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Abstract

We combine different system theoretic concepts to solve the feedback stabilization problem for
linear time-varying systems with real analytic coefficients. The algebraic concept of the skew polyno-
mial ring with meromorphic coefficients and the geometric concept of (A, B)-invariant time-varying
subspaces are invoked. They are exploited for a description of the zero dynamics and to derive
the zero dynamics form. The latter is essential for stabilization by state feedback: the subsystem
describing the zero dynamics are decoupled from the remaining system which is controllable and
observable. The zero dynamics form requires an assumption close to autonomous zero dynamics;
this in some sense resembles the Byrnes-Isidori form for systems with strict relative degree. Some
aspects of the latter are also proved. Finally, using the zero dynamics form, we show for square
systems with autonomous zero dynamics that there exists a linear state feedback such that the
Lyapunov exponent of the closed-loop system equals the Lyapunov exponent of the zero dynamics;
some boundedness conditions are required, too. If the zero dynamics are exponentially stable this
implies that the system can be exponentially stabilized. These results are to some extent also new
for time-invariant systems.

Keywords: Time-varying linear systems, feedback stabilization, zero dynamics, strict relative degree,
Byrnes-Isidori form, geometric control theory, algebraic systems theory

1 Introduction

We study the class of linear time-varying systems with real analytic coefficients and m-inputs and
p-outputs of the form

&= A(t)x + B(t) u(t) (1.1a)
y(t) = C(t) z(t), (1.1b)

where (A4, B,C) € A" x A" x AP*™; this class is denoted by X, ,,, ,, and we write (A, B,C) € Xy, p
for short. The functions u : R — R™ and y : R — RP are called input and output of the system, resp.
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A trajectory (x,u,y) : R — R™ x R™ x RP is said to be a solution of (1.1) if, and only if, it belongs to
the behaviour of (1.1f):

o n m » (z,u,y) solves
%[A»BC] = { (z,u,y) € AC" x PC™ x AC for almost all t € R ’

Systems of the form ([1.1]) result from a linearization of nonlinear input/output systems

w(t) - f(t7x(t)7u(t)) ’ y(t) = h(t, x(t»

along a solution, where f and h are real analytic functions.

A fundamental problem for systems of the form is to find a time-varying state feedback wu(t) =
F(t)z(t) for some F : R — R™*™ such that, if applied to (L.1]), the closed-loop system & = (A(t) +
B(t)F(t))z is asymptotically stable. In this paper, we aim to exploit properties of the zero dynamics
to address this problem. For time-invariant systems (A, B, C') € R™*™ x R™"*™ x R™*"  stabilizability
by state feedback follows immediately from asymptotically stable zero dynamics [19, pp. 298-300], the
latter will be defined in due course.

The guiding research idea of the present paper is to see how this stabilization result can be extended
to time-varying systems . To this end, it was necessary to combine different concepts:

The algebraic concept of the skew polynomial ring M[D], introduced in [17], is crucial for studying
time-varying linear systems in polynomial operator description. Hence, we frequently consider M|[D]
with indeterminate D, real meromorphic coefficients, or A[D] with real analytic coefficients, and mul-
tiplication rule

VfeM: Df=fD+]. (1.2)

The algebraic properties of M[D] and matrices over this ring will prove useful in our analysis, and we
have delegated the important properties of this ring needed in the present paper to Appendix [A]
From the field of dynamical systems we require the concept of (asymptotically stable) zero dynamics.
The latter is the crucial assumption to resolve the stabilization problem. Zero dynamics was introduced
for time-invariant nonlinear systems in [§], see also the textbook [19, Sec. 4.3, 5.1, 6.1]. We think that
the importance of the concept of zero dynamics has been underestimated and we treat them in detail
for time-varying linear systems.

The geometric concept of (A, B)-invariant time-varying subspaces is important to understand the zero
dynamics. Geometric control theory was introduced by [2, 26] and for time-varying linear systems
by [14]. The geometric description of the zero dynamics allows for the derivation of the zero dynamics
form which is interesting in its own right and also essential for proving the stabilization result.
Different canonical forms for time-varying systems, such as the Byrnes-Isidori form [16], the zero
dynamics form (new), the Teichmiiller-Nakayama form [9], and the Hermite form [I2] are a recurrent
theme in the present paper. On the one hand they are instrumental for making connections between
algebraic, geometric, and dynamic objects; on the other hand we refine some of these forms where
needed for the stabilization result.

The concepts of stability and Lyapunov exponents of time-varying linear systems, see e.g. [13], provide
the main technical tool to derive the stabilization result.

The concept of behaviour is the general framework in the present paper. See the textbook [22] for
time-invariant systems, and see [I5] for time-varying systems and the ring M[D]. Note that if we set

R(D) _ DI,—A —-B 0 c A[D](n+p)><(n+m+p) 7 for (A, B, C) c Enmpv
-C 0 I, gl
then the behaviour can be written as ker g4¢n wpem x Ace R(%) = Ba,B,0]-



In Section [2| we investigate the zero dynamics; i.e., those dynamics which are not visible at the output.
It is shown that they are a dynamical system or, in other words, a behaviour. Autonomy and also
triviality of the zero dynamics are closely related to full column rank and left invertibility of an operator,
resp. The relations are depicted in Fig. 1.

DI,—A, -B
(H1) & Lem.[3.7] | f—C 0 . Pr.:[?] ZDaBc) =
eds is left invertible
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(A,B,0C) is Lo~ o - (A, B,C) has
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e rank over M[D] | <= LTI

Fig. 1: Implications relating algebraic properties of (A, B,C) € %, ,, , with properties of the zero
dynamics ZD4 p ). Arrows labeled with LTT point out stronger versions of the results in the
linear time-invariant case. For each unidirectional arrow there is a counterexample showing that
the converse implication is false.

Existence of the Existence of the zero
Byrnes-Isidori form (B.4) dynamics form (3.15))
¢ Th.[B.7] ¢ Th.p.g
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Fig. 2: Implications relating relative degree, the assumptions (H1)-(H2) and autonomy of the
zero dynamics of (A4, B,C) € ¥, mp. Arrows labeled with LTI point out stronger versions of the
results in the linear time-invariant case. For each unidirectional arrow there is a counterexample
showing that the converse implication is false.

In Section |3 we discuss (A, B)-invariant time-varying subspaces and their generators. Because of the
close relation to the zero dynamics we focus on the maximal (A, B)-invariant subspace included in the
kernel of C'. A main step consists in the introduction of the assumptions (H1)-(H2), which require



(i) that the input matrix B as well as the generator of the maximal (A, B)-invariant subspace included
in the kernel of C' to be of constant full rank and (ii) that these subspaces have trivial intersection.
This assumption is used to derive a zero dynamics form and it is shown by example that these
assumptions cannot be weakened in a straightforward way. Furthermore, (H1)-(H2) guarantee the
existence of a vector space isomorphism between the zero dynamics and the maximal (A, B)-invariant
subspace included in the kernel of C'. See Fig. 2.

The assumption of a strict relative degree is stronger than Assumptions (H1)-(H2) and allows to show
that the zero dynamics are a direct summand of the behaviour, and that the maximal (A, B)-invariant
subspace included in the kernel of C, or equivalently the zero dynamics, can be viewed as the kernel
of a certain matrix.

A further important aspect is that (H1)-(H2) imply the autonomy of the zero dynamics. For time-
invariant systems, these assumptions are even equivalent to the autonomy. This fact was not realized
in [I9, pp. 298-300] although there (H1)-(H2) are used to derive the zero dynamics form in the time-
invariant case.

In Section ], we exploit an operator characterization of controllability and observability of time-varying
systems [I7] to show the relationship between triviality of the maximal (A, B)-invariant subspace
included in ker C' and controllability and observability. See Fig. 1.

In Section [f the stabilization problem is solved using the tools presented so far. For square systems, i.e.
p = m, it is shown that the Assumptions (H1)-H(2) — which are for time-invariant systems equivalent
to autonomous zero dynamics — together with exponential stability of the zero dynamics are sufficient
for the existence of an exponentially stabilizing feedback, provided we are dealing with bounded data.
The proof relies on the transformation to the zero dynamics form and the analysis of the system
in this simpler form. The result is also true for the problem of uniform exponential stabilization if
uniform stability properties are required for the zero dynamics form. It also gives a deeper and sharper
understanding in case of time-invariant systems.

Some basic algebraic facts about the ring M[D] are presented in Appendix Al and in Appendix [Bf we
study some aspects of the (strict) relative degree of time-varying systems and recall the definition of
the Byrnes-Isidori form and show some new aspects thereof.

We close the introduction with a list of nomenclature used in the present paper.

N, Np, R the set of natural numbers, Ng = NU {0}, and real numbers, resp.
R the set of n X m matrices with entries in a ring R

Gl,(R) the general linear group of invertible n X n matrices over R

l|z|] = Va Tz, the Euclidean norm of z € R"

IIA|l = max {|[Az|| |z € R™, ||lz|| = 1}, induced matrix norm of A € R"*™
A the ring of real analytic functions f : R — R

M the field of real meromorphic functions, i.e. the quotient field of A
Apw = { f:R\Z — R | f is real analytic and Z C R a discrete set },

the set of piecewise analytic functions; a set Z C R is called discrete if, and only if,
for any compact K C R, we have that K NZ is finite

AC the set of absolutely continuous functions f : R — R, see [I3], Def. A.3.12]

PC the set of piecewise continuous functions f : R — R, i.e., f is left continuous every-
where, has only finitely many discontinuities on any compact subset of R, and the
right limits exist at the discontinuities

ct the set of ¢-times continuously differentiable functions f: R — R for £ € Ny U {oo}
L the set of measurable, essentially bounded functions f: R — R
dom f the domain of definition of the function f



flr the restriction of the function f to a set Z C dom f

eds means “for all ¢ € R with the exception of a discrete set”, i.e., the respective statement
is valid for all t € R\ Z, where Z C R is a discrete set
Dy(,-) the transition matrix of & = A(t)z for A € A™*™.

2 Zero dynamics

In this section we introduce the crucial concept of zero dynamics for system as well as the notion
of autonomous zero dynamics. The concept of zero dynamics has been introduced by Byrnes and
Isidori [§] and is well investigated for nonlinear systems [19] Sec. 4.3, 5.1, 6.1] and time-invariant linear
(differential-algebraic) systems [3] [6l, [7]; for time-varying systems they have not yet been studied. The
zero dynamics are, loosely speaking, those dynamics which are not visible at the output. The concept
of autonomy stems from the behavioural approach, see [22, Def. 3.2.1]. Several algebraic criteria for
the autonomy of the zero dynamics are derived. Examples show the limitations of these criteria. We
point out that we are not using the term autonomous for time-invariant systems, as authors in the
area of dynamical systems frequently do; this would lead to confusion with the meaning of the term
in the behavioral sense.

Definition 2.1 (Zero dynamics).
The zero dynamics of system (|1.1]) are defined as the set of trajectories

ZDpc) =1 (@, u,y) €Bdapc) |y=0}.
The zero dynamics ZD4 g ¢ are called autonomous if, and only if,

Vwi,we € ZDjg gy VI C R an open interval : w1, = wa|; = w1 =ws. (2.1)
o

It will be advantageous to rewrite the zero dynamics as follows

dr _ _
V(z,u,y) € AC" x PC™ x ACP . (z,u,y) € ZDapc) = [dtlfc ! OB} B

] =0. (2.2
Remark 2.2 (Autonomous zero dynamics).
By linearity of (L.1), the set ZD(4 p ¢ is a real vector space. Therefore, the zero dynamics ZD4 g

are autonomous if, and only if, for any w € ZD4 p ) which satisfies w|; = 0 on some open interval
I C R, it follows that w = 0. o

Next we show that the zero dynamics carries in a certain sense the structure of a dynamical system.

