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Abstract

We introduce the funnel pre-compensator as a novel and simple adaptive pre-
compensator of “high-gain type”. We show that this pre-compensator is feasible for
a large class of signal pairs, which satisfy a certain relationship. We show that the
funnel pre-compensator guarantees prescribed transient behavior of the compensator
error, it is of low complexity and inherently robust since its design is model-free.
As an application in adaptive control of nonlinear systems, a cascade of funnel
pre-compensators is exploited to obtain an artificial output with explicitly known
derivatives which tracks the system output with prescribed transient behavior. In
some important cases the interconnection of the system with the pre-compensator
cascade is shown to have input-to-state stable internal dynamics. This guarantees
feasibility of a novel funnel controller which consists of a funnel pre-compensator
cascade in conjunction with a recently developed funnel controller for systems with
arbitrary relative degree. We illustrate the application of this interconnection for
some mechanical systems.

KEYWORDS:
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Nomenclature:
ℝ≥0 = [0,∞)
𝐆𝐥𝑛(ℝ) the group of invertible matrices in ℝ𝑛×𝑛

𝜎(𝐴) the spectrum of 𝐴 ∈ ℝ𝑛×𝑛

∞
loc(𝐼→ℝ𝑛) the set of locally essentially bounded functions 𝑓 ∶ 𝐼→ℝ𝑛, 𝐼 ⊆ ℝ an interval

𝑘,∞
loc (𝐼→ℝ𝑛) the set of 𝑘-times weakly differentiable functions 𝑓 ∶ 𝐼→ℝ𝑛 with locally essentially bounded first 𝑘weak

derivatives 𝑓,… , 𝑓 (𝑘)

∞(𝐼→ℝ𝑛) the set of essentially bounded functions 𝑓 ∶ 𝐼→ℝ𝑛 with norm‖𝑓‖∞ = ess sup𝑡∈𝐼‖𝑓 (𝑡)‖𝑘,∞(𝐼→ℝ𝑛) the set of 𝑘-times weakly differentiable functions 𝑓 ∶ 𝐼→ℝ𝑛 such that 𝑓,… , 𝑓 (𝑘) ∈ ∞(𝐼→ℝ𝑛)𝑘(𝐼→ℝ𝑛) the set of 𝑘-times continuously differentiable functions 𝑓 ∶ 𝐼→ℝ𝑛

(𝐼→ℝ𝑛) = 0(𝐼→ℝ𝑛)
𝑓 |𝐽 restriction of the function 𝑓 ∶ 𝐼→ℝ𝑛 to 𝐽 ⊆ 𝐼
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1 INTRODUCTION

In the present paper we propose a novel and simple adaptive pre-compensator of “high-gain type”, the funnel pre-compensator.
In the case of unknown output derivatives, the funnel pre-compensator may be used to obtain an artificial output, the derivatives
of which are known explicitly and which evolves within a prescribed performance funnel around the original output.

In the recent paper [5] a funnel controller for nonlinear systems with arbitrary known relative degree is developed, which
resolves the longstanding open problem of how to handle relative degree higher than one in high-gain adaptive control, cf. [22,
24, 35]. Earlier works suggested a “backstepping” procedure in conjunction with an input filter, see [27, 28], or a bang-bang
funnel controller, see [34]. Drawbacks are that the backstepping procedure in [27, 28] is quite complicated and impractical since
it involves high powers of a gain function which typically takes large values, cf. [20, Sec. 4.4.3], and the approaches in [5, 34]
require availability of the output derivatives which means in practice that measurements have to be differentiated. The latter is
an ill-posed problem in particular in the presence of noise, see e.g. [20, Sec. 1.4.4].

In view of this, the following control problem is of interest: design a (dynamic) output error feedback 𝑢(𝑡) =
𝐹1

(
𝑡, 𝑒(𝑡), 𝑧(𝑡)

)
, �̇�(𝑡) = 𝐹2

(
𝑡, 𝑒(𝑡), 𝑧(𝑡)

)
, where 𝑒(𝑡) = 𝑦(𝑡) − 𝑦ref (𝑡) is the tracking error and 𝑦ref the reference signal, such that 𝑒

has prescribed performance. We stress again that the derivatives of the output may not be known to the controller. In the present
paper, we introduce the funnel pre-compensator as a novel tool which may help with the solution of this problem. While we do
not focus on the solution itself (and hence, control design is not the main topic of this work), it is our guiding principle and as an
application of the funnel pre-compensator we present controllers which achieve the above described control objective for two
relevant system classes in Section 4. For an alternative approach to the tracking problem by output feedback using sliding mode
controllers see e.g. [36, 37, 38]; however these controllers do not guarantee the prescribed performance of the tracking error.

The funnel pre-compensator resembles (and was inspired by) an (adaptive) high-gain observer and was called “funnel
observer” in the preprint [7]; see the classical works [17, 33, 40, 44] and the recent survey [32] for literature on high-gain
observers. However, the funnel pre-compensator does not have the properties of a high-gain observer since the derivatives of
the output are not approximated. Rather than that, an alternative “artificial output” is derived which evolves within a prescribed
performance funnel around the original output, and derivatives of which are computed exactly.

Nevertheless, since the funnel pre-compensator carries the structure of a high-gain observer, some of its benefits are retained.
One advantage of high-gain observers is that they can be used to estimate the system states without knowing the exact parameters
(in contrast to observer synthesis, see e.g. [13, 16] and the references therein); only some structural assumptions, such as a
known relative degree, are necessary. Furthermore, they are robust with respect to input noise. The drawback is that in most
cases it is not known a priori how large the high-gain parameter 𝑘 in the observer must be chosen and appropriate values must be
identified by offline simulations. If 𝑘 is chosen unnecessarily large, the sensitivity to measurement noise increases dramatically.

In order to resolve these problems, the constant high-gain parameter 𝑘 has been replaced by an adaptation scheme in [11]. The
gain 𝑘(𝑡) is determined by a differential equation depending on the observation error. This leads to a monotonically increasing 𝑘(𝑡)
as long as the observation error lies outside a predefined 𝜆-strip [−𝜆, 𝜆], and it stops increasing as soon as the error enters the
strip. The advantage of this observer is that 𝑘(𝑡) is adapted online to the actual needed value, which also leads to lower high-
gain parameters in general. However, 𝑘(𝑡) is monotonically non-decreasing and hence susceptible to unwarranted increase due
to perturbations to the system. Furthermore, while convergence of the observation error to the 𝜆-strip is guaranteed, its transient
behavior cannot be influenced.

Another high-gain observer with gain adaptation law is proposed in [41]. Compared to [11] it resolves the drawback of mono-
tonically non-decreasing gain, however a certain condition on the system is necessary which either requires exact knowledge of
the high-gain parameter of the system or boundedness of the input 𝑢(𝑡). Furthermore, the adaptation law in [41] is not able to
influence the transient behavior of the observation error, but only its mean value.

Inspired by the adaptive high-gain observer in [11], we introduce the following funnel pre-compensator:

�̇�1(𝑡) = 𝑧2(𝑡) +
(
𝑞1 + 𝑝1𝑘(𝑡)

)
⋅ (𝑦(𝑡) − 𝑧1(𝑡)),

�̇�2(𝑡) = 𝑧3(𝑡) +
(
𝑞2 + 𝑝2𝑘(𝑡)

)
⋅ (𝑦(𝑡) − 𝑧1(𝑡)),

⋮
�̇�𝑟−1(𝑡) = 𝑧𝑟(𝑡) +

(
𝑞𝑟−1 + 𝑝𝑟−1𝑘(𝑡)

)
⋅ (𝑦(𝑡) − 𝑧1(𝑡)),

�̇�𝑟(𝑡) =
(
𝑞𝑟 + 𝑝𝑟𝑘(𝑡)

)
⋅ (𝑦(𝑡) − 𝑧1(𝑡)) + Γ̃𝑢(𝑡),

𝑘(𝑡) = 1
1 − 𝜑(𝑡)2‖𝑦(𝑡) − 𝑧1(𝑡)‖2 ,

(1)

where the design parameters 𝑝𝑖 > 0, 𝑞𝑖 > 0, Γ̃ ∈ ℝ𝑝×𝑚 and the function 𝜑 ∶ ℝ≥0 → ℝ≥0 are explained in detail in Section 2.
We like to emphasize that:
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• The proposed adaptation scheme for 𝑘(𝑡) is simple, non-dynamic, non-monotone,

• and it guarantees prescribed transient behavior of the compensator error;

• the pre-compensator (1) is of low complexity and inherently robust since its design is model-free.

Another advantage of the funnel pre-compensator (1) is that no higher powers of the gain function 𝑘 are involved in (1), thus
typical challenges in the numerical implementation are avoided without the need for any estimates of the underlying model as
discussed for high-gain observers in [1, 31].

In contrast to other approaches, the signals 𝑢 and 𝑦 given to the funnel pre-compensator (1) are not necessarily the input and
output corresponding to some system or plant. We only assume that they are some signals belonging to the following, very large
set:

𝑟 ∶=
⎧⎪⎨⎪⎩ (𝑢, 𝑦) ∈ ∞

loc(ℝ≥0→ℝ𝑚) × 𝑟,∞
loc (ℝ≥0→ℝ𝑝)

|||||||
∃Γ ∈ 1(ℝ≥0→ℝ𝑚×𝑝) ∶
Γ𝑦(𝑟−1) ∈ ∞(ℝ≥0→ℝ𝑚),
d
d𝑡

(
Γ𝑦(𝑟−1)

)
− 𝑢 ∈ ∞(ℝ≥0→ℝ𝑚)

⎫⎪⎬⎪⎭ ,
where 𝑟 ∈ ℕ. The situation is depicted in Figure 1 . We stress that knowledge of the matrix-valued function Γ is not assumed,
only that of the signals 𝑢 and 𝑦 (which can be viewed as the external signals corresponding to some plant) and the number 𝑟 ∈ ℕ
(which can be viewed as the “relative degree” of the possibly underlying plant). For instance, if 𝑢 ∈ ∞

loc(ℝ≥0 → ℝ𝑚) is the
input and 𝑦 ∈ 𝑟(ℝ≥0 → ℝ𝑚) is the output of the system

𝑦(𝑟)(𝑡) = 𝑓
(
𝑑(𝑡), 𝑦(𝑡),… , 𝑦(𝑟−1)(𝑡)

)
+ 𝐵𝑢(𝑡),

where 𝑓 is a suitable continuous function, 𝑑 is a bounded disturbance,𝐵 ∈ 𝐆𝐥𝑚(ℝ) and 𝑦, �̇�,… , 𝑦(𝑟−1) are bounded, then (𝑢, 𝑦) ∈𝑟 with Γ = 𝐵−1. Clearly, the signal set 𝑟 allows for much larger classes of systems involving functional-differential, partial
differential and/or differential-algebraic equations, see e.g. [5, 6, 26] and Section 3. We will show that for signals (𝑢, 𝑦) ∈ 𝑟 with
𝑟 ≥ 2, the funnel pre-compensator (1) has a weakly differentiable and bounded solution (𝑧1,… , 𝑧𝑟) such that 𝑘 is bounded and

∃ 𝜀 > 0 ∀ 𝑡 > 0 ∶ ‖𝑦(𝑡) − 𝑧1(𝑡)‖ < 𝜑(𝑡)−1 − 𝜀. (2)

Furthermore, the derivative �̇�1 is known explicitly.

..(𝑢, 𝑦) ∈ 𝑟. Funnel
Pre-Compensator

.......

𝑦(𝑡)

.

𝑢(𝑡)

.

�̇�1(𝑡)

.
𝑧1(𝑡)

FIGURE 1 Application of the funnel pre-compensator (1) to signals (𝑢, 𝑦) ∈ 𝑟.

We stress that condition (2) means prescribed transient behavior of the compensator error 𝑒1(𝑡) ∶= 𝑦(𝑡) − 𝑧1(𝑡) in the sense
that it is pointwise below a given funnel function 1∕𝜑, see Figure 2 . To achieve this, the compensator gain will be increased
whenever ‖𝑒1(𝑡)‖ approaches the funnel boundary. High values of the gain function lead to a faster decay of the compensator
error.

While the funnel pre-compensator yields �̇�1 explicitly, �̈�1 depends on �̇� and hence higher derivatives remain unknown. To
resolve this problem we show that an application of a cascade of funnel pre-compensators yields

• an estimate 𝑧 for the signal 𝑦 with prescribed transient behavior and

• the derivatives �̇�,… , 𝑧(𝑟−1) are known explicitly.

As an application of this cascade in adaptive control we investigate its use for output trajectory tracking by funnel control. Given
a certain class of systems with input-to-state stable internal dynamics, we show that the interconnection of the system with the
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𝜆

(0, 𝑒1(0))
𝜑(𝑡)−1

𝑡

FIGURE 2 Error evolution in a funnel 𝜑 with boundary 𝜑(𝑡)−1 for 𝑡 > 0.

pre-compensator cascade has again input-to-state stable internal dynamics. This allows for the application of available funnel
control techniques to the interconnection in order to achieve tracking with prescribed transient behavior of the tracking error
without the requirement to compute derivatives of the system output as in [5]. However, this result is limited to systems with
relative degree two or three; for higher relative degree it remains an open problem.

The present paper is organized as follows: The funnel pre-compensator is introduced in Section 2 and feasibility is proved.
Furthermore, we show that the funnel pre-compensator cascade achieves the desired properties. The application in output trajec-
tory tracking is discussed in Section 3. The interconnection of the funnel pre-compensator with the funnel controller from [5] as
a funnel controller for systems with higher relative degree which does not require the output derivatives, is presented in Section 4
for relative degree two and three. A simulation of this interconnection for a mass-spring system mounted on a car is provided in
Section 5. Some conclusions are given in Section 6.

