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Abstract: We exploit a recently developed funnel control methodology for linear non-minimum
phase systems to design an output error feedback controller for a nonlinear robotic manipulator,
which is not minimum phase. We illustrate the novel control design by a numerical case study,
where we simulate end-effector output tracking of the robotic manipulator.
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1. INTRODUCTION

Throughout the last two decades funnel control (intro-
duced in Ilchmann et al. (2002)) turned out to be a
powerful tool for the treatment of tracking problems in
various applications, such as speed control of wind turbine
systems Hackl (2014, 2015), termination of fibrillation
processes Berger et al. (2021a), control of peak inspira-
tory pressure Pomprapa et al. (2015), temperature control
of chemical reactor models Ilchmann and Trenn (2004),
current and voltage control of electrical circuits Berger
and Reis (2014), adaptive cruise control Berger and Rauert
(2018, 2020) and control of industrial servo-systems Hackl
(2017) and underactuated multibody systems Berger et al.
(2019). First results for robotic manipulators have been
derived in Hackl et al. (2008); Hackl and Kennel (2012).
Many of the aforementioned applications are such that
their dynamics are minimum phase. Concerning this prop-
erty, there are some nuances in the literature, see e.g.
Ilchmann and Wirth (2013); we call a system minimum
phase, if its internal dynamics (in the linear case the zero
dynamics) are bounded-input, bounded-output stable.

The objective of funnel control is to design a feedback con-
trol law such that in the closed-loop system the tracking
error e(t) = y(t)− yref(t) evolves within the boundaries of
a prescribed performance funnel

Fϕ := { (t, e) ∈ R≥0 × Rm | ϕ(t)‖e‖ < 1} ,
which is determined by a so called funnel function ϕ
belonging to a large set of functions

Φr :=

ϕ∈Cr(R≥0→R)
ϕ, ϕ̇, . . . , ϕ(r) are bounded,
ϕ(τ) > 0 for all τ > 0,
and lim inf

τ→∞
ϕ(τ) > 0

 ,

where r ∈ N is the relative degree of the system. The
latter is, roughly speaking the minimal number one has
to differentiate the output of a system to obtain the
input explicitly; a definition is provided in the subsequent
subsection. The boundary of Fϕ is given by 1/ϕ, a typical
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situation is depicted in Fig. 1. Note that, since ϕ is
bounded, the performance funnel is bounded away from
zero, which means that there exists λ > 0 so that 1/ϕ(t) ≥
λ for all t > 0. The requirement of bounded ϕ can also be
waived, see the recent work Berger et al. (2021b).

t

•

λ

(0, e(0)) ϕ(t)−1

Fig. 1. Error evolution in a funnel Fϕ with boundary
ϕ(t)−1 for t > 0.

Our long-term aim is to study output tracking for non-
linear non-minimum phase systems with known relative
degree via funnel control. To achieve this, we seek to ex-
ploit a recent result for linear non-minimum phase systems
in Berger (2020), where output tracking with prescribed
performance is achieved by introducing an auxiliary out-
put. The latter is interpreted as output of a new system
with higher relative degree. Using a funnel controller for
nonlinear systems with known relative degree as in Berger
et al. (2018) and an appropriate new reference signal,
tracking with prescribed performance is achieved.

In the present work, we use the ideas and method devel-
oped in Berger (2020) to design a controller with which we
perform a numerical case study and determine whether the
ideas from Berger (2020) are, in principle, feasible for non-
linear systems. We focus on the presentation of a controller
design and its numerical validation; feasibility proofs are a
topic of future research. As a specific example, we consider
end-effector output tracking of a robotic manipulator arm.
This example is taken from Seifried and Blajer (2013).



We emphasize that the robotic manipulator is nonlinear
and underactuated, i.e., the system has fewer inputs than
degrees of freedom. Further, the internal dynamics are not
stable, but have a hyperbolic equilibrium. Moreover, if we
treat the internal dynamics as a control system, then a flat
output does not exist (cf. Fliess et al. (1995) for flatness).
Therefore, the approach from Berger (2020) is not directly
feasible. To resolve this, the controller design is based on
the linearization of the internal dynamics. Unlike Seifried
and Blajer (2013) we use a feedback control law.

A popular open-loop alternative to the approach presented
in the present paper is stable system inversion, see Chen
and Paden (1996); Devasia et al. (1996). Based on the
given reference trajectory, in this method an open-loop
(feedforward) control input is calculated. However, for
non-minimum phase systems this requires a reverse-time
integration, and hence the computed open-loop control
input is non-causal. A different approach is based on
so called ideal internal dynamics, see Gopalswamy and
Hedrick (1993); Shkolnikov and Shtessel (2002). However,
this method requires a trackability assumption and suffi-
cient conditions for its feasibility are not available. Stabi-
lization of non-minimum phase systems by dynamic com-
pensators was considered in Isidori (2000) and extended to
regulator problems in Marconi et al. (2004); Nazrulla and
Khalil (2009), where in the latter work extended high-gain
observers are used.