Remark 2.3 (Zero dynamics as a dynamical system).

We now show that the zero dynamics of (A4, B,C) € £, carries the structure of an R-linear dynam-
ical system as defined in [I3, Defs. 2.1.1, 2.1.26]. For any (tg, 2% u(-)) € R x R™ x PC™ there exists
a unique maximal solution of the initial value problem , x(tg) = 2°, defined on R. Denote this
solution by ¢(-;tg, 2%, u(-)) : R — R™. Then the state transition map of is the map defined on
its domain of definition

Dy, =RxRxR"xPC™ by ¢: (t,to, z°, u) — (t,tg, 2%, u) € R™.
The output map of (1.1)) is defined by

n:RXR"xR™ = RP, (t,z,u) — C(t)z.



We now restrict ¢ to the set
Dg = { (t,to,xo,u(-)) €D, ‘ VreR: C(T)@(T;to,xo,u(-)) =0 } ,

and by abuse of notation we write the same symbol for the restriction. It is readily verified that the
structure (R, R™, PC™ R™, RP, ¢, n), with the restricted state transition map ¢ : DS, — R" satisfies all
the requirements of a linear dynamical system.

The set D?O determines the zero dynamics in an equivalent manner. More precisely, for (z,u,y) €
ZD|a,B,c) Wwe have for all 4y, t € R that (¢, 7o, z(t%),u) € Dg. Conversely, if we introduce an equivalence
relation on D?D by

(t,to, 20, u) ~ (¢, th, b)) = o(th;te, zo,u) = z* and u =/,

then the equivalence classes [(t, o, ZL'O, u)] correspond to maximal trajectories that generate an output
that is vanishing identically. So the equivalence classes are in one-to-one correspondence to the elements
of ZD g c)- In this sense ZD4 p ] describes a dynamical system, as it is the space of trajectories
of a dynamical system. o

Before we show an implication of autonomous zero dynamics for time-varying systems, we show several
characterizations of autonomous zero dynamics for time-invariant systems.

Remark 2.4 (Zero dynamics of time-invariant systems).
For time-invariant systems (A, B, C) € R™*" x R™*™ x R™*" it follows immediately from the Smith
form (see e.g. [22, B.1.4]) that

-B

ZD[AB’C] are autonomous <= rkR[s] [SIT:E'A /

] =n+m <= ZDyp,) are finite dim.

and, if the number of inputs equals the number of outputs, i.e. m = p, then the Schur complement
gives

ZDia,B,c] are autonomous <= det C(sI,—A)"'B+#0.

The analysis of the zero dynamics of time-varying systems is more subtle. Here we may exploit the
close relationship between the differential operator in (2.2)) and the algebraic operator [D Iﬁg,A’ _OB } €

A[D](n+p)x(ntm) - Ag g first step we show that the latter has full column rank if the zero dynamics are
autonomous.

Proposition 2.5 (Autonomous zero dynamics implies full column rank).
Let (A,B,C) € Ey mp. Then

ZDa,B,c) are autonomous == rk (D]

[Dln—A —B]
=n-+m,

—C 0
and the converse is false in general for time-varying systems.

Proof: Let ¢:=n+m, g:=n+p, R(D) := [DIfEA’ 703} € A[D}9*4, and { := rk yp) R(D).
—>: Suppose that R(D) is in Teichmiiller-Nakayama form ({A.1]). In view of (|1.2)), we may rewrite V(D)
in (A1) as

N k
nr.
V(D) = (Z Dkd’kJ> for appropriate coprime nfj, dfj cA.
k=0

1,J



Let

v€ A\ {0} Dbe the product of all dfj, i,je{l,...,n}, ke {0,...,N}.
Seeking a contradiction, assume that R(D) does not have full column rank, i.e., ¢ — ¢ > 0. Now choose
z € C*° and an open interval I C R such that z|; =0 and

wmvip o) o

Note that w € C*°(R;RY) as the singularities in V' are canceled by . Now we have for all ¢ € R that

R(gw(t) = U~ (§) diag {Ie-1, (), Og—x(-0} (W) Bq(;)lD -

and hence ([I, 0w, [0, I,Jw, [C,0lw) € ZDj4 g ] and w|; = 0. But w # 0, which contradicts auton-
omy of the zero dynamics.

<#: Consider the system (1.1)) with

0 6t2+2

At) = [O 0 ] . B(t) teR,

I
| a——
w
~
0 o
+
[\V]
| S
Q
Ve
-
S—
I
gy
|
~
@

and define

0, t<0 . 5
u(t) := { VP 1, x1(t) = tou(t), xo(t) :=tu(t), teR.
It can be verified that u,z1,2o € C® and t31(t) = 2u(t) for all t+ € R. Furthermore, it is a simple
calculation that x := (21,22)", u, and y := 0 solve (.1 for all + € R, thus (x,u,y) € ZD\a,B,c)-
However, (@“)’(700,0) = 0 and (z,u) # 0, hence ZD[4 p ¢) is not autonomous. On the other hand,

D —6t2—-2 0
R(D) = D=4 =B\ _ 1 D —3t2 -2
-C¢ 0 -1 t3 0

has full column rank over M[D]. This may be seen by the factorization using

D $3D-3t2 -2 ¢3 1 -t 0
X(D):=|0 D 1| e Gl3M[D]), and R(D)=X(D)|0 1 —¢3
-1 0 0 0 0 D-2
This completes the proof of the proposition. O

DI,—A, —B

We now strengthen the condition that [ o ] has full column rank to that of left invertibility

over M[D]; then we can show that the zero dynamics are trivial.

Proposition 2.6 (Left invertibility implies trivial zero dynamics).
Let (A,B,C) € Xy mp. Then

—

[DI” —A _B] is left invertible over M|D] e’ ZD(a,p,c) ={(0,0,0)},

—-C 0

and equivalence holds for time-invariant systems (A, B,C) € R™*™ x R™*™ x RP*™,



Proof: Let ¢:=n+m, g:=n+pand R(D) := [DIﬁEA’ _OB] € A[D]9*4.

= Let (z,u,y) € ZDjapc) and w := (z',u’)". Then R(&)w(t) = 0 for almost all ¢ € R.
Since R(D) is left invertible, there exists T'(D) € M[D]?*9 such that T(D)R(D) = I, and hence
T(4R(L)w(t) = w(t) = 0 for almost all ¢ € R with the exception of the discrete set. The latter
finding together with (z,u) € AC" x PC™ yields (z,u) = 0 and proves that the zero dynamics are
trivial.

<#: Consider the system (|1.1)) with

A:[g (1)] B:m, Ct)=[1,1], teR,

and observe that any (z,u,y) € ZD[4 p ) satisfies

t2 t
z1(t) = gu(t), xo(t) = —iu(t), tu(t) = —3u(t), teR.
The latter differential equation implies that u(t) = ct=2 for some ¢ € R on both (—oc,0) and (0, 00).
Since u is piecewise continuous this yields u = 0. Therefore, ZD4 ] = {(0,0,0)}. However, the

Teichmiiller-Nakayama form (A.1)) is given by

D -1 0 D —tD—-2 t/27[1 0 0 1 —t 22
R(D):[Dji(;A _OB}: 0 D -1|=10 D —1/2[ 01 0 0 1 —t/2|,
1 ¢t 0 1 0 0 J [0 0 ¢tbh+3] [0 0 1

and hence we see that R(D) is not left invertible.

<= for time-invariant systems: This is a consequence of [3, Prop. 3.10] and the observation that any
left inverse of R(D) over R[D] is also a left inverse of R(D) over M[D]. This completes the proof of
the proposition. ]

Next we exploit the Byrnes-Isidori form, which is introduced in Appendix [B] to show that the zero
dynamics are a direct summand of the behaviour B4 p ¢

Proposition 2.7.
Suppose (A, B,C) € Xy, m,m has strict relative degree p € N. Then we have, for any to € R and U(-)
from Theorem [B.7, that

Bianc) = ZDupc®{ (,u,y) €Bapc) | (0,0, Lnpm] Ulto)z(te) =0 } .

Proof: By Theorem|B.7|(i), the parameter I'(¢) is invertible for all £ € R. It is then a direct consequence
of the Byrnes-Isidori form (B.4]) that the zero dynamics are given by

(CL‘,U, y) = (U_l[ov"-7077]T]T7_F_1Sna0) }

ZD = ,u,y) € AC™ x PC™ x ACP
A.5.] { (@, u,9) solves for a.a. t € R, where n = Q(t)n

Now for any (z,1u,) € Bpap.c) we have
0,50, T pm]U(t0) ((to) = Ulto) [0, ..., 0m(to)T] ) = 0.
Thus, for 7(-) defined by 7 = Q(£)11, 7(to) = [0, v, 0, In—pm]U (o) (to), it follows that
EORIORE)
= (w0 ] =re s 6ne,0) + (26 = U0 U] ) + O S0.0) )

Finally, the claim follows since by linearity B4 g ¢ is a vector space over R. O

8



The next proposition is an immediate consequence of Proposition

Proposition 2.8 (Characterization of zero dynamics).
Suppose (A, B,C) € ¥y, mm has strict relative degree p € N. Then

(i) y=0, B
(i) w=—|(&I+4)" (OB (§1+4) (C),

(x,zt,y) € 231)L4J3¢j} — )

(i11) x solves & = [A -B {(%I + Ar)f”1 (C’)B] ($1+ Ar)f’ (C)] =.
The characterization of the zero dynamics in Proposition [2.8]is a striking one. The control input « is
given through a feedback of x and the state x is given as the solution of a differential equation. Thus
in the case of strict relative degree, the representation of the zero dynamics as a dynamical system in
the sense of Remark has a particularly easy form. Furthermore, the description immediately shows
the autonomy of the zero dynamics.

3 (A,B)-invariant subspaces

The zero dynamics are the linear space of system trajectories that have zero output. In this section we
show that, given the assumptions (H1)-(H2) described below, this space is isomorphic to the supremal
(in fact maximal) (A, B)-invariant time-varying subspace which is included in ker C' for almost all
times. As the main result of this section we derive the so-called zero dynamics form in Theorem

A basic tool in the analysis are time-varying subspaces V generated by a piecewise analytic matrix-
valued function V' as introduced similarly in [14]. Given a time-dependent subspace of R™ denoted by
V= (V(t)) and a matrix-valued function V : R\ Z — R™** where Z C R is a discrete set, we write

VEImV e V(t) =imV(t) for all ¢ € R with the exception of a discrete set,

teR

define

3keNIV e At VEimy

V(t) is a subspace of R™ for all ¢ € R and
W, 1= { V= (V(t))teR } ,

and endow this set with the partial order

eds

Vi C Vo <= Vi(t) CTWy(t) for all t € R with the exception of a discrete set.

