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Abstract— We study tracking control for nonlinear systems
with known relative degree and stable internal dynamics by the
recently introduced technique of Funnel MPC. The objective
is to achieve the evolution of the tracking error within a
prescribed performance funnel. We propose a novel stage cost
for Funnel MPC, extending earlier designs to the case of
arbitrary relative degree, and show that the control objective
as well as initial and recursive feasibility are always achieved –
without requiring any terminal conditions or a sufficiently long
prediction horizon. We only impose an additional feasibility
constraint in the optimal control problem.

I. INTRODUCTION

In the recent work [1] a novel model predictive control
(MPC) scheme, so called Funnel MPC (FMPC), was pro-
posed, which is able to achieve tracking with a prescribed
performance of the tracking error. MPC is an established
control technique which relies on the successive solution of
optimal control problems (OCPs), see e.g. [2], [3]. Since
it is able to take control and state constraints directly into
account, it is nowadays widely used and helpful in various
applications, see e.g. [4].

FMPC resolves the issue of requiring suitable terminal
conditions (costs and constraints) in the OCP (cf. [3] and the
references therein) or a sufficiently long prediction horizon
(cf. [5]) in order to achieve recursive feasibility. This is
achieved by a “funnel-like” stage cost, which penalizes the
tracking error and grows unbounded when it approaches the
funnel boundary. However, in the FMPC scheme proposed
in [1] output constraints were incorporated in the OCP. It
was then shown in [6] that for the case of relative degree
one systems these constraints are superfluous and the funnel-
inspired stage costs automatically ensure initial and recursive
feasibility. A generalization of these results to systems with
relative degree two was outlined in [7], however requiring a
sufficiently long prediction horizon. In the present paper we
extend the results from [6] to systems with arbitrary relative
degree by designing a suitable stage cost function, which
is inspired by a recent funnel control design from [8]. We
emphasize that this extension is not straightforward, since
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the proof of initial and recursive feasibility relies on results
from adaptive control, where the obstacle of higher relative
degree is an omnipresent issue [9].

The concept of funnel control was developed in the
seminal work [10] (see also the recent survey in [11])
and proved advantageous in a variety of applications such
as control of industrial servo-systems [12], underactuated
multibody systems [13], [14], peak inspiratory pressure [15],
adaptive cruise control [16] and even the control of infinite-
dimensional systems such as a boundary controlled heat
equation [17], a moving water tank [18] and defibrillation
processes of the human heart [19]. We like to stress that, in
contrast to MPC, funnel control does not use a model of the
system, the funnel control input is determined by the instan-
taneous values of the system state and cannot “plan ahead”.
This often results in unnecessarily high control values and
a rapidly changing control signal. Numerical simulations
from [1], [6] show that FMPC exhibits a considerably better
controller performance than funnel control.

We like to note that together with the novel stage cost
function that we propose for FMPC the OCP contains an
additional feasibility constraint at the point of the succeeding
state evaluation (a similar condition was present in [1]) to
guarantee recursive feasibility. However, we do not incorpo-
rate the output constraints over the whole horizon in the OCP.

A. Nomenclature

In the following let N denote the natural numbers, N0 =
N∪{0}, and R≥0 = [0,∞). By ∥x∥ we denote the Euclidean
norm of x ∈ Rn, and GLn(R) is the group of invertible
Rn×n matrices. For some interval I ⊆ R, some V ⊆ Rm and
k ∈ N, L∞(I,Rn)

(
L∞
loc(I,Rn)

)
is the Lebesgue space of

measurable, (locally) essentially bounded functions f : I →
Rn with norm ∥f∥∞ = ess supt∈I ∥f(t)∥, W k,∞(I,Rn)
is the Sobolev space of all functions f : I → Rn with
k-th order weak derivative f (k) and f, f (1), . . . , f (k) ∈
L∞(I,Rn), and Ck(V,Rn) is the set of k-times continuously
differentiable functions f : V → Rn, with C(V,Rn) :=
C0(V,Rn).

B. System class

We consider nonlinear systems of the form

ẋ(t) = f(x(t)) + g(x(t))u(t), x(t0) = x0,

y(t) = h(x(t)),
(1)

with t0 ∈ R≥0, x0 ∈ Rn, and nonlinear functions f : Rn →
Rn, g : Rn → Rn×m and h : Rn → Rm. For an input
u ∈ L∞

loc(R≥0,Rm) the system (1) has a solution in the



sense of Carathéodory, that is a function x : [t0, ω) → Rn,
ω > t0, with x(t0) = x0 which is absolutely continuous
and satisfies the ODE in (1) for almost all t ∈ [t0, ω). A
solution x is said to be maximal, if it has no right extension
that is also a solution. The response associated with u is any
maximal solution of (1) and denoted by x(·; t0, x0, u); it is
unique if the right-hand side of (1) is locally Lipschitz in x.