Notation: N and R denote the natural and real numbers,
resp., N0 = N ∪ {0} and R≥0 = [0,∞). Ck(R≥0,R) is the
(linear) space of k-times continuously differentiable func-
tions f : R≥0 → R, and L∞(R≥0,R) denotes the (linear)
space of Lebesgue-measurable and essentially bounded
functions. Moreover, W k,∞(R≥0,R) is the Sobolev space

of all functions f : R≥0 → R with f, ḟ , . . . , f (k) ∈
L∞(R≥0,R), where k ∈ N. By Gln(R) we denote the
general linear group of all invertible matrices A ∈ Rn×n.

2. SYSTEM CLASS AND BYRNES-ISIDORI FORM

We consider nonlinear systems of the form

ẋ(t) = f(x(t)) + g(x(t))ud(t), x(0) = x0 ∈ Rn,
y(t) = h(x(t)), (1)

with f : Rn → Rn, g : Rn → Rn×m sufficiently smooth
vector fields and h : Rn → Rm a sufficiently smooth map-
ping. Further, we assume that ud(t) = u(t)+d(t), where u :
R≥0 → Rm and y : R≥0 → Rm denote the input and
output, resp., and d : R≥0 → Rn are bounded disturbances
or uncertainties. Disturbances of this kind are expected in
real applications, in particular in multibody systems. Note
that the dimensions of input and output coincide.

We assume, that system (1) has relative degree r ∈ N
in the following sense. First, recall the definition of the
Lie derivative of a function h along a vector field f at a
point z ∈ U ⊆ Rn, U open:

(Lfh) (z) := h′(z)f(z),

where h′ is the Jacobian of h. We may gradually de-
fine Lkfh = Lf (Lk−1f h) with L0

fh = h. Furthermore,

denoting with gi(z) the columns of g(z) for i = 1, . . . ,m,
we define

(Lgh) (z) := [(Lg1h)(z), . . . , (Lgmh)(z)].

Now, in virtue of Isidori (1995), the system (1) is said to
have relative degree r ∈ N on U , if for all z ∈ U we have:

∀ k ∈ {0, ..., r − 2} : (LgL
k
fh)(z) = 0m×m

and Γ(z) := (LgL
r−1
f h)(z) ∈ Glm(R),

where Γ : U → Glm(R) denotes the high-frequency gain
matrix.

As mentioned above, in the present paper the design of
the controller is based on the linearization of the internal
dynamics. Therefore, we have to decouple the internal
dynamics first. To this end, we transform system (1) non-
linearly into Byrnes-Isidori form, for details see e.g. Isidori
(1995). If system (1) has relative degree r ∈ N on an
open set U ⊆ Rn, then there exists a (local) diffeo-
morphism Φ : U →W ⊆ Rn, W open, such that the co-

ordinate transformation
(
ξ(t)
η(t)

)
= Φ(x(t)), ξ(t) ∈ Rrm,

η(t) ∈ Rn−rm puts system (1) into Byrnes-Isidori form

y(t) = ξ1(t),

ξ̇1(t) = ξ2(t),

... (2)

ξ̇r−1(t) = ξr(t),

ξ̇r(t) = (Lrfh)
(
Φ−1(ξ(t), η(t))

)
+Γ
(
Φ−1(ξ(t), η(t))

)
ud(t),

η̇(t) = q(ξ(t), η(t)) + p(ξ(t), η(t))ud(t).

The last equation in (2) represents the internal dynamics
of system (1). The diffeomorphism Φ can be represented
as

Φ(x) =



h(x)
(Lfh)(x)

...
(Lr−1

f
h)(x)

φ1(x)

...
φn−rm(x)


, (3)

where φi : U → R, i = 1, . . . , n− rm are such that Φ′(z) ∈
Gln(R) for all z ∈ U . If the distribution im(g(x)) in (1)
is involutive, then the functions φi in (3) can additionally
be chosen such that

∀ i = 1, . . . , n− rm ∀ z ∈ U : (Lgφi)(z) = 0, (4)

by which p(·) = 0 in (2), cf. (Isidori, 1995, Prop. 5.1.2).
Recall from (Isidori, 1995, Sec. 1.3) that im(g(x)) is
involutive, if for all smooth vector fields g1, g2 : Rn → Rn
with gi(x) ∈ im(g(x)) for all x ∈ Rn and i = 1, 2 we have
that the Lie bracket [g1, g2](x) = g′1(x)g2(x) − g′2(x)g1(x)
satisfies [g1, g2](x) ∈ im(g(x)) for all x ∈ Rn.

