, t 7→
∥ψi|[0,t]∥∞
ψi(t)

are bounded. Fix i ∈ {1, . . . , r} and τ ∈ [0, ω). Seeking a con-
tradiction, assume there exists a strictly increasing sequence
(tk) → ω such that ρi(tk) → ∞ for k → ∞. Define, for
k ∈ N,

sk := sup
{
t ∈ [0, tk]

∣∣ψi(t) = ∥ψi|[0,tk]∥∞
}
.

Since ψj(t) >
βj

αj
for all j = 1, . . . , r by Step 3 we find that

ψ̇i(t) ≥ −αiψi(t) + βi for all t ∈ [0, ω) and hence

ψi(tk) ≥ e−αi(tk−sk)ψi(sk) +
βi
αi

(
1− e−αi(tk−sk)

)
≥ e−αiωψi(sk),
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by which

ρi(tk) =
ψi(sk)

ψi(tk)
≤ eαiω <∞,

a contradiction.
Step 8: We show that, if k1, . . . , kr−1 ∈ L∞([0, ω),R), then

there exists c ∈ L∞
loc([0, ω),R) such that for all t ∈ [0, ω) we

have

∥f
(
d(t), T (y, ẏ, . . . , y(r−1))(t), sat(v(t))

)
∥ ≤ c(t)ψr(t),

and if ω < ∞, then c ∈ L∞([0, ω),R). By the sector bound
property (P4) we have that

∥f
(
d(t), T (y, ẏ, . . . , y(r−1))(t), sat(v(t))

)
∥

≤M1

(
t, d(t), sat(v(t))

)
+

r∑
i=1

Mi+1

(
t, d(t), sat(v(t))

)
∥y(i−1)|[−h,t]∥∞

for all t ∈ [0, ω). Furthermore, with Ki(t) :=

∥(y0)(i−1)|[−h,0]∥∞ + ∥y(i−1)
ref |[0,t]∥∞, we have

∥y(i−1)|[−h,t]∥∞
ψr(t)

≤ 1

ψr(t)

(
∥e(i−1)|[0,t]∥∞ +Ki(t)

)
(8)
≤ 1

ψr(t)

(
∥ei|[0,t]∥∞ + ∥ki−1ei−1|[0,t]∥∞ +Ki(t)

)
≤ 1

ψr(t)

(
∥ψi|[0,t]∥∞ + ∥ki−1∥∞∥ψi−1|[0,t]∥∞ +Ki(t)

)
≤ ψi(t)

ψr(t)
ρi(t) + ∥ki−1∥∞

ψi−1(t)

ψr(t)
ρi−1(t) +

αrKi(t)

βr

for all t ∈ [0, ω) and all i = 1, . . . , r, where k0 := 0.
Then, since ψi

ψr
and ψi−1

ψr
are bounded by Step 4 there exist

ci,1, ci,2 ≥ 0 such that

∥y(i−1)|[−h,t]∥∞
ψr(t)

≤ ci,1ρi−1(t)+ci,2ρi(t)+
αrKi(t)

βr
=: c̃(t).

Define

c(t) :=M1

(
t, d(t), sat(v(t))

)αr
βr

+

r∑
i=1

Mi+1

(
t, d(t), sat(v(t))

)
c̃(t),

then, since 1 ≤ αr

βr
ψr(t), we have that

∥f
(
d(t), T (y, ẏ, . . . , y(r−1))(t), sat(v(t))

)
∥ ≤ c(t)ψr(t)

and the claim follows from the observation
that c is locally essentially bounded since
ρ1, . . . , ρr,M1, . . . ,Mr+1,K1, . . . ,Kr are continuous
and d, sat(v) are bounded. Furthermore, if ω < ∞ then c
is bounded, because ρ1, . . . , ρr are bounded by Step 7 and
M1, . . . ,Mr+1 and K1, . . . ,Kr are bounded by continuity
(on R≥0 × Rp × Rm in case of the former).

Step 9: We show that ki ∈ L∞([0, ω),R) for i = 1, . . . , r−1
or, equivalently, ∥ei(t)∥ ≤ εiψi(t) for all t ∈ [0, ω) and some
εi ∈ (0, 1), by induction over i. Consider i = 1 and choose
ε1 ∈ (0, 1) such that, invoking (10),

ε1 > max

{
∥e1(0)∥
ψ0
1

,
1

p1
,

√
1− 1

p21
α1β2

β1α2
+ p1α1

}
.