We recall the notion of relative degree for system (1),
see e.g. [20, Sec. 5.1]. Assuming that f, g, h are sufficiently
smooth, the Lie derivative of h along f is defined by
(Lfh) (x) = h′(x)f(x), and successively we define Lkfh =

Lf (L
k−1
f h) with L0

fh = h. Furthermore, for the matrix-
valued function g we have

(Lgh)(x) = [(Lg1h)(x), . . . , (Lgmh)(x)] ,

where gi denotes the i-th column of g for i = 1, . . . ,m. Then
system (1) is said to have (global) relative degree r ∈ N, if

∀ k ∈ {1, . . . , r − 1} ∀x ∈ Rn : (LgL
k−1
f h)(x) = 0

and (LgL
r−1
f h)(x) ∈ GLm(R).

If (1) has relative degree r, then, under the additional
assumptions provided in [21, Cor. 5.6], system (1) can be
transformed into Byrnes-Isidori form. We assume existence
of this transformation in the following, but emphasize that
its knowledge is not required for the controller design – it is
only a tool for the proof of Theorem 2.3.

Assumption 1: System (1) has relative degree r and there
exists a diffeomorphism Φ : Rn → Rn such that the
coordinate transformation (y(t), ẏ(t), . . . , y(r−1)(t), η(t)) =
Φ(x(t)) puts the system (1) into Byrnes-Isidori form

y(r)(t) = p
(
y(t), ẏ(t), . . . , y(r−1)(t), η(t)

)
+ γ
(
y(t), ẏ(t), . . . , y(r−1)(t), η(t)

)
u(t), (2a)

η̇(t) = q
(
y(t), ẏ(t), . . . , y(r−1)(t), η(t)

)
, (2b)

where p : Rn → Rm, q : Rn → Rn−rm, γ =
LgL

r−1
f h : Rn → Rm×m are continuously differentiable

and (y(t0), ẏ(t0), . . . , y(r−1)(t0), η(t0)) = Φ(x0).
Note that under Assumption 1 the derivatives of the

output y of (1) are given by y(i)(t) = (Lifh)(x(t)) for
i = 0, . . . , r − 1. In virtue of this we define the map

χ :Rn→Rrm, x 7→
(
h(x), (Lfh)(x), . . . , (L

r−1
f h)(x)

)
. (3)

We further require the following assumption.
Assumption 2: The internal dynamics (2b) satisfy the fol-

lowing bounded-input, bounded-state (BIBS) condition:

∀ c0 > 0 ∃ c1 > 0 ∀ t0 ≥ 0 ∀ η0 ∈ Rn−rm

∀ ζ ∈ L∞
loc([t

0,∞),Rrm) :
∥∥η0∥∥ + ∥ζ∥∞ ≤ c0

=⇒
∥∥η(·; t0, η0, ζ)∥∥∞ ≤ c1, (4)

where η(·; t0, η0, ζ) : [t0,∞) → Rn−rm denotes the unique
global solution of (2b) when (y, . . . , y(r−1)) is substituted
by ζ. Note that in view of condition (4) the maximal solution
η(·; t0, η0, ζ) can indeed be extended to a global solution.

Definition 1.1: We say that the system (1) belongs to the
system class Nm,r, written (f, g, h) ∈ Nm,r, if it satisfies
Assumptions 1 and 2.

C. Control objective

The objective is to design a control strategy such that, with
reference to Fig. 1, for a given reference trajectory yref ∈
W r,∞(R≥0,Rm) the tracking error t 7→ e(t) := y(t) −
yref(t) evolves within the prescribed performance funnel

Fψ := { (t, e) ∈ R≥0 × Rm | ∥e∥ < ψ(t)} .

This funnel is determined as ψ = ψ1 by the solution of the
following system of differential equations

ψ̇i(t) = −αiψi(t) + βi + pi

(
ψi+1(t)− βi+1

αi+1

)
,

ψi(0) = ψ0
i , i = 1, . . . , r − 1,

ψ̇r(t) = −αrψr(t) + βr, ψr(0) = ψ0
r ,

(5)

where the design parameters

α1>α2>. . .>αr>0, pi>1 for i = 1, . . . , r−1,

βi>0, ψ0
i >

βi

αi
for i = 1, . . . , r

(6)

can be chosen as desired. Typically, the specific application
dictates the constraints on the tracking error and thus indi-
cates suitable choices for those parameters.

t

•

λ

(0, e(0)) ψ(t)

Fig. 1: Error evolution in a funnel Fψ with boundary ψ(t).