3. ROTATIONAL MANIPULATOR ARM

To illustrate our approach, in the present paper we con-
sider an underactuated rotational manipulator arm as
in Seifried and Blajer (2013), depicted in Fig. 2. The
manipulator arm consists of two equal links with homo-
geneous mass distribution, mass m, length l and iner-
tia I = l2m/12. The two links are coupled via a passive
joint consisting of a linear spring-damper combination
with spring constant c, and damping coefficient d. Using a
body fixed coordinate system the tracking point S on the
passive link is described by 0 ≤ s ≤ l. The control input is
chosen as a torque u = T acting on the first link.



S

y

s

c

dT
α

β

Fig. 2. Rotational manipulator arm with two links and a
passive joint. The figure is taken from Seifried and
Blajer (2013).

Define B := { β ∈ [−π, π) | cos(β) > 2/3} and Uβ := R×
B × R2. Then, as we will see soon, it is reasonable to
consider the dynamics of the manipulator on the set Uβ ,
i.e., the angle β(t) is restricted to B. Next, we present the
equations of motion of the manipulator arm. With

M : Uβ → R2×2,

(x1, . . . , x4) 7→ l2m

[
5
3 + cos(x2) 1

3 + 1
2 cos(x2)

1
3 + 1

2 cos(x2) 1
3

]
,

f1 : Uβ → R,
(x1, . . . , x4) 7→ 1

2 l
2mx4(2x3 + x4) sin(x2),

f2 : Uβ → R,
(x1, . . . , x4) 7→ −cx2 − dx4 − 1

2 l
2mx23 sin(x2)

the equations of motion are given by

M
(
α(t), β(t), α̇(t), β̇(t)

)(α̈(t)

β̈(t)

)
=

(
f1
(
α(t), β(t), α̇(t), β̇(t)

)
f2
(
α(t), β(t), α̇(t), β̇(t)

))+

[
1
0

]
ud(t). (5)

For later use, we compute the inverse of the mass matrix:

M(x)−1 = 36
(l2m)2(16−9 cos2(x2))

[ 1
3 − 1

3−
1
2 cos(x2)

− 1
3−

1
2 cos(x2)

5
3+cos(x2)

]
for x = (x1, . . . , x4)> ∈ Uβ . As an output for (5) we
consider the auxiliary angle

y(t) = α(t) +
s

s+ l
β(t), (6)

which approximates the position S on the passive link for
a small angle β. Now, in Seifried and Blajer (2013) it is
shown that for this particular output and s/l > 2/3 the
linearized internal dynamics are unstable. Hence output
tracking with s = l, i.e., end-effector tracking, leads to
unstable internal dynamics, which is the case we are
interested in.

To find the relative degree of (5) we calculate the cor-
responding Lie derivatives. However, this is not directly
feasible, since we require a first-order formulation as in (1).
We may rewrite (5) in this form with

f : Uβ → R4,

x = (x1, . . . , x4) 7→ diag
(
I2,M(x)−1

)( x3
x4

f1(x)
f2(x)

)
,

g : Uβ → R4×1,

x = (x1, . . . , x4) 7→ diag
(
I2,M(x)−1

) [ 0
0
1
0

]
,

h : Uβ → R,

x = (x1, . . . , x4) 7→
[
1, s

s+l , 0, 0
]
x.

Then, for any z ∈ Uβ , we obtain the Lie derivatives

(Lgh)(z) =
[
1, s

s+l , 0, 0
]

diag
(
I2,M(z)−1

) [ 0
0
1
0

]
= 0,

(LgLfh)(z) = (Lfh)′(z)g(z) =
(
h′f
)′

(z)g(z)

=

([
1, s

s+l , 0, 0
]

diag
(
I2,M(z)−1

)( z3
z4
f1(z)
f2(z)

))′
· diag

(
I2,M(z)−1

) [ 0
0
1
0

]
=
[
0, 0, 1, s

s+l

]
diag

(
I2,M(z)−1

) [ 0
0
1
0

]
=
[
1, s

s+l

]
M(z)−1

[
1
0

]
.

The latter expression is the high-frequency gain matrix

Γ : Uβ → Gl1(R),

x 7→
[
1, s

s+l

]
M(x)−1

[
1
0

]
= 36

l2m(16−9 cos2(x2))

[
1
3 −

s
l+s

(
1
3 + 1

2 cos(x2)
)]

which is invertible for s = l since x2 ∈ B for all x ∈ Uβ .
Therefore, the relative degree of (5), (6) with s = l is
r = 2 on Uβ . In passing, we mention the observation that
for s = l and x ∈ R × [−π, π) × R2 we have Γ(x) < 0 if,
and only if, x ∈ Uβ , i.e., x2 ∈ B. Since we seek to consider
an open area around the equilibrium x = 0, where the
relative degree is well defined, Uβ is the largest set where
this is true.