The matrix V € Agvka is called a generator of V € W, if, and only if, V °* im V. Note that the partial

eds eds - .
order C and the equality 95 allow for the definition of equivalence classes [V] for V € W, as follows:

[W:{Wemz

V@Vv}

Note also that V € W, does not have a unique generator, and different generators may have rank
drops and singularities at different points. However, among the set of all generators there is one
with piecewise constant rank. This is the content of the following straightforward modification of [14]
Prop. 2.6].

Lemma 3.1 (Piecewise constant rank generators).
ForanykeNandV € .Agvka there exist V' € Ag‘;k and a piecewise constant function r : domV — Ny
such that

eds ~ eds

domV =domV A imV<=imV A 1kVEr A VtedomV:imV(t)QimV(t)].



Now we introduce a concept of (A, B)-invariance for time-varying systems; it stems from [14, Sec. 4]
but is slightly different.

Definition 3.2 ((A, B)-invariance).
Let (4, B) € A™" x A™*™ and V € W, with generator V € A% for some k € N. Then V is called
(A, B)-invariant if, and only if,

IN € AR IM e ATXR (41— A) (V)L VN + BM. (3.1)

o

Note that the set A, of piecewise analytic functions includes in particular the set M of meromorphic
functions. The use of piecewise analytic N and M in Definition [3.2) is necessary as the following
example shows. Consider

vio=[]. a=wa Bo=[]]. tex

Then
YEeR\{0} 1 (L1 AW)(V(1) = m _ m 4 [(1)] 0.

Note that the rank drop in V'(0) leads to a coefficient matrix N(-) with a pole at zero.

Now we consider, for (A, B,C) € X, ,p, the set of all (A, B)-invariant subspaces in W, which are
included in the kernel of C; more precisely

L(A, B;ker C) := { Vew,

eds
V is (A, B)-invariant and V C ker C } .

It is easy to see that this set is nonempty and closed under (pointwise) subspace addition. Hence it is

an upper semi lattice with partial order eés. Using the existence of generators with piecewise constant
rank (see Lemma it follows that there is a V € L(A, B;ker C') with maximal, piecewise constant
dimension with the exception of a discrete set. That is, its piecewise analytic and piecewise constant
rank generator V (-) satisfies

rkV(t) > rkW(t) for all t € R, eds,

and any W € L(A, B;ker C') with piecewise constant rank generator W. Similarly to the time-invariant
case, see [26L Lemma 4.4], we thus have the existence of a maximal element

max (A, B;kerC') := sup L(A, B;kerC) = max L(A, B;kerC) € Wp;
this maximal element is unique relative to 1 the following we will identify max(A, B;ker C') with
its equivalence class [max(A, B; ker C)].

The following proposition shows that max(A, B;ker C') has a simple representation if (A, B,C) has a
strict relative degree.

Proposition 3.3 (Representation of max(A, B;ker C)).
Let (A, B,C) € Xy mm and use C, as defined in Theorem . Then we have

(A, B,C) has strict relative degree p € N = max (A, B; ker C) % ker Cp:

the converse is false in general even for time-invariant systems.
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Proof: Let U € Gl,(A) be as in Theorem and (A, B,C) as in (B.8). On several occasions, we
will make use of the fact that

VteR: U(t) kerCy(t) = ker (C,()U(t) ). (3.2)

Note that this is a consequence of the invertibility of U(t) and does not depend on the special structure
of U or C,,.
Step 1: We first show

~

&y ! max(A, B; ker C)

max (A, B;ker C) =

which is equivalent to
U max(A, B;ker C) = max(A B;kerC). (3.3)

Let V € W,, be any (A, B)-invariant time-varying subspace included in ker C' and generated by V €
APXE | € N. Then holds for some N € ARXF M ¢ Aka and hence we have

pw pw

(L1-AOV)L OV +UV - Avv & UV +UV = (UA+D)V

Sudr—AwW) % (UVI)N+ BM.
(dt )( ) " )N +

Since UV € A%XF UV = (U(t )V(t))te]R s (A, B)-invariant. Furthermore,

UV () = U@ imV(t) C U@ ker () 2 ker (C)U®)) B ker &)

ds di
for all t € R, eds, and so ™ (3.3)) follows. The proof of “S7 in (3.3) is analogous and omitted.

Step 2: We show that

U~! max(4, B; ker C) s kerC,

which, in view of (3.2]) and (B.18]), is equivalent to

max(/l, B;ker C’) & ¥ .= im [0, ...,O,In_pm]T eEW,. (3.4)

d ~ A
Step 2a: We show “S7 in (3.4). The family X is (A, B)-invariant, since

0 0 0 0 0
@r-Ay| Bl =] o+ o= | | N+BM,
0 0 0
S r
In—pm Q In—pm 0 In—pm

where N := —Q € A—pm)x(n—pm) gnd M := —I'~15 € Am*(=rm)  Furthermore,
C(1)
)r) (CEHU®™

(&1 + At

: &

VieR :im i ker (Cp(t)U(t)_l) ker
0

Infpm

(ST +A®),) ™ (C)U®)~]



d < A .
and therefore X C max (A, B;ker C).
d o .
Step 2b: We show T in (3.4), i.e., that any (A, B)-invariant time-varying subspace V € W,, included
. . ed .
in ker C satisfies V 'C X. Let V€ AW* ke N, and N € ALXk M € Ak be such that

pw pWw
~ eds ~ AN~ eds -~ A
imV CkerC and (41— AV LVUN+BM. (3.5)
It suffices to show that R
Vi=1,...p: S;V Lo, (3.6)

where
Sj :=diag{lm,...,I;m,0,...,0} e R™"  j=1,.,p.
———

j-times

We show (3.6 by induction. If j = 1, then

SV L CTev L
(%) E3)

Suppose SJV %% ) holds for some je{l,...,p— 1}, whence %ij/ eds Sj%f/ ). Define

V;;Z:diag{Ome,...,Ome,Im,07...,O}V, 12277]—’_1

(i—1)-times

We obtain, using j < p — 1 in the first and the last equality,

Va -
Vj—i—l eds 21 eds d N\ 7\ eds A A eds : eds
= S;AV = =S;(5I-A)(V) = =S;VN - S;BM = -5, M =0
0 59) J J(dt )( ) J J B9) J 1(2
; 0]
L 0 -

By continuity, we find SJ-HV s (). The proof of Step 2 is complete, and the proof of the implication
of the proposition follows from Step 1 and Step 2.
Step 3: We show that the implication of the proposition does not hold true for the example (A, B,C) =

<[§ § ﬂ : [é El))} 88 (1)]) Since ker C' = im(0,1,0)" is (A, B)-invariant, it follows form the definition
of C, that max(A, B;ker C) = kerC,. However, (A, B,C) does not have a strict relative degree since
CB = [§3].

This completes the proof of the proposition. O

For the remainder of this section we introduce the following assumptions for (A4, B,C) € Xy, p.

(H1) VteR: rkB(t)=m,
(H2) 3k e Np IV € AF with constant rank k such that

imV % max(A, BikerC) and VteR: imB(t) Nim V() = {0}.

For time-invariant systems (A, B, C) € R™™ x R™™ x R™*™ with the same number of inputs and out-
puts, we will see that the Assumptions (H1)-(H2) are equivalent to the autonomy of the zero dynamics

12



(see Proposition and hence to invertibility of the transfer function over R(s) (see Remark [2.4)).
Also note that, for time-invariant systems, subspaces satisfying (H2) are called coasting [10].

The following lemma is crucial. If Assumptions (H1)-(H2) hold and the largest (A, B)-invariant sub-
space included in the kernel of C' is considered, then it is possible to require analyticity in the definition
of (A, B)-invariant subspaces.

Lemma 3.4.
Let (A, B) € A" x A™™ gsych that (H1)-(H2) are satisfied and let V € A"*F be as in (H2). Then
there exist N € APk and M € A™F such that

(41— A)(V)=VN+BM. (3.7)

Proof: By (H2) we have that (im V(t))ier € Wi, is (A, B)-invariant, i.e., there exist N € A’vavk and
M e A;”WX’“ such that is satisfied. As the left hand side of that equality is analytic, it follows from
the identity theorem, that VN + BM can be extended to an analytic function, so that the equality
holds for all ¢ € R. By (H2) it then follows that each of the summands VN and BM is analytic, as
singular points in one summand cannot be canceled by the other one. For the proof that then IV, resp.
M are analytic we will use the full rank condition of V', resp. B. Clearly it is sufficient to do this once.
So assume that M in (3.7) is not analytic. By (H1) and [24, Thm. 1] there exists S € Gl,(A) such
that B'S = [F,0], where F' € Gl,,(A). Therefore, we find that

F~T 0 T M
{0 Inm]s BM_M.
As the left hand side is analytic, this implies that M is analytic. O

In the following we show that if (A4, B, C) is time-invariant, then max(A, B; ker C') has a time-invariant
generator.

Proposition 3.5 (Time-invariant systems and generators).
Let (A, B,C) € R™*™ x R™™ x RP*™ gnd let V* C R™ be the largest subspace of R™ such that

AV* CV*+imB A V* C kerC. (3.8)
Then the sequence (V;)ien, defined by Vo :=ker C' and
VieN: V= A (V,_1 +im B) Nker C
is mested, terminates and satisfies
FEENVFEN: Vo2 V12 2V = Vieyj = A (Vi +im B) Nker C. (3.9)

Furthermore, we have that
V=V L max(A, B;ker C).

Proof: It follows from [3, Lem. 3.4] that (3.9) holds and that V* = Vi«. In order to show
Ve & max(A, B;ker C), (3.10)

let V € R™ F be such that imV = V- and observe that by (3.8) there exist N € RF*F M ¢ R™*F
such that AV = VN + BM and CV = 0. This implies that

(47 - A)V =VN + BM

13



and hence im V' is (A, B)-invariant and by CV = 0, im V is included in ker C'. Therefore, we find that

d;
Ve rel max (A, B; ker C).

X X

In order to show maximality of Vi« let V € Aps?, N € ALY and M € Ay be such that

(LT —AVLVN+BM A CV 0. (3.11)

For future reference recall that for any f € (C 1)q, an open set 7 C R and a subspace S C R? we have,
as a simple consequence of the definition of f via limits of difference quotients, that

VteT: f)es) =— (VteT: f(t)eS). (3.12)

Now let z € R?. Define y(-) := f/(-)xﬁ Af, and observe that y(t) € ker C for all t € dom V, thus,
by (3.12), y(t) € ker C for all t € dom V. We may then infer from (3.11)) that

y(t) € A1 (y(t) ~V(#)N(t)z — B]\Z[(t)ac) NkerC C A (ker C +1im B) Nker C' = V;

- - - - ed
for all t € domV Ndom N Ndom M. As x € R? was arbitrary, this implies im V' ral V;. Also a further
application of (3.12)) yields y(t) € V; for all ¢ € R, eds. We may combine these properties using a

~ ed
similar argument as above to obtain y(t) € Vs for all ¢ € R, eds, hence im V' Il V, and y(t) € Vs.
- ed
Inductively, we obtain im V' rel Vi+ and this shows (3.10]). O

In the next proposition we show that the existence of a strict relative degree implies that Assump-
tions (H1)-(H2) hold but not vice versa.

Proposition 3.6 (Strict relative degree implies (H1)-(H2)).
For (A,B,C) € ¥, ;mm we have:
(A, B,C) has strict relative degree p € N == (H1)-(H2) hold,

and the converse is false in general even for time-invariant systems.