2 THE FUNNEL PRE-COMPENSATOR

In this section we consider the funnel pre-compensator (1) as a new adaptive pre-compensator of high-gain type. Following
the methodology of funnel control, see [24, 26] and the references therein, it is our aim to construct a dynamical system which
receives signals (𝑢, 𝑦) ∈ 𝑟 and has output 𝑧 such that the derivatives of 𝑧 up to order 𝑟 − 1, where 𝑟 ∈ ℕ, are known explicitly
and the error 𝑒 = 𝑦 − 𝑧 evolves within a prescribed performance funnel

𝜑 ∶=
{
(𝑡, 𝑒) ∈ ℝ≥0 ×ℝ𝑝 || 𝜑(𝑡)‖𝑒‖ < 1

}
. (3)

This performance funnel is determined by a function 𝜑 belonging to

Φ ∶=
{
𝜑 ∈ 1(ℝ≥0 → ℝ)

|||| 𝜑, �̇� are bounded, 𝜑(𝑠) > 0 for all 𝑠 > 0, and lim inf
𝑠→∞

𝜑(𝑠) > 0
}
.

Note that the funnel boundary is given by the reciprocal of 𝜑, see Figure 2 . The case 𝜑(0) = 0 is explicitly allowed and puts
no restriction on the initial value since 𝜑(0)‖𝑒(0)‖ < 1; in this case the funnel boundary 1∕𝜑 has a pole at 𝑡 = 0.

An important property of the funnel class Φ is that each performance funnel 𝜑 with 𝜑 ∈ Φ is bounded away from zero,
i.e., due to boundedness of 𝜑 there exists 𝜆 > 0 such that 1∕𝜑(𝑡) ≥ 𝜆 for all 𝑡 > 0. The funnel boundary is not necessarily
monotonically decreasing, while in most situations it is convenient to choose a monotone funnel. However, there are situations
where widening the funnel over some later time interval might be beneficial, e.g., in the presence of periodic disturbances or
when the signal 𝑦 changes strongly.

Our first objective is robust estimation of the signal 𝑦 so that the derivative of the compensator state 𝑧1 in (1) is known
explicitly, the compensator error 𝑒1 = 𝑦−𝑧1 evolves within the funnel 𝜑 and all variables are bounded. To achieve this objective
we consider the funnel pre-compensator (1) with initial conditions

𝑧𝑖(0) = 𝑧0𝑖 ∈ ℝ𝑝, 𝑖 = 1,… , 𝑟, (4)
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where 𝜑 ∈ Φ, Γ̃ ∈ ℝ𝑝×𝑚 and 𝑞𝑖 > 0, 𝑝𝑖 > 0 for all 𝑖 = 1,… , 𝑟. The functions 𝑧𝑖 ∶ ℝ≥0 → ℝ𝑝, 𝑖 = 1,… , 𝑟, are the compensator
states and 𝑘 ∶ ℝ≥0 → [1,∞) is the compensator gain. The constants 𝑞𝑖 > 0 are such that the matrix

𝐴 =

⎡⎢⎢⎢⎢⎣
−𝑞1 1
⋮ ⋱

−𝑞𝑟−1 1
−𝑞𝑟 0

⎤⎥⎥⎥⎥⎦
∈ ℝ𝑟×𝑟

is Hurwitz, i.e., Re 𝜆 < 0 for all 𝜆 ∈ 𝜎(𝐴). The constants 𝑝𝑖 depend on the choice of the 𝑞𝑖 in the following way: Let𝑄 = 𝑄⊤ > 0
and

𝑃 =
[
𝑃1 𝑃2
𝑃 ⊤
2 𝑃4

]
, 𝑃1 ∈ ℝ, 𝑃2 ∈ ℝ1×(𝑟−1), 𝑃4 ∈ ℝ(𝑟−1)×(𝑟−1)

be such that
𝐴⊤𝑃 + 𝑃𝐴 +𝑄 = 0, 𝑃 = 𝑃 ⊤ > 0.

The matrix 𝑃 depends only on the choice of the constants 𝑞𝑖 and the matrix 𝑄. The constants 𝑝𝑖 must then satisfy

⎛⎜⎜⎝
𝑝1
⋮
𝑝𝑟

⎞⎟⎟⎠ = 𝑃 −1

⎛⎜⎜⎜⎜⎝
𝑃1 − 𝑃2𝑃 −1

4 𝑃 ⊤
2

0
⋮
0

⎞⎟⎟⎟⎟⎠
=
(

1
−𝑃 −1

4 𝑃 ⊤
2

)
. (5)

In passing, we note for later use that any such 𝑃 satisfies

(1,−𝑃2𝑃 −1
4 )𝑃

(
1

(−𝑃2𝑃 −1
4 )⊤

)
= 𝑃1 − 𝑃2𝑃 −1

4 𝑃 ⊤
2 > 0. (6)

We will see later that the above condition guarantees that 𝑃 defines a quadratic Lyapunov function for the error dynamics of the
funnel pre-compensator.

While the funnel pre-compensator (1) resembles a high-gain observer, it is different in its structure when compared to the
high-gain observers in [11, 45], where the gain enters with power 𝑘𝑖 into the equation for �̇�𝑖. Furthermore, the constants 𝑞𝑖 are
not present in [11, 45], but we show that they are important to ensure boundedness of the error dynamics even when 𝑘(𝑡) is small.

Although the pre-compensator (1) is a nonlinear and time-varying system, it is simple in its structure and its dimension
depends only on the “relative degree” 𝑟 given by 𝑟. The set 𝑟 of signals 𝑢 and 𝑦 ensures error evolution within the funnel:
by the design of the pre-compensator (1), the gain 𝑘(𝑡) increases if the norm of the error ‖𝑦(𝑡) − 𝑧1(𝑡)‖ approaches the funnel
boundary 1∕𝜑(𝑡), and decreases if a high gain is not necessary.

For a sketch of the construction of the funnel pre-compensator (1) see also Figure 3 .

..
Choose 𝑞𝑖 > 0 such that

𝐴 =

[
−𝑞1 1
⋮ ⋱

−𝑞𝑟−1 1
−𝑞𝑟 0

]
is Hurwitz

.

Choose 𝑄 = 𝑄⊤ > 0 and solve
𝐴⊤𝑃 + 𝑃𝐴 +𝑄 = 0, 𝑃 > 0;

Let 𝑃 =
[
𝑃1 𝑃2
𝑃 ⊤2 𝑃4

]
, 𝑃1 ∈ ℝ and set( 𝑝1

⋮
𝑝𝑟

)
=
(

1
−𝑃 −1

4 𝑃 ⊤
2

).

Choose 𝜑 ∈ Φ

.. 𝑡..

𝜑(𝑡)−1

.

.

Funnel pre-compensator:
�̇�1(𝑡) = 𝑧2(𝑡) +

(
𝑞1 + 𝑝1𝑘(𝑡)

)
(𝑦(𝑡) − 𝑧1(𝑡)),

�̇�2(𝑡) = 𝑧3(𝑡) +
(
𝑞2 + 𝑝2𝑘(𝑡)

)
(𝑦(𝑡) − 𝑧1(𝑡)),

⋮

�̇�𝑟−1(𝑡) = 𝑧𝑟(𝑡) +
(
𝑞𝑟−1 + 𝑝𝑟−1𝑘(𝑡)

)
(𝑦(𝑡) − 𝑧1(𝑡)),

�̇�𝑟(𝑡) = Γ̃𝑢(𝑡) +
(
𝑞𝑟 + 𝑝𝑟𝑘(𝑡)

)
(𝑦(𝑡) − 𝑧1(𝑡)),

𝑘(𝑡) = 1
1 − 𝜑(𝑡)2‖𝑦(𝑡) − 𝑧1(𝑡)‖2

.

Choose Γ̃ ∈ ℝ𝑝×𝑚

..... 𝑞𝑖..

𝜑

.
𝑝𝑖

..
Γ̃

FIGURE 3 Construction of the funnel pre-compensator (1) depending on its design parameters.
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We now show that the funnel pre-compensator achieves its objective; note that we only consider the relevant case 𝑟 ≥ 2.

Proposition 2.1
Consider (𝑢, 𝑦) ∈ 𝑟 so that 𝑟 ≥ 2, and the funnel pre-compensator (1), (4) with 𝜑 ∈ Φ such that

𝜑(0)‖𝑦(0) − 𝑧01‖ < 1,

Γ̃ ∈ ℝ𝑝×𝑚 and 𝑞𝑖 > 0, 𝑝𝑖 > 0 such that (5) is satisfied for corresponding matrices 𝐴, 𝑃 ,𝑄.
Then (1), (4) has a weakly differentiable solution 𝑧 = (𝑧1,… , 𝑧𝑟) ∶ ℝ≥0 → (ℝ𝑝)𝑟 with 𝑘 ∈ ∞(ℝ≥0 → [1,∞)) and

∃ 𝜀 > 0 ∀ 𝑡 > 0 ∶ ‖𝑦(𝑡) − 𝑧1(𝑡)‖ < 𝜑(𝑡)−1 − 𝜀. (7)

Using the errors
𝑒𝑖 ∶= 𝑦(𝑖−1) − 𝑧𝑖, 𝑖 = 1,… , 𝑟 − 1
𝑒𝑟 ∶= Γ̃Γ𝑦(𝑟−1) − 𝑧𝑟,

(8)

and the constants
𝑀1 ∶= ‖(𝐼 − Γ̃Γ)𝑦(𝑟−1)‖∞, 𝑀2 ∶= ‖Γ̃(Γ̇𝑦(𝑟−1) + Γ𝑦(𝑟) − 𝑢)‖∞, (9)

which are well-defined by (𝑢, 𝑦) ∈ 𝑟, with 𝑀 = (𝑀2
1 +𝑀

2
2 )

1
2 we have

lim sup
𝑡→∞

‖𝑒(𝑡)‖ ≤ 2𝑀 𝜆max(𝑃 )2

𝜆min(𝑄) 𝜆min(𝑃 )
. (10)

Here 𝜆max(𝑃 ) denotes the largest eigenvalue of the positive definite matrix 𝑃 , and 𝜆min(𝑃 ) denotes its smallest eigenvalue.
Furthermore, if 𝑦, �̇�,… , 𝑦(𝑟−1) are bounded, then 𝑧1,… , 𝑧𝑟 are bounded.

Proof. We proceed in several steps.
Step 1: We show existence of a local solution of (1), (4). Set

 ∶=
{
(𝑡, 𝑒1,… , 𝑒𝑟) ∈ ℝ≥0 × (ℝ𝑝)𝑟 || 𝜑(𝑡)‖𝑒1‖ < 1

}
and

𝑓 (𝑡) ∶= Γ̃
(
Γ̇(𝑡)𝑦(𝑟−1)(𝑡) + Γ(𝑡)𝑦(𝑟)(𝑡) − 𝑢(𝑡)

)
𝑔(𝑡) ∶=

(
𝐼 − Γ̃Γ(𝑡)

)
𝑦(𝑟−1)(𝑡), 𝑡 ≥ 0.

Invoking 𝑟 ≥ 2 we find that the errors (8) satisfy

�̇�1(𝑡) = 𝑒2(𝑡) −
(
𝑞1 + 𝑝1𝑘(𝑡)

)
⋅ 𝑒1(𝑡),

⋮
�̇�𝑟−2(𝑡) = 𝑒𝑟−1(𝑡) −

(
𝑞𝑟−2 + 𝑝𝑟−2𝑘(𝑡)

)
⋅ 𝑒1(𝑡),

�̇�𝑟−1(𝑡) = 𝑒𝑟(𝑡) −
(
𝑞𝑟−1 + 𝑝𝑟−1𝑘(𝑡)

)
⋅ 𝑒1(𝑡) + 𝑔(𝑡),

�̇�𝑟(𝑡) = −
(
𝑞𝑟 + 𝑝𝑟𝑘(𝑡)

)
⋅ 𝑒1(𝑡) + 𝑓 (𝑡),

𝑘(𝑡) = 1
1 − 𝜑(𝑡)2‖𝑒1(𝑡)‖2 .

(11)

By the existence theorem for ordinary differential equations (see e.g. [46, § 10, Thm. XX]), there exists a maximal weakly
differentiable solution 𝑒 = (𝑒1,… , 𝑒𝑟) ∶ [0, 𝜔) → (ℝ𝑝)𝑟, 𝜔 ∈ (0,∞], of (11) satisfying the initial conditions

𝑒𝑖(0) = 𝑦(𝑖−1)(0) − 𝑧0𝑖 , 𝑖 = 1,… , 𝑟,
𝑒𝑟(0) = Γ̃Γ(0)𝑦(𝑟−1)(0) − 𝑧0𝑟 ,

and (𝑡, 𝑒(𝑡)) ∈  for all 𝑡 ∈ [0, 𝜔). Furthermore, the closure of the graph of 𝑒, i.e., the set

graph 𝑒 ∶= { (𝑡, 𝑒(𝑡)) | 𝑡 ∈ [0, 𝜔) },

is not a compact subset of . Thus, a maximal solution (𝑧1,… , 𝑧𝑟) of (1), (4) can be reconstructed.
Step 2: We show that 𝑒 ∈ ∞ ([0, 𝜔) → (ℝ𝑝)𝑟). Recalling that the Kronecker product of two matrices 𝑉 ∈ ℝ𝑙×𝑛 and

𝑊 ∈ ℝ𝑗×𝑞 is given by

𝑉 ⊗𝑊 =
⎡⎢⎢⎣
𝑣11𝑊 ⋯ 𝑣1𝑛𝑊
⋮ ⋮

𝑣𝑙1𝑊 ⋯ 𝑣𝑙𝑛𝑊

⎤⎥⎥⎦ ∈ ℝ𝑙𝑗×𝑛𝑞 , (12)
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let

�̂� ∶= 𝐴⊗ 𝐼𝑝 =

⎡⎢⎢⎢⎢⎣
−𝑞1𝐼𝑝 𝐼𝑝
⋮ ⋱

−𝑞𝑟−1𝐼𝑝 𝐼𝑝
−𝑞𝑟𝐼𝑝 0

⎤⎥⎥⎥⎥⎦
∈ ℝ𝑟𝑝×𝑟𝑝, 𝑃 ∶= 𝑃 ⊗ 𝐼𝑝 ∈ ℝ𝑟𝑝×𝑟𝑝, and �̂� = 𝑄⊗ 𝐼𝑝 ∈ ℝ𝑟𝑝×𝑟𝑝.

