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Abstract— A new approach to distributed consensus opti-
mization is studied in this paper. The cost function to be
minimized is a sum of local cost functions which are not
necessarily convex as long as their sum is convex. This benefit
is obtained from a recent observation that, with a large gain
in the diffusive coupling, heterogeneous multi-agent systems
behave like a single dynamical system whose vector field is
simply the average of all agents’ vector fields. However, design
of the large coupling gain requires global information such
as network structure and individual agent dynamics. In this
paper, we employ a nonlinear time-varying coupling of diffusive
type, which we call ‘edge-wise funnel coupling.’ This idea is
borrowed from adaptive control, which enables decentralized
design of distributed optimizers without knowledge of global
information. Remarkably, without a common internal model,
each agent achieves asymptotic consensus to the optimal solu-
tion of the global cost. We illustrate this result by a network
that asymptotically finds the least-squares solution of a linear
equation in a distributed manner.

I. INTRODUCTION

Recent developments in the fields such as formation con-
trol, smart grid, and resilient state estimation have raised
the question of how to design a network so that agents
collectively find an optimizer [1]–[5], and consensus opti-
mization is a vast research area which studies a subclass of
the aforementioned problem. Let the cost function be given
by

f : Rn → R, f(x) =

N∑
i=1

fi(x), (1)

which is the sum of N heterogeneous cost functions. The
question of how to construct a dynamic system for each node
i ∈ N := {1, . . . , N} that finds the minimizer x∗ ∈ Rn of
f(·), with each node i having access to its individual cost
function fi(·) only, has been tackled in recent years [6]–
[12]. However, most of them, e.g., [6]–[11], assume that the
individual cost function fi(·) is convex. The reason is the
need for stability, e.g., passivity, for each node, to achieve
consensus.
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In this paper, we present a network that finds the min-
imizer x∗ of f(·) asymptotically, with the assumption
that f(·) is strictly convex even if each function fi(·) is
not necessarily convex. This is obtained from the recent
observation that, with a large coupling gain in the diffusive
coupling, heterogeneous multi-agent systems behave like
a single dynamical system whose vector field is simply
the average of all agents’ vector fields [13], [14]. By this
observation, it is possible to trade stability among agents,
and hence, to relax the assumptions on the individual cost
functions. However, this approach has some limitations, for
instance

1) it only guarantees practical consensus (i.e. for any ε > 0
a coupling strength can be chosen so that the agents’
states eventually get ε-close), and

2) the design of the coupling gain that is used for each
agent requires global information such as the network
structure and the individual agent dynamics.

To resolve these issues, we modify the linear diffusive
term of the designed network into a nonlinear time-varying
coupling, which we call ‘edge-wise funnel coupling.’ This
idea is motivated by the funnel control methodology (a
particular adaptive control method) which was developed
in [15], see also the survey [16].

Let us emphasize that we obtain asymptotic consensus to
the unique minimizer x∗ of f(·) by the proposed funnel
coupling. It was first shown in [17] that asymptotic tracking
can be achieved via funnel control. In that work a control
structure of the form u(t) = ν

(
‖e(t)‖/ψ(t)

)
θ(e(t)), with

bounded θ, was utilized. Recently, unaware of this result,
it was observed in [18] that if the feedback is chosen
to be of the form u(t) = F

(
e(t)/ψ(t)

)
, then asymptotic

tracking is possible. In the present paper, we exploit the
technique from [18] to achieve asymptotic consensus (with-
out additional dynamics like the PI consensus algorithms or
embedding a common internal model).

The paper is organized as follows. In Section II, we
give a precise problem formulation and introduce, for a
given network graph, agent dynamics that are designed with
a constant coupling gain. In order to resolve the above
mentioned limitations, the dynamics are modified using the
funnel coupling in Section III. In Section IV we illustrate
the utility of this design by an example of a distributed least-
squares solver. Finally, Section V concludes the paper.