II. FUNNEL MPC SCHEME

In this section we define the novel FMPC algorithm, which
extends [6, Alg. 2.7] to systems with arbitrary relative degree,
and we prove that it is initially and recursively feasible. To
this end, we first define, for any solution (ψ1, . . . , ψr) of (5),
yref ∈W r,∞(R≥0,Rm), t ≥ 0 and ζ = (ζ1, . . . , ζr) ∈ Rrm,

e1(t, ζ) := ζ1 − yref(t),

ei+1(t, ζ) := ζi+1 − y
(i)
ref(t) + ki(t, ζ)ei(t, ζ),

ki(t, ζ) :=
(
1− ∥ei(t,ζ)∥2

ψi(t)2

)−1
(7)

for i = 1, . . . , r−1. Then we propose, with design parameter
λu ∈ R≥0, the new stage cost function ℓ defined in (8).
The terms 1

1−∥ei(t,ζ)∥2/ψi(t)2
penalize the distance of the

auxiliary error variables ei defined in (7) to the funnel
boundaries ψi, whereas the parameter λu influences the
penalization of the control input. Note that e1 = y − yref .

The cost function ℓ is motivated by the following recent
result on funnel control from [8, Cor. 3.3], which is tailored
to the present framework.

Proposition 2.1: Consider a system (2) which satisfies
condition (4) and γ(x) ∈ GLm(R) for all x ∈ Rn.
Choose t0 ∈ R≥0, funnel design parameters as in (6) and
let (ψ1, . . . , ψr) be a global solution of (5). Then for all



ℓ : R≥0×Rrm×Rm → R∪{∞}, (t, ζ, u) 7→


r∑
i=1

1
1−∥ei(t,ζ)∥2/ψi(t)2

− r + λu ∥u∥2 ∥ei(t, ζ)∥ ̸=ψi(t) ∀ i = 1, . . . , r

∞, else.
(8)

K, ξ > 0 there exist ε̂1, . . . , ε̂r ∈ (0, 1) such that for all
εi ∈ [ε̂i, 1), i = 1, . . . , r there exists M > 0 such that

• for all yref ∈ W r,∞([t0∞),Rm) with ∥y(i)ref∥∞ ≤ K,
i = 0, . . . , r,

• for all yi ∈ Rm with ∥ei(t0, y1, . . . , yr)∥ ≤ εiψi(t
0)

for i = 1, . . . , r, and
• for all η0 ∈ Rn−rm with ∥η0∥ ≤ ξ and η̂ :=
η(t0; 0, η0, ζ) for some ζ ∈ C([0, t0],Rrm) with
∥ei(t, ζ1(t), . . . , ζr(t))∥ ≤ εiψi(t) for all t ∈ [0, t0] and
ζi(t

0) = yi for i = 1, . . . , r,
the application of the controller

u(t) = −kr(t, Y (t))γ
(
Y (t), η(t)

)−1
er(t, Y (t)),

Y (t) = (y(t), . . . , y(r−1)(t)),

to (2), where kr is defined as in (7), leads to a closed-loop
initial value problem with initial conditions y(i−1)(t0) = yi

for i = 1, . . . , r, η(t0) = η̂, which has a solution, every
solution can be maximally extended and every maximal
solution (y, η) : [t0, ω) → Rm, ω ∈ (t0,∞], is global (i.e.,
ω = ∞) and satisfies

(i) y ∈ W r,∞([t0,∞),Rm) and ki ∈ L∞([t0,∞),R) for
i = 1, . . . , r;

(ii) u ∈ L∞([t0,∞),Rm) with ∥u(t)∥ ≤M for all t ≥ t0,
(iii) ∥ei(t, y(t), . . . , y(r−1)(t))∥ ≤ εiψi(t) for all t ≥ t0

and all i = 1, . . . , r. ⋄
Note that compared to [8, Cor. 3.3] the parameter ξ, on

which M depends, is new and defines a bounded set for
the initial values of the internal dynamics. Nevertheless, the
proof from [8] can still be applied when the operators Tη0 :
ζ 7→ η(·; 0, η0, ζ) are considered and it is observed that by (4)
a uniform bound for those operators (depending on ξ) on any
bounded set in L∞

loc(R≥0,Rrm) is provided.
Further note that the proof of [8, Cor. 3.3] is constructive

and explicit expressions for the numbers ε̂1, . . . , ε̂r and
M = M(ε1, . . . , εr,K, ξ) are given, which we do not
repeat here (and which require a slight but straightforward
modification utilizing N(s) = −s and supx∈C ∥γ(x)−1∥
over an appropriate compact set C ⊆ Rn).