From [9, Fact 7.4.34] it follows that

𝜎(�̂�) = 𝜎(𝐴), 𝜎(�̂�) = 𝜎(𝑄), 𝜎(𝑃 ) = 𝜎(𝑃 ) (13)

and so 𝐴⊤𝑃 + 𝑃𝐴 +𝑄 = 0 gives that 𝑃 = 𝑃 ⊤ > 0, �̂� = �̂�⊤ > 0 and

�̂�⊤𝑃 + 𝑃 �̂� + �̂� = 0.

Since 𝑃 ⊤
2 + 𝑃4

( 𝑝2
⋮
𝑝𝑟

)
= 0 by (5) we find

𝑃
⎡⎢⎢⎣
𝑝1𝐼𝑝
⋮
𝑝𝑟𝐼𝑝

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
(𝑃1 − 𝑃2𝑃 −1

4 𝑃 ⊤
2 )𝐼𝑝

0
⋮
0

⎤⎥⎥⎥⎥⎦
,

where 𝑃1 − 𝑃2𝑃 −1
4 𝑃 ⊤

2

(6)
> 0. Observe that we may write (11) in the form

�̇�(𝑡) = �̂�𝑒(𝑡) − 𝑘(𝑡)
⎡⎢⎢⎣
𝑝1𝐼𝑝
⋮
𝑝𝑟𝐼𝑝

⎤⎥⎥⎦ 𝑒1(𝑡) +
⎛⎜⎜⎜⎜⎜⎝

0
⋮
0
𝑔(𝑡)
𝑓 (𝑡)

⎞⎟⎟⎟⎟⎟⎠
.

Since (𝑢, 𝑦) ∈ 𝑟, the constants 𝑀1, 𝑀2 in (9) are well-defined and we have ‖𝑔(𝑡)‖ ≤ 𝑀1 and ‖𝑓 (𝑡)‖ ≤ 𝑀2 for almost all
𝑡 ∈ [0, 𝜔). With 𝑀 = (𝑀2

1 +𝑀
2
2 )

1
2 we may now calculate that, for almost all 𝑡 ∈ [0, 𝜔),

d
d𝑡
𝑒(𝑡)⊤𝑃𝑒(𝑡) = 𝑒(𝑡)⊤�̂�⊤𝑃𝑒(𝑡) + 𝑒(𝑡)⊤𝑃 �̂�𝑒(𝑡) − 2𝑘(𝑡)𝑒(𝑡)⊤𝑃

⎡⎢⎢⎣
𝑝1𝐼𝑝
⋮
𝑝𝑟𝐼𝑝

⎤⎥⎥⎦ 𝑒1(𝑡) + 2𝑒(𝑡)⊤𝑃

⎛⎜⎜⎜⎜⎜⎝

0
⋮
0
𝑔(𝑡)
𝑓 (𝑡)

⎞⎟⎟⎟⎟⎟⎠
≤ −𝑒(𝑡)⊤�̂�𝑒(𝑡) − 2𝑘(𝑡)(𝑃1 − 𝑃2𝑃 −1

4 𝑃 ⊤
2 )‖𝑒1(𝑡)‖2 + 2𝑀‖𝑃‖‖𝑒(𝑡)‖

≤ −𝜇𝑒(𝑡)⊤𝑃𝑒(𝑡) + 2𝑀‖𝑃‖‖𝑒(𝑡)‖,
where 𝜇 = 𝜆min(�̂�)∕𝜆max(𝑃 ). With 𝛿 ∶= 1

2
𝜇𝜆min(𝑃 ) and using that 𝑎𝑏 ≤ 1

2
(𝑎2 + 𝑏2) for all 𝑎, 𝑏 ≥ 0, it follows that

d
d𝑡
𝑒(𝑡)⊤𝑃𝑒(𝑡) ≤ −𝜇𝑒(𝑡)⊤𝑃𝑒(𝑡) +

(√
2𝛿‖𝑒(𝑡)‖)(

2𝑀‖𝑃‖√
2𝛿

)
≤ −𝜇𝑒(𝑡)⊤𝑃𝑒(𝑡) + 𝛿‖𝑒(𝑡)‖2 + 𝑀2‖𝑃‖2

𝛿

≤ −𝜇
2
𝑒(𝑡)⊤𝑃𝑒(𝑡) +

2𝑀2‖𝑃‖2
𝜇𝜆min(𝑃 )

for almost all 𝑡 ∈ [0, 𝜔). Gronwall’s lemma now implies that

𝑒(𝑡)⊤𝑃𝑒(𝑡) ≤ 𝑒(0)⊤𝑃𝑒(0)𝑒−
𝜇
2
𝑡 +

2𝑀2‖𝑃‖2
𝜇2𝜆min(𝑃 )

,

and hence ‖𝑒(𝑡)‖2 ≤ 𝜆max(𝑃 )
𝜆min(𝑃 )

𝑒−
𝜇
2
𝑡‖𝑒(0)‖2 + 2𝑀2‖𝑃‖2

𝜇2𝜆min(𝑃 )2
(14)

for all 𝑡 ∈ [0, 𝜔). Equation (14) in particular implies that 𝑒 ∈ ∞ ([0, 𝜔) → (ℝ𝑝)𝑟). Therefore, by (8) and (𝑢, 𝑦) ∈ 𝑟 we
have that 𝑧1,… , 𝑧𝑟 are bounded, provided that 𝑦, �̇�,… , 𝑦(𝑟−1) are bounded.
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Step 3: We show that 𝑘 ∈ ∞ ([0, 𝜔) → ℝ). Let 𝜅 ∈ (0, 𝜔) be arbitrary but fixed and 𝜆 ∶= inf 𝑡∈(0,𝜔) 𝜑(𝑡)−1 > 0. Since �̇�
is bounded and lim inf 𝑡→∞ 𝜑(𝑡) > 0 we find that d

d𝑡
𝜑|[𝜅,∞) (⋅)−1 is bounded and hence there exists a Lipschitz bound 𝐿 > 0

of 𝜑|[𝜅,∞) (⋅)−1. By Step 2, 𝑒2 is bounded and we may choose 𝜀 > 0 small enough so that

𝜀 ≤ min
{
𝜆
2
, inf
𝑡∈(0,𝜅]

(𝜑(𝑡)−1 − ‖𝑒1(𝑡)‖)}
and

𝐿 ≤ − sup
𝑡∈[0,𝜔)

‖𝑒2(𝑡)‖ −𝑀1 +
𝑞1𝜆
2

+ 𝜆2

4𝜀
; (15)

feasibility of this choice is guaranteed by 𝑟 ≥ 2. Using a standard argument in funnel control, see e.g. [23, pp. 241–242], it
is then straightforward to show that

∀ 𝑡 ∈ (0, 𝜔) ∶ 𝜑(𝑡)−1 − ‖𝑒1(𝑡)‖ ≥ 𝜀. (16)
The estimate (16) clearly implies boundedness of 𝑘.

Step 4: We show 𝜔 = ∞. Assume that 𝜔 < ∞. Then, since 𝑒 and 𝑘 are bounded by Steps 2 and 3, it follows that
graph 𝑒 is a compact subset of , a contradiction. Therefore, 𝜔 = ∞. Together with Step 3, this in particular implies (7).
Inequality (10) is an immediate consequence of (14) together with the observation that by (13) we have 𝜆min(𝑃 ) = 𝜆min(𝑃 ),
𝜆max(𝑃 ) = 𝜆max(𝑃 ), 𝜆min(�̂�) = 𝜆min(𝑄) and, since 𝑃 is positive definite, ‖𝑃‖ = 𝜆max(𝑃 ) = 𝜆max(𝑃 ).

In [41, Thm. 2.2], using the adaptive high-gain observer proposed therein, bounds for the mean value of the observation
error 𝑒𝑖 (defined similar to (8)) are given; we stress that both the bounds in [41, (14)] and in (10) cannot be made arbitrarily
small in general, they depend on the given signals.

Remark 2.2. We consider two special cases for signals (𝑢, 𝑦) ∈ 𝑟, the funnel pre-compensator (1) and the resulting
estimate (10).

(i) Γ̃ = 0. It is immediate from (9) that in this case 𝑀1 = ‖𝑦(𝑟−1)‖∞ and 𝑀2 = 0, thus 𝑀 = ‖𝑦(𝑟−1)‖∞ in (10). Note that the
choice of Γ̃ is independent of the signals 𝑢 and 𝑦.

(ii) 𝑝 = 𝑚, Γ ∈ 𝐆𝐥𝑚(ℝ), Γ̃ = Γ−1 and we have Γ𝑦(𝑟) = 𝑢. This means the signals satisfy a very simple relation and we have
exact knowledge of the invertible matrix Γ. Then𝑀1 =𝑀2 = 0 in (9) and hence𝑀 = 0 in (10). In particular, this implies
that 𝑒(𝑡) → 0 and 𝑘(𝑡) → 1 for 𝑡→ ∞.

Remark 2.3. If the signal 𝑦 is subject to noise, i.e., the funnel pre-compensator (1) receives 𝑦 + 𝑛 instead of 𝑦, where 𝑛 ∈𝑟([−ℎ,∞) → ℝ𝑝) is such that, for Γ as in 𝑟, 𝑛, �̇�,… , 𝑛(𝑟−2), Γ𝑛(𝑟−1) and d
d𝑡

(
Γ𝑛(𝑟−1)

)
are bounded, then (𝑢, 𝑦 + 𝑛) ∈ 𝑟 with Γ.

Therefore, Proposition 2.1 yields that the funnel pre-compensator may also be applied to 𝑢 and 𝑦 + 𝑛 and achieves that

∀ 𝑡 > 0 ∶ 𝜑(𝑡)‖𝑦(𝑡) + 𝑛(𝑡) − 𝑧1(𝑡)‖ < 1,

which implies
∀ 𝑡 > 0 ∶

𝜑(𝑡)
1 + 𝜑(𝑡)‖𝑛(𝑡)‖‖𝑦(𝑡) − 𝑧1(𝑡)‖ < 1,

i.e., 𝑦 − 𝑧1 evolves in the funnel 𝜓 , where 𝜓 = 𝜑(𝑡)
1+𝜑(𝑡)‖𝑛(𝑡)‖ . If an upper bound for 𝑛 is known, say ‖𝑛(𝑡)‖ ≤ 𝜈 for all 𝑡 ≥ 0, then

∀ 𝑡 > 0 ∶ ‖𝑦(𝑡) − 𝑧1(𝑡)‖ < 𝜑(𝑡)−1 + 𝜈.
Hence, the actual error remains in the wider funnel obtained by adding the corresponding bound of the noise to the funnel
bounds used for the pre-compensator. The bound in (10) changes as follows: Modify 𝑀1 and 𝑀2 from (9) to

�̃�1 ∶= ‖𝑔 + (𝐼 − Γ̃Γ)𝑛(𝑟−1)‖∞, �̃�2 ∶=
‖‖‖𝑓 + Γ̃ d

d𝑡

(
Γ𝑛(𝑟−1)

)‖‖‖∞ .
Then, with �̃� ∶= (�̃�2

1 + �̃�
2
2 )

1
2 , we have that

lim sup
𝑡→∞

‖𝑒(𝑡)‖ ≤ 2 �̃� 𝜆max(𝑃 )2

𝜆min(𝑄) 𝜆min(𝑃 )
+ ‖‖‖(𝑛, �̇�,… , 𝑛(𝑟−2), Γ̃Γ𝑛(𝑟−1)

)‖‖‖∞ .
If the signal 𝑢 is subject to noise before the funnel pre-compensator receives it, i.e., 𝑢+ 𝑣 enters the pre-compensator (1), where
𝑣 ∈ ∞(ℝ≥0 → ℝ𝑚), then obviously (𝑢+ 𝑣, 𝑦) ∈ 𝑟 and hence Proposition 2.1 yields that the funnel pre-compensator may also
be applied to 𝑢 + 𝑣 and 𝑦; in particular, (7) is achieved.
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While Proposition 2.1 shows that the funnel pre-compensator is able to achieve prescribed transient behavior of the compen-
sator error 𝑒1 = 𝑦−𝑧1 and that the errors 𝑒2,… , 𝑒𝑟 as in (8) converge to a certain strip, we like to stress that no transient behavior
can be prescribed for 𝑒2,… , 𝑒𝑟 since �̇�,… , 𝑦(𝑟−1) are not known. Therefore, 𝑧2,… , 𝑧𝑟 from the funnel pre-compensator cannot
be viewed as estimates for �̇�,… , 𝑦(𝑟−1). In the following we show that a successive application of the funnel pre-compensator to
the signals 𝑢 and 𝑧1 results in a cascade of pre-compensators which yields, as desired,

• an estimate 𝑧 for the signal 𝑦 with prescribed transient behavior (i.e., (𝑡, 𝑦(𝑡) − 𝑧(𝑡)) ∈ 𝜑) and

• the derivatives �̇�,… , 𝑧(𝑟−1) are known explicitly.