Notation: The Laplacian matrix L = [lij ] ∈ RN×N of a
graph is defined as L := D − A, where A = [αij ] is the
adjacency matrix of the graph and D is the diagonal matrix



with its i-th diagonal entry being
∑N
j=1 αij . By construction,

the Laplacian matrix contains at least one zero eigenvalue
with corresponding eigenvector 1N := [1, . . . , 1]> ∈ RN ,
and all other eigenvalues have non-negative real parts. For
undirected graphs, the zero eigenvalue is simple if, and
only if, the corresponding graph is connected. For vec-
tors or matrices a and b we set col(a, b) := [a>, b>]>.
The operation defined by the symbol ⊗ is the Kronecker
product. The maximum norm of a vector x is defined by
‖x‖∞ := maxi |xi|, and the Euclidean norm is denoted by
‖x‖ :=

√
x>x. The induced maximum norm of a matrix A

(the maximum absolute row sum) is ‖A‖∞. The gradient
of a differentiable function f : Rn → R is defined as
∂f := col(∂f/∂x1, . . . , ∂f/∂xn). The identity matrix of
size m×m is denoted by Im.

II. PROBLEM SETTING AND PRELIMINARIES

Consider a network of N agents, whose structure is
defined by a graph.

Assumption 1: The graph is undirected and connected. �
In the network, each agent i ∈ N = {1, . . . , N} has access
to its own cost function fi : Rn → R but not to the other fj ,
j 6= i. Here, fi(·) satisfies the following.

Assumption 2: For each i ∈ N , fi(·) is continuously
differentiable, and its gradient ∂fi(·) is globally Lipschitz
continuous with Lipschitz constant Li > 0, i.e., ‖∂fi(x) −
∂fi(x

′)‖ ≤ Li‖x− x′‖ for all x, x′ ∈ Rn. �
The objective is to solve, in a distributed way,

minimizex f(x) =

N∑
i=1

fi(x)

under the following assumption.
Assumption 3: The sum of the N cost functions,

f(x) =

N∑
i=1

fi(x)

is strictly convex, i.e.,

f(tx+ (1− t)x′) < tf(x) + (1− t)f(x′),
for any t ∈ (0, 1) and x, x′ ∈ Rn such that x 6= x′. Moreover,
there exists a point x∗ ∈ Rn such that f(x∗) ≤ f(x) for all
x ∈ Rn. �

By Assumption 3 there exists a unique minimizer x∗ ∈ Rn

of f(·), and hence ∂f(x) becomes zero only at x∗. Therefore,
the gradient descent algorithm given by

˙̂x = −∂f(x̂) = −
N∑
i=1

∂fi(x̂) ∈ Rn (2)

solves the optimization problem. In particular, the solu-
tion x̂(·) asymptotically converges to the unique mini-
mizer x∗.

Motivated by this, we may design a distributed algorithm,
in which the individual dynamics of each agent i ∈ N are
given by

ẋi = −∂fi(xi) + k
∑
j∈Ni

(xj − xi) ∈ Rn (3)

where k > 0 is a design parameter, and Ni is a subset of
N whose elements are the indices of those agents which
are connected to agent i within the network graph (the
neighbors), and are hence able to share information with it.

Remark 1: Insight into the proposed network (3) comes
from the so-called ‘blended dynamics’ approach [13], [14].
In this approach, the behavior of heterogeneous multi-agent
systems

ẋi = gi(t, xi) + k
∑
j∈Ni

(xj − xi), i ∈ N ,

with large coupling gain k is approximated by the behavior
of the blended dynamics defined by

˙̂x =
1

N

N∑
i=1

gi(t, x̂)

under the assumption that these dynamics are stable. In our
case, the blended dynamics are given by

˙̂x = − 1

N

N∑
i=1

∂fi(x̂) = −
1

N
∂f(x̂)

which is the (scaled) gradient descent algorithm (2). �
Proposition 2 ( [14]): Let Assumptions 1, 2, and 3 hold.

Then, for any compact set K ⊆ RNn, and for any η > 0,
there exists k∗ > 0 such that, for each k > k∗ and
col(x1(0), . . . , xN (0)) ∈ K, the solution to (3) exists for
all t ≥ 0, and satisfies

∀ i ∈ N : lim sup
t→∞

‖xi(t)− x∗‖ ≤ η. �
Although this result is already quite powerful, a disadvan-

tage is that the optimizer is not found asymptotically but only
approximately. Moreover, for computing the threshold k∗,
global information such as the network topology and all fi’s
is needed, and so the method is not completely decentralized.
These drawbacks will be resolved in the next section by
choosing the gain k adaptively based on the idea of funnel
control.