Proof: Let (A, B,C) have strict relative degree p € N. We may assume, without restriction of gen-

erality due to Theorem that system (A, B,C) is in Byrnes-Isidori form . Then Assump-
tion (H1) follows since I'(t) is invertible for all ¢ € R. Invoking Proposition a (full rank) generator
V e A(=rm) for max(A, B; ker C) s ker C, is given in Theorem Finally, Assumption (H2) is
a consequence of im V' = ker C, and the relation C,B = [0, ..., 0, rir.

To show that the converse is false in general, consider (4, B,C) = ([99],[§],[01]). Then (H1) is sat-

d
isfied and, since ker C' = im ([1, O]T), we find that any generator V € Agw of max(A, B;ker C) C ker C
takes the form V(-) = [v(+),0]T for some v € A,y. Now, by (A, B)-invariance, we have

[ﬁg)t)} - [v?t)} =V()N(t) + B(t)M(t) = 5] for all t € R, eds.

Therefore, v % 0 and thus max (A, B;ker C) = {0}. So (H2) is satisfied. However, (A4, B,C) does not

have strict relative degree since C'B = 0. O

Before we derive the main result of this section, we prove that if the maximal (A, B)-invariant subspace
included in ker C' is trivial, then [D IjEA’ _OB } is left invertible, and hence by Proposition the zero

dynamics are trivial.
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Lemma 3.7.
For any (A, B,C) € ¥, ;mp we have :
(H1) N max(A, B;ker () ods {0} = [DIZE,A’ _OB} is left invertible over M|D].

Proof: The assumption max(A, B;ker C) o {0} is equivalent to:

dy_ 4 _ ,
VEENVZ e AWk N e ARk M e Amxt [dtI_CA OB] []\ZA s [Z(ﬂ — Z%0. (3.13)

We use the factorization (A.1]) and accompanying notation from the proof of Proposition Set

lyo:=(1,...,1)T € RI=* and let

v € A\ {0} Dbe the product of all dfj, i,j7€{1,...,n}, ke{0,...,N}.

v (o[ en

Step 1: We show that ¢ = ¢q. Seeking a contradiction, assume that £ < ¢. Then we have

ity = 1) (Vi (0, )

Then by construction

R(

&=

=
Ila

— : 0
U(%) 'diag {I,-1, r(%), Otg—t)x(a-0)} (7(75) quJ) -

for all £ € R and hence k := 1, Z := [I,,, Opxm]w, N := 0, M := [Oyxn, I;m]w satisfy the left hand
side of (3.13), thus Z = 0. This implies BM = 0 and by (H1) it follows M = 0. Therefore,
w = [Z T M T]T =0 and as V is unimodular it follows that v = 0, a contradiction.

Step 2: We show that (D) = r € M \ {0}. Seeking a contradiction assume that degr(D) > 1.
Then there exists z € Apy \ {0} such that r(%)z(t) =0 for all ¢t € R, eds. It follows that for w :=
V($)(04-1,2)" € Afy we have R($)w(t) =0 for all t € R, eds. Now set k := 1, Z := [I,,, 0w € Anxd

eds

and M := [0, I,,Jw € Aglwﬂ and observe that, similar to Step 1, (3.13)) implies that Z 0 and M L 0.

Thus we arrive at w % 0, whence the contradiction z . This completes the proof of the lemma. [

The Byrnes-Isidori form is derived for systems with strict relative degree and is fundamental for
the analysis of the stabilization problem. The zero dynamics form derived in the following for
systems satisfying Assumptions (H1)-(H2) is of equal importance. Note that (H1)-(H2) are weaker
than strict relative degree and in case of time-invariant systems they are equivalent to the autonomy
of the zero dynamics; see Fig. 2.

The zero dynamics form has been derived in [19, Rem. 6.1.3] for time-invariant ODE systems; however
it was not mentioned that it is based on the assumption of the autonomy of the zero dynamics,
although technically (H1)-(H2) are assumed. In the present paper the zero dynamics form is used
(i) to construct a vector space isomorphism between the zero dynamics of system and the maximal
(A, B)-invariant time-varying subspace included in ker C', and (ii) for proving stabilization results in
Section [G

15



Theorem 3.8 (Zero dynamics form).

Consider (A, B,C) € %y, mp and suppose Assumptions (H1)-(H2) are satisfied. Let V € A"k be given
by (H2) with vk V(t) = k for all t € R. Then there exists W € A= +m) sych that [V, B,W] €
Gl,(A) and the coordinate transformation

z1(t)
F(t)] = [V(t), B(t), W) z(t),  where z(t) € R¥, z(t) € R™, z3(t) € R"~*+m) (3.14)
z3(1)

converts (1.1)) into the form

Zl(t) All(t) Alg(t) Alg(t) Zl(t) Ok xcm
% 29 (t) = Aoy (t) Aos (t) Ass (t) 29 (t) + I, u(t)
z3(t) O(nfkfm)xk Asz (t) A33(t) Z3(t) O(nfkfm)xm (315)

y(t) = [0 Cu(t) Cu®)][a() 2() =]

where A;; and C;j are real analytic matrices of appropriate format, resp., and

max([AZz Aﬂ,{ I ]; ker [Cha, 013]> s 103 (3.16)
Asz A33] 7 |O(n—(k4m))xm

Proof: Step 1: We show the form (3.15)). First note that (H1)-(H2) yield rk [V (¢), B(t)] = k+m for all
t € R. By [24, Thm. 1] there exist H; € A™(m+k) and Hy € A»*("=m=k) guch that [Hy, Ho] € Gl,(A)

and T
| [0 ] =[F 0],

where F' € Gl,,,1(A); in particular, the invertibility of F follows from the constant full column rank
of [V, B]. Set W := [Hl,HQ]_T[O(n,m,k)X(nHk),In,m,k]T e A=m=k)xn and observe that
jial ] - [FT 0

[V7 B ) W] = |:H2T 0 Infmfk’

] € Gl,(A).

The coordinate transformation z(t) = [V (t), B(t), W (¢)]~! x(t), i.e. (3.14)), converts (I.1)) into the form

5 o= A(t)z+ B(t)u(t)
y(t) = C(t)=2(t),
where

(A,B,é) - ([V,B,W]*lA[V,B,W] [V, B,W] YV, B,W], [V, B,W]*lB,C[V,B,W]) . (3.17)

Now it is immediate to conclude that B has the structure as given in (3.15), and C = [0, CB, CW].
It remains to show that A31 = 0(,_g—m)xk: An easy calculation shows that (3.7) is equivalent to

L Iy, 0
0 0 0
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and hence in particular —Azq = 0.
Step 2: We show (3.16)). For brevity, we introduce

i B A Ao A23] [ I } )
AB,C) = , [Cha, Cus] ) .
( ) ([A32 A33] 7 [O(n—(ktm))xm (12, Cral

Let Z1 € Apw?,Zy € Af)%"“‘m)”’, p € N, be such that Z := [Z],Z)]" is the generator of any
(A, B)-invariant subspace contained in ker C. Choose X € AbGP, Y € Api? such that

A w—A -B\[2] [zx
-C olly| | o]

7y — ApaZy — AgsZy = 71 X + Y,
A0 71 + Zo — A33Zs = Zo X, (3.18)
Ch1971 + C13Z5 = 0.

In particular, this implies that

Let V(t) :=im [V (t), B(t) Z1(t) + W (t)Z2(t)] for t € dom Z and V(t) := {0} for ¢t € R\ dom Z. Then
V € W, with generator [V, BZ; + WZ,] € Ag‘i(kﬂj) and we will show that V is (A, B)-invariant and
included in ker C. We have
s An Az + Ai3Zs o
(A1 - A)V,BZ1+ W2, = [V,L(B,W]Z)] —[V,B,W] |An AnZi + As3Zs| — [V, [B,W]Z]
0 AseZy + AssZs
A AwZi + A2y

egs [0, BZ1 =+ WZQ] — [‘/, B, W] A21 AQQZl —+ A23Z2

0 AsZy + AszzZs
" [~V A1 — BAg1, -V (A12Z1 + A13Z2) + B(Z1 X +Y) + W2 X]
eds Ay —AZy — A3y

= |V,BZy +WZy) + B[—A42,Y],

0 X
and [_’811 —AnZi-AisZ2 ] g Aé@jp)x(kﬂ)), [—A21,Y] € AgLWX(Hp). This shows the desired (A, B)-
invariance. Furthermore, it follows directly from

C[V, BZi + WZQ] egs [0, CiaZ1 + 01322] egs [0, O],

that V is included in ker C' eds.
Now, since (im V' (¢))¢er is (up to egs) the largest (A, B)-invariant time-varying subspace included in
ker C, it follows that
im (B(t)Z1(t) + W (t)Z3(t)) C im V (t) Nim[B(t), W (t)] = {0}
eds

for all t € R, eds, and therefore, since [B(t), W (t)] has full column rank for all t € R, Z = 0. This
implies the assertion and concludes the proof of the theorem. ]

Note that for the counterexamples in Proposition and the Assumptions (H1)-(H2) are not
satisfied since im V(¢) Nim B(t) # {0} for ¢ = 0. The necessity of the latter for all ¢ € R is stressed
by the following example.
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Example 3.9 (Necessity of (H2)).

Assumption (H2) states that the intersection of im V' (¢) and im B(¢) must be trivial for all ¢ € R. In
fact, this assumption cannot, in general, be weakened to “for all t € R, eds”. The following example
illustrates that the assumption

max(A, B;ker C) Nim B = {0} (3.19)
is not sufficient for the existence of a zero dynamics form. Consider (1.1) with

A(t):[_ol :ﬂ B(t)zm, C(t) = [t, 1], teR,

and note that B satisfies Assumption (H1). Then any V € AZX? with CV = 0 has the form

[;;11((?) ;;22((?)}, where v1,v2 € Apy, and clearly imV(t) C im[1,¢]" =: imV(t) for all t € R, eds.

Furthermore, im V' is (A, B)-invariant since

_ H 14 H 1= V(t)N + B(t)M.

t 1

(@r-ave -7

1+t

Therefore, V' is a generator of max(A, B;ker C') with constant rank. Now,

.z -, 1|

which is invertible for all t € R with |¢| # 1, hence (3.19) is satisfied, but (H2) is not. Clearly, [V, B]
does not constitute a basis transformation. Furthermore, (A, B, C) cannot be put into the form (3.15),
which can be seen as follows: Let T' € Gly(A) be such that

(a) TB = [bOQ ] and (b) CT " = [0, ca].

Then, by (a), T'(t) = [a(t; —ta(t)} for all t € R and some «, 3, € A. Therefore,

Bty ()
1~ (de —1 | (@) ta(t)
T(t)~' = (detT(t)) [—B(t) a(t)}, t € R,
and by (b) if follows B(t) = ty(t). This implies that detT'(t) = (1 — t*)a(t)y(t) = 0 for [t| = 1, a
contradiction. o

We are now in a position to characterize the zero dynamics of a system (1.1]) in terms of the maximal
time-varying (A, B)-invariant subspace included in ker C.