We stress that a single funnel pre-compensator is not able to achieve the above requirements when 𝑟 ≥ 3 since �̈�1 for 𝑧1 as in (1)
depends on �̇� and the latter is unknown. However, applying another funnel pre-compensator to the signal pair (𝑢, 𝑧1), i.e., 𝑧1
plays the role of the output now, yields a signal �̄�1 such that ̇̄𝑧1 is known. Furthermore, ̈̄𝑧1 depends on �̇�1 which is known as
well; it only depends on 𝑧1, 𝑧2 and the measured output 𝑦. As a result, 𝑦 − �̄�1 = (𝑦 − 𝑧1) + (𝑧1 − �̄�1) evolves in a performance
funnel and ̇̄𝑧1, ̈̄𝑧1 are known explicitly. This argument may be applied successively.

To this end, we introduce a cascade of funnel pre-compensators

𝐹𝑃𝑟−1◦… ◦𝐹𝑃1
where the funnel pre-compensators

𝐹𝑃𝑖(𝑝𝑖, 𝑞𝑖, Γ̃𝑖, 𝜑𝑖) ∶ (𝑢, 𝑧𝑖−1,1) → 𝑧𝑖,1,
are specified, for 𝑖 = 1,… , 𝑟 − 1, as follows:

�̇�𝑖,1(𝑡) = 𝑧𝑖,2(𝑡) +
(
𝑞𝑖,1 + 𝑝𝑖,1𝑘𝑖(𝑡)

)
⋅ (𝑧𝑖−1,1(𝑡) − 𝑧𝑖,1(𝑡)),

�̇�𝑖,2(𝑡) = 𝑧𝑖,3(𝑡) +
(
𝑞𝑖,2 + 𝑝𝑖,2𝑘𝑖(𝑡)

)
⋅ (𝑧𝑖−1,1(𝑡) − 𝑧𝑖,1(𝑡)),

⋮
�̇�𝑖,𝑟−1(𝑡) = 𝑧𝑖,𝑟(𝑡) +

(
𝑞𝑖,𝑟−1 + 𝑝𝑖,𝑟−1𝑘𝑖(𝑡)

)
⋅ (𝑧𝑖−1,1(𝑡) − 𝑧𝑖,1(𝑡)),

�̇�𝑖,𝑟(𝑡) = +
(
𝑞𝑖,𝑟 + 𝑝𝑖,𝑟𝑘𝑖(𝑡)

)
⋅ (𝑧𝑖−1,1(𝑡) − 𝑧𝑖,1(𝑡)) + Γ̃𝑖𝑢(𝑡),

𝑘𝑖(𝑡) =
1

1 − 𝜑𝑖(𝑡)2‖𝑧𝑖−1,1(𝑡) − 𝑧𝑖,1(𝑡)‖2 .
(17)

where 𝑧0,1 ∶= 𝑦, Γ̃𝑖 ∈ ℝ𝑝×𝑚,

𝜑𝑖 ∈ Φ𝑟−1 ∶= Φ ∩
{
𝜑 ∈ 𝑟−1(ℝ≥0 → ℝ) ||| �̇�,… , 𝜑(𝑟−1) bounded

}
and 𝑞𝑖,𝑗 > 0, 𝑝𝑖,𝑗 > 0 are such that (5) is satisfied for corresponding matrices 𝐴𝑖, 𝑃𝑖, 𝑄𝑖 for 𝑖 = 1,… , 𝑟−1. The initial values are

𝑧𝑖,𝑗(0) = 𝑧0𝑖,𝑗 ∈ ℝ𝑝, 𝑖 = 1,… , 𝑟 − 1, 𝑗 = 1,… , 𝑟. (18)

The situation is illustrated in Figure 4 .

..(𝑢, 𝑦) ∈ 𝑟. FP1

. FP2

.....
FP𝑟−1

......

𝑢(𝑡)

. 𝑦(𝑡).
𝑧1,1(𝑡).

𝑧2,1(𝑡).
𝑧𝑟−2,1(𝑡).

𝑧(𝑡)

FIGURE 4 Cascade of funnel pre-compensators (1) applied to signals (𝑢, 𝑦) ∈ 𝑟.

We show that the cascade (17) with rk Γ̃𝑖 = 𝑚 applied to signals (𝑢, 𝑦) ∈ 𝑟, where additionally 𝑦, �̇�,… , 𝑦(𝑟−1) are bounded
(but �̇�,… , 𝑦(𝑟−1) are unknown), yields an interconnection with output 𝑧 = 𝑧𝑟−1,1 such that 𝑦−𝑧 has prescribed transient behavior
and �̇�,… , 𝑧(𝑟−1) are known explicitly.

Theorem 2.4
Consider (𝑢, 𝑦) ∈ 𝑟 so that 𝑟 ≥ 2, and assume that 𝑦, �̇�,… , 𝑦(𝑟−1) are bounded. Consider the cascade of funnel pre-
compensators 𝐹𝑃𝑟−1◦… ◦𝐹𝑃1 defined in (17) for 𝜑𝑖 ∈ Φ𝑟−1, Γ̃𝑖 ∈ ℝ𝑝×𝑚 with rk Γ̃𝑖 = 𝑚 and 𝑞𝑖,𝑗 > 0, 𝑝𝑖,𝑗 > 0 are such
that (5) is satisfied for corresponding matrices 𝐴𝑖, 𝑃𝑖, 𝑄𝑖, and initial data (18) such that

𝜑𝑖(0)‖𝑧𝑖−1,1(0) − 𝑧0𝑖,1‖ < 1, 𝑖 = 1,… , 𝑟 − 1,
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where 𝑧0,1 ∶= 𝑦. Then (17), (18) has weakly differentiable solutions 𝑧𝑖,𝑗 ∈ ∞ (
ℝ≥0 → ℝ𝑝) with 𝑘𝑖 ∈ ∞(ℝ≥0 → [1,∞))

for 𝑖 = 1,… , 𝑟 − 1, 𝑗 = 1,… , 𝑟 and

∀ 𝑖 ∈ {1,… , 𝑟 − 1} ∃ 𝜀𝑖 > 0 ∀ 𝑡 > 0 ∶ ‖𝑧𝑖−1,1(𝑡) − 𝑧𝑖,1(𝑡)‖ < 𝜑𝑖(𝑡)−1 − 𝜀𝑖. (19)

Furthermore, for 𝑧 ∶= 𝑧𝑟−1,1 we have that

∀ 𝑡 > 0 ∶ ‖𝑦(𝑡) − 𝑧(𝑡)‖ < 𝑟−1∑
𝑖=1

𝜑𝑖(𝑡)−1 − 𝜀𝑖. (20)

Proof. We show existence of bounded weakly differentiable solutions for each pre-compensator in (17) and the property (19)
by induction. Note that (20) is a consequence of (19).
For 𝑖 = 1 we have 𝑧0,1 = 𝑦 and hence the existence of bounded global solutions follows from Proposition 2.1. We may
calculate that

𝑧(𝑗)𝑖,1(𝑡) = 𝑧𝑖,𝑗+1(𝑡) +
𝑗−1∑
𝑙=0

(
d
d𝑡

)𝑙 (
𝑞𝑖,𝑗−𝑙 + 𝑝𝑖,𝑗−𝑙𝑘𝑖(𝑡)

)(
𝑧𝑖−1,1(𝑡) − 𝑧𝑖,1(𝑡)

)
(21)

for 𝑖 = 1,… , 𝑟 − 1 and 𝑗 = 0,… , 𝑟, where 𝑧𝑖,𝑟+1 ∶= Γ̃𝑖𝑢. With 𝑤𝑖(𝑡) ∶= 𝑧𝑖−1,1(𝑡) − 𝑧𝑖,1(𝑡) we calculate

�̇�𝑖(𝑡) = 2𝑘𝑖(𝑡)2
(
𝜑𝑖(𝑡)�̇�𝑖(𝑡)𝑤𝑖(𝑡)⊤𝑤𝑖(𝑡) + 𝜑𝑖(𝑡)2𝑤𝑖(𝑡)⊤�̇�𝑖(𝑡)

)
(22)

for all 𝑖 = 1,… , 𝑟−1. In particular, for 𝑖 = 1 we obtain that �̇�1,1,… , 𝑧(𝑟−1)1,1 are bounded since 𝑦,… , 𝑦(𝑟−1), 𝜑1,… , 𝜑(𝑟−1)
1 are

bounded and 𝑧1,1,… , 𝑧1,𝑟, and 𝑘1 are bounded by Proposition 2.1. Now assume that the statement is true for 𝑖 ∈ {1,… , 𝑟−2}
such that �̇�𝑖,1,… , 𝑧(𝑟−1)𝑖,1 are bounded. Choosing Γ𝑖 ∈ ℝ𝑚×𝑝 such that Γ𝑖Γ̃𝑖 = 𝐼𝑚 it follows from (21) with 𝑗 = 𝑟 that

Γ𝑖𝑧
(𝑟)
𝑖,1 − 𝑢 =

𝑟−1∑
𝑙=0

(
d
d𝑡

)𝑙 (
𝑞𝑖,𝑟−𝑙−1 + 𝑝𝑖,𝑟−𝑙−1𝑘𝑖

)(
𝑧𝑖−1,1 − 𝑧𝑖,1

)
∈ ∞(ℝ≥0 → ℝ𝑚),

and hence (𝑢, 𝑧𝑖,1) ∈ 𝑟, by which an application of Proposition 2.1 is feasible and yields existence of bounded global
solutions such that 𝑘𝑖+1 is bounded. Again invoking (21) yields boundedness of �̇�𝑖+1,1,… , 𝑧(𝑟−1)𝑖+1,1.

Remark 2.5. Use the notation and assumptions from Theorem 2.4. Then the derivatives �̇�,… , 𝑧(𝑟−1) are known explicitly as

𝑧(𝑗)(𝑡) = 𝑧𝑟−1,𝑗+1(𝑡) + 𝑃 𝑟−1
𝑗 (𝑡), 𝑗 = 0,… , 𝑟 − 1,

where the functions 𝑃 𝑖
𝑗 are defined in a recursive way:

𝑃 𝑎,𝑏
0 (𝑘, 𝜑0, 𝑒0) ∶= (𝑞𝑎,𝑏 + 𝑝𝑎,𝑏𝑘)𝑒0,

𝑃 𝑎,𝑏
𝑖+𝑖 (𝑘, 𝜑0,… , 𝜑𝑖+1, 𝑒0,… , 𝑒𝑖+1) ∶=

𝜕𝑃 𝑎,𝑏
𝑖

𝜕𝑘
(
2𝑘2(𝜑0𝜑1𝑒

⊤
0 𝑒0 + 𝜑

2
0𝑒
⊤
0 𝑒1)

)
+
𝜕𝑃 𝑎,𝑏

𝑖

𝜕𝜑0
𝜑1 +…+

𝜕𝑃 𝑎,𝑏
𝑖

𝜕𝜑𝑖
𝜑𝑖+1

+
𝜕𝑃 𝑎,𝑏

𝑖

𝜕𝑒0
𝑒1 +…+

𝜕𝑃 𝑎,𝑏
𝑖

𝜕𝑒𝑖
𝑒𝑖+1

for 𝑎, 𝑏 ∈ {1,… , 𝑟 − 1} and 𝑖 ≥ 0, where 𝑘, 𝜑𝑖 ∈ ℝ and 𝑒𝑖 ∈ ℝ𝑝 for each 𝑖 ≥ 0. Further define, using (17),

𝑃 𝑖
𝑗 (𝑡) ∶=

𝑗−1∑
𝑙=0

𝑃 𝑖,𝑗−𝑙
𝑙

(
𝑘𝑖(𝑡), 𝜑𝑖(𝑡),… , 𝜑(𝑙)

𝑖 (𝑡), 𝑧𝑖−1,1(𝑡) − 𝑧𝑖,1(𝑡),… , 𝑧(𝑙)𝑖−1,1(𝑡) − 𝑧
(𝑙)
𝑖,1(𝑡)

)
for 𝑖 = 1,… , 𝑟 − 1 and 𝑗 = 0,… , 𝑟 − 1. We will show that

𝑧(𝑗)𝑖,1(𝑡) = 𝑧𝑖,𝑗+1(𝑡) + 𝑃 𝑖
𝑗 (𝑡), 𝑖 = 1,… , 𝑟 − 1, 𝑗 = 0,… , 𝑟 − 1. (23)

To this end, observe that it follows from (22) and a simple induction that(
d
d𝑡

)𝑙 (
𝑞𝑖,𝑗−𝑙 + 𝑝𝑖,𝑗−𝑙𝑘𝑖(𝑡)

)
𝑤𝑖(𝑡) = 𝑃 𝑖,𝑗−𝑙

𝑙

(
𝑘𝑖(𝑡), 𝜑𝑖(𝑡), �̇�𝑖(𝑡),… , 𝜑(𝑙)

𝑖 (𝑡), 𝑤𝑖(𝑡), �̇�𝑖(𝑡),… , 𝑤(𝑙)
𝑖 (𝑡)

)
for 𝑖 = 1,… , 𝑟 − 1, 𝑗 = 0,… , 𝑟 − 1 and 𝑙 = 0,… , 𝑗 − 1. Then (21) immediately implies (23).
By definition, 𝑃 𝑟−1

𝑗 (𝑡) depends on the derivatives of 𝑧𝑟−2,1 and 𝑧𝑟−1,1 = 𝑧 up to order 𝑗 − 1. The dependencies on
�̇�,… , 𝑧(𝑗−1) may be immediately resolved by applying the same formula again, thus 𝑧(𝑗) depends on 𝑧𝑟−1,1,… , 𝑧𝑟−1,𝑗+1 and on
𝑧𝑟−2,1, �̇�𝑟−2,1,… , 𝑧(𝑗−1)𝑟−2,1. Applying (23) in a recursive way to �̇�𝑟−2,1,… , 𝑧(𝑗−1)𝑟−2,1 we obtain dependencies as depicted in Figure 5 .
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..𝑧(𝑗).