III. EDGE-WISE FUNNEL COUPLING

Building on the idea of the edge-wise funnel coupling
law [19], we propose to replace the static diffusive coupling
term k

∑
j∈Ni

(xj − xi) in (3) by the coupling law∑
j∈Ni

K

(
xj − xi
ψ(t)

)
· xj − xi
ψ(t)

where ψ : R≥0 → R>0 is a so-called funnel boundary
function (Figure 1), and K : Rn → Rn×n is defined by

K(η) := diag

(
1

1− |η1|
, · · · , 1

1− |ηn|

)
. (4)

By introducing eij := xj − xi, the dynamics of agent i
become

ẋi = −∂fi(xi) +
∑
j∈Ni

col
(

e1ij
ψ(t)−|e1ij |

, . . . ,
enij

ψ(t)−|enij |

)
(5)

where xi = col(x1i , . . . , x
n
i ) and epij := xpj − x

p
i = −e

p
ji.

The intuition behind the funnel coupling in (5) is as
follows. If the p-th component of the difference between



t

ψ(t)

−ψ(t)

F

epij

Fig. 1. The funnel: a pre-designed time-varying error bound

two agents, epij(t) = xpj (t) − x
p
i (t), approaches the funnel

boundary ±ψ(t) so that ψ(t) − |epij(t)| gets close to zero,
then the gain associated to epij(t) becomes large. Therefore,
if there is only one neighbor, then the state xi tends to its
neighbor xj since the large coupling term dominates the
vector field −∂fi(xi), and the error epij(t) remains inside the
funnel. However, with more than one neighbor, the situation
is more involved because two neighbors may attract xi in
opposite direction with almost infinite power. Actual analysis
shows that all the errors eij(t) remain inside the funnel,
which is however far more complicated. In this paper, we
only quote one of the main results of [20] and omit the
proof due to space limitations.

Proposition 3: Let Assumptions 1, 2, and 3 hold. Then,
for any bounded continuously differentiable function ψ :
R≥0 → R>0 with bounded derivative, and for any initial
conditions xi(0) ∈ Rn with ‖xj(0) − xi(0)‖∞ < ψ(0) for
all j ∈ Ni, i ∈ N , the solution to (5) exists for all t ≥ 0
and satisfies

∀ t ≥ 0 ∀ i ∈ N ∀ j ∈ Ni : ‖xj(t)− xi(t)‖∞ < ψ(t).

Moreover, if there exists M such that ‖xi(t)‖ ≤ M for all
t ≥ 0 and all i ∈ N , then there exists ε > 0 such that

∀ t ≥ 0 ∀ i ∈ N ∀ j ∈ Ni :
‖xj(t)− xi(t)‖∞

ψ(t)
≤ 1−ε. (6)

�
According to Proposition 3, if we select ψ(·) such that

limt→∞ ψ(t) = 0, then we obtain asymptotic consensus, i.e.,
limt→∞ ‖xj(t)−xi(t)‖∞ = 0. This in turn implies that, with
the new variable xavg := (1/N)

∑N
i=1 xi, each state xi(t)

tends to xavg(t) as t→∞. Now, by Assumption 1, we may
observe that

N∑
i=1

∑
j∈Ni

epij(t)

ψ(t)− |epij(t)|
= 0 (7)

for p = 1, . . . , n. Therefore, we have that

ẋavg = − 1

N

N∑
i=1

∂fi(xi) → − 1

N

N∑
i=1

∂fi(xavg)

as t → ∞, and so, intuitively the coupled system (5) will
asymptotically find the unique minimizer x∗. This intuition
is made precise in the following theorem, which is our main
result.

Theorem 4: Let Assumptions 1, 2, and 3 hold. Then, for
any bounded continuously differentiable function ψ : R≥0 →
R>0 with bounded derivative which satisfies limt→∞ ψ(t) =

0, and for any initial conditions xi(0) ∈ Rn with ‖xj(0) −
xi(0)‖∞ < ψ(0) for all j ∈ Ni, i ∈ N , the solution to (5)
exists for all t ≥ 0 and satisfies

∀ i ∈ N : lim
t→∞

xi(t) = x∗,

i.e., each agent’s state converges to the global optimizer.
Furthermore, there exists ε > 0 such that (6) holds, i.e.,
the coupling gain K given by (4) remains bounded. �

Proof: Let, according to Proposition 3, (x1, . . . , xN )
be the solution of (5) which exists for all t ≥ 0. Let Li > 0
be a Lipschitz constant of ∂fi according to Assumption 2,
and let T be an arbitrary spanning tree in the network graph
with incidence matrix T ∈ RN×(N−1). Let t>i be the i-th
row of T (T>T )−1 and define(

xavg
x̃

)
:=

[
(1/N)1>N ⊗ In
T> ⊗ In

]
col(x1, . . . , xN ).