Based on the cost function ℓ from (8) and inspired by
Proposition 2.1, we may define the FMPC algorithm as
follows.

Algorithm 2.2 (FMPC):
Given: System (1), funnel design parameters as in (6)
and a global solution (ψ1, . . . , ψr) of (5), reference signal
yref ∈W r,∞(R≥0,Rm), M > 0, ε = (ε1, . . . , εr) ∈ (0, 1)r,
t0 ∈ R≥0 and

x0 ∈ Dε
t0 :=

{
x ∈ Rn

∣∣∣∣ ∥ei(t0, χ(x))∥ ≤ εiψi(t
0)

for all i = 1, . . . , r

}
(9)

for χ as in (3), and stage cost function ℓ as in (8).
Set the time shift δ > 0, the prediction horizon T ≥ δ and

initialize the current time t̂ := t0.
Steps:
(a) Obtain a measurement of the state at t̂ and set x̂ := x(t̂).
(b) Compute a solution u⋆ ∈ L∞([t̂, t̂ + T ],Rm) of the

Optimal Control Problem (OCP)

minimize
u∈L∞([t̂,t̂+T ],Rm)

∫ t̂+T

t̂

ℓ
(
t, ζ(t), u(t)

)
dt

subject to ζ(t) = χ
(
x(t; t̂, x̂, u)

)
,

∥u(t)∥ ≤M for t ∈ [t̂, t̂+ T ],

∥ei(t̂+ δ, ζ(t̂+ δ))∥ ≤ εiψi(t̂+ δ),

i = 1, . . . , r
(10)

(c) Apply the feedback law

µ : [t̂, t̂+ δ)× Rn → Rm, µ(t, x̂) = u⋆(t) (11)

to system (1). Increase t̂ by δ and go to Step (a).
Note that in the OCP (10) the last r inequalities constitute

a feasibility constraint on the output y and its first r − 1
derivatives, which resembles the constraint used in [1,
Eq. (9)].

In the following main result we show that for suitable
M > 0 and ε ∈ (0, 1)r the FMPC Algorithm 2.2 is initially
and recursively feasible for every prediction horizon T > 0
and that it guarantees the evolution of the tracking error
within the performance funnel Fψ1

.
Theorem 2.3: Consider a system (1) with (f, g, h) ∈

Nm,r. Choose funnel design parameters as in (6) and let
(ψ1, . . . , ψr) be a global solution of (5). Let

• K, ξ > 0, ε = (ε1, . . . , εr) ∈ (0, 1)r and M =
M(ε,K, ξ) as in Prop. 2.1,

• yref ∈ W r,∞(R≥0,Rm) such that ∥y(i)ref∥∞ ≤ K for
i = 0, . . . , r,

• t0 ∈ R≥0 and B ⊂ Dε
t0 be a bounded set such that

for all x0 ∈ B we have that (ζ0, η0) = Φ(x0) satisfies
∥η0∥ ≤ ξ.

Then the FMPC Algorithm 2.2 with δ > 0 and T ≥ δ is
initially and recursively feasible for every x0 ∈ B, i.e., at
time t̂ = t0 and at each successor time t̂ ∈ t0 + δN the
OCP (10) has a solution. In particular, the closed-loop system
consisting of (1) and the FMPC feedback (11) has a (not
necessarily unique) global solution x : [t0,∞) → Rn and
the corresponding input is given by

uFMPC(t) = µ(t, x(t̂)), t ∈ [t̂, t̂+ δ), t̂ ∈ t0 + δN.

Furthermore, each global solution x with corresponding input
uFMPC satisfies:

(i) ∀ t ≥ t0 : ∥uFMPC(t)∥ ≤M .
(ii) ∀ t ≥ t0 : ∥ei(t, χ(x(t)))∥ < ψi(t); in particular the

error e = y − yref evolves within the funnel Fψ1
, i.e.,

∥e(t)∥ < ψ1(t) for all t ≥ t0.
The proof is relegated to Appendix B.