𝑧𝑟−1,1 𝑧𝑟−2,1
𝑧𝑟−1,2 �̇�𝑟−2,1
⋮ ⋮

𝑧𝑟−1,𝑗+1 𝑧
(𝑗−1)
𝑟−2,1

..
𝑧𝑟−2,1 𝑧𝑟−3,1
𝑧𝑟−2,2 �̇�𝑟−3,1
⋮ ⋮

𝑧𝑟−2,𝑗 𝑧(𝑗−2)𝑟−3,1

.... 𝑧𝑟−𝑗+1,1 𝑧𝑟−𝑗,1
𝑧𝑟−𝑗+1,2 �̇�𝑟−𝑗,1
𝑧𝑟−𝑗+1,3

..

𝑧𝑟−𝑗,1 𝑧𝑟−𝑗−1,1
𝑧𝑟−𝑗,2

FIGURE 5 Dependency of 𝑧(𝑗) on the compensator states. Note that 𝑧𝑟−𝑗−1,1 = 𝑧0,1 = 𝑦 for 𝑗 = 𝑟 − 1.

3 APPLICATION TO MINIMUM PHASE SYSTEMS

A possible application of the funnel pre-compensator cascade developed in Section 2 is in high-gain adaptive control in order
to solve the longstanding open question of how systems with relative degree larger than one may be appropriately treated,
see [22, 24, 35]. Recently, a funnel controller has been designed in [5] which is able to achieve tracking with prescribed transient
performance for nonlinear systems of arbitrary relative degree. However, the derivatives of the output must be available for
the controller. In practice this means that measurements must be differentiated, which is an ill-posed problem, in particular in
the presence of noise, see e.g. [20, Sec. 1.4.4]. In order to resolve this problem, the funnel pre-compensator cascade may be
applied to the system which results in an interconnection with new output 𝑧 satisfying (20), and the derivatives of which are
known. Then the funnel controller from [5] may be applied to the interconnection in order to achieve tracking with prescribed
transient behavior without the need to calculate output derivatives; for linear minimum phase systems with relative degree two
this configuration was successfully implemented in [8]. The situation is depicted in Figure 6 .

..System.

𝐹𝑃𝑟−1◦… ◦𝐹𝑃1

.

Funnel
Controller

...............𝑢(𝑡) . 𝑦(𝑡).

𝑧(𝑡)

FIGURE 6 Interconnection of a system with funnel pre-compensator cascade and funnel controller.

We stress that, while we consider the combination of the funnel pre-compensator with a funnel controller in the present paper,
one may also combine the funnel pre-compensator with other controllers such as a prescribed performance controller, see e.g. [3].

For the solution of tracking problems, a crucial condition is the input-to-state stability of the internal dynamics (the minimum
phase property in case of linear systems), cf. [12, 24, 42]. The funnel controller in [5] requires this as well, and hence we need
to ensure that for a minimum phase system, the interconnection with the funnel pre-compensator cascade is again minimum
phase. In the following we show that this can be achieved for a special class of systems which are linear up to the influence of an
operator 𝑇 and have relative degree two or three. For relative degree larger than three this remains an open problem; we show
explicitly where our proof does not work in this case and conjecture that some kind of small gain condition is needed then.

In the following we consider systems described by functional differential equations of the form

𝑦(𝑟)(𝑡) =
𝑟∑
𝑖=1

𝑅𝑖𝑦
(𝑖−1)(𝑡) + 𝑓

(
𝑑(𝑡), 𝑇 (𝑦, �̇�,… , 𝑦(𝑟−1))(𝑡)

)
+ Γ𝑢(𝑡),

𝑦|[−ℎ,0] = 𝑦0 ∈  𝑟−1,∞([−ℎ, 0] → ℝ𝑚),
(24)
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where ℎ > 0 is the “memory” of the system, 𝑟 ∈ ℕ is the strict relative degree, and

• 𝑑 ∈ ∞(ℝ≥0 → ℝ𝑝), 𝑝 ∈ ℕ, is a disturbance;

• 𝑓 ∈ (ℝ𝑝 ×ℝ𝑞 → ℝ𝑚), 𝑞 ∈ ℕ;

• Γ ∈ 𝐆𝐥𝑚(ℝ) is the high-frequency gain matrix;

• 𝑇 ∶ ([−ℎ,∞) → ℝ𝑚)𝑟 → ∞
loc(ℝ≥0 → ℝ𝑞) is an operator with the following properties:

a) 𝑇 maps bounded trajectories to bounded trajectories, i.e., for all 𝑐1 > 0 there exists 𝑐2 > 0 such that for all 𝜁 ∈([−ℎ,∞) → ℝ𝑚)𝑟 ∶
sup

𝑡∈[−ℎ,∞)
‖𝜁 (𝑡)‖ ≤ 𝑐1 ⇐⇒ sup

𝑡∈[0,∞)
‖𝑇 (𝜁 )(𝑡)‖ ≤ 𝑐2;

b) 𝑇 is causal, i.e., for all 𝑡 ≥ 0 and all 𝜁, 𝜉 ∈ ([−ℎ,∞) → ℝ𝑚)𝑟:

𝜁 |[−ℎ,𝑡) = 𝜉|[−ℎ,𝑡) ⇐⇒ 𝑇 (𝜁 )|[0,𝑡] a.e.
= 𝑇 (𝜉)|[0,𝑡] ;

c) 𝑇 is “locally Lipschitz” continuous in the following sense: for all 𝑡 ≥ 0 there exist 𝜏, 𝛿, 𝑐 > 0 such that for all
𝜁,Δ𝜁 ∈ ([−ℎ,∞) → ℝ𝑚)𝑟 with Δ𝜁 |[−ℎ,𝑡] = 0 and ‖ Δ𝜁 |[𝑡,𝑡+𝜏] ‖∞ < 𝛿 we have‖‖‖‖(𝑇 (𝜁 + Δ𝜁 ) − 𝑇 (𝜁 )

)|||[𝑡,𝑡+𝜏]‖‖‖‖∞ ≤ 𝑐‖ Δ𝜁 |[𝑡,𝑡+𝜏] ‖∞.
The functions 𝑢 ∶ ℝ≥0 → ℝ𝑚 and 𝑦 ∶ [−ℎ,∞) → ℝ𝑚 are called input and output of the system (24), respectively. For fixed

𝑢 ∈ ∞
loc(ℝ≥0 → ℝ𝑚) we call 𝑦 ∈ 𝑟−1([−ℎ, 𝜔) → ℝ𝑚) a solution of (24) on [−ℎ, 𝜔), 𝜔 ∈ (0,∞], if 𝑦|[−ℎ,0] = 𝑦0 and 𝑦(𝑟−1)|[0,𝜔)

is weakly differentiable and satisfies the differential equation in (24) for almost all 𝑡 ∈ [0, 𝜔); 𝑦 is called maximal, if it has no
right extension that is also a solution. Existence of maximal solutions of (24) for every 𝑦0 ∈  𝑟−1,∞([−ℎ, 0] → ℝ𝑚) and every
𝑢 ∈ ∞

loc(ℝ≥0 → ℝ𝑚) is guaranteed by [26, Thm. 5]; if 𝑦, �̇�,… , 𝑦(𝑟−1) are bounded, then 𝜔 = ∞. In this case we clearly have
(𝑢, 𝑦|[0,∞)) ∈ 𝑟.

The input-to-state stability of the internal dynamics of (24), i.e., the minimum phase property, is modelled by the property a)
of the operator 𝑇 in (24). It is shown in [5] that funnel control is feasible for systems of the class (24), provided that Γ is positive
or negative definite. In the case of relative degree one, i.e., 𝑟 = 1, systems similar to (24) are well studied, see [25, 26, 29, 39].
For relative degree two systems see [21], and for higher relative degree see [28]. In the aforementioned references it is shown that
the class of systems (24) encompasses linear and nonlinear systems with existing strict relative degree and input-to-state stable
internal dynamics and the operator 𝑇 allows for infinite-dimensional linear systems, systems with hysteretic effects or nonlinear
delay elements and combinations thereof. In particular, the class (24) contains the system classes discussed in [19, 27, 28] and
the nonlinear systems in [30] provided that the internal dynamics are input-to-state stable.

In order to show that the minimum phase property of systems (24) is preserved by the cascade of funnel pre-compensators,
we additionally need that the operator 𝑇 is bounded whenever the output 𝑦 is bounded, i.e., we replace property a) with the
stronger condition

a’) for all 𝑐1 > 0 there exists 𝑐2 > 0 such that for all 𝜁1,… , 𝜁𝑟 ∈ ([−ℎ,∞) → ℝ𝑚) ∶

sup
𝑡∈[−ℎ,∞)

‖𝜁1(𝑡)‖ ≤ 𝑐1 ⇐⇒ sup
𝑡∈[0,∞)

‖𝑇 (𝜁1,… , 𝜁𝑟)(𝑡)‖ ≤ 𝑐2.

The class of systems (24) where 𝑇 satisfies a’) in particular contains the class of nonlinear systems in input-normalized Byrnes-
Isidori form with exponentially stable zero dynamics as considered in [10], provided the high-frequency gain matrix is constant.
We show that, if 𝑟 = 2 or 𝑟 = 3, the interconnection of (24) with the cascade of funnel pre-compensators, where Γ̃𝑖 = Γ̃ is
invertible, has again relative degree 𝑟 and input-to-state stable internal dynamics in the sense that it can be rewritten as

𝑧(𝑟)(𝑡) = 𝐹
(
𝑑(𝑡), �̃� (𝑧, �̇�,… , 𝑧(𝑟−1))(𝑡)

)
+ Γ̃𝑢(𝑡),

where �̃� is an operator with the properties a)–c).

Theorem 3.1
Consider a system (24) with 𝑟 ∈ {2, 3}, 𝑦0 ∈  𝑟−1,∞([−ℎ, 0] → ℝ𝑚) and assume that Γ = Γ⊤ > 0 and the operator 𝑇
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satisfies a’). Further consider the cascade of funnel pre-compensators 𝐹𝑃𝑟−1◦… ◦𝐹𝑃1 defined by (17), (18) with 𝜑𝑖 ∈ Φ𝑟−1
such that

𝜑𝑖(0)‖𝑧𝑖−1,1(0) − 𝑧0𝑖,1‖ < 1,
where 𝑧0,1 ∶= 𝑦 and 𝑞𝑖,𝑗 = 𝑞𝑗 > 0, 𝑝𝑖,𝑗 = 𝑝𝑗 > 0 are such that (5) is satisfied for corresponding matrices 𝐴, 𝑃 ,𝑄 for all
𝑖 = 1,… , 𝑟 − 1, 𝑗 = 1,… , 𝑟. Moreover, assume that Γ̃𝑖 = Γ̃ ∈ ℝ𝑚×𝑚, 𝑖 = 1,… , 𝑟 − 1, such that Γ̃ = Γ̃⊤ > 0 and,

if 𝑟 = 3, then 𝐼 − ΓΓ̃−1 =
(
𝐼 − ΓΓ̃−1)⊤ > 0. (25)

Then the conjunction of (24) and (17) with input 𝑢 and output 𝑧 ∶= 𝑧𝑟−1,1 can be equivalently written as

𝑧(𝑟)(𝑡) = 𝐹
(
𝑑(𝑡), �̃� (𝑧, �̇�,… , 𝑧(𝑟−1))(𝑡)

)
+ Γ̃𝑢(𝑡), 𝑧(0) = 𝑧0𝑟−1,1, (26)

for 𝑑(𝑡) ∶=
(
𝜑𝑟−1(𝑡), �̇�𝑟−1(𝑡),… , 𝜑(𝑟−1)

𝑟−1 (𝑡)
)⊤ ∈ ∞(ℝ≥0 → ℝ𝑟), some 𝐹 ∈ (ℝ𝑟 × ℝ𝑞 → ℝ𝑚) and an operator �̃� ∶([−ℎ,∞) → ℝ𝑚)𝑟 → ∞

loc(ℝ≥0 → ℝ𝑞) which satisfies the properties a)–c). Furthermore, for any 𝑢 ∈ ∞
loc(ℝ≥0 → ℝ𝑚) and

any solution of (17), (24) we have (20) and the derivatives of the compensator states satisfy (23).