Seeking a contradiction, assume there exists t1 ∈ [0, ω) such
that ∥e1(t1)∥ > ε1ψ1(t1). Since ∥e1(0)∥ ≤ ε1ψ1(0),

t0 := max { t ∈ [0, t1) | ∥e1(t)∥ = ε1ψ1(t)}

is well-defined. Then, for all t ∈ [t0, t1], we have

∥e1(t)∥ ≥ ε1ψ1(t) and k1(t) ≥
1

1− ε21

and obtain that

1
2

d
dt∥e1(t)∥

2 (15)
= e1(t)

⊤(e2(t)− k1(t)e1(t)
)

≤
(
− k1(t)∥e1(t)∥+ ψ2(t)

)
∥e1(t)∥

(8)
=

(
ε1ψ̇1(t)− ε1p1ψ2(t) + ε1α1ψ1(t)− ε1κ1

− k1(t)∥e1(t)∥+ ψ2(t)
)
∥e1(t)∥

ε1p1>1

≤
(
ε1ψ̇1(t) + α1ψ1(t) + ε1p1

β2
α2

− ε1ψ1(t)

1− ε21

)
∥e1(t)∥

= ε1ψ̇1(t)∥e1(t)∥ − (ξ1ψ1(t)− ξ2) ∥e1(t)∥,

where ξ1 := −α1+
ε1

1−ε21
≥ −α1+

1
p1(1−ε21)

> 0 by choice of

ε1 and ξ2 := ε1p1
β2

α2
≤ p1

β2

α2
. By Step 3 we further have that

ξ1ψ1(t)− ξ2 ≥
(
−α1 +

1

p1(1− ε21)

)
β1
α1

− p1
β2
α2

> 0

⇐⇒ 1

1− ε21
> p21

α1β2
β1α2

+ p1α1

which is satisfied by choice of ε1. Therefore, 1
2

d
dt∥e1(t)∥

2 ≤
ε1ψ̇1(t)∥e1(t)∥ for almost all t ∈ [t0, t1] and hence

∥e1(t1)∥ − ∥e1(t0)∥ =

∫ t1

t0

1
2∥e1(t)∥

−1 d
dt∥e1(t)∥

2dt

≤
∫ t1

t0

ε1ψ̇1(t)dt = ε1ψ1(t1)− ε1ψ1(t0),

which yields the contradiction

0 = ε1ψ1(t0)− ∥e1(t0)∥ ≤ ε1ψ1(t1)− ∥e1(t1)∥ < 0.

Therefore, k1 ∈ L∞([0, ω),R). Now assume that
k1, . . . , ki−1 ∈ L∞([0, ω),R) for some i ∈ {2, . . . , r − 1}.
Let ci :=

∥∥∥ γ̇i−1

ψi

∥∥∥
∞

, which exists by Step 6, and choose
εi ∈ (0, 1) such that, invoking (10),

εi > max

∥ei(0)∥
ψ0
i

,
1

pi
,

√
1− 1

p2i
αiβi+1

βiαi+1
+ pi(αi + ci)

 .

Similar to the above arguments, seeking a contradiction,
assume there exists t1 ∈ [0, ω) such that ∥ei(t1)∥ > εiψi(t1)
and define

t0 := max { t ∈ [0, t1) | ∥ei(t)∥ = εiψi(t)}

so that, for all t ∈ [t0, t1], we have

∥ei(t)∥ ≥ εiψi(t) and ki(t) ≥
1

1− ε2i
.
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Then we obtain that
1
2

d
dt∥ei(t)∥

2 (15)
= ei(t)

⊤(ei+1(t)− ki(t)ei(t) + γ̇i−1(t)
)

≤
(
− ki(t)∥ei(t)∥+ ψi+1(t) + ciψi(t)

)
∥ei(t)∥

(8)
=

(
εiψ̇i(t)− εipiψi+1(t) + εiαiψi(t)− εiκi

− ki(t)∥ei(t)∥+ ψi+1(t) + ciψi(t)
)
∥ei(t)∥

εipi>1

≤
(
εiψ̇i(t) + αiψi(t) + εipi

βi+1

αi+1
− εiψi(t)

1− ε2i

+ ciψi(t)
)
∥ei(t)∥

= εiψ̇i(t)∥ei(t)∥ − (ξi,1ψi(t)− ξi,2) ∥ei(t)∥,

where ξi,1 := −αi − ci +
εi

1−ε2i
≥ −αi − ci +

1
pi(1−ε2i )