4. OUTPUT TRACKING CONTROL

In this section we present the novel controller design with
which we perform the numerical case study in Section 5.
First, as a motivation, we briefly recall the controller
from Berger (2020) for linear non-minimum phase systems.
Then, we derive the representation of system (5), (6) in
Byrnes-Isidori form in order to isolate the internal dynam-
ics. Based on the linearization of the internal dynamics we
design a controller for end-effector output tracking of the
manipulator.

4.1 Methodology

Recently, a controller for linear non-minimum phase sys-
tems was developed in Berger (2020). There, a differen-
tially flat output ynew for the unstable part of the internal
dynamics is introduced. Recall that all state and input
variables can be parameterized in terms of a flat output, if



it exits, cf. Fliess et al. (1995). Interpreting the new output
as output for a system with higher relative degree, the
unstable part of the internal dynamics is removed. Then
applying a funnel control law as in Berger et al. (2018) to
the system with appropriate new reference signal leads to
tracking with prescribed performance.

In order to adopt this approach for the robotic manipula-
tor (5), (6) we first compute its internal dynamics based
on the Byrnes-Isidori form (2). We then observe that the
internal dynamics depend nonlinearly on ẏ and, when
this is considered as the input, the unstable part does
not have a flat output. Hence, we linearize the internal
dynamics around the equilibrium and apply the above
mentioned controller design based on this linearization.
Since derivatives of the new output, which is defined in this
way, are required we need to replace the variables obtained
via the linearization with the variables of the original
system. As an alternative, we present an approach where
the derivatives are calculated using a high-gain observer.

4.2 Internal dynamics of the manipulator

Henceforth we consider end-effector tracking and set s = l.
In order to obtain the internal dynamics, we transform
system (5) with output (6) into Byrnes-Isidori form. For
Uβ ⊆ R4 as above, define Φ : Uβ → R4 as in (3) with
φi : Uβ → R, i = 1, 2. Since the distribution

im g(x) = {0}2 × imM(x)−1
[
1
0

]
is one-dimensional and hence obviously involutive, we may
choose φ1 and φ2 such that

∀x ∈ Uβ : 0 = (Lgφi)(x) = φ′i(x) diag
(
I2,M(x)−1

) [ 0
0
1
0

]
.

(7)
Similar to the recent work Lanza (2021), we investigate
the ansatz

φ1(x1, . . . , x4) = φ̃1(x1, x2),

and φ2(x1, . . . , x4) = φ̃2(x1, x2)

(
x3
x4

)
for φ̃1 : U1 → R, φ̃2 : U1 → R1×2 and U1 = R×B. Since we
require the transformation Φ to be a local diffeomorphism,
its Jacobian has to be invertible on Uβ . This is the case if,
and only if,

∀x ∈ Uβ : Φ′(x) =

 h′(x)
(h′f)′(x)
φ′1(x)
φ′2(x)



=


[1, 1/2] 0

0 [1, 1/2]

φ̃′1(x1, x2) 0

∗ φ̃2(x1, x2)

 ∈ Gl4(R)

⇐⇒ ∀ q ∈ U1 :

[
[1, 1/2]

φ̃1(q)

]
∈ Gl2(R)

∧
[
[1, 1/2]

φ̃2(q)

]
∈ Gl2(R). (8)

In order to satisfy conditions (7) and (8) we choose

φ̃1 : U1 → R, q 7→ q2,

φ̃2 : U1 → R1×2, q 7→
[
1
3 + 1

2 cos(q2), 13
]
. (9)

With this choice, clearly (7) is satisfied. In order to
verify (8) we calculate[

[1, 1/2]

φ̃′1(q)

]
=

[
1 1

2
0 1

]
and

[
[1, 1/2]

φ̃2(q)

]
=

[
1 1

2
1
3 + 1

2 cos(q2) 1
3

]
for q ∈ U1, where the latter is invertible since q2 ∈ B.
We may now infer that (5), (6) can be transformed into

Byrnes-Isidori form with the particular choice for φ̃1, φ̃2 as
in (9). Substituting the respective expressions via y(t)

ẏ(t)
η1(t)
η2(t)

 = Φ

α(t)
β(t)
α̇(t)

β̇(t)

 (10)

and rearranging yields(
y(t)
η1(t)

)
=

[
1 1

2
0 1

](
α(t)
β(t)

)
,(

ẏ(t)
η2(t)

)
=

[
1 1

2
1
3 + 1

2 cos(β(t)) 1
3

](
α̇(t)

β̇(t)

)
.

Solving the above equations for y, η1 and ẏ, η2, we may
now formulate the internal dynamics as in (2) as follows:

η̇1(t) = g1,0(η1(t), η2(t)) + g1,1(η1(t), η2(t)) ẏ(t),

η̇2(t) = g2,0(η1(t), η2(t)) + g2,1(η1(t), η2(t)) ẏ(t) (11)

+ g2,2(η1(t), η2(t)) ẏ(t)2,

where gi,j : V ⊆ R2 → R, V = [0, I2]Φ(Uβ) open, are
appropriate functions with g1,0(0, 0) = g2,0(0, 0) = 0.
The explicit representation can be found in Appendix A.
Here we highlight that the internal dynamics depend
nonlinearly on ẏ.

4.3 Controller design

The controller design is inspired by Berger (2020), and
we apply these results to the internal dynamics. To this
end, we linearize the internal dynamics (11) around the
equilibrium (η1, η2) = (0, 0), ẏ = 0 and obtain(

η̇1(t)
η̇2(t)

)
= Q

(
η1(t)
η2(t)

)
+ P ẏ(t), (12)

where

Q =

[
0 −12
−c
l2m

12d

l2m

]
, P =

[
10
−10d

l2m

]
and the matrix Q has eigenvalues

λ1 =
6d

l2m
− 2

√(
3d

l2m

)2

+
3c

l2m
,

λ2 =
6d

l2m
+ 2

√(
3d

l2m

)2

+
3c

l2m
.

Note, that for c > 0 we have λ1 < 0 < λ2, thus (12) has a
hyperbolic equilibrium. Therefore, the linearized internal
dynamics have an unstable part. Now, we find a transfor-
mation

V =

[
λ1l

2m
c

λ2l
2m
c

1 1

]
∈ Gl2(R),

which diagonalizes Q (and hence separates the stable and
the unstable part of the internal dynamics) such that

V −1QV =

[
λ1 0
0 λ2

]
, V −1P =

[
p1
p2

]
,



where p1,2 = ± 10
Dc (c + dλ1,2), with D := l2m

c (λ1 − λ2) =

det(V ). Using the transformation η̂(t) = V −1η(t) we
obtain the linearized internal dynamics separated in a
stable and an unstable part

˙̂η1(t) = λ1η̂1(t) + 10
Dc (c+ dλ1)ẏ(t),

˙̂η2(t) = λ2η̂2(t)− 10
Dc (c+ dλ2)ẏ(t).

(13)

In virtue of Berger (2020) we seek to define an auxiliary
output ŷnew as a flat output for system (13), i.e., its
second equation, and calculate the new relative degree
of system (5) with respect to ŷnew. However, it is not
obvious how to treat this task. One way would be to
express the new output in terms of the original coordinates
(i.e., replace η2 in (12) with η2 in (11) and perform the
same transformations which lead to η̂2) and calculate the
derivatives. Another way, and this is the one we choose,
is to use the linearization of the internal dynamics to
calculate the relative degree based on (13). To avoid
confusion we do not use the dot for time derivatives here,
but a superscript to indicate the derivatives w.r.t. the
linearization (13). The new output ŷnew may be given by
the variable of the unstable part as ŷnew = η̂2, and we
calculate

ŷ[1]new(t) = λ2η̂2(t) + p2ẏ(t),

ŷ[2]new(t) = λ2(η̂2(t) + p2ẏ(t)) + p2ÿ(t).

In the last equation we may insert the equation for ÿ
according to (5), (6), which explicitly depends on the
input u. Hence, the relative degree of (5) with respect
to ŷnew is again rnew = 2, thus remains unchanged. Re-
calling the aim formulated in Section 4.1, we need to find
a different output. To this end, we use the transforma-
tion η̄2(t) = η̂2(t)− p2y(t) to obtain

˙̄η2(t) = λ2η̄2(t) + λ2p2y(t) (14)

and define

ynew(t) = η̄2(t). (15)

A short calculation shows that system (5) with new
output (15) has relative degree rnew = 3:

y[1]new(t)
(14)
= λ2(η̄2(t) + p2y(t))

y[2]new(t) = λ22(η̄2(t) + p2y(t)) + λ2p2ẏ(t) (16)

y[3]new(t) = λ32(η̄2(t) + p2y(t)) + λ22p2ẏ(t) + λ2p2ÿ(t),

where in the last equation we again use (5), (6) to obtain
the input u explicitly.

Remark 1. We stress that the derivatives y
[i]
new are cal-

culated by replacing the original unstable part of the
internal dynamics, i.e., the second equation in (11), by
the linearized version (14). They are not equivalent to
those expressed in the original coordinates, which means

that y
[1]
new(t) 6= ẏnew(t). More precisely, using the original

coordinates would mean that the transformations leading
from η2 to η̄2 are performed with η2 in (11) so that

η̄2 = η̂2 − p2y = [0, 1]V −1
(
η1
η2

)
− p2y, (17)

and η1, η2, y are replaced via (10).

Now, in order to track the original reference with the
original output, we have to find a new reference signal for
system (5) with new output (15). The new reference ȳref

is given by the solution of (14) when the original output y
is substituted by the original reference signal yref :

˙̄η2,ref(t) = λ2η̄2,ref(t) + λ2p2yref(t), η̄2,ref(0) = η̄02,ref
ȳref(t) = η̄2,ref(t). (18)

We stress that (18) adds a dynamic equation to the overall
controller design. In order for the controller from Berger
et al. (2018) to be applicable, ȳref and its derivatives
should be bounded. To show this, we use the follow-
ing well known result: there exists x ∈W 1,∞(R≥0 → R)
solving ẋ(t) = λx(t) + γg(t), where λ > 0, γ ∈ R,
g ∈ L∞(R≥0 → R), and x(0) = x0 if, and only if, x0 +∫∞
0
e−λsγg(s)ds = 0. Hence we set

η̄02,ref = −
∫ ∞
0

e−λ2sλ2p2yref(s)ds. (19)

We emphasize that, if yref is generated by an exosystem

ẇ(t) = Aew(t), yref(t) = Cew(t), w(0) = w0,

with known parameters Ae ∈ Rk×k, Ce ∈ R1×k and
w0 ∈ Rk such that σ(Ae) ⊆ C− and any eigenvalue
λ ∈ σ(Ae) ∩ iR is semisimple (note that this guarantees
yref ∈W 1,∞(R≥0 → R)), then η̄02,ref can be calculated via

the solution X ∈ R1×k of the Sylvester equation

Q2X −XAe = P2Ce,

where in our example Q2 = λ2 and P2 = λ2p2. It is shown
in (Berger, 2020, Lem. 3.2) that in this case

η̄02,ref = −Xw0.

The tracking error for the auxiliary system with new
output (15) and new reference (18) is defined by

e0(t) = ynew(t)− ȳref(t). (20)

Applying the funnel control law from Berger et al. (2018)
requires the derivatives of ynew, and in order to implement
it we have to express them in terms of the original
variables q. In the following we present two approaches
to obtain these derivatives. In the first approach we use
the representation in (16) and replace η̄2 by the original
variables via (17) and (10). In the second approach we only
replace ynew by the original variables and approximate
the derivatives of this representation using a high-gain
observer.

For later use and ϕ0 ∈ Φ3, κ0 > 0, we define the
expressions

e
[1]
0 = y[1]new − ˙̄yref ,

e
[2]
0 = y[2]new − ¨̄yref ,

k
[1]
0 =

2κ0ϕ0e0
(1− ϕ2

0e
2
0)2

(
ϕ̇0e0 + ϕ0e

[1]
0

)
, (21)

e
[1]
1 = e

[2]
0 + k0e

[1]
0 + k

[1]
0 e0.

Linearization. The first option is to replace η̄2 in ynew
and its derivatives in (16) by (17) and to express every-
thing in terms of the original coordinates via (10). To this
end, we consider

Ψ : Uβ → R
(x1, . . . , x4) 7→ −p2(x1 + 1

2x2)

+ 1
D

(
−x2 + λ2l

2m
c

[
( 1
3 + 1

2 cos(x2))x3 + 1
3x4
])

and replace η̄2(t) = Ψ(α(t), β(t), α̇(t), β̇(t)) in ynew(t) =
η̄2(t) and in (16), thus



ynew(t) = Ψ(α(t), β(t), α̇(t), β̇(t)),

y[1]new(t) = λ2Ψ(α(t), β(t), α̇(t), β̇(t)) + λ2p2
(
α(t) + 1

2β(t)
)
,

y[2]new(t) = λ22Ψ(α(t), β(t), α̇(t), β̇(t)) + λ22p2
(
α(t) + 1

2β(t)
)

+ λ2p2
(
α̇(t) + 1

2 β̇(t)
)
. (22)

With this, the application of the controller from Berger
et al. (2018) to system (5) with new output (15) and
reference signal as in (18) leads to the following overall
control law:

˙̄η2,ref(t) = λ2η̄2,ref(t) + λ2p2yref(t), η̄2,ref(0) = η̄02,ref ,

ȳref(t) = η̄2,ref(t),

ynew(t) = Ψ(α(t), β(t), α̇(t), β̇(t)),

e0(t) = ynew(t)− ȳref(t),
e1(t) = e

[1]
0 (t) + k0(t)e0(t), e

[1]
0 via (21) and (22),

e2(t) = e
[1]
1 (t) + k1(t)e1(t), e

[1]
1 via (21) and (22),

ki(t) =
1

1− ϕi(t)2ei(t)2
, i = 0, 1, 2,

u(t) = k2(t)e2(t), (23)

with η̄02,ref as in (19), reference signal yref ∈W 1,∞(R≥0 →
R) and funnel functions ϕi ∈ Φ3−i for i = 0, 1, 2. Note
that, since Γ(x) is negative for x ∈ Uβ , the control input u
has a positive sign according to Berger et al. (2018).

High-gain observer. The second option is to approximate
the first and second derivative of ynew using a high-gain
observer, see Khalil (2001). To this end, consider

ζ̇(t) = L(ynew(t)− ζ1(t)) + Zζ(t), ζ(0) = ζ0 ∈ R3,

where

Z =

[
0 I2
0 0

]
, L =

[
l1
l2
l3

]
,

with li ∈ R for i = 1, 2, 3. Then ζ2 and ζ3 approximate the
first and second derivative of ynew, thus for the controller

we set y
[1]
new = ζ2 and y

[2]
new = ζ3. The high-gain observer is

a dynamical part of the controller and invoking (21) the
overall controller reads:

˙̄η2,ref(t) = λ2η̄2,ref(t) + λ2p2yref(t), η̄2,ref(0) = η̄02,ref ,

ȳref(t) = η̄2,ref(t),

ynew(t) = Ψ(α(t), β(t), α̇(t), β̇(t)),

ζ̇1(t) = l1(ynew(t)− ζ1(t)) + ζ2(t), ζ1(0) = ζ01

ζ̇2(t) = l2(ynew(t)− ζ1(t)) + ζ3(t), ζ2(0) = ζ02

ζ̇3(t) = l3(ynew(t)− ζ1(t)), ζ3(0) = ζ03

y[1]new(t) = ζ2(t),

y[2]new(t) = ζ3(t),

e0(t) = ynew(t)− ȳref(t)
e1(t) = e

[1]
0 (t) + k0(t)e0(t), e

[1]
0 via (21),

e2(t) = e
[1]
1 (t) + k1(t)e1(t), e

[1]
1 via (21),

ki(t) =
1

1− ϕi(t)2ei(t)2
, i = 0, 1, 2,

u(t) = k2(t)e2(t), (24)

with η̄02,ref as in (19), high-gain observer parameters li ∈ R
and initial values ζ0i ∈ R, i = 1, 2, 3, reference signal
yref ∈ W 1,∞(R≥0 → R) and funnel functions ϕi ∈ Φ3−i
for i = 0, 1, 2.

5. NUMERICAL CASE STUDY

In this section we present the results of the numerical
case study. We perform end-effector output tracking of
the manipulator arm (5) with l = 1 m, m = 1 kg, c =
1 Nm/rad and d = 0.25 Nms/rad applying controls (23)
and (24), resp. As a reference signal we choose the trajec-
tory from Seifried and Blajer (2013)

yref(t) = y0 +
[
126( t

tf−t0 )5 − 420( t
tf−t0 )6 + 540( t

tf−t0 )7

−315( t
tf−t0 )8 + 70( t

tf−t0 )9
]

(yf − y0),

which establishes a transition from y0 to yf within the time
interval t0 to tf . The situation is depicted in Figure 3.

S

S

t = t0

t = tf

yref

S

S

Fig. 3: Schematic snapshots of the manipulator arm’s
transition established by the reference trajectory yref with
y0 = 0 rad and yf = π

4 rad.

We choose y0 = 0 rad, yf = π
4 rad, t0 = 0 s and tf = 3 s,

which means the transition is performed in rather short
time, namely within three seconds. We choose the funnel
functions

ϕ0(t) = ϕ1(t) =
(
1.5 e−0.8 t + 0.001

)−1
,

ϕ2(t) =
(
60e−0.2 t + 0.001

)−1
, t ≥ 0,

which ensure that the initial errors e0(0), e1(0), e2(0) lie
within the respective funnel boundaries; and we choose
the high-gain parameters l1 = 102, l2 = 105, l3 = 106.
Furthermore, we assume the control torque to be affected
by high frequent disturbances d(t) as expectable in real
applications caused e.g. by friction or unexpected external
vibrating forces, cf. (Hackl, 2017, Ch. 11 & 13). For sim-
ulation purposes we choose d(t) = 0.1 sin(5t) + 0.2 cos(8t)
and recall that in (5) we have ud(t) = u(t) + d(t).

Figure 4 shows the results of the simulations, which have
been performed in Matlab (solver: ode15s, rel. tol.: 10−9,
abs. tol.: 10−12) over the time interval 0 − 3 s. In the
following the superscript lin refers to the results under the
control (23), where the derivatives of ynew are expressed
via (22); the superscript HG refers to the results under
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(a) Error e0 and funnel boundary ϕ−1
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(b) Angles α and β of the manipulator arm.
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(c) Input function u.

Fig. 4. Simulation of the controllers (23) (superscript lin)
and (24) (superscript HG) applied to (5), (6) under
disturbances d.

the control (24), where the derivatives of ynew are approx-
imated via a high-gain observer. As depicted in Figure 4a
the error e0 evolves within the funnel boundary ϕ−10 . Fig-
ure 4b shows the state variables, i.e., the angles (α, β), of
system (5) during the tracking process. The large angle β,
i.e., large deflection of the passive link, results from the
fast transition within three seconds. However, note that
β(t) ∈ B for 0 ≤ t ≤ 3. In Figure 4c the respective control
inputs u are depicted. Note that both approaches, the
linearization and the use of a high-gain observer, generate
comparable control inputs. Figure 5 shows that the goal

of the numerical case study, namely end-effector output
tracking of a prescribed trajectory, is successful.

0 0.5 1 1.5 2 2.5 3

0

/4

Fig. 5: Output y and reference yref .

6. CONCLUSION

In the present paper we exploited ideas and methods
recently found for linear non-minimum phase systems
in Berger (2020) to proceed a numerical case study for
a nonlinear non-minimum phase robotic manipulator. To
this end, we transformed the system under consideration
into Byrnes-Isidori form in order to decouple the internal
dynamics. We linearized the internal dynamics around an
equilibrium point and separated its stable and unstable
parts. Then we followed the steps in the aforementioned
work in order to design the feedback control laws (23)
and (24) using different methods to approximate the
new output’s derivatives. Utilizing these control laws we
simulated end-effector output tracking of the rotational
manipulator arm (5). The simulation showed that output
tracking of such a nonlinear non-minimum phase system
is successful, even under the action of disturbances.

We stress that the present paper is only a case study in
order to gain some insight as to whether the methods
and ideas derived in Berger (2020) can be extended to
nonlinear non-minimum phase systems. The presented
results give reason to adopt the presented techniques to
achieve efficient control methods for nonlinear systems
with unstable internal dynamics via funnel control.

REFERENCES

Berger, T. (2020). Tracking with prescribed performance
for linear non-minimum phase systems. Automatica,
115, Article 108909.

Berger, T., Breiten, T., Puche, M., and Reis, T. (2021a).
Funnel control for the monodomain equations with the
FitzHugh-Nagumo model. J. Diff. Eqns., 286, 164–214.

Berger, T., Ilchmann, A., and Ryan, E.P. (2021b). Funnel
control of nonlinear systems. Math. Control Signals
Syst., 33, 151–194.
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Appendix A. THE FUNCTIONS gi,j

Here we list the functions gi,j that appear in (11).

g1,0 : V ⊆ R2 → R,

(η1, η2) 7→ 12

2− 3 cos(η1)
η2,

g1,1 : V ⊆ R2 → R,

(η1, η2) 7→ −12

2− 3 cos(η1)

(
1

3
+

1

2
cos(η1)

)
,

g2,0 : V ⊆ R2 → R,

(η1, η2) 7→ −1

l2m(2− cos(η1))2

·
{
η1
[
4c− 12c+ 9c cos(η1)2

]
+ 4η2

[
6d− 9

(
d cos(η1) + l2mη2 sin(η1)

)]}
,

g2,1 : V ⊆ R2 → R,

(η1, η2) 7→ 2

l2m(2− cos(η1))2(16− 9 cos(η1)2)

·
{
η2
[
453 sin(η1) + 216 sin(2η1)− 27 sin(3η1)

+ l2m
(−1071

2 sin(η1)− 1071
4 sin(2η1)

+ 81
4 sin(3η1) + 81

8 sin(4η1)
)]

+ 35d
8 −

99d
2 cos(2η1) + 81d

8 cos(4η1)

}
,

g2,2 : V ⊆ R2 → R,

(η1, η2) 7→ −4 sin(η1)

l2m(2− cos(η1))2(16− 9 cos(η1)2)

·
{

80 + 144 cos(η1) + 90 cos(η1)

−
[
80 + 192 cos(η1) + 90 cos(η1)2

− 27 cos(η1)3
]
l2m

}
.