Corollary 3.10 (Characterization of zero dynamics).
Let (A, B,C) € ¥y myp and suppose that Assumptions (H1)-(H2) hold. If (z,u,y) € B4 By, then

(z,u,y) € ZDja o) = x(t) € max(A, B;ker C)(t) for allt € R, eds

18



Proof: =: Let (z,u,y) € ZD4p ). Applying the coordinate transformation » = [V,B,W] 1z

from Theorem [3.§ we find that
s et Rl ‘SO R COR MICETE)

y(t) = [Cna(t) Cis®)] [T =®)T]" .

Therefore

A ZD 1122 1123 lm
R, % 9 2121, 0) € 5 s C]2 C]g ,
(( 2 3 ) v ) ( A32 A33 O(n—(k-i-m))xm [ ]>

and (3.16|) together with Lemma and Proposition yields zo0 = 0, 23 = 0 and u = —As; 21, thus

x(t) =V (t)z1(t) € im V(¢t) o max (A, B;ker C)(t) for all t € R, eds.

<=: By assumption,
d
x(t) € max(A, B;ker C)(t) T ker C(t) for all t € R, eds.
Hence y(t) = C(t)z(t) = 0 for all t € R by continuity, which gives (z,u,y) € ZD4 p,c)- O
Theorem allows to write the zero dynamics in a simple way.

Corollary 3.11 (Zero dynamics description).
Let (A, B,C) € Xy, p satisfy Assumptions (H1)-(H2). Then the zero dynamics are given, in terms of

the matrices in Theorem 5.8, as
-

2D :{ (V®a,, (- 10)20, — Aoy (B a,, (- 10)2Y, 0) ’ DeERF, theR }
Proof: A subsystem of (3.15) is given by

d Zz(t)} [Am(t) A23(t)} {22@)] [ m ]

5 = + t) 4+ A (t t

dt [Zza(t) Asa(t)  Ass(t)] |z3(t) O(n—k—m)xm <u( ) An Bz )>

T
y(t) = [Cr2(t) Cus(®)] [2()" =®)T] |

and (3.16) together with Corollary yields

=0 = (Z;—,Z;)T:O = wu+Ay521=0 A Z1=An=.
Now the assertion follows from = = [V, B, W] (2] , 29 ,23 )| = Vz1. O

Corollary shows that the zero dynamics are a finite dimensional vector space provided that As-
sumptions (H1)-(H2) are satisfied. It is even possible to state a vector space isomorphism between
the zero dynamics ZD(4 g ) and max(A, B;ker C), i.e., the maximal (A, B)-invariant subspace in-
cluded in the kernel of C. However, some care is required in the formulation of the isomorphism since
max(A, B;ker C') is an equivalence class, see page Therefore we choose an appropriate generator
of the equivalence class, namely V' in Assumption (H2), to formulate the isomorphism.

Corollary 3.12 (Vector space isomorphism).
Let (A, B,C) € Xy, mp satisfy Assumptions (H1)-(H2) and let V be as in (H2). Then, for all ty € R,
the linear map

Lt(): im V(to) — ZD[A,B,C]

where F 1= —[As1,0,0] [V, B,W]™! for As1, V,W as in Theorem
and z(-) solves & = (A + BF) z, x(ty) = a°,

s a vector space isomorphism.
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Proof: Step 1: We show that Ly, is well-defined. Thus we have to show that for arbitrary z° €
im V' (¢y), the solution of
i=(A+BF)z, z(t)) =2 (3.20)

satisfies
(z,u,y) == (z,Fz,Cr) € ZD4 - (3.21)

First note that A + BF € A"*" and hence x € A". It is then immediate that (z,u,y) € B4 p 1,
hence it remains to show that y = 0.
Applying the coordinate transformation (z{ , 25,23 )" = [V, B, W] 'x from Theorem 3.8/ and invoking

0 0 O
BF =[V,B,W] |-A4 0 0| [V,B,W] !,
0 0 O
we find that
21 = Anz + Aipze + Ajzzs,
Z9 = Axozg +  Agzzs,
3 = Agozo +  Aszzs.

Also the initial value satisfies
V(to)z1(to) + B(to)z2(to) + W(to)2s(to) = x(to) € im V (to) -
Thus
[B(to), W (to)](22(t0) ", 23(t0) )T = z(to) — V(to)=1(to) € im[B(to), W (to)] Nim V (to) = {0}.

Then [B(to), W (to)](22(to) ", 23(to) ) T = 0 and the full column rank of [B(to), W (to)] gives za(tg) =0
and z3(to) = 0 which yields z3 = 0 and z3 = 0. Therefore, z(t) = V (t)z1(t) € im V(t) C ker C(¢) for all
t € R with the exception of a discrete set and hence, by continuity, y = Cx = 0.

Step 2: We show that Ly, is injective. Let 2!, 22 € im V (tg) so that Ly (2')(:) = Ly (2%)(-). Then

xt = 22 because

(:L'l, *, *) = Lto(xl)(')‘t:to = Lt0($2)(')}t:t0 = (127*’ *)

Step 3:  We show that Ly, is surjective. Let (z,u,y) € ZDi4p ). Then Corollary yields
that x(t) € max(A, B;ker C)(t) for all t € R, eds. Hence, applying the coordinate transformation
(2], 29 ,24)" = [V, B,W] 'z from Theorem to (1.1) gives V(t)z1(t) + B(t)za(t) + W (t)z3(t) =
z(t) € imV(t) for all t € R, eds, and, similarly to Step 1, we may conclude zo eds 0, 23 ods and, by
continuity, zo = 0 and z3 = 0. Therefore,

Zl(t) = All(t)zl(t)’
0 = Agiz(t) +u(t) 52

for all ¢ € R. The second equation in (3.22)) now gives
u = —A212’1 = —[Agl,0,0][V, B, W]_lx = Fx.

Finally, simple calculations show that x = Vz; satisfies # = (A + BF)x and, clearly, x(ty) =
V(to)zl(to) € im V(to). OJ

We record that Proposition [3.6] yields, in view of Corollary and Proposition that the zero

dynamics are isomorphic to a certain kernel.

20



Corollary 3.13 (Characterization of zero dynamics).
For any (A, B,C) € Xy, mm with strict relative degree p € N we have, for C, defined in Theorem

ZDiaBc) = kerCylto) for almost all tg € R.

We may also show that the Assumptions (H1)-(H2) imply that the zero dynamics of the system (|1.1)
are autonomous.

Proposition 3.14 (Assumptions (H1)-(H2) imply autonomy).
For (A,B,C) € ¥y, mp we have:

(H1)-(H2) hold — ZDia,B,c] are autonomous,

and the converse is false in general for time-varying systems.

Proof: = is a consequence of Corollary
< follows from the example &(t) = x(t) + tu(t), y(t) = x(t), which has trivial and hence autonomous
zero dynamics, but for which (H1) is not satisfied. O]

If we relax Assumption (H1) in Proposition to the requirement that rkxs B = m, then we would
also need to assume instead of (H2) as B does only have full rank almost everywhere. In this
case, however, we cannot obtain Proposition with the presented proof, because the argument relies
crucially on the zero dynamics form from Theorem Assumption is not sufficient to
derive this form, as shown in Example

Finally, we show that Assumptions (H1)-(H2) are equivalent to autonomous zero dynamics if we
consider time-invariant systems (A, B,C). This fact is already known: Since Proposition yields
that max(A, B;ker C) has a generator independent of time, we may apply [20, Excercise 4.4] and
also [19, Rem. 6.1.3] to see that, provided that m = p, (H1)-(H2) are equivalent to invertibility of
C(sI — A)7'B over R(s); and the latter is equivalent to autonomous zero dynamics by Remark
However, we prove this statement in our set-up as follows and do not assume that m = p.

Proposition 3.15 ((H1)-(H2) is equivalent to autonomous zero dynamics for time-invariant systems).
For time-invariant (A, B,C) € R x R x RP*™ we have:

(H1)-(H2) hold = ZDa,B,c) are autonomous.

Proof: = is a consequence of Proposition
<=: (H1) follows from Proposition hence ker B = {0}. Now assume that (H2) does not hold. By

Proposition there exists V € R™* with im V & max (A, B;ker C). As imV is (A, B)-invariant, it
is well known that there exists an F' € R™*" such that (A+ BF)imV CimV, [26]. Now suppose that
imBNimV # {0}. Fix

FeR™": (A+ BF)imV CimV and T =[T1,Ty] € GL,(R) with imT =imV .

Now im V' C ker C yields

[T(;l ?] [Aj(]?gF OB} [g ?] = FC;} % %} (3.23)

Since im B NimV # {0}, we may choose v € R™ such that 0 # Bv € imV and so there exists
v € R™\ {0} and w € RF \ {0} such that 0 # Bv =T [g;] v = Tyw = T'[9]. This implies Byv = 0
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and Byv = w. Proposition together with Corollary |A.2| yield that [51:54’ _OB ] has full column rank

over R[s]. Hence there exists A € C such that [’\I A B J has full column rank and A\ — @ is invertible

-C 0
by (3.23)). Finally,

[Tol ?] [AIiC_JA _OB] []ZT ?] - _OQ)I“’

v
A — Ay 0 By 0
=| —Ay M-Q By |-(M-Q)'w| =0,
& 0 0 v
a contradiction. This completes the proof of the proposition. O

As a consequence of Proposition we see that the vector space isomorphism in Corollary does
not hold if (H2) does not hold since then the zero dynamics are infinite dimensional by Remark

4 Controllability and observability

In this section we show that the triviality of the maximal (A, B)-invariant subspace included in ker C
is sufficient for controllability and observability; the converse is false. This result is an important
preliminary step for the stabilization of the system (A, B, C') by state feedback as proved in Section
It allows us to deduce that the subsystem (Ay4, B2, C3) in the zero dynamics form is controllable
and that hence there exists a stabilizing feedback for this subsystem.

We first recall the definitions for controllability and observability.

Definition 4.1 (Controllability and observability).
A system (A, B,C) € Xy, p is called completely controllable if, and only if,

Vitg e RVa% 2! € R" 3ty > tg I (x,u,y) € Biapc: z(to) = 2 A z(t) =2t (4.1)
(A, B,C) is called completely observable if, and only if,

Vitg e R Jt1 > 1o V(:c,u,y) S %[A,B,C} : (u|[t0,t1] =0 A y|[to,t1] = O) - x’[to,tl} = 0. R
In the sequel we will not use the qualifying “completely” as we do not consider other concepts of
controllability or observability. Note that by linearity, controllability is equivalent to with 1 =0
at every instance, see [25, Lem. 3.1.7].

We stress that the notions of complete controllability and observability are, in view of time-varying
systems, rather weak. It does not imply any uniform lower bounds or upper bounds of the controlla-
bility or observability Gramian. This weak form of controllability is intensively studied in [J.

For system with identical input and output dimensions we are now in a position to show the rela-
tionship between trivial maximal (A, B)-invariant subspace included in ker C' and controllability and
observability.

Proposition 4.2 (Triviality of the maximal (A, B)-invariant subspace included in ker C' yields con-
trollability and observability).
If (A,B,C) € ¥y mp and (H1) holds, then

m=p A max(A, B;kerC) ods {0} = (A, B,C) is controllable and observable.
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The converse implication is false in general, even for time-invariant systems, and the implication is
not true in general for m # p.

Proof: Step 1: Recall [I7, Thm.6.4 and Prop.6.5] that (A4, B,C) is controllable and observable if
[DI, — A, —B] is right invertible over M[D] and [D I A} is left invertible over M[D].