III. SIMULATION

To illustrate the proposed FMPC scheme, we consider the
mass-on-car system introduced in [22], where on a car with
mass m1 (in kg) a ramp is mounted on which a mass m2

(in kg), coupled to the car by a spring-damper-component
with spring constant k > 0 (in N/m) and damping d > 0 (in
Ns/m), passively moves; a control force F = u (in N) can
be applied to the car. The situation is depicted in Fig. 2. The

F

y

a=const

s

Fig. 2: Mass-on-car system.

equations of motion for the system read[
m1 +m2 m2 cos(ϑ)
m2 cos(ϑ) m2

](
z̈(t)
s̈(t)

)
+

(
0

ks(t)+dṡ(t)

)
=

(
u(t)
0

)
,

(12a)
with the horizontal position of the second mass m2 as output

y(t) = z(t) + cos(ϑ)s(t). (12b)

For the simulation we choose the parameters m1 = 4,
m2 = 1, k = 2, d = 1, ϑ = π/4 and the initial values
z(0) = s(0) = ż(0) = ṡ(0) = 0. The objective is tracking
of the reference signal yref : R≥0 → R, t 7→ cos(t) so that
the error e(t) = y(t) − yref(t) satisfies ∥e(t)∥ ≤ ψ1(t) for
the solution (ψ1, ψ2) of (5) for the parameters

α1 = 1.5, α2 = 0.9 · α1, β1 = 0.15, β2 = 0.5 · α2,

p1 = 1.1, ψ0
1 = 4.1, ψ0

2 = 2,

which are chosen as in [8]. As outlined in [11, Sec. 3] for
the above parameters system (12) belongs to the class N 1,2,
in particular the relative degree is two. We compare the
FMPC Algorithm 2.2 with OCP (10) to the FMPC scheme
from [6]. For Algorithm 2.2 we choose, according to the
procedure provided in the proof of [8, Thm. 3.2] and rounded
to the second decimal place, ε1 = 0.94 and ε2 = 0.99.
Since the simulation of FMPC in [6] generated control values
below 15, we choose M = 15. Due to discretisation, only
step functions with constant step length 0.04 are considered
for the OCP (10). The prediction horizon and time shift
are selected as T = 0.6 and δ = 0.04, resp. We further
choose the parameter λu = 1

100 for the stage cost ℓ. The
parameters T , δ and λu are chosen as in [6]. All simulations
are performed on the time interval [0, 10] with the MATLAB
routines ode45 and fmincon and are depicted in Fig. 3.
Fig. 3a shows the tracking error due to the two different
FMPC schemes evolving within the funnel boundaries given
by ψ1, while the respective control signals are displayed

in Fig. 3b. It is evident that both control schemes achieve
the evolution of the tracking error within the performance
boundaries given by ψ1. However, the FMPC Algorithm 2.2
with OCP (10) requires less input action than the FMPC
scheme from [6]. This superior performance is a consequence
of the fact that the stage cost ℓ not only penalizes the distance
of the error e = e1 to ψ1, but also the distance of e2 = ė+k1e
to ψ2.

0 2 4 6 8 10
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0.5

(a) Tracking error e and funnel boundary ψ1
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10

15

(b) Control input

Fig. 3: Simulation of system (12) under FMPC Algorithm 2.2
and FMPC from [6]

IV. CONCLUSION

In the present paper we proposed a novel stage cost for
FMPC and proved that the resulting FMPC Algorithm 2.2
is initially and recursively feasible. This extends earlier
approaches from [1], [6] to nonlinear systems with arbitrary
relative degree and belonging to the system class Nm,r.
Although we didn’t require any terminal conditions or a
sufficiently long prediction horizon (as in [7] for relative
degree two), we imposed an additional feasibility constraint
in the OCP (10). This constraint does not only restrict
the set of admissible controls, but the required parameters
ε1, . . . , εr ∈ (0, 1) and M > 0 provided by Proposition 2.1
are usually quite conservative and hard to compute. Further
research should focus on relaxing the OCP by removing the
feasibility constraints.



APPENDIX

A. A preliminary lemma

Lemma A.1: Consider a system (1) with (f, g, h) ∈ Nm,r.
Choose funnel design parameters as in (6) and let
(ψ1, . . . , ψr) be a global solution of (5). Let t0 ∈ R≥0,
T > 0 and yref ∈ W r,∞([t0,∞),Rm). Further let
x0 ∈ Rn be such that ∥ei(t0, χ(x0))∥ < ψi(t

0) for all
i = 1, . . . , r. Then there exists Y > 0 such that for
all u ∈ L∞([t0, t0 + T ],Rm) for which x(t; t0, x0, u) sat-
isfies (1) and ∥ei(t, χ(x(t; t0, x0, u)))∥ < ψi(t) for all
t ∈ [t0, t0 + T ] and i = 1, . . . , r, we have ∥y(i−1)(t)∥ ≤ Y
for all t ∈ [t0, t0 + T ] and i = 1, . . . , r.