> 0

by choice of εi and ξi,2 := εipi
βi+1

αi+1
≤ pi

βi+1

αi+1
. Furthermore,

Step 3 gives

ξi,1ψi(t)− ξi,2 ≥
(
−αi−ci+

1

pi(1− ε2i )

)
βi
αi

−pi
βi+1

αi+1
> 0

⇐⇒ 1

1− ε2i
> p2i

αiβi+1

βiαi+1
+ pi(αi + ci)

which is satisfied by choice of εi. Therefore, 1
2

d
dt∥ei(t)∥

2 ≤
ε̇iψi(t)∥ei(t)∥ for almost all t ∈ [t0, t1] and as above for i = 1
an integration yields

0 = εiψi(t0)− ∥ei(t0)∥ ≤ εiψi(t1)− ∥ei(t1)∥ < 0,

a contradiction.
Step 10: We show that, if ω <∞, then kr ∈ L∞([0, ω),R).

Let R := supt∈[0,ω) ∥y
(r)
ref (t)∥ and cr :=

∥∥∥ γ̇r−1

ψr

∥∥∥
∞

, which
exists by Steps 6 and 9, and observe that by Step 8 and ω <∞
we have that c(·) is bounded. Further note that, invoking (8)
we may estimate

∀ t ∈ [0, ω) : κ(v(t)) ≥ |N(kr(t))| · ∥er(t)∥ −M, (17)

where M > 0 is some upper bound of sat, i.e., ∥ sat(v)∥ ≤M
for all v ∈ Rm. Now choose

δ > αr + ∥c∥∞ + cr +
αr
βr

(M +R) (18)

and εr ∈ (0, 1) so that, invoking (10),

εr >
∥er(0)∥
ψ0
r

and εr

∣∣∣∣N (
1

1− ε2r

)∣∣∣∣ ≥ 2δ,

where the latter is possible because of the properties of N
in (9). We show that ∥er(t)∥ ≤ εrψr(t) for all t ∈ [0, ω),
which is equivalent to kr ∈ L∞([0, ω),R). Seeking a contra-
diction, assume there exists t1 ∈ [0, ω) such that ∥er(t1)∥ >
εrψr(t1) and define

t0 := max { t ∈ [0, t1) | ∥er(t)∥ = εrψr(t)} .

Then, for all t ∈ [t0, t1], we have

∥er(t)∥ ≥ εrψr(t) and kr(t) ≥
1

1− ε2r
. (19)

Since |N(kr(t0))| = |N( 1
1−ε2r

)| ≥ 2δ/εr, there exists t2 ∈
(t0, t1] such that

∀ t ∈ [t0, t2] : |N(kr(t))| ≥
δ

εr
.

Furthermore, by definition of t0 we have that ∥er(t2)∥ >
εrψr(t2). Then we obtain that

1
2

d
dt∥er(t)∥

2 (15)
= er(t)

⊤(e(r)(t) + γ̇r−1(t)
)

(1)
≤

(
∥f

(
d(t), T (y, ẏ, . . . , y(r−1))(t), sat(v(t))

)
∥

+ ∥y(r)ref (t)∥+ ∥γ̇r−1(t)∥
)
∥er(t)∥

Step 8

≤
(
c(t)ψr(t) +R+ crψr(t)

)
∥er(t)∥

(8)
=

(
εrψ̇r(t) + εrαrψr(t)− εrβr − εrψr(t)

κ(v(t))
∥er(t)∥

+ c(t)ψr(t) +R+ crψr(t)
)
∥er(t)∥

(17),(19)
≤

(
εrψ̇r(t)− εrβr +M +R−

(
εr|N(kr(t))| − εrαr

− ∥c∥∞ − cr
)
ψr(t)

)
∥er(t)∥

≤
(
εrψ̇r(t)+M+R−

(
δ−αr−∥c∥∞−cr

)︸ ︷︷ ︸
>0 by (18)

ψr(t)
)
∥er(t)∥

Step 3

≤
(
εrψ̇r(t)+M+R−

(
δ−αr−∥c∥∞−cr

)
βr

αr

)
∥er(t)∥

(18)
≤ εrψ̇r(t)∥er(t)∥

for almost all t ∈ [t0, t2] and upon integration we get

∥er(t2)∥ − ∥er(t0)∥ =

∫ t2

t0

1
2∥er(t)∥

−1 d
dt∥er(t)∥

2dt

≤
∫ t2

t0

εrψ̇r(t)dt = εrψr(t2)− εrψr(t0),

which yields the contradiction

0 = εrψr(t0)− ∥er(t0)∥ ≤ εrψr(t2)− ∥er(t2)∥ < 0.