Step 2: Now suppose the presupposition holds. Then Lemma yields that [D IfaA’ 703 ] is left

invertible over M|D], and hence invertible, and the implication follows from Step 1.

Step 3: We show that the converse implication is not true in general. The time-invariant system
(A,B,C) = ([34],[1],[10]) is controllable and observable by the well-known Kalman test, and for
F= [0 —1] we have A+ BF = [J 9], which has a nontrivial invariant subspace contained in ker C'.
Step 4: We show that the implication is in general not true for m # p. Consider (A4, B,C) =
(1891, 181,189]) - Since ker C' = {0}, also max(A, B; ker C) s {0}. The system is observable but not
controllable. 0

5 Stabilization by state feedback

In this section we introduce the notion of (asymptotically and exponentially) stable zero dynamics and
show that any system (A, B, C') with analytic coefficients, satisfying (H1)-(H2) and with exponentially
stable zero dynamics, is stabilizable via state feedback. For time-invariant systems, this has been
mentioned as a short note in [19, Rem. 6.1.3] and for time-invariant, differential-algebraic systems this
is shown in [4], but apart from that this result is new. First we define the notions of stability we use
in this paper for behaviours, which can then be applied to both linear systems (A, B,C') and the zero
dynamics ZD 4 p -

Definition 5.1 (Stable behaviour).
Let ® C PCP be a linear behaviour; i.e., for any wi,ws € B and o« € R it holds that aw; + we € .
Then % is called

stable <= Ve >0Vitp € RII>0VweDBs.t. w(ty) € Bs(0) :
Vit >to: w(t) € BA0).
attractive Vwed: tlg};lo w(t) = 0.
D is stable and attractive.
AA>0VigeRIM >0 YweBVt>ty:
lw(@)|| < Me = lw(to)].
uniformly exponentially stable <= IAM A >0Vt>tg e RVweD:
lw(@)|l < Me = lw(to)].

asymptotically stable

P11l

exponentially stable

The (upper) Lyapunov exponenﬂ of a behaviour is defined as

k(D) = inf{ AeR ‘ IMy > 0VweBYE>0: [Jw)]| < My e {lw(0)]| } € RU {00, 00}.
o

The above concept sets us in a position to speak about stability of the zero dynamics, and to relate
this to linear systems of the form
T =A(t)x (5.1)

!Frequently, several Lyapunov exponents are associated to a linear time-varying system. In particular, the distinction
between upper and lower Lyapunov exponents is made, see [I3]. Here we consider only the upper Lyapunov exponent as
it characterizes exponential stability; we omit the “upper” for brevity.
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where A € A"*" is bounded. The linear equation (5.1)) (or, more precisely, the zero solution) is said
to be stable, resp. attractive, asymptotically stable, uniformly exponentially stable if, and only if, the

behaviour
{ze(C®)" |VteR: &(t) = At)x(t) }

has the respective property. Note that for linear systems (behaviours) attractivity is equivalent to
asymptotic stability. The Lyapunov exponent becomes

kL(A) = inf{)\eR‘ElM,\>OVt20: 1@ A(t, 0)]| < My e)‘t}GRU{—oo,oo},

and it is well-known that (5.1)) is exponentially stable if, and only if, k1, (A) € [—00,0); see [13] Sect. 3.3]
for more details.

Remark 5.2 (Stable zero dynamics implies autonomous zero dynamics).
A time-invariant systems (A, B,C) € R™"™ x R™™ x RP*™ with m > p cannot have stable zero
dynamics; and if m = p, it has autonomous zero dynamics if it has stable zero dynamics. This fact

slp,—A, —B
-C

follows immediately from the Smith form (see e.g. [22, B.1.4]) of the pencil [ 0 } which, in case

of non-autonomous zero dynamics, has a zero column and hence allows for unstable solutions. o

We are now ready to prove the main result of the present paper which concerns stabilizability of a
system with stable zero dynamics. The zero dynamics form will be a main tool in the proof. Here
an additional complication arises as the state transformations which leave the property of uniform
exponential stability invariant are the so-called Bohl transformations, see [13, Chapter 3]. In order
that we can infer from the stability properties of the transformed system those of the original system
we have to restrict ourselves to these transformations. In the following result we will use the slightly
more restrictive notion of a Lyapunov transformation [I3, Chapter 3]. A time-varying transformation
S € Gl,(A) is called a Lyapunov transformation if, and only if, S, S~! and S are bounded.

The following result states that if a square system satisfies Assumptions (H1)-(H2) (which is
closely related to the autonomy of the zero dynamics) and various boundedness conditions hold, then
we may choose a state feedback u(t) = F(t)z(t) for some F € A™*™ such that if applied to (|1.1))
the Lyapunov exponent of the closed-loop system & = [A(t) + B(t)F(t)]x is equal to the Lyapunov
exponent of the zero dynamics of .

Note that, in general, this is not the minimal value of the Lyapunov exponent that can be achieved by
state feedback, see Example but this minimal value is always smaller or equal to the Lyapunov ex-
ponent of the zero dynamics (in case of nontrivial zero dynamics). Theorem provides a constructive
way to obtain a feedback that achieves this upper bound.

Theorem 5.3 (Lyapunov exponents and state feedback).
Consider a square system (A, B,C) € Xy, m.m and suppose

(o) A, B,C are bounded and Assumptions (H1)-(H2) hold,
(8) [V,B,W] from Theorem|[3.§is a Lyapunov transformation.

If ky, (ZD[AB,C]) = —o0 (equivalently, the zero dynamics are trivial), then for all p € R there exists
F e A™" such that
kL(A+ BF) < pu. (5.2)

If ki (2Da p,c]) # —oo, then there exists F € A™™ such that the state feedback u(t) = F(t)x(t)

applied to yields
kL(A+ BF) = ki, (ZD[A,B,C}) . (5.3)
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For the proof of Theorem the following lemma is used. It is an estimate for the constants A, M) in
the definition of the Lyapunov exponent.

Lemma 5.4.
Let A € A™™ be bounded. If ki,(A) < X for some X\ € R, then there exists M > 0 such that, with
¢:= [[Alloo +[A],

Vig>tgeR: [ Da(ty,to)| < Medblerti=to) (5.4)

Proof: By [I3, Lemma 3.3.4] we have with a := ||A||s that ||®4(t1,20)] < e*t1tol for all ¢1,ty € R.
Since kg, (A) < A there exists M > 0 such that ||®4(¢,0)|| < MeM for all t > 0. Then using the cocycle
property of the evolution operator we obtain

Vi >tg€R: [[@a(ts,to)]| < [|Palts,0)] - [[@4(0,t0)] < MelatRDltolAti=to),
This shows the assertion. O

Proof of Theorem [5.3t Consider the transformation (3.14]) and the decomposition (3.15]). Note that
by presuppositions («) and (/3) every matrix in (3.15)) is bounded. Furthermore, the Lyapunov exponent
is invariant under the transformation since [V, B, W] is a Lyapunov transformation.

Step 1: By (3.16) and Proposition the system

B A Ao A23] [ I,
A B C):= ,
( ) ( [Azz Asz] " [0

is controllable. We may thus apply [I, Theorem 3.6] to conclude that (fl, B ) is exponentially stabilizable
with arbitrary decay, i.e., for arbitrary A > 0 there exists G = [Gy, Go] € A™*(M+(=m=k)) quch that

} , [Chz, 013]> . (5.5)

n—(k+m))xm

kL(A+ BG) < = (5.6)

To be precise, in [I] the general case of system matrices over £ is considered; however, inspection of
the proof yields that for real analytic system matrices, the feedback matrix G may also be chosen to
be real analytic.

Step 2: We show that kL(All) = kg, (ZD[A,B,C]) eRU {—OO}

Note that k£ = 0 if, and only if, the zero dynamics ZD(4 p ¢ is trivial; and if this holds, then kr(A11) =
kr, (ZD[A’B’C}) = —o0. If k>0, then kr,(A11) € R since Aj; is bounded.

Step 2a: We show “<”. Let 20 € R¥ and define z(-) := ®4,,(-,0)z° € (C®)¥ and u := — Ay 2 € (C)™.
Then Corollary yields that (Vz,u,0) € ZDy g ). Since [V, B, W], [V, B,W]~! and Ay are
bounded, the estimate

I I
l=(t)]| = ||[7,0,0,0] A(O) ) ()| < Ag . =(t) SH[[V(t),B(tg,W(t)]—l ﬂ”H(iEEDH
—A21 421

shows the claim.

Step 2b: We show “>7. Let (x,u,0) € ZDig,B,c) and observe that, as in Step 3 of the proof of
Corollary z = Vz for some z; € ACF and (21, u) solves for all t € R. Since u = —A 1
and Z; = A1(t)z1 we have the estimate

I
oS P | N
—Agl(t)
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which proves the assertion.
Step 3: We show that (5.3)) is satisfied if kr, (ZD[A,B,C]) # —o00. In this case, we have that & > 0 and
we choose F := [—Ag1, Gy, Go][V, B,W]~t € A™*" where G = [G1, Gs] satisfies (5.6]) with

A > 2|]€L(A11)| + ”A11||OO + 1.
First observe that

[V,B,W] Y(A+ BF)[V,B,W] - [V,B,W] [V, B,W]

(A1 A Aus
= | 0 Ay Asl|+[V,B,W]|'B0,G][V,B,W]| '[V,B,W]
| 0 Az Ass
(A1 Aqg A3
= 0 Axp+Gi Ax+Ga,
| 0 Aszg As3

and the closed-loop system takes the form

An (1) Ama(t) Ars(t)
s=| 0 Aw(t) £ Gi(t) Ass(t) + Ga(t)] = (5.7)
0 A (t) Ass (1)

Step 3a: We show “2” in . Since for any solution z; € (C*®)* of 3 = Ay1(t)z; the function

z=(z,0)" solves the claim follows from Step 3.

Step 3b: We show “<” in . Consider ky,(A11) = ki, (ZD[A B C]) € Randlet u € (kL(All) kr,(A11)+
) be arbitrary. We may apply Lemma and choose some M; > 0 such that

Vt>tg>0 1 [[@ay,(tto)] < Myeloert=lo)
where ¢ = ||A11 oo + || It is a simple calculation that A + 4 — ¢ > 0. Then, by (5.6),
IMy>0Vt>0: ||, 5(t,0)] < Mape™™
Let (21,22, 23) be any solution of (5.7). Then
V> 03 ()T, 250 ) T < Mae ™ (22(0) T, 25(0) )|

and variation of constants yields, for all ¢ > 0, and in view of boundedness of A5 and Ajs,

s (0)] = quu (0002100 + [ By (67) Asa(r)2a(r) + Ass(r)zalr) dr

t
< Mie'|| 21 (0)]] + My Ma||[Ara, A1s]] / e oA (29(0) T, 23(0) 1) Tl dr
0
and we continue, with M := max{Mj, M1 Ms||[A12, A13]||},

< MeM||z4(0) + Me | (22(0) T, za( H/ (c=n=N)7 4

< Met|z1(0)]| + e (22(0) T, z3(0) ") 7.

p+A—c
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Since [V, B, W] is a Lyapunov transformation by (3) and —A < u, the above inequalities imply that
kL(A+ BF) < p. As > ky,(An1) is arbitrary the claim is shown.