Proof: For brevity we identify ei(t) =
ei(t, χ(x(t; t

0, x0, u))) and observe that the relations (7)
imply that the differential equations

ėi(t) = ei+1(t)− γi(t)− γ̇i−1(t), i = 1, . . . , r − 1,

where γ0(t) = 0 and γi(t) = ei(t)
1−∥ei(t)∥2/ψi(t)2

, are satis-
fied. From those it follows from a repetition of Steps 3–
6 and 9 of the proof of [8, Thm. 3.1] that there exist
ε1, . . . , εr−1 ∈ (0, 1), which only depend on x0 and the
parameters in (6), such that ∥ei(t)∥ ≤ εiψi(t) for all
t ∈ [t0, t0 + T ] and i = 1, . . . , r − 1. From this, (7), the
assumption and the monotony of ψi it follows directly that

∥y(i−1)(t)∥ < ψi(t
0) + ψi−1(t

0)
1−ε2i−1

+ ∥y(i−1)
ref ∥∞ =: Yi

for all t ∈ [t0, t0 + T ] and i = 1, . . . , r, where ψ0 := 0 and
ε0 := 0. With Y := maxi=1,...,r Yi the proof is complete.

B. Proof of Theorem 2.3

Let T ≥ δ be arbitrary but fixed. For t ≥ t0 we define in
addition to Dε

t as in (9) the set

Dt := {x ∈ Rn | ∥ei(t, χ(x))∥ < ψi(t) ∀ i = 1, . . . , r} .

For t̂ ≥ 0 we denote by IT
t̂

the interval [t̂, t̂+T ] and further
for x̂ ∈ Dt̂ by U(t̂, x̂) the setu∈L∞(IT

t̂
,Rm)

∣∣∣∣∣∣
x(t; t̂, x̂, u) satisfies (1) and
x(t; t̂, x̂, u) ∈ Dt for all t ∈ IT

t̂
,

x(t̂+ δ; t̂, x̂, u) ∈ Dε
t̂+δ

, ∥u∥∞≤M

.
This is the set of all L∞-controls u bounded by
M which, if applied to system (1), guarantee that
the error signals ei(t, χ(x(t; t̂, x̂, u))) evolve within their
respective funnels on the interval IT

t̂
and moreover

x(t̂+ δ; t̂, x̂, u) ∈ Dε
t̂+δ

. By Proposition 2.1 we have that
U(t0, x0) ̸= ∅ for all x0 ∈ B. Furthermore, for any t̂ ≥ t0 we
have that U(t̂, x(t̂; t0, x0, u)) ̸= ∅ for all u ∈ L∞([t0, t̂],Rm)
such that x(t̂; t0, x0, u) ∈ Dε

t̂
.

In the following we show that if U(t̂, x̂) is non-empty
for some t̂ ≥ t0 and x̂ ∈ Dε

t̂
, then the OCP (10) has a

solution u⋆ ∈ U(t̂, x̂) — this proves the theorem. To this
end, we assume x̂ ∈ Dε

t̂
in the following. The proof consists

of several steps and follows the idea of [6, Thms. 4.3 & 4.6].
Step 1: We show that for u ∈ U(t̂, x̂), the function

ℓ
(
·, ζ(·), u(·)

)
with ζ(·) = χ(x(·; t̂, x̂, u)) is positive on IT

t̂

and
∫
IT
t̂

ℓ(t, ζ(t), u(t))dt < ∞. By u ∈ U(t̂, x̂) we have

x(t; t̂, x̂, u) ∈ Dt for all t ∈ IT
t̂

. Therefore, ∥ei(t, ζ(t))∥2 <
ψi(t)

2 for all t ∈ IT
t̂

and all i = 1, . . . , r. Due to the
compactness of IT

t̂
and the continuity of ζ, ei, ψi, there exists

δ > 0 with ∥ei(t, ζ(t))∥2 /ψi(t)2 < 1− δ for all t ∈ IT
t̂

and
all i = 1, . . . , r. Hence, ℓ

(
t, ζ(t), u(t)

)
≥ 0 for all t ∈ IT

t̂
and∫

IT
t̂

ℓ(t, ζ(t), u(t))dt

=

∫
IT
t̂

r∑
i=1

1
1−∥ei(t,ζ(t))∥2/ψi(t)2

− r+λu∥u(t)∥2 dt

≤
∫
IT
t̂

r
δ + λu ∥u∥2∞dt ≤

(
r
δ + λuM

2
)
T <∞.