Step 11: We show that ω = ∞, i.e., assertion (i) of the
theorem. Suppose that ω <∞. From Steps 9 and 10 it follows
that k1, . . . , kr ∈ L∞([0, ω),R) and hence there exists ν1 ∈
(0, 1) such that

∀ i = 1, . . . , r ∀ t ∈ [0, ω) : ∥ei(t)∥ ≤ ν1ψi(t).

Furthermore, by Step 3 we have ψi(t) ≥ µi(0)e
−αiω + βi

αi
>

βi

αi
for all t ∈ [0, ω), and hence there exists ν2 > 0 such that

∀ i = 1, . . . , r ∀ t ∈ [0, ω) : ψi(t) ≥ βi

αi
+ ν2.

Moreover, from boundedness of kr it follows that κ(v) is
bounded and hence κ(v)

∥er∥ is bounded, since κ(v) vanishes
when ∥er∥ is small enough, cf. Step 1. Therefore, it follows
from (8) that there exist some dr,1, dr,2 ≥ 0 such that ψr(t) ≤
dr,1e

dr,2t ≤ dr,1e
dr,2ω for all t ∈ [0, ω). Then, a successive

solution of the differential equations for ψi in (8) yields similar
bounds for them for i = 1, . . . , r−1. Hence there exists ν3 > 0
such that

∀ i = 1, . . . , r ∀ t ∈ [0, ω) : ∥ei(t)∥ < ψi(t) ≤ ν3.

Define

D̂ :=

 (t, ξ) ∈ [0, ω]× Rn
∣∣∣∣∣∣
∥ρi(πi(t, ξ))∥ ≤ ν1ξr+i,
βi

αi
+ ν2 ≤ ξr+i ≤ ν3

for i = 1, . . . , r

 ,
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which is evidently a compact subset of D since
yref , . . . , y

(r−1)
ref are bounded on [0, ω]. Since (t, x(t)) ∈ D̂

for all t ∈ [0, ω), it follows that the set G from Step 1 is a
compact subset of D, a contradiction. Therefore, ω = ∞.

Step 12: We complete the proof by establishing asser-
tions (ii) and (iii) of the theorem. Assertion (ii) is a con-
sequence of Steps 1, 9 and 11. Let [t0, t1) ⊆ R≥0 with
t1 ∈ (t0,∞] be an interval with v(t) = sat(v(t)) for all
t ∈ [t0, t1), then we prove (iii) by induction over i = r, . . . , 1.
For i = r the statement is clear since ψ̇r(t) = −αrψr(t)+βr
for all t ∈ [t0, t1). Suppose the statement is true for some
i ∈ {2, . . . , r}, then we first observe that∫ t

t0

e−αi−1(t−s)e−αj(s−t0)ds

= 1
αi−1−αj

(
e−αj(t−t0) − e−αi−1(t−t0)

)
≤ 1

αi−1−αj
e−αj(t−t0)

for all t ∈ [t0, t1) and all j = i + 1, . . . , r. Therefore, upon
solving the differential equation for ψi−1 in (8) over [t0, t1)
we find that

ψi−1(t) = e−αi−1(t−t0)ψi−1(t0) +
κi−1

αi−1

(
1− e−αi−1(t−t0)

)
+

∫ t

t0

pi−1e
−αi−1(t−s)ψi(s)ds

≤ βi−1

αi−1
+ µi−1(t0)e

−αi−1(t−t0)

+

r∑
j=i

pi−1µj(t0)νij

∫ t

t0

e−αi−1(t−s)e−αj(s−t0)ds

≤ βi−1

αi−1
+

r∑
j=i−1

µj(t0)νi−1,je
−αj(t−t0)

for all t ∈ [t0, t1). This completes the proof. □

APPENDIX II
PROOF OF THEOREM 3.2

Step 1: We provide a constructive definition of the con-
stant M . First observe that Steps 1–6 are the same as in the
proof of Theorem 3.1, Steps 7 and 8 are not needed here and
Step 9 is again the same as in the proof of Theorem 3.1.
With this we arrive at a maximal solution (y, ψ1, . . . , ψr) :
[−h, ω) → Rm+r, ω ∈ (0,∞], of (1), (2), (8) with bounded
k1, . . . , kr−1. Next we seek to define explicit bounds for the
latter. To this end, define