Step 4: We show that (5.2)) is satisfied if &y, (ZD[A’B’C]) = —oo. In this case, in Step 3 (except
for Step 3a) the constant A and the feedback F' can be chosen in dependence of y € R and the
argumentation remains the same. This finishes the proof of the theorem. O

We like to point out the subtleties of the previous proof: The assumptions (H1)-(H2) allow to transform
the system into the form . The zero dynamics are essentially given by A;1, see Corollary
and are assumed to be asymptotically stable. The subsystem of the (z2, z3)-coordinates has trivial zero
dynamics and hence is controllable. This weak form of controllability is just on the edge so that it still
guarantees stabilization for arbitrary Lyapunov exponent; see [I, Theorem 3.6]. Uniform exponential
stability cannot be expected.

Also note that the proof of Theorem [5.3]is constructive. The matrix G can be obtained as described
in [1].

Example 5.5.
We show that it is possible to obtain smaller values than the Lyapunov exponent of the zero dynamics
for the Lyapunov exponent of the closed-loop system by state feedback. Consider system ([1.1]) with

the constant matrices
-1 -1 0
A_[l _J, B_M, C =[0,1].

By a simple calculation we find that the zero dynamics are asymptotically stable with

kL (ZDpapcy) = —1.

Choosing the feedback matrix F' = [—1,0] we may establish this Lyapunov exponent, since

kL(A+ BF) = ky, <[_01 :ﬂ) = 1.

However, if we choose F' = [0, —1], then

kL(A+ BF) = ki, ([j :;D =-3/2< -1

Theorem has been proved for time-invariant systems by Isidori [I9] pp. 298-300]; however, it was
not realized that the Assumptions (H1)-(H2) are equivalent to the autonomy of the zero dynamics and
the explicit decay estimate was not given.

We also stress that stabilizability of a time-invariant system (A, B,C) € R™ ™ x R™™ x RP*™ with
asymptotically stable zero dynamics is immediate: [5, Lem. 4.3.9] yields that the zero dynamics of
(A, B, C) are asymptotically stable if, and only if,

M, — A, —-B

VA€C+:rk[ _C 0

} =n+m.

Now stabilizability follows from the Hautus criterion, see e.g. [25, p. 239]; the corresponding result for
the Lyapunov exponent has been obtained in [5, Prop. 4.4.6]. We may obtain this result as a corollary
from Theorem Proposition |3.14], and the observation that in the time-invariant case a constant
feedback F' can be chosen. Note that because of Proposition [£.2] we have to restrict ourselves to the
case m = p here, while in [5] the proof was possible for m # p.
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Corollary 5.6 (Lyapunov exponents of time-invariant systems).
Let (A,B,C) € R™"™ x R™™ x R™*" have autonomous zero dynamics and let V* be as in Proposi-
tion[3.8. Then

dimV*>0: IF e R™": kp(A+ BF) =ky (ZDa ) »

dimV*=0: VueRIF e R™": ky(A+ BF) < p.

Proof: It is clear that &, (ZD[A,B,C]) = —o0 if, and only if, ZD4 g = {(0,0,0)}. By [3| Prop. 3.10],
the latter is equivalent to V* = {0} and rk B = m, hence the corollary follows from Theorem and
the fact that a constant I’ can be chosen. O

Theorem in particular shows that exponentially stable zero dynamics imply existence of a feedback
such that the closed-loop system is exponentially stable. Provided that the two diagonal systems
in (5.7) are uniformly exponentially stable it is possible to show uniform exponential stabilizability.

Corollary 5.7 (Uniform exponential stabilizability).

Under the assumptions of Theorem : If, with the notation in and , the system (A,B)
is uniformly exponentially stabilizable (i.e., there exists G € A™"=F) such that 2 = (A + BG)z is
uniformly exponentially stable) and the zero dynamics ZDy p ) are uniformly exponentially stable,
then F' may be chosen so that & = [A(t) + B(t)F(t)]z is uniformly exponentially stable.

Proof: We inspect the steps in the proof of Theorem[5.3] By assumption, in Step 1 the feedback G can
be chosen so that A + BG defines a uniformly exponentially stable system. In Step 2 we have in fact
also shown that ZD4 p ¢ is uniformly exponentially stable if, and only if, 2 = A11(t)z is uniformly
exponentially stable. Then the estimate in Step 3 can be performed uniformly for all £y > 0; where tg
denotes the initial time, and {5 = 0 in Step 3. Moreover, in this case the constant M is independent
of 3 and we see that the coupled system is uniformly exponentially stable. O

Remark 5.8 (Feedback and strict relative degree).

The following observation may also be worth knowing for time-invariant systems: In view of Propo-
sition Theorem is in particular applicable to systems (A4, B,C) € X, p, » with strict relative
degree p, and then the Byrnes-Isidori form allows to construct the stabilizing feedback F in Theorem 5.3
explicitly.

Let U(-), U(-)~! be given as in Theoremand assume that U is a Lyapunov transformation. Consider
the Byrnes-Isidori form and let

p(s) =pr+pes+...+pys" ' +5" €R[s]

be a Hurwitz polynomial. Then the feedback

y(t)

(D (¢

u(t) = =P [Ri(t) + pilm, . Ro(t) + pplim, 5] (%8) . wherey(t) = | :()
= G(t) y(p_'l)(t)
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applied to (B.4)) yields the closed-loop system

0 I, 0 e 0
0 0 In :
dv®) = | o ¥
0 0 . 0 I, (5.8)
-1l —p2lym - _ppfllm _pplm_
) = P@)y@) + Q) n(t) .
Since det(s] — K) = p(s)™ , it follows that K is Hurwitz. From the representation of the zero dynamics

in Proposmon. 2.7 the (uniform) exponential stability of the zero dynamics, and the boundedness of U,
U~! and U it follows that 1 = Q(t)n is (uniformly) exponentially stable with exponent A > 0. We may
choose p(s) such that there exist M, L > 0, and p > A > 0 satisfying

Kt < MemrEt) and || ®g(t, to)|| < Le A0 forall ¢ >t >0.

Now an application of variation of constants to (5.8]) and invoking the boundedness of P it follows that

In®) = ||att to)n(to) + J;) Da(t 5)P(s)y(s)d s

< LeMOn(t)| + fiy L I PO)lloo Mo y(to) |d s

_ L||P()|]|co
< Le M) p(t) || + ELEQ=M o =At=t0) |1y (1))

and a straightforward calculation shows (uniform) exponential stability of (5.8). Finally, invoking
again that U is a Lyapunov transformation, the claim follows for F':= G U. o

Appendix A Algebraic properties of the skew polynomial ring M|D]

We have chosen the multiplication rule for the skew polynomial ring M[D]. This rule is a
consequence of the associative rule (Df)h = D(fh) for all differentiable functions f, h which yields
(Df)(h) = &f-h+f-S$h = (Lf + fD) (k). In contrast to the commutative ring R[D] used in
the time-invariant case, M[D] is non-commutative. It is obvious, that M[D] does not have any zero
divisors, allows a right and left division algorithm, and hence is a right and left Fuclidean domain, and
even a principal ideal domain.

Matrices over this ring may be viewed as R(D) = > R;D" € M[D]?*? = M9%4[D]. The left row
rank (right column rank) of a matrix R(D) € M[D]9*? is defined as the rank of the free left (right)
M(D]-module of the rows (columns) of R(D), resp. As a consequence of Theorem the row and
column rank coincide and hence we denote the rank of R(D) by rkp) R(D).

Theorem A.1 (Teichmiiller-Nakayama canonical form [9, Sect. 8]).
For any R(D) € MI[DJ**? with rkyp) R(D) = ¢, there exist M[D]-unimodular matrices U(D) €
M[DJ]9*9, V(D) € M[D]?*? and nonzero r(D) € M[D] such that

R(D) = U(D) " diag {Iy—1, 7(D), 0(g—t)x(g—)} V(D (A1)

where the scalar r(D) is unique modulo similarity, that means for any other (D) € MID] such
that r(D)a(D) = a(D)7(D) for some a(D),a(D) € MID], the only common left (right) divisors of
r(D),a(D) (a(D),7(D)) are units.

29



An immediate consequence of Theorem is that the degree of r(D) is unique; and the diagonal
matrix in is canonical if r(D) is chosen to be monic. See Remark for the definition of a
canonical form.

Another canonical form is the so called Hermite form, see e.g. [I2, Thm. 2.4 and Thm. 6.1] where also a
nice overview of various forms for time-varying systems is given. If instead of M[D], the commutative
ring R[s] is considered, then the Hermite form over R]s] is well known, cf. [22, Thm. 2.5.14]. Since
R[s] is embedded in M[D], the Hermite form of any R(s) € R[s]?*? over R[s] and the Hermite form of
R(D) over M[D] coincide. In particular, this yields the following corollary.

Corollary A.2.
Any R(s) € R[s]?" satisfies rkpqp) R(D) = rkgjy R(s).

Appendix B Relative degree and Byrnes-Isidori form

The Byrnes-Isidori form, exploited at several places of the present paper, is interesting in its own right.
We study the Byrnes-Isidori form for time-varying systems with strict relative degree. It is well-known
for time-invariant (nonlinear) systems [19, p. 137, 220], for time-invariant multi-input multi-output
systems [18], and for time-varying systems [16]. However, to the best of our knowledge, it has not been
investigated before in which sense the Byrnes-Isidori form is “close” to a canonical form.

Although we only consider real analytic systems in the preceding sections, the Byrnes-Isidori form
is studied in the more general set-up of sufficiently smooth matrices. To this end, we introduce
the notation thm for the class of systems with (A, B,C) € (CY)™™ x (€)™ ™ x (€)™ ™ and
¢ € No U {oo}; we write (A, B,C) € Xf ..

As a technically useful notation (see [I1 [16 23] for time-varying linear systems), we introduce the
operator (41 + A(t),), where the subscript r in A,(C) indicates that A acts on C' by multiplication
from the right:

Notation B.1 (The operator (&7 + A(t),)*).
Let £ € Ng, A € (CY)™™ and C € (C*)™*". Set
VieR : (41+4@1),)" (C@) = C@),
VEeR : (SI+A(),) (Ct)

C(t) + C(A[R),

VteRYEke{l,... .0}« (L1+Aw)" (C1) = (L1+A@r),) ((%HA@),,)’H (C(t))).

The concept of relative degree is defined as follows, see [16, Def. 2.2, Thm. 2.7].

Definition B.2 (Relative degree).
Let p, £ € N with p </ and (4,B,C) € Efz,m' Then (A, B, C) is said to have strict relative degree p if,
and only if|

VEER YE=0,....,p-2 : (ST+A1),)" (CH)BE) = Omxm -
VEER : (L1+A®),) " (C(H))B(1) € Gl (R). |
fod

The concept of relative degree is well-known for time-invariant nonlinear SISO systems [19 p. 137],
time-invariant nonlinear MIMO systems [19, p. 220], [20], and for time-varying nonlinear MIMO sys-
tems [16, Def. 2.2]. It can even be generalized to differential-algebraic systems [3, App. B].
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Remark B.3 (Relative degree for time-invariant systems).
If system (1.1)) is a time-invariant system, i.e. (A, B,C) € R™ ™ x R™*™ x R™*" then it is straight-
forward to see that

VEeNy : (474 A(),)" (C()B()=CA*B
and hence the conditions in (B.1]) are equivalent to

CA*'BeGl,(R) and Vk=0,...,p—2: CA*B=0.