Step 2: We show that the setu∈L∞(IT
t̂
,Rm)

∣∣∣∣∣∣∣
x(t; t̂, x̂, u) satisfies (1) for all t∈IT

t̂
,

x(t̂+ δ; t̂, x̂, u) ∈ Dε
t̂+δ

, ∥u∥∞≤M,∫
IT
t̂

ℓ(t, χ(x(t; t̂, x̂, u)), u(t)) dt <∞

,
denoted by Ũ(t̂, x̂), is a subset of U(t̂, x̂). Let u ∈ Ũ(t̂, x̂)
and set ζ(·) = χ(x(·; t̂, x̂, u)). The claim is proved by show-
ing ∥ei(t, ζ(t))∥ < ψi(t) for all t ∈ IT

t̂
and i = 1, . . . , r.

Since x̂ ∈ Dε
t̂
, we know

∥∥ei(t̂, ζ(t̂))∥∥ < ψi(t̂). Assume there
exists t ∈ IT

t̂
with ∥ei(t, ζ(t))∥ ≥ ψi(t) for i = 1, . . . , r. By

continuity of ei, ζi, and ψi, there exists

t̃ := min
{
t ∈ IT

t̂

∣∣ ∃ i = 1, . . . , r : ∥ei(t, ζ(t))∥ = ψi(t)
}
.

Let j ∈ {1, . . . , r} with
∥∥ej(t̃, ζ(t̃))∥∥ = ψj(t̃).

Recalling the definition of the Lebesgue integral, see
e.g. [23, Def. 11.22],

∫
IT
t̂

ℓ(t, ζ(t), u(t)) dt < ∞ implies∫
IT
t̂

(ℓ(t, ζ(t), u(t)))+ dt < ∞ where (ℓ(t, ζ(t), u(t)))+ :=

max {(ℓ(t, ζ(t), u(t))), 0}. Note that
∥∥ei(t̃, ζ(t̃))∥∥ < ψi(t̃)

for all t ∈ [t̂, t̃) and for all i = 1, . . . , r. Therefore,∫ t̃

t̂

1
1−∥ej(t,ζ(t))∥2/ψj(t)2

dt ≤
∫ t̃

t̂

r∑
i=1

1
1−∥ei(t,ζ(t))∥2/ψi(t)2

dt

≤
∫
IT
t̂

(
r∑
i=1

1
1−∥ej(t,ζ(t))∥2/ψi(t)2

)+

dt

≤
∫
IT
t̂

(
r∑
i=1

1
1−∥ei(t,ζ(t))∥2/ψi(t)2

− r + λu ∥u(t)∥2
)+

dt+ Tr

=

∫
IT
t̂

(ℓ(t, ζ(t), u(t)))+dt+ Tr <∞.

As continuous functions ζ and y
(i)
ref are bounded on the

compact interval [t̂, t̃] for all i = 0, . . . , r. For the diffeomor-
phism Φ from Assumption 1 we have that Φ(x(·; t̂, x̂, u)) =
(ζ(·), η(·)) on IT

t̂
for some absolutely continuous η : IT

t̂
→

Rn−rm. As a consequence of Assumption 2, η is bounded
on the interval [t̂, t̃]. Since the functions p and γ in (2a) are
continuously differentiable, y(r) is bounded on [t̂, t̃] as well,
and hence e(i) = y(i) − y

(i)
ref is bounded for all i = 0, . . . , r.

By definition of t̃ we have for ei(·) := ei(·, ζ(·)) that



∥ei(t)∥ < ψi(t) for all t ∈ [t̂, t̃) and all i = 1, . . . , r. Then,
by the same arguments as in the proof of Lemma A.1, there
exist δ1, . . . , δr−1 ∈ (0, 1), which only depend on x̂ and
the parameters in (6), such that ∥ei(t))∥ ≤ δiψi(t) for all
t ∈ [t̂, t̃) and all i = 1, . . . , r − 1 (and by continuity the
inequality also holds for t = t̃). Then ki(·) := ki(·, ζ(·))
from (7) is bounded on [t̂, t̃] for i = 1, . . . , r− 1. Therefore,
since

d
dt

(
ki(t)ei(t)

)
=2ki(t)