Proof. Step 1: We start with several transformations of the error dynamics between two successive systems.
Step 1a: Define 𝑣𝑖,𝑗 ∶= 𝑧𝑖−1,𝑗 − 𝑧𝑖,𝑗 for 𝑖 = 2,… , 𝑟 − 1 and 𝑗 = 1,… , 𝑟. Then

�̇�𝑖,1(𝑡) = 𝑣𝑖,2(𝑡) −
(
𝑞1 + 𝑝1𝑘𝑖(𝑡)

)
⋅ 𝑣𝑖,1(𝑡) +

(
𝑞1 + 𝑝1𝑘𝑖−1(𝑡)

)
⋅ 𝑣𝑖−1,1(𝑡),

⋮
�̇�𝑖,𝑟−1(𝑡) = 𝑣𝑖,𝑟(𝑡) −

(
𝑞𝑟−1 + 𝑝𝑟−1𝑘𝑖(𝑡)

)
⋅ 𝑣𝑖,1(𝑡) +

(
𝑞𝑟−1 + 𝑝𝑟−1𝑘𝑖−1(𝑡)

)
⋅ 𝑣𝑖−1,1(𝑡),

�̇�𝑖,𝑟(𝑡) = −
(
𝑞𝑟 + 𝑝𝑟𝑘𝑖(𝑡)

)
⋅ 𝑣𝑖,1(𝑡) +

(
𝑞𝑟 + 𝑝𝑟𝑘𝑖−1(𝑡)

)
⋅ 𝑣𝑖−1,1(𝑡).

Step 1b: Defining 𝑒1,𝑗(𝑡) ∶= 𝑦(𝑗−1)(𝑡) − 𝑧1,𝑗(𝑡) for 𝑗 = 1,… , 𝑟 − 1 and 𝑒1,𝑟(𝑡) ∶= 𝑦(𝑟−1)(𝑡) − ΓΓ̃−1𝑧1,𝑟(𝑡) we obtain

�̇�1,1(𝑡) = 𝑒1,2(𝑡) −
(
𝑞1 + 𝑝1𝑘1(𝑡)

)
⋅ 𝑒1,1(𝑡),

⋮
�̇�1,𝑟−2(𝑡) = 𝑒1,𝑟−1(𝑡) −

(
𝑞𝑟−2 + 𝑝𝑟−2𝑘1(𝑡)

)
⋅ 𝑒1,1(𝑡),

�̇�1,𝑟−1(𝑡) = 𝑒1,𝑟(𝑡) −
(
𝑞𝑟−1 + 𝑝𝑟−1𝑘1(𝑡)

)
⋅ 𝑒1,1(𝑡) + (ΓΓ̃−1 − 𝐼) ⋅ 𝑧1,𝑟(𝑡),

�̇�1,𝑟(𝑡) = − ΓΓ̃−1(𝑞𝑟 + 𝑝𝑟𝑘1(𝑡)) ⋅ 𝑒1,1(𝑡) +
𝑟∑
𝑖=1
𝑅𝑖𝑦(𝑖−1)(𝑡) + 𝑓

(
𝑑(𝑡), 𝑇 (𝑦, �̇�,… , 𝑦(𝑟−1))(𝑡)

)
.

Set 𝑣1,1(𝑡) ∶= 𝑒1,1(𝑡) and �̃�(𝑡) ∶=
∑𝑟−1
𝑖=1 𝑣𝑖,1(𝑡), then we may define 𝑣1,𝑗(𝑡) ∶= 𝑒1,𝑗(𝑡) −

∑𝑗−1
𝑘=1𝑅𝑟−𝑗+𝑘+1�̃�

(𝑘−1)(𝑡) and obtain

�̇�1,1(𝑡) = 𝑣1,2(𝑡) −
(
𝑞1 + 𝑝1𝑘1(𝑡)

)
⋅ 𝑣1,1(𝑡) + 𝑅𝑟�̃�(𝑡),

�̇�1,2(𝑡) = 𝑣1,3(𝑡) −
(
𝑞2 + 𝑝2𝑘1(𝑡)

)
⋅ 𝑣1,1(𝑡) + 𝑅𝑟−1�̃�(𝑡),

⋮
�̇�1,𝑟−2(𝑡) = 𝑣1,𝑟−1(𝑡) −

(
𝑞𝑟−2 + 𝑝𝑟−2𝑘1(𝑡)

)
⋅ 𝑣1,1(𝑡) + 𝑅3�̃�(𝑡),

�̇�1,𝑟−1(𝑡) = 𝑣1,𝑟(𝑡) −
(
𝑞𝑟−1 + 𝑝𝑟−1𝑘1(𝑡)

)
⋅ 𝑣1,1(𝑡) + 𝑅2�̃�(𝑡) + (ΓΓ̃−1 − 𝐼)𝑧1,𝑟(𝑡),

�̇�1,𝑟(𝑡) = − ΓΓ̃−1(𝑞𝑟 + 𝑝𝑟𝑘1(𝑡)) ⋅ 𝑣1,1(𝑡) + 𝑅1�̃�(𝑡) +
𝑟∑
𝑖=1
𝑅𝑖

(
𝑦(𝑖−1)(𝑡) − �̃�(𝑖−1)(𝑡)

)
+ 𝑓

(
𝑑(𝑡), 𝑇 (𝑦, �̇�,… , 𝑦(𝑟−1))(𝑡)

)
.

Now we observe that

𝑦(𝑡) − �̃�(𝑡) =𝑦(𝑡) − 𝑣1,1(𝑡) − 𝑣2,1(𝑡) −… − 𝑣𝑟−1,1(𝑡)
=𝑦(𝑡) −

(
𝑦(𝑡) − 𝑧1,1(𝑡)

)
−
(
𝑧1,1(𝑡) − 𝑧2,1(𝑡)

)
−…−

(
𝑧𝑟−2,1(𝑡) − 𝑧𝑟−1,1(𝑡)

)
= 𝑧𝑟−1,1(𝑡) = 𝑧(𝑡).

Furthermore,

𝑧1,𝑟(𝑡) = 𝑧(𝑟−1)1,1 (𝑡) −
𝑟−2∑
𝑖=0

(
d
d𝑡

)𝑖 [(
𝑞𝑟−𝑖−1 + 𝑝𝑟−𝑖−1𝑘1(𝑡)

)
𝑣1,1(𝑡)

]
and

𝑧1,1(𝑡) = 𝑦(𝑡) − 𝑣1,1(𝑡) = 𝑧(𝑡) + �̃�(𝑡) − 𝑣1,1(𝑡) = 𝑧(𝑡) +
𝑟−1∑
𝑖=2

𝑣𝑖,1(𝑡),

hence

𝑧1,𝑟(𝑡) = 𝑧(𝑟−1)(𝑡) +
𝑟−1∑
𝑖=2

𝑣𝑖,1(𝑡) −
𝑟−2∑
𝑖=0

(
d
d𝑡

)𝑖 [(
𝑞𝑟−𝑖−1 + 𝑝𝑟−𝑖−1𝑘1(𝑡)

)
𝑣1,1(𝑡)

]
.
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Step 1c: Define 𝑤𝑖,𝑗(𝑡) ∶= 𝑣𝑖,𝑗(𝑡) for 𝑖 = 2,… , 𝑟 − 1 and 𝑗 = 1,… , 𝑟 and 𝑤1,𝑟(𝑡) ∶= 𝑣1,𝑟(𝑡),

𝑤1,𝑟−𝑗(𝑡) ∶= 𝑣1,𝑟−𝑗(𝑡) + 𝐺

[ 𝑟−1∑
𝑖=2

𝑣(𝑟−𝑗−1)𝑖,1 (𝑡) −
𝑟−2∑
𝑖=𝑗

(
d
d𝑡

)𝑖−𝑗 [(
𝑞𝑟−𝑖−1 + 𝑝𝑟−𝑖−1𝑘1(𝑡)

)
𝑣1,1(𝑡)

]]
for 𝑗 = 1,… , 𝑟 − 1, where 𝐺 ∶= (𝐼 − ΓΓ̃−1); in particular we have

𝑤1,1(𝑡) = 𝑣1,1(𝑡) + 𝐺
𝑟−1∑
𝑖=2

𝑣𝑖,1(𝑡).

With �̃�(𝑡) ∶=
∑𝑟−1
𝑖=2 𝑤𝑖,1(𝑡) we find

�̇�1,1(𝑡) = 𝑤1,2(𝑡) − ΓΓ̃−1(𝑞1 + 𝑝1𝑘1(𝑡)) ⋅ (𝑤1,1(𝑡) − 𝐺�̃�(𝑡)
)
+ 𝑅𝑟𝑤1,1(𝑡) + 𝑅𝑟ΓΓ̃−1�̃�(𝑡),

�̇�1,2(𝑡) = 𝑤1,3(𝑡) − ΓΓ̃−1(𝑞2 + 𝑝2𝑘1(𝑡)) ⋅ (𝑤1,1(𝑡) − 𝐺�̃�(𝑡)
)
+ 𝑅𝑟−1𝑤1,1(𝑡) + 𝑅𝑟−1ΓΓ̃−1�̃�(𝑡),

⋮

�̇�1,𝑟−2(𝑡) = 𝑤1,𝑟−1(𝑡) − ΓΓ̃−1(𝑞𝑟−2 + 𝑝𝑟−2𝑘1(𝑡)) ⋅ (𝑤1,1(𝑡) − 𝐺�̃�(𝑡)
)
+ 𝑅3𝑤1,1(𝑡) + 𝑅3ΓΓ̃−1�̃�(𝑡),

�̇�1,𝑟−1(𝑡) = 𝑤1,𝑟(𝑡) − ΓΓ̃−1(𝑞𝑟−1 + 𝑝𝑟−1𝑘1(𝑡)) ⋅ (𝑤1,1(𝑡) − 𝐺�̃�(𝑡)
)
+ 𝑅2𝑤1,1(𝑡) + 𝑅2ΓΓ̃−1�̃�(𝑡) − 𝐺𝑧(𝑟−1)(𝑡),

�̇�1,𝑟(𝑡) = − ΓΓ̃−1(𝑞𝑟 + 𝑝𝑟𝑘1(𝑡)) ⋅ (𝑤1,1(𝑡) − 𝐺�̃�(𝑡)
)
+ 𝑅1𝑤1,1(𝑡) + 𝑅1ΓΓ̃−1�̃�(𝑡)

+
𝑟∑
𝑖=1
𝑅𝑖𝑧(𝑖−1)(𝑡) + 𝑓

(
𝑑(𝑡), 𝑇 (𝑦, �̇�,… , 𝑦(𝑟−1))(𝑡)

)
,

𝑘1(𝑡) =
1

1 − 𝜑1(𝑡)2‖𝑤1,1(𝑡) − 𝐺�̃�(𝑡)‖2 .

(27a)

and, for 𝑖 = 2,… , 𝑟 − 1,

�̇�𝑖,1(𝑡) = 𝑤𝑖,2(𝑡) −
(
𝑞1 + 𝑝1𝑘𝑖(𝑡)

)
⋅𝑤𝑖,1(𝑡) +

(
𝑞1 + 𝑝1𝑘𝑖−1(𝑡)

)
⋅𝑤𝑖−1,1(𝑡)
⏟⏞⏟⏞⏟

=
(
𝑤1,1(𝑡)−𝐺�̃�(𝑡)

)
if 𝑖 = 2

,

⋮

�̇�𝑖,𝑟−1(𝑡) = 𝑤𝑖,𝑟(𝑡) −
(
𝑞𝑟−1 + 𝑝𝑟−1𝑘𝑖(𝑡)

)
⋅𝑤𝑖,1(𝑡) +

(
𝑞𝑟−1 + 𝑝𝑟−1𝑘𝑖−1(𝑡)

)
⋅𝑤𝑖−1,1(𝑡)
⏟⏞⏟⏞⏟

=
(
𝑤1,1(𝑡)−𝐺�̃�(𝑡)

)
if 𝑖 = 2

,

�̇�𝑖,𝑟(𝑡) = −
(
𝑞𝑟 + 𝑝𝑟𝑘𝑖(𝑡)

)
⋅𝑤𝑖,1(𝑡) +

(
𝑞𝑟 + 𝑝𝑟𝑘𝑖−1(𝑡)

)
⋅𝑤𝑖−1,1(𝑡)
⏟⏞⏟⏞⏟

=
(
𝑤1,1(𝑡)−𝐺�̃�(𝑡)

)
if 𝑖 = 2

,

𝑘𝑖(𝑡) =
1

1 − 𝜑𝑖(𝑡)2‖𝑤𝑖,1(𝑡)‖2 .

(27b)

Step 2: We define the operator �̃� ∶ ([−ℎ,∞) → ℝ𝑚)𝑟 → ∞
loc(ℝ≥0 → ℝ𝑞), where 𝑞 = (𝑟 − 1)𝑟𝑚 + 𝑟, (essentially) as the

solution operator of (27), i.e., for 𝜁1,… , 𝜁𝑟 ∈ ([−ℎ,∞) → ℝ𝑚) let 𝑤𝑖𝑗 ∶ [0, 𝛽) → ℝ𝑚, 𝛽 ∈ (0,∞], be the unique maximal
solution of (27) for 𝑧 = 𝜁1, �̇� = 𝜁2,… , 𝑧(𝑟−1) = 𝜁𝑟 with appropriate initial values according to the transformation which
leads to (27), and define

�̃� (𝜁1,… , 𝜁𝑟)(𝑡) ∶=
(
𝑤1,1(𝑡),… , 𝑤1,𝑟(𝑡), 𝑤2,1(𝑡), … , 𝑤𝑟−1,𝑟(𝑡), 𝑘1(𝑡),… , 𝑘𝑟(𝑡)

)⊤, 𝑡 ∈ [0, 𝛽).