Remark B.4 (Vector relative degree).

The notion ‘strict’ is superfluous for single-input single-output systems. However, even for multivariable
time-invariant systems, we may have CA*B = 0 for all k = 0,...,p — 2 and CA?"'B # 0 but
CAP~'B ¢ G1,,(R). In this case, one may introduce the concept of a vector relative degree: the vector
(p1,---5pm) € N collects the smallest number of times p; one has to differentiate y;(-) so that the

(pj

input occurs explicitly in Y; )() This is not considered in the present note, for further details see [19]

Sec. 5.1] and [3, 21]. o

The relative degree p is the least number of times one has to differentiate the output y(-) so that the
input u(-) occurs explicitly in y®)(-); this is well-known for time-invariant systems. That this also
holds for time-varying systems is made explicit in the following proposition.

Proposition B.5 (Relative degree and output representation).
Let ¢ € N. Suppose (A, B,C) € thm has strict relative degree p < £. Then every (z,u,y) € D4 p,c)
satisfies the following:

Vi=0,...,p—1: y(j) = (%I—{—A,n)j(C'):c7 (B.2)
Y = (G1+A) () a+ |($1+4,)7(C)B] u. (B.3)

Proof: We show (B.2) by induction over j = 0,...,p — 1. For j = 0 the statement is clear. Suppose
it holds for some j € {0,...,p — 2}. Then, invoking Definition we have, for all ¢ € R,

Y = 4 [(%I+Atr) (C(t))a(t }
L (ST+A®,) (CO)] 2(t) + (S +A@),) (C®) (A@R)() + Bt)u(?)
& (G + AW ) (Ot)+(dtf+A 0r) (CO)AW)] 2(t) + (&1 + A®),) (CW)B@u(t)

= ($1+A0),) (Cw)a(t).

B
|||
~ ~+

Now we may derive that
VieR: yO () = (L1+ A®t),)" (CH))x(t) + (LT + A®),)" ™" (Ct)) B(t)u(t). O

We now define the Byrnes-Isidori form and show its existence and uniqueness modulo transformations
of the zero dynamics under the assumption of a strict relative degree.

Definition B.6 (Byrnes-Isidori form).
(A,B,C) € ¥t . £ €N, is said to be in Byrnes-Isidori form if, and only if, the matrices (4, B, C) are

n,m?
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of the form, for some p € N,

0 I, 0 0 0] C 0 ] ]
0 0 I, 0 0 0
A(t) = - . B(t)= . o= (B.4)
0 0 0 I 0 0
Ri(t) Ra(t) R,_1(t) R,(t) S(t) I'(t) 0
P(t) 0 0 0 Q(t) | 0 | | 0
and
Ry,... ,RP,F e (Cl)mxm7 S, PT e (Cl)mx(n—pm)’ Qe (Cl)(n—pm)x(n—pm) ) (B.5)

<

One advantage of the form (B.4]) is that it expresses the dynamical properties of the system by allow-
ing u only to affect the pth derivative (p the relative degree) of the output and separating another part
of the dynamics which is only influenced by y. This decomposition of the system into a main part
(containing the relative degree and the high-frequency gain matrix) and an internal loop for y — ¢ is
depicted in Figure

n=Qn+ Py y
y=5n
] : P
=) R&+0| &=y y
u =1
+Tu
d dr—1
§ & & dt dte—1

Figure 3: Byrnes-Isidori form

In the following theorem we show that for systems ([1.1]) with some strict relative degree a Byrnes-Isidori
form always exists, we also clarify in which sense the entries are uniquely defined.

Theorem B.7 (Byrnes-Isidori form).
Suppose (A, B,C) € Ef;m, ¢ € N, has strict relative degree p < . Then there exists a coordinate
transformation U € CY(R, GL,(R)) such that

flét; 3(/1()())
&a(t y (T
(f%) —| : | = : = U(t) z(t), (B.6)
! &(t) Yo (t)
n(t) n(t)
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transforms (1.1)) into Byrnes-Isidori form (B.4) with initial condition

y(to)
£(to)\ £0 B B i
(77(750)> B <n0> Ty | T U(to) z(to), to € R, (B.7)
70
Set L [ d d p—1 1\nxpm
B, = _B, (EI_A)(B)"“’(EI_A) (B)]G(C) pm
_ o -
(S1+4,)(0)
Co = . € (CLyrmxn,
|[($1+4)"7 (C)]

then uniqueness of the entries of the Byrnes-Isidori form holds as follows:
(i) the entries
I = (474 4,)°'(C)B e C'(R; Gl (R)),
[Ri,...,R)) = ($I+A4,)"(0)B,(C,B,)~" € (Ctym=n
are uniquely defined,
(i1) the subsystem (Q,P,S) € (Chy(n=pm)x(n=pm) . (Ccly(n=pm)xm . (clymx(n=pm) s ynique up to
(Z7'QZ —Zz7'2,Z7 P, SZ) for any Z € C}(R; Gl,—,m(R)).

A possible transformation of (L.1) into Byrnes-Isidori form (B.4]) is feasible by

U = |:§<;:| ,  where N := (VTV)*lVT [I o Bp(chp)flcp] c Cl(R;R(n,pm)Xn)

and V € LX(R; R (=rm)y 0 CHR; R™("=P™)) may be chosen such that
(VTV)"WT e LR RPNy A Ve R : imV(t) = kerCy(t), tkV()TV () =n— pm.

If the coefficients of (A, B,C) are in A (in C*), then the coefficients of C,, By, N, V, U defined above
and of all entries in (B.4) are in A (in C*).
Proof: The proof can be found in [16, Thm. 3.5] except for the uniqueness properties and the case of

coefficients in A and C*°. The latter however is a simple calculation. (i) is also a consequence of [16]
Thm. 3.5], so it remains to show (ii).

Let
(A,B,C):= (UA+U)U ", UB,CU™Y) (B.8)
for U = [(Jz\‘[’] Then
[0 I, 0 0 0] (07
0 0 I 0 0
A= L B=|, ¢=1[In0,....0] (B.9)
0 0 0 I, 0 0
R Ry R, 1 R, S I
P 0 0 0 Q] 0.




holds (see [16, Thm. 3.5]) for I', R;, S, P, @ given by [16] (3.6)-(3.12)].
Consider next

(A,B,C)=(WA+W)W 1, WB, CW™) (B.10)
for any W € C!(R; G1,(R)) such that
0 L, O 0 07 [07]
0 0 I, 0 0
A= i Sl B=1||, €&=[n0,...,0] (B.11)
0 0 = 0 In 0 0
Ry Ry Ry R, S r
P 0 0 0 Q] K
We show that
Ri=R;, S=8z71 Vi=1,...,p,
) . . (B.12)
P=27ZP, Q=2ZQZ'+ZZ ' forsome Z € C(R; Gl,—pm(R)).
Set
Yl
WU l=Y=| : | =¥,...,Y1] (B.13)
yrtl

for Y, (¥) T € CLR;R™™), i = 1,..., p, and YP*, (V1) € (C)"#m*". Then (B) and (B10)
together with %(Uﬁl) = -U~UU! yield

YA+Y)Y = (WAU + WUl OU T+ WU+ wdw ) uw!
—WAW L4+ WWw1=A.

Thus
YA+Y)Y™! = A (B.14)
YB = B, (B.15)
c = oy (B.16)
This gives
0
vIER 0,0 ad v, &P, (B.17)
I,
L 0]
and we proceed
[07 I, 0,. .. 70] " YlA + %Yl B£17 Yl(YA + Y) B':14 YIANY E:i y?2
[0,0,Im,O,...,O] Y2A+%Y2 — YZ(YA—i—Y) Y2/~1Y E-:EDY:J,
B11)
0,00, 1,0 = yP LAy gyt verva+y) Eyeay By
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Therefore, Y is of the form

I, 0 0 0
0 I 0
v=1| : : for some Z € CH(R; Gl pm (R)).
0 ... 0 In 0
_Yp+1,1 ce Yp+1,p_1 0 Z_

Now consider the last n — pm rows in YA+Y = AY, which read

[ZP + %YPJrl,lv Yor1a1+ %YpH,Za o Yorp—2 + %YHLP*D Yorip-1,2Q + 7]
= [P+ QYp11,QYp112, -, QYp11,-1,0,Q7],
and comparing successively the p"' block, ..., 15¢ block yields Y,+1,-1 = 0,...,Y,411 = 0. Finally,
Y =diag {I,...,Im, Z} applied to (B.14)-(B.16) gives (B.12). O
Remark B.8 (Byrnes-Isidori form).

(i) In the time-invariant case (A4, B,C) € R™™ x R™™ x R™*"  all matrices in Theorem are
constant matrices over R.

(ii) The converse of Theorem is false in general even for time-invariant systems: any system (B.4)
with non-invertible I' does not have a strict relative degree.

N
unfortunately with a typo in formula [16], (3.10)] for @; the correct formula is

(iii) A formula for (@, P, S) in terms of the transformation U = [Cp] is given in 16, (3.7)-(3.12)], but

Q = —(VIWV)T'WVT[($I- AV +BI I+ A)P(C)V],
P = (-1)/(V'V)'VT [I-B,(C,B,) "Cy] (&1 — A)P(B)T Y,
S = (%I+Ar>p<C)V
For its proof see the proof of [16, Thm. 3.5].
(iv) As a useful technicality we mention the fact that Theorem m gives

VteR: Cot)U#) " = [Lym,0pmx A ker(C,(HU(#)™1) =im [0,...,0, I,pm] . (B.18)

<

(n—pm)]

Remark B.9. (Canonical form) Recall the definition of a canonical form: given a group G, a set S,
a group action o : G x § — §, we write

sy e UeG:aU,s)=5.
Then a map v : S — S is called a canonical form for « if, and only if,
Vs, €8 @ y(s) Vs A {sgslﬁy(s)zv(s') .

In words: the set S is divided into disjoint orbits (i.e., equivalence classes) and the mapping v picks a
unique representative in each equivalence class. In the present set-up, the group C!(R; G1,(R)) yields
an equivalence relation on the set ¢ of systems (|1.1]) by state space transformation:

n7m7p

(A,B,C)~(A,B,C) = 3UeCY(R,GL(R)) : (A,B,C)=(UA+U)U L, UB,CU™).
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Now it is clear that the Byrnes-Isidori form is not a canonical form but “close” to a canonical
form: the only non-unique entries are (Q, P,.S), but they describe an internal loop (see Figure |3)) and
they are unique modulo a state space transformation. More precisely, the uniqueness of (@, P, S) in
Theoremholds modulo (Z71QZ—2Z71Z,Z2' P,S Z) for any Z € C*(R; Gl,,_ ,(R)) corresponding
to a coordinate transformation of the subsystem (@, P,S). This may also be viewed as the freedom
in choosing V such that the conditions in Theorem are satisfied. If V is replaced by V Z~! for
arbitrary Z € C'(R; Gl,—,n(R)), then an easy calculation shows that N becomes ZN and therefore
(Q,P,S) becomes (Z27'QZ — 212,271 P,S Z). o

Acknowledgement: We thank Eva Zerz (RWTH Aachen) for providing the example in the proof of
Proposition and many thanks to Timo Reis (University of Hamburg) for helpful discussions.
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