2
(
∥ei(t)∥2

ψi(t)3
ψ̇i(t)+

ei(t)
⊤ėi(t)

ψi(t)2

)
ei(t)

+ ki(t)ėi(t)

for i = 1, . . . , r − 1 and invoking boundedness of ψi
and ψ̇i due to (5), it follows by induction and from the
relations (7) that ėi(·) is essentially bounded for all i =
1, . . . , r − 1, where for i = 1 we have that ė1 = e2 − k1e1
is bounded. Furthermore, it is straightforward to see that
ėr = e(r) + d

dt (kr−1er−1) is bounded. In particular, we
have shown that ėj is bounded and hence ej is Lipschitz
continuous. Since ψ̇j is bounded and ψj(t) ≥ βj/αj it is
also clear that d

dt (1/ψj) = −ψ̇j/ψ2
j is bounded, hence 1/ψj

is Lipschitz continuous. Therefore, 1− ∥ej(·)2∥/ψj(·)2 is a
Lipschitz continuous function on the interval [t̂, t̃], hence it
follows from [6, Lem. 4.1] that 1−∥ej(·)2∥/ψj(·)2 is strictly
positive on the interval [t̂, t̃], contradicting the definition of t̃.
Hence Ũ(t̂, x̂) ⊆ U(t̂, x̂).

Step 3: We show that the OCP (10) has a solution
u⋆ ∈ U(t̂, x̂). It follows from Step 1 that U(t̂, x̂) ⊆ Ũ(t̂, x̂)
and together with Step 2 we have U(t̂, x̂) = Ũ(t̂, x̂) ̸= ∅,
the latter by assumption. Solving the OCP (10) is therefore
equivalent to minimizing the function

J : L∞(IT
t̂
,Rm) → R ∪ {∞} ,

u 7→

{∫
IT
t̂

ℓ(t, χ(x(t; t̂, x̂, u)), u(t)) dt, u ∈ U(t̂, x̂)
∞, else.

As a consequence of Step 1, J(u) ≥ 0 for all u ∈ U(t̂, x̂).
Hence, the infimum J⋆ := infu∈U(t̂,x̂) J(u) exists. Let
(uk) ∈ (U(t̂, x̂))N be a minimizing sequence, meaning
J(uk) → J∗. Since L∞(IT

t̂
,Rm) ⊂ L2(IT

t̂
,Rm) and

∥uk∥∞ ≤ M for all k ∈ N, we conclude that (uk) is a
bounded sequence in the Hilbert space L2. Hence, there
exists u⋆ ∈ L2(IT

t̂
,Rm) and a weakly convergent subse-

quence uk ⇀ u⋆ (which we do not relabel). Let (xk) :=
(x(·; t̂, x̂, uk)) ∈ C(IT

t̂
,Rn)N be the sequence of associated

responses. According to Lemma A.1, there exists Y > 0 such
that ∥χ(xk)∥∞ ≤ Y for all k ∈ N. As in Step 2, let ηk :
IT
t̂
→ Rn−rm be such that (χ(xk(·)), ηk(·)) = Φ(xk(·)) and

observe that ηk(·) = η(·; t̂, ηk(t̂), χ(xk)). Since ∥ηk(t̂)∥ ≤
∥Φ(x̂)∥, independent of k, it follows from Assumption 2
with c0 := Y + ∥Φ(x̂)∥ that there exists c1 > 0 such that
∥ηk∥∞ ≤ c1 for all k ∈ N. Therefore, xk(t) is an element
of the compact set

Φ−1

({(
z1
z2

)
∈Rrm×Rn−rm

∣∣∣∣ ∥z1∥≤ Y ∧ ∥z2∥≤ c1

})
for all t ∈ IT

t̂
and all k ∈ N. Hence, (xk) is uniformly

bounded. Then, by a repetition of Steps 2–4 of the proof

of [6, Thm. 4.6], we may infer that (xk) has a subsequence
(which we do not relabel) that converges uniformly to
x⋆ = x(·; t̂, x̂, u⋆) and ∥u⋆∥∞ ≤ M . Due to the continuity
of χ and ei, the uniform convergence of (xk) implies the
pointwise convergence of χ(xk(·)) and ei(·, χ(xk(·))) for all
i = 1, . . . , r. Thus, x(t̂ + δ; t̂, x̂, u⋆) ∈ Dε

t̂+δ
. It remains to

show that u⋆ ∈ U(t̂, x̂) and J(u⋆) = J⋆. Again this follows
along the lines of Steps 5–6 of the proof of [6, Thm. 4.6]
and this completes the proof. ■
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