Since 1>NT = 0 we find that[
(1/N)1>N
T>

]−1
=
[
1N T (T>T )−1

]
,

thus it follows that xi = xavg + (t>i ⊗ In)x̃ for all i ∈ N ,
and hence, by (5) and (7),

ẋavg = − 1

N

N∑
i=1

∂fi(xavg + (t>i ⊗ In)x̃).

Note that by Proposition 3, we have that for all t ≥ 0

‖(T> ⊗ In)col(x1(t), . . . , xN (t))‖∞ = ‖x̃(t)‖∞ < ψ(t).

Now, let V (xavg) := f(xavg) − f(x∗) =
∑N
i=1(fi(xavg) −

fi(x
∗)). Then, due to Assumption 3, there exist class K-

functions1 α1(·) and α2(·) such that

∀x ∈ Rn : α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖).

Now, the derivative of V along xavg(·) satisfies

V̇ = ∂f(xavg)
>ẋavg

= − 1

N
∂f(xavg)

>
N∑
i=1

∂fi(xavg + (t>i ⊗ In)x̃)

= − 1

N
‖∂f(xavg)‖2

− 1

N
∂f(xavg)

>
N∑
i=1

[∂fi(xavg + (t>i ⊗ In)x̃)− ∂fi(xavg)]

≤ − 1

N
‖∂f(xavg)‖2 +

1

N
‖∂f(xavg)‖

N∑
i=1

Li‖(t>i ⊗ In)x̃‖

≤ − 1

N
‖∂f(xavg)‖ (‖∂f(xavg)‖ − L∗ψ(t)) ,

where we have used Assumption 2 and

‖(t>i ⊗ In)x̃‖ ≤
√
n‖(t>i ⊗ In)x̃‖∞

≤
√
n‖t>i ⊗ In‖∞‖x̃‖∞ <

√
n‖t>i ‖∞ψ(t),

whence L∗ :=
√
n‖T (T>T )−1‖∞

∑N
i=1 Li.

1A continuous function α : R≥0 → R≥0 is called a class K-function, if
α(0) = 0 and α is strictly monotonically increasing.



Seeking a contradiction, assume that V (xavg(t)) 6→ 0 for
t→∞, then there exists ε > 0 and a sequence (ti)i∈N with
ti ↗∞ such that V (xavg(ti)) > ε for all i ∈ N. Set

t0i := max {0, sup { t ∈ [0, ti] | V (xavg(t)) ≤ ε }}

for i ∈ N, then ‖xavg(t)−x∗‖ ≥ α−12

(
V (xavg(t))

)
> α−12 (ε)

for all t ∈ (t0i , ti]; note that α2 can always be chosen to
be unbounded and is hence bijective on R≥0. Next, observe
that for any u ∈ Rn the function t 7→ f(x∗ + tu) is strictly
convex, and hence the derivative t 7→ ∂f(x∗+tu)u is strictly
monotonically increasing (and it is zero only for t = 0 by
Assumption 3), i.e., for any u ∈ Rn with ‖u‖ = 1 there
exists a class K-function αu3 (·) such that

∀ t ∈ R : ‖∂f(x∗ + tu)‖ ≥ |∂f(x∗ + tu)u| ≥ αu3 (|t|).

As a consequence, for any δ > 0,

min { ‖∂f(x)‖ | ‖x− x∗‖ = δ }
= min { ‖∂f(x)‖ | ‖x− x∗‖ ≥ δ } .

Therefore, it is possible to choose η > 0 sufficiently small
so that ‖∂f(xavg(t))‖ ≥ η for all t ∈ [t0i , ti] and all i ∈ N.
Then, choose i ∈ N large enough so that ψ(t) < η/(2L∗)
for all t ∈ [t0i , ti]. Now, we obtain

∀ t ∈ [t0i , ti] : V̇ (xavg(t)) ≤ −
η2

2N
,

which implies

ε < V (xavg(ti)) < V (xavg(t
0
i )) = ε,

a contradiction. Thus we have shown that
limt→∞ V (xavg(t)) = 0, which yields limt→∞ ‖xavg(t) −
x∗‖ = 0.