Mi := max

{
ψ0
i

ψ0
i+1

,
piβi+1 + βiαi+1

βi+1(αi − αi+1)

}
for i = 1, . . . , r − 1 and observe that by Steps 4 and 5 in the
proof of Theorem 3.1 we have that

∀ t ∈ [0, ω) :
ψi(t)

ψi+1(t)
≤Mi.

Then, recursively define

c1 := 0,

ε1 := max

{
ε,

1

p1
,

√
1− 1

p21
α1β2

β1α2
+ p1α1

}
,

and for i = 2, . . . , r

ci :=
2

1− ε2i−1

(
2pi−1 + αi−1Mi−1 +

αi−1κi−1

βi−1
+Mi−1ci−1

+
Mi−1

1− ε2i−1

)
+

1

1− ε2i−1

(
1 +

Mi−1

1− ε2i−1

+Mi−1ci−1

)
,

εi := max

ε, 1pi ,
√

1− 1

p2i
αiβi+1

βiαi+1
+ pi(αi + ci)

 .

It follows from Steps 6 and 9 in the proof of Theorem 3.1 that

∥γ̇i−1(t)∥
ψi(t)

≤ ci and ki−1(t) ≤
1

1− ε2i−1

for all t ∈ [0, ω) and all i = 2, . . . , r.
Now we will use the high-gain property of f from prop-

erty (P6). Choose Kp := { δ ∈ Rp | ∥δ∥ ≤ ∥d∥∞ } and define

ψmax
i :=

βi
αi

+

r∑
j=i

νij

(
ψ0
i −

βi
αi

)
.

for i = 1, . . . , r, where νij is given in statement (iii) of
Theorem 3.1,

B :=

ζ∈C([−h,∞),Rrm)

∣∣∣∣∣∣∣
∥ζ1∥∞ ≤ ψmax

1 +K̂,

∥ζi∥∞ ≤ ψmax
i +

ψmax
i−1

1−ε2i−1
+K̂,

i = 2, . . . , r

,
where K̂ := K + maxi=0,...,r−1 ∥(y0)(i)∥∞ (recall that by
assumption K > 0 is given such that ∥y(i)ref∥∞ ≤ K for i =
0, . . . , r), and

Kq :=

{
z ∈ Rq

∣∣∣∣∣ ∥z∥ ≤ sup
ζ∈B

∥T (ζ)∥∞

}
,

which is a compact set since T satisfies (P3) for τ = ∞.
Further set ν∗ := 1

2 , for which we obtain the corresponding
function χ as in (P6).

Next we define

χ∗ :=
(
K + crψ

max
r + αrψ

max
r

)
ψmax
r

and choose εr ∈ [ε, 1) such that

χ

(
N

(
1

1− ε2r

))
≥ 2χ∗,

which is possible because of the properties of χ and N .
Finally, we define

M :=

 sup

s∈
[
0,

1
1−ε2r

] |N(s)|

ψ0
r + δ

for some arbitrary δ > 0. Now let the saturation function
sat be such that it satisfies (P5) with θ = M (and note
that the above derived properties of the solution are indeed
independent of this property of sat).

Step 2: We show that ∥v(t)∥ < M for all t ∈ [0, ω). Define

t0 := inf { t ∈ [0, ω) | ∥v(t)∥ ≥M } .
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Seeking a contradiction, assume that t0 < ω. By assumption
we have that ∥er(0)∥

ψr(0)
≤ ε, thus kr(0) ≤ 1

1−ε2 ≤ 1
1−ε2r

.
Therefore, we find that

∥v(0)∥ ≤ |N(kr(0))|ψr(0) < M,

and hence t0 > 0 and we have that ∥v(t)∥ ≤ M for all
t ∈ [0, t0]. This also implies that sat(v(t)) = v(t) and
hence κ(v(t)) = 0 for all t ∈ [0, t0]. Then it follows from
statement (iii) in Theorem 3.1 that

ψi(t) ≤
βi
αi

+

r∑
j=i

νij

(
ψ0
i −

βi
αi

)
e−αjt ≤ ψmax

i

for all t ∈ [0, t0] and all i = 1, . . . , r. With this we find that
by (8)