We stress that 𝑦, �̇�,… , 𝑦(𝑟−1) in (27a) can be replaced by 𝑤𝑖,𝑗 and 𝑧, �̇�,… , 𝑧(𝑟−1) using 𝑦(𝑖) = 𝑧(𝑖) + 𝑤(𝑖)
1,1 + ΓΓ̃−1�̃�(𝑖) and

the differential equations (27). Furthermore, the operator �̃� depends on the disturbance 𝑑 and several initial values. In the
following we show that �̃� is well-defined, i.e., 𝛽 = ∞, and has the properties a)–c). Note that for

 ∶={ (
𝑡, 𝑤1,1,… , 𝑤1,𝑟, 𝑤2,1,… , 𝑤𝑟−1,𝑟

)
∈ ℝ≥0 ×ℝ𝑟𝑚

|||||| 𝜑1(𝑡)
‖‖‖‖‖‖𝑤1,1 − 𝐺

𝑟−1∑
𝑖=2

𝑤𝑖,1

‖‖‖‖‖‖ < 1, 𝜑𝑖(𝑡)‖𝑤𝑖,1‖ < 1, 𝑖 = 2,… , 𝑟 − 1

}
we have

(
𝑡, 𝑤1,1(𝑡),… , 𝑤1,𝑟(𝑡), 𝑤2,1(𝑡),… , 𝑤𝑟−1,𝑟(𝑡)

)
∈  for all 𝑡 ∈ [0, 𝛽), and the closure of the graph of the solution(

𝑤1,1,… , 𝑤1,𝑟, 𝑤2,1,… , 𝑤𝑟−1,𝑟
)

is not a compact subset of .
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Step 2a: First assume that 𝜁1,… , 𝜁𝑟 are bounded on [0, 𝛽). We show that 𝑤𝑖,𝑗 and 𝑘𝑖 are bounded as well. As the solution
evolves in , it is clear that 𝑤1,1 − 𝐺�̃�, 𝑤2,1,… , 𝑤𝑟−1,1 are bounded, and thus also 𝑤1,1 is bounded. Since 𝑦 = 𝑧 +𝑤1,1 +
ΓΓ̃−1�̃�, it follows that 𝑦 is bounded and hence 𝑇 (𝑦, �̇�,… , 𝑦(𝑟−1)) is bounded by property a’). Boundedness of 𝑑 and continuity
of 𝑓 then imply that 𝑓

(
𝑑(⋅), 𝑇 (𝑦, �̇�,… , 𝑦(𝑟−1))(⋅)

)
is bounded.

Now let 𝑤𝑖 ∶= (𝑤⊤
𝑖,1,… , 𝑤⊤

𝑖,𝑟)
⊤, then it follows from (27) that

�̇�1(𝑡) = �̂�𝑤1(𝑡) − 𝑘1(𝑡)𝑃ΓΓ̃−1(𝑤1,1(𝑡) − 𝐺�̃�(𝑡)
)
+ 𝐵1(𝑡),

�̇�2(𝑡) = �̂�𝑤2(𝑡) − 𝑘2(𝑡)𝑃𝑤2,1(𝑡) + 𝑘1(𝑡)𝑃
(
𝑤1,1(𝑡) − 𝐺�̃�(𝑡)

)
+ 𝐵2(𝑡),

�̇�𝑖(𝑡) = �̂�𝑤𝑖(𝑡) − 𝑘𝑖(𝑡)𝑃𝑤𝑖,1(𝑡) + 𝑘𝑖−1(𝑡)𝑃𝑤𝑖−1,1(𝑡) + 𝐵𝑖(𝑡)
(28)

for 𝑖 = 3,… , 𝑟 − 1, where �̂� is as in the proof of Proposition 2.1, 𝐵𝑖 is some suitable bounded function and

𝑃 ∶=
⎡⎢⎢⎣
𝑝1𝐼𝑚
⋮

𝑝𝑟𝐼𝑚

⎤⎥⎥⎦ .
Recall that �̂�⊤𝑃 + 𝑃 �̂� + �̂� = 0, where 𝑃 > 0 and �̂� > 0, and that

𝑃 ⊤𝑃 = [�̃�𝐼𝑚, 0,… , 0], �̃� ∶= (𝑃1 − 𝑃2𝑃 −1
4 𝑃 ⊤

2 ) > 0.

We consider the cases 𝑟 = 2 and 𝑟 = 3 separately.
Step 2b: Assume that 𝑟 = 2. Then (28) reads

�̇�1(𝑡) = �̂�𝑤1(𝑡) − 𝑘1(𝑡)𝑃ΓΓ̃−1𝑤1,1(𝑡) + 𝐵1(𝑡).

Using the Lyapunov function 𝑉 (𝑤1) = 𝑤⊤
1 𝑃𝑤1 one can then show, as in the proof of Proposition 2.1, that 𝑤1 and 𝑘1 are

bounded on [0, 𝛽).
Step 2c: Assume that 𝑟 = 3. Then (28) reads

�̇�1(𝑡) = �̂�𝑤1(𝑡) − 𝑘1(𝑡)𝑃ΓΓ̃−1(𝑤1,1(𝑡) − 𝐺𝑤2,1(𝑡)
)
+ 𝐵1(𝑡),

�̇�2(𝑡) = �̂�𝑤2(𝑡) − 𝑘2(𝑡)𝑃𝑤2,1(𝑡) + 𝑘1(𝑡)𝑃
(
𝑤1,1(𝑡) − 𝐺𝑤2,1(𝑡)

)
+ 𝐵2(𝑡).

From condition (25) we obtain that 𝐺 = 𝐺⊤ > 0, hence 𝐺ΓΓ̃−1 =
(
𝐺ΓΓ̃−1)⊤ > 0 has a unique matrix square root. Let

𝐾 ∶= 𝐼𝑚 ⊗
(
𝐺ΓΓ̃−1) 1

2 > 0 (recall the Kronecker product ⊗ from the proof of Proposition 2.1) and define the Lyapunov
function 𝑉 (𝑤1, 𝑤2) ∶= 𝑤⊤

1 𝑃𝑤1 +𝑤⊤
2𝐾

⊤𝑃𝐾𝑤2 for 𝑤1, 𝑤2 ∈ ℝ3𝑚. Then, for all 𝑡 ∈ [0, 𝛽),
d
d𝑡
𝑉
(
𝑤1(𝑡), 𝑤2(𝑡)

)
= 𝑤1(𝑡)⊤

(
�̂�⊤𝑃 + 𝑃 �̂�

)
𝑤1(𝑡) − 2𝑘1(𝑡)𝑤1(𝑡)⊤𝑃𝑃ΓΓ̃−1(𝑤1,1(𝑡) − 𝐺�̃�(𝑡)

)
+ 2𝑤1(𝑡)⊤𝐵1(𝑡) +𝑤2(𝑡)⊤

(
�̂�⊤𝐾⊤𝑃𝐾 +𝐾⊤𝑃𝐾�̂�

)
𝑤2(𝑡) − 2𝑘2(𝑡)𝑤2(𝑡)⊤𝐾⊤𝑃𝐾𝑃𝑤2,1(𝑡)

+ 2𝑤2(𝑡)⊤𝐾⊤𝑃𝐾𝐵2(𝑡) + 2𝑘1(𝑡)𝑤2(𝑡)⊤𝐾⊤𝑃𝐾𝑃
(
𝑤1,1(𝑡) − 𝐺𝑤2,1(𝑡)

)
,

and since it is easy to see that �̂� and 𝐾 commute and 𝐾⊤𝑃𝐾𝑃 = �̃�[𝐼𝑚, 0,… , 0]⊤𝐺ΓΓ̃−1, it follows that, for some positive
𝛼1, 𝛼2,𝑀1,𝑀2,

d
d𝑡
𝑉
(
𝑤1(𝑡), 𝑤2(𝑡)

) ≤ −𝛼1‖𝑤1(𝑡)‖2 − 𝛼2‖𝑤2(𝑡)‖2 − 2𝑘1(𝑡)
(
�̃�𝑤⊤

1,1ΓΓ̃
−1 − �̃�𝑤⊤

2,1𝐺ΓΓ̃
−1
) (
𝑤1,1(𝑡) − 𝐺𝑤2,1(𝑡)

)
+𝑀1‖𝑤1(𝑡)‖ +𝑀2‖𝑤2(𝑡)‖

= −𝛼1‖𝑤1(𝑡)‖2 − 𝛼2‖𝑤2(𝑡)‖2 +𝑀1‖𝑤1(𝑡)‖ +𝑀2‖𝑤2(𝑡)‖
− 2�̃�𝑘1(𝑡)

(
𝑤1,1 − 𝐺𝑤2,1

)⊤ ΓΓ̃−1(𝑤1,1(𝑡) − 𝐺𝑤2,1(𝑡)
)

≤ −𝛼1‖𝑤1(𝑡)‖2 − 𝛼2‖𝑤2(𝑡)‖2 +𝑀1‖𝑤1(𝑡)‖ +𝑀2‖𝑤2(𝑡)‖.
As in the proof of Proposition 2.1 we may now show that 𝑤1 and 𝑤2 are bounded and that 𝑘1 and 𝑘2 are bounded as well
on [0, 𝛽).

Step 2d: We show 𝛽 = ∞ (not assuming boundedness of 𝜁1,… , 𝜁𝑟). Assume that 𝛽 < ∞. Then 𝜁1,… , 𝜁𝑟 are bounded on
[0, 𝛽) and hence 𝑤𝑖,𝑗 and 𝑘𝑖 are bounded by Steps 2a–2c. Therefore, it follows that the closure of the graph of the solution(
𝑤1,1,… , 𝑤1,𝑟, 𝑤2,1,… , 𝑤𝑟−1,𝑟

)
is a compact subset of , a contradiction, thus 𝛽 = ∞.

Step 2e: It remains to show that �̃� has the properties a)–c). Properties b) and c) are clear and property a) is an immediate
consequence of Steps 2a–2c.
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Step 3: By Step 2 we may write the conjunction of (24) and (17) with input 𝑢 and output 𝑧 = 𝑧𝑟−1,1 in the form

𝑧(𝑟)(𝑡) = Γ̃𝑢(𝑡) +
𝑟−1∑
𝑗=0

(
d
d𝑡

)𝑗 [(
𝑞𝑟−𝑗 + 𝑝𝑟−𝑗𝑘𝑟−1(𝑡)

)
𝑤𝑟−1,1(𝑡)

]
and hence

𝑧(𝑟)(𝑡) = 𝐹
(
𝑑(𝑡), �̃� (𝑧, �̇�,… , 𝑧(𝑟−1))(𝑡)

)
+ Γ̃𝑢(𝑡)

for 𝑑(𝑡) ∶=
(
𝜑𝑟−1(𝑡), �̇�𝑟−1(𝑡),… , 𝜑(𝑟−1)

𝑟−1 (𝑡)
)⊤ ∈ ∞(ℝ≥0 → ℝ𝑟), some 𝐹 ∈ (ℝ𝑟 × ℝ𝑞 → ℝ𝑚) and the operator �̃� ∶([−ℎ,∞) → ℝ𝑚)𝑟 → ∞

loc(ℝ≥0 → ℝ𝑞) which satisfies the properties a)–c). It is clear that any solution of (17), (24) satisfies
the properties (23) and (20).

Remark 3.2. A careful inspection of the proof of Theorem 3.1 reveals that in order for Theorem 3.1 to hold true for 𝑟 ≥ 4 we
would need to show that (28) has bounded solutions. However, we were only able to find suitable Lyapunov functions in the
cases 𝑟 = 2 and 𝑟 = 3, thus the proof for 𝑟 ≥ 4 remains an open problem; in particular, a recursive Lyapunov function of the form
𝑉𝑖(𝑤1,… , 𝑤𝑖) = 𝑉𝑖−1(𝑤1,… , 𝑤𝑖−1) +𝑤⊤

𝑖 𝐾
⊤
𝑖 𝑃𝐾𝑖𝑤𝑖 does not exist in the latter case. It is worth noting that in the case 𝑟 = 2 no

condition on Γ̃ is present and for 𝑟 = 3 condition (25) means, roughly speaking, that we need to choose Γ̃ “larger than” Γ, which
resembles a small gain condition, cf. [15]. We conjecture that some kind of small gain condition is needed in the case 𝑟 ≥ 4.

4 FUNNEL CONTROL VIA FUNNEL PRE-COMPENSATOR

As discussed in Section 3, in virtue of Theorem 3.1 we may apply the funnel controller from [5] to the interconnection of
system (24) with the funnel pre-compensator cascade in the cases 𝑟 = 2 and 𝑟 = 3, cf. Figure 6 . For completeness we state the
resulting controller structure and the corresponding feasibility result. The funnel controller as in [5] is given by

𝑒0(𝑡) = 𝑒(𝑡) = 𝑦(𝑡) − 𝑦ref (𝑡),
𝑒1(𝑡) = �̇�0(𝑡) + 𝑘0(𝑡) ⋅ 𝑒0(𝑡),
𝑒2(𝑡) = �̇�1(𝑡) + 𝑘1(𝑡) ⋅ 𝑒1(𝑡),

⋮
𝑒𝑟−1(𝑡) = �̇�𝑟−2(𝑡) + 𝑘𝑟−2(𝑡) ⋅ 𝑒𝑟−2(𝑡),

𝑘𝑖(𝑡) =
1

1 − 𝜑𝑖(𝑡)2‖𝑒𝑖(𝑡)‖2 , 𝑖 = 0,… , 𝑟 − 1,

𝑢(𝑡) = −𝑘𝑟−1(𝑡)𝑒𝑟−1(𝑡), (29)

where 𝑟 ∈ ℕ is the relative degree and the reference signal and funnel functions satisfy

𝑦ref ∈  𝑟,∞(ℝ≥0 → ℝ𝑚), 𝜑0 ∈ Φ𝑟, 𝜑1 ∈ Φ𝑟−1, … , 𝜑𝑟−1 ∈ Φ1. (30)

In [5], the existence of solutions of the initial value problem resulting from the application of the funnel controller (29) to a
system (24) is investigated (actually, a much larger class of nonlinear systems is allowed in [5]). We stress that (29) requires
availability of �̇�,… , 𝑦(𝑟−1). This can be avoided using the funnel pre-compensator cascade.