Since ‖x̃(t)‖ < ψ(t) and ψ converges to zero we have
that xi = xavg + (t>i ⊗ In)x̃ also converges to x∗ and is
thus bounded. Then the last statement of the theorem is a
consequence of Proposition 3.

Remark 5: Let us stress again that asymptotic tracking
via funnel control was first achieved in [17], albeit this result
seems to have not received much attention. As mentioned in
the introduction, we utilize the alternative method developed
in [18]. Indeed, the coupling gain 1/

(
ψ(t)−|xpj−x

p
i |
)

grows
unbounded when asymptotic consensus is achieved, because
ψ(t) → 0 as t → ∞ and this implies that ψ(t) − |xpj − x

p
i |

also tends to zero. However, simply rewriting the coupling
term as

1

1− |xpj − x
p
i |/ψ(t)

·
xpj − x

p
i

ψ(t)

we see that by Theorem 4 the fraction |xpj − xpi |/ψ(t) is
bounded away from 1, hence the new gain and the total
input are bounded even if 1/ψ(t) tends to infinity.

We further emphasize that Theorem 4 may seem to violate
another presumption in the synchronization research area that
heterogeneous multi-agent systems cannot asymptotically
synchronize without a common internal model. This issue is
resolved by observing that we use a time-varying coupling
law, which is not considered in the framework of the internal
model principle for multi-agent systems [21].

Finally, we stress that the difference between asymptotic
consensus and practical consensus may not seem very im-
portant in practical applications, as long as the residual error
in practical consensus is sufficiently small. In view of this,
our concern on asymptotic convergence is rather of academic
interest. �

Remark 6: In view of Proposition 3, the convergence rate
for the consensus can be made arbitrarily fast by the choice
of the funnel boundary, however, there are two limitations:
(i) A steeper funnel usually results in larger input values for
each agent. In reality, these inputs have to stay within certain
bounds, so that in practice the convergence rate of the funnel
cannot be arbitrary high. It is possible to derive a bound for
the input based on known bounds for the agents dynamics
and the convergence rate of the funnel, but this derivation is
out of scope for this paper.
(ii) The convergence to the minimizer is determined by the
convergence to the consensus and the convergence of the
emergent dynamics (gradient descent) to the optimizer. In
particular, if the gradient descent method converges slowly
it doesn’t make sense to force a fast consensus by letting the
funnel shrink rapidly. �

IV. EXAMPLE: DISTRIBUTED LEAST-SQUARES SOLVER

As distributed algorithms have been developed in various
fields of study so as to divide a large computational prob-
lem into small-scale computations, finding the least-squares
solution of a given large linear equation in a distributed
manner has been tackled in recent years [22]–[25]. Consider
the equation

Ax = b ∈ RM , (8)

where A ∈ RM×n is a matrix with full column rank and
x ∈ Rn. Throughout this section, we suppose that the M
equations in (8) are grouped into N equation banks, and the
i-th equation bank consists of mi lines of equations so that∑N
i=1mi =M . We write the i-th equation bank as

Aix = bi ∈ Rmi , i = 1, 2, . . . , N,

where Ai ∈ Rmi×n is the i-th block row of the matrix A,
and bi ∈ Rmi is the i-th block element of b.

Finding the least-squares solution x∗ of (8) even when
b 6∈ im(A) can be cast as a simple optimization problem

minimizex
1

2
‖Ax− b‖2 =

N∑
i=1

1

2
‖Aix− bi‖2.

With fi(x) = 1
2‖Aix − bi‖2 the problem becomes a

consensus optimization. Then, according to the recipe in
the previous section, we can find the least-squares solution
asymptotically by a network with individual agent dynamics

ẋi = −A>i (Aixi − bi)

+
∑
j∈Ni

col

(
x1j − x1i

ψ(t)− |x1j − x1i |
, . . . ,

xnj − xni
ψ(t)− |xnj − xni |

)
, (9)

where each agent i uses the information of Ai and bi only.