∥y(t)∥ ≤ ∥e(t)∥+K ≤ ψmax
1 +K

and

∥y(i)(t)∥ ≤ ∥e(i)(t)∥+K ≤ ∥ei+1(t)∥+ ki(t)∥ei(t)∥+K

≤ ψmax
i+1 +

ψmax
i

1−ε2i
+K

for all t ∈ [0, t0] and i = 1, . . . , r − 1. Therefore, ζ ∈
C([−h,∞),Rrm) defined by

ζi(t) =


(y0)(i−1)(t), t ∈ [−h, 0],
y(i−1)(t), t ∈ [0, t0],

y(i)(t0), t ≥ t0

satisfies ζ ∈ B and T (y, . . . , y(r−1))(t) = T (ζ)(t) for all t ∈
[0, t0], by which T (y, . . . , y(r−1))(t) ∈ Kq for all t ∈ [0, t0].

Step 2a: We show that ∥er(t)∥ ≤ εrψr(t) for all t ∈ [0, t0].
Seeking a contradiction, assume there exists t2 ∈ [0, t0] such
that ∥er(t2)∥ > εrψr(t2) and define

t1 := max { t ∈ [0, t2) | ∥er(t)∥ = εrψr(t)} .

Then, for all t ∈ [t1, t2], we have

∥er(t)∥ ≥ εrψr(t) and kr(t) ≥
1

1− ε2r
.

Since kr(t1) = 1
1−ε2r

we find that

χ
(
N(kr(t1))

)
≥ 2χ∗,

hence there exists t3 ∈ (t1, t2] such that

∀ t ∈ [t1, t3] : |χ
(
N(kr(t))

)
| ≥ χ∗.

By definition of χ we find that

er(t)
⊤f

(
d(t), T (y, ẏ, . . . , y(r−1))(t),−kr(t)er(t)

)
≤ −χ

(
N(kr(t)

)
≤ −χ∗

for all t ∈ [t1, t3] and since sat(v(t)) = v(t) = −kr(t)er(t)
it follows that

1
2

d
dt∥er(t)∥

2 (15)
= er(t)

⊤(e(r)(t) + γ̇r−1(t)
)

(1)
≤ er(t)

⊤f
(
d(t), T (y, ẏ, . . . , y(r−1))(t), sat(v(t))

)
+

(
∥y(r)ref (t)∥+ ∥γ̇r−1(t)∥

)
∥er(t)∥

≤ −χ∗ +Kψmax
r + cr

(
ψmax
r

)2
= εrψ̇r(t)∥er(t)∥ − εr

(
− αrψr(t) + βr

)
∥er(t)∥

− χ∗ +Kψmax
r + cr

(
ψmax
r

)2
εr<1
≤ εrψ̇r(t)∥er(t)∥+ αr

(
ψmax
r

)2
− χ∗ +Kψmax

r + cr
(
ψmax
r

)2
≤ εrψ̇r(t)∥er(t)∥,

where in the last step the definition of χ∗ was used. Then,
using ∥er(t3)∥ > εrψr(t3), similar to Step 10 in the proof of
Theorem 3.1, a contradiction follows.

Step 2b: We conclude the argument of Step 2. Since kr(t) ≤
1

1−ε2r
for all t ∈ [0, t0] by Step 2a, it follows that

∥v(t)∥ ≤

 sup

s∈
[
0,

1
1−ε2r

] |N(s)|

ψ0
r =M − δ < M

for all t ∈ [0, t0], which contradicts ∥v(t0)∥ ≥M . Therefore,
∥v(t)∥ < M for all t ∈ [0, ω).

Step 3: Similar to Step 11 in the proof of Theorem 3.1 it
can be shown that ω = ∞. Furthermore, the statements (i)
and (ii) of Theorem 3.2 have been shown above, where
lim supt→∞ ψi(t) ≤ βi

αi
follows from the estimate in state-

ment (iii) in Theorem 3.1. This concludes the proof. □

APPENDIX III
PROOF OF COROLLARY 3.3

The proof is a straightforward modification of that of
Theorem 3.2 by replacing ε with 0 and taking the resulting
expressions for εi as the definition for ε̂i. The assertions
then follow along the lines of the proofs of Theorem 3.2 and
Theorem 3.1, resp. □
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