The combination of the funnel controller (29) with the cascade of funnel pre-compensators 𝐹𝑃𝑟−1◦… ◦𝐹𝑃1 defined
by (17), (18) reads as follows, where we only consider the two cases 𝑟 = 2 and 𝑟 = 3:

Case 𝑟 = 2:
�̇�1(𝑡) = 𝑧2(𝑡) +

(
𝑞1 + 𝑝1𝑘2(𝑡)

)
⋅ (𝑦(𝑡) − 𝑧1(𝑡)),

�̇�2(𝑡) =
(
𝑞2 + 𝑝2𝑘2(𝑡)

)
⋅ (𝑦(𝑡) − 𝑧1(𝑡)) + Γ̃ 𝑢(𝑡),

𝑒0(𝑡) = 𝑧1(𝑡) − 𝑦ref (𝑡),
𝑒1(𝑡) = �̇�0(𝑡) + 𝑘0(𝑡)𝑒0(𝑡),

𝑘0(𝑡) =
1

1−𝜑0(𝑡)2‖𝑒0(𝑡)‖2 ,
𝑘1(𝑡) =

1
1−𝜑1(𝑡)2‖𝑒1(𝑡)‖2 ,

𝑘2(𝑡) =
1

1−𝜑2(𝑡)2‖𝑦(𝑡)−𝑧1(𝑡)‖2 ,
𝑢(𝑡) = −𝑘1(𝑡) ⋅ 𝑒1(𝑡),

(31)
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Case 𝑟 = 3:
�̇�1,1(𝑡) = 𝑧1,2(𝑡) +

(
𝑞1 + 𝑝1𝑘3(𝑡)

)
⋅ (𝑦(𝑡) − 𝑧1,1(𝑡)),

�̇�1,2(𝑡) = 𝑧1,3(𝑡) +
(
𝑞2 + 𝑝2𝑘3(𝑡)

)
⋅ (𝑦(𝑡) − 𝑧1,1(𝑡)),

�̇�1,3(𝑡) =
(
𝑞3 + 𝑝3𝑘3(𝑡)

)
⋅ (𝑦(𝑡) − 𝑧1,1(𝑡)) + Γ̃ 𝑢(𝑡),

�̇�2,1(𝑡) = 𝑧2,2(𝑡) +
(
𝑞1 + 𝑝1𝑘4(𝑡)

)
⋅ (𝑧1,1(𝑡) − 𝑧2,1(𝑡)),

�̇�2,2(𝑡) = 𝑧2,3(𝑡) +
(
𝑞2 + 𝑝2𝑘4(𝑡)

)
⋅ (𝑧1,1(𝑡) − 𝑧2,1(𝑡)),

�̇�2,3(𝑡) =
(
𝑞3 + 𝑝3𝑘4(𝑡)

)
⋅ (𝑧1,1(𝑡) − 𝑧2,1(𝑡)) + Γ̃ 𝑢(𝑡),

𝑒0(𝑡) = 𝑧2,1(𝑡) − 𝑦ref (𝑡),
𝑒1(𝑡) = �̇�0(𝑡) + 𝑘0(𝑡) ⋅ 𝑒0(𝑡),
𝑒2(𝑡) = �̇�1(𝑡) + 𝑘1(𝑡) ⋅ 𝑒1(𝑡),

𝑘0(𝑡) =
1

1−𝜑0(𝑡)2‖𝑒0(𝑡)‖2 ,
𝑘1(𝑡) =

1
1−𝜑1(𝑡)2‖𝑒1(𝑡)‖2 ,

𝑘2(𝑡) =
1

1−𝜑2(𝑡)2‖𝑒2(𝑡)‖2 ,
𝑘3(𝑡) =

1
1−𝜑3(𝑡)2‖𝑦(𝑡)−𝑧1,1(𝑡)‖2 ,

𝑘4(𝑡) =
1

1−𝜑4(𝑡)2‖𝑧1,1(𝑡)−𝑧2,1(𝑡)‖2 ,
𝑢(𝑡) = −𝑘2(𝑡) ⋅ 𝑒2(𝑡),

(32)

where 𝑦ref and 𝜑0,… , 𝜑𝑟−1 satisfy (30), Γ̃ = Γ̃⊤ > 0, 𝜑𝑟,… , 𝜑2𝑟−2 ∈ Φ𝑟−1 and 𝑞1,… , 𝑞𝑟, 𝑝1,… , 𝑝𝑟 > 0 are such that (5) is
satisfied for corresponding matrices 𝑃 and 𝑄. In a slightly different structure, the controller (31) for the case 𝑟 = 2 was already
successfully implemented in [8], see also the discussion therein.

Note that the derivatives �̇�0 and �̇�1 that appear in (31) and (32) only serve as short-hand notations and may be resolved in
terms of the pre-compensator states and the output 𝑦 using the differential equations in (31) and (32) as follows:

𝑟 = 2: �̇�0(𝑡) = 𝑧2(𝑡) +
(
𝑞1 + 𝑝1𝑘2(𝑡)

)
(𝑦(𝑡) − 𝑧1(𝑡)) − �̇�ref (𝑡),

𝑟 = 3: �̇�0(𝑡) = 𝑧2,2(𝑡) +
(
𝑞1 + 𝑝1𝑘4(𝑡)

)
(𝑧1,1(𝑡) − 𝑧2,1(𝑡)) − �̇�ref (𝑡),

�̇�1(𝑡) = 𝑧2,3(𝑡) +
(
𝑞2 + 𝑝2𝑘4(𝑡)

)
(𝑧1,1(𝑡) − 𝑧2,1(𝑡)) + 𝑝1𝑘4(𝑡)2

(
𝜑4(𝑡)�̇�4(𝑡)‖𝑧1,1(𝑡) − 𝑧2,1(𝑡)‖2

+ 𝜑4(𝑡)2(𝑧1,1(𝑡) − 𝑧2,1(𝑡))⊤
(
𝑧1,2(𝑡) + (𝑞1 + 𝑝1𝑘3(𝑡))(𝑦(𝑡) − 𝑧1,1(𝑡))

− 𝑧2,2(𝑡) − (𝑞1 + 𝑝1𝑘4(𝑡))(𝑧1,1(𝑡) − 𝑧2,1(𝑡))
))

(𝑧1,1(𝑡) − 𝑧2,1(𝑡))

+
(
𝑞1 + 𝑝1𝑘2(𝑡)

)(
𝑧1,2(𝑡) + (𝑞1 + 𝑝1𝑘3(𝑡))(𝑦(𝑡) − 𝑧1,1(𝑡)) − 𝑧2,2(𝑡) − (𝑞1 + 𝑝1𝑘4(𝑡))(𝑧1,1(𝑡) − 𝑧2,1(𝑡))

)
− �̈�ref (𝑡) + 𝑘0(𝑡)2

(
𝜑0(𝑡)�̇�0(𝑡)‖𝑒0(𝑡)‖2 + 𝜑0(𝑡)2𝑒0(𝑡)⊤�̇�0(𝑡)

)
𝑒0(𝑡) + 𝑘0(𝑡)�̇�0(𝑡).

We stress that the dynamic output error feedback controllers (31) and (32) are model-free, of (comparatively) low complexity,
robust with respect to modeling errors, disturbances and uncertainties, and they achieve prescribed performance of the tracking
error. Feasibility of (31) and (32) in the respective cases is a direct consequence of Theorem 3.1 and [5, Thm. 3.1].

Corollary 4.1
Consider a system (24) with 𝑟 ∈ {2, 3}, 𝑦0 ∈  𝑟−1,∞([−ℎ, 0] → ℝ𝑚) and assume that Γ = Γ⊤ > 0 and the operator 𝑇
satisfies a’). Let 𝑦ref and 𝜑0,… , 𝜑𝑟−1 be such that (30) holds and 𝜑𝑟,… , 𝜑2𝑟−2 ∈ Φ𝑟−1 be such that 𝑧1, 𝑒0, 𝑒1 as defined
in (31) or 𝑧1,1, 𝑧2,1, 𝑒0, 𝑒1, 𝑒2 as defined in (32), resp., with initial data (18) satisfy

𝜑𝑖(0)‖𝑒𝑖(0)‖ < 1, for all 𝑖 = 0,… , 𝑟 − 1,

and

𝜑2(0)‖𝑦(0) − 𝑧1(0)‖ < 1, if 𝑟 = 2,
𝜑3(0)‖𝑦(0) − 𝑧1,1(0)‖ < 1 and 𝜑4(0)‖𝑧1,1(0) − 𝑧2,1(0)‖ < 1, if 𝑟 = 3.

Further let 𝑞1,… , 𝑞𝑟, 𝑝1,… , 𝑝𝑟 > 0 be such that (5) is satisfied for corresponding matrices 𝐴, 𝑃 ,𝑄, and let Γ̃ = Γ̃⊤ > 0 be
such that (25) is satisfied.

Then the application of the funnel controller (31) (if 𝑟 = 2) or (32) (if 𝑟 = 3), resp., to (24) yields an initial-value problem,
which has a solution, and every solution can be extended to a maximal solution (𝑦, 𝑧) ∶ [−ℎ, 𝜔) → ℝ𝑚, 𝜔 ∈ (0,∞], where
𝑧 = (𝑧1, 𝑧2) if 𝑟 = 2 and 𝑧 = (𝑧1,1, 𝑧1,2, 𝑧1,3, 𝑧2,1, 𝑧2,2, 𝑧2,3) if 𝑟 = 3, which has the following properties:

(i) The solution is global (i.e., 𝜔 = ∞).

(ii) The input 𝑢 ∶ ℝ≥0 → ℝ𝑚, the gain functions 𝑘0,… , 𝑘2𝑟−2 ∶ ℝ≥0 → ℝ, the compensator states 𝑧 and 𝑦,… , 𝑦(𝑟−1) ∶ ℝ≥0 →
ℝ𝑚 are bounded.
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(iii) The functions 𝑒0,… , 𝑒𝑟−1 ∶ ℝ≥0 → ℝ𝑚 and the compensator errors 𝑦 − 𝑧1 or 𝑦 − 𝑧1,1, 𝑧1,1 − 𝑧2,1, resp., evolve in their
respective performance funnels in the sense

∃ 𝜀0,… , 𝜀2𝑟−2 > 0 ∀ 𝑡 > 0 ∶ ‖𝑒𝑖(𝑡)‖ ≤ 𝜑𝑖(𝑡)−1 − 𝜀𝑖, 𝑖 = 0,… , 𝑟 − 1,‖𝑦(𝑡) − 𝑧1(𝑡)‖ ≤ 𝜑2(𝑡)−1 − 𝜀2, if 𝑟 = 2,‖𝑦(𝑡) − 𝑧1,1(𝑡)‖ ≤ 𝜑3(𝑡)−1 − 𝜀3 and ‖𝑧1,1(𝑡) − 𝑧2,1(𝑡)‖ ≤ 𝜑4(𝑡)−1 − 𝜀4, if 𝑟 = 3.

In particular, the tracking error 𝑒(𝑡) = 𝑦(𝑡) − 𝑦ref (𝑡) satisfies, for all 𝑡 > 0,

‖𝑒(𝑡)‖ ≤ 𝜑0(𝑡)−1 + 𝜑2(𝑡)−1 − 𝜀0 − 𝜀2, if 𝑟 = 2,‖𝑒(𝑡)‖ ≤ 𝜑0(𝑡)−1 + 𝜑3(𝑡)−1 + 𝜑4(𝑡)−1 − 𝜀0 − 𝜀3 − 𝜀4, if 𝑟 = 3.

Remark 4.2. The controllers (31) and (32) contain a lot of design parameters and there is a lot of freedom in choosing them.
First of all, the parameters 𝑞𝑖 must be chosen as the coefficients of a Hurwitz polynomial and then the 𝑝𝑖 are defined in terms of
the 𝑞𝑖, see Section 2 and Figure 3 . While the choice of the 𝑞𝑖 influences the convergence speed of the pre-compensator states,
in our simulations it turned out that varying the 𝑞𝑖 had only little effect on the overall controller performance. Larger effects can
be achieved by appropriately designing the funnel functions 𝜑𝑖 of the controllers. While the performance of the tracking error
is usually prescribed by the problem or application (and hence, if 𝑟 = 2, 𝜑0 and 𝜑2 or, if 𝑟 = 3, 𝜑0, 𝜑3 and 𝜑4 must be chosen
accordingly), there is still a lot of freedom in choosing the funnel functions for 𝑒𝑖 with 𝑖 ≥ 1. A brief analysis of appropriate
choices and some rules of thumb can be found in [5, Sec. 4.2].

Remark 4.3. We compare the controllers (31) and (32) to an alternative approach presented in the recent conference paper [14];
a similar approach, based on prescribed performance control, can be found in [4]. In the work [14] the funnel controller from [26]
is combined with a high-gain observer. For nonlinear SISO systems with higher relative degree a virtual (weighted) output is
defined as

𝑠(𝑡) = 𝑒(𝑡) + 𝑘2𝜇�̇�(𝑡) +… + 𝑘𝑟𝜇𝑟−1𝑒(𝑟−1)(𝑡)

for some design parameters 𝑘𝑖 > 0 and a scaling parameter 𝜇 > 0. Then the system has relative degree one with respect to
the virtual output 𝑠. In a first step, it is shown that funnel control is feasible for the system with output 𝑠, and for sufficiently