Fig. 2. Solution trajectory of (a) the blended dynamics, (b) the network with edge-wise funnel coupling, and (c) the network with constant coupling gain

Fig. 3. Underlying graph among five agents

Now, for a linear equation given by

Ax =

[
1
1
2
2
1

]
x =

[
1
10
20
18
100

]
= b

with N = 5 and each equation bank consisting of a single
equation, the gradient descent algorithm

˙̂x = −A>(Ax̂− b), x̂(0) = 0,

results in convergence of its state to the unique minimizer
x∗ = 17. On the other hand, as guaranteed by Theorem 4,
the solutions x1, . . . , x5 of the system of equations (9) also
converges to x∗. Indeed, Figure 2.(b) shows a simulation
result when the funnel boundary function is chosen as ψ(t) =
exp(−0.8t), the network graph is set to a linear graph as in
Figure 3, and the initial conditions are x1(0) = 0, x2(0) =
0.1, x3(0) = −0.1, x4(0) = 0.2, and x5(0) = −0.2.

For comparison, Figure 2(c) shows the trajectory for the
agent dynamics

ẋi = −A>i (Aixi − bi) + k
∑
j∈Ni

(xj − xi), i ∈ N , (10)

with the constant coupling gain k = 100. Figures 2.(b) and
2.(c) clearly show that the network with the constant coupling
gain can only achieve practical convergence to the minimizer
x∗ = 17, while asymptotic convergence is obtained by using
edge-wise funnel coupling.

We also inspect the derivative of each xi(·), because the
right-hand side of ẋi(·) can be considered as an input to each
agent, and we are interested in the magnitude of their values.
Figure 4 shows ẋi(·) for the edge-wise funnel coupling in (9),
while Figure 5 depicts the constant coupling gain in (10). It
can be verified that their magnitudes do not differ very much.
Note that, for the case of edge-wise funnel coupling, ẋi(·)
is bounded even though the funnel ψ(·) approaches zero.
The reason is that, as discussed in Remark 5, the funnel

Fig. 4. Plot of ẋi(t) for the network with edge-wise funnel coupling: (a)
t ∈ [0, 0.2] and (b) t ∈ [0.2, 6]

coupling law can be re-written appropriately and the term
|xj − xi|/ψ(t) is bounded away from 1 by Theorem 4.

Finally, observe that the diffusive coupling term (xj −
xi)/(ψ(t) − |xj − xi|) converges to a specific constant κ∗ij
that cancels the heterogeneity of the individual vector field
such that

−A>i (Aix∗ − bi) +
∑
j∈Ni

κ∗ij = 0, i ∈ N .

This is clearly indicated in Figure 4, where we observe that
ẋi(·) converges to zero. Hence, we may interpret the edge-
wise funnel coupling law as an adaptation scheme. Moreover,
in this special case, we may even compute κ∗ij as

κ∗12 = 16, κ∗23 = 23, κ∗34 = 51, κ∗45 = 83.

This is also shown in Figure 6, which depicts the conver-
gence of the fraction (xj(t) − xi(t))/ψ(t). In particular, if
we denote η∗ij := limt→∞(xj(t)−xi(t))/ψ(t), then we have
η∗ij/(1− |η∗ij |) = κ∗ij for i ∈ N and j ∈ Ni, which gives

η∗12 = 16
17 , η∗23 = 23

24 , η∗34 = 51
52 , η∗45 = 83

84 .



Fig. 5. Plot of ẋi(t) for the network with constant coupling gain: (a)
t ∈ [0, 0.2] and (b) t ∈ [0.2, 6]

Fig. 6. Trajectory of the fraction (xj − xi)/ψ(t)

V. CONCLUSION

Based on the design philosophy of the blended dynam-
ics induced by a large coupling gain, agent dynamics are
designed to solve a distributed consensus optimization by a
constant coupling gain for any given undirected connected
network graph. Then, to overcome the limitation of the
constant gain design, the dynamics are modified by in-
troducing the edge-wise funnel coupling, whose intuition
is inherited from adaptive control. As a consequence, we
obtain a network that achieves asymptotic convergence to
the unique minimizer, which does not require any global
information. The utility of the proposed network is illustrated
by a distributed least-squares optimization. A detailed com-
parison of the performance compared to other decentralized
optimization algorithms is ongoing research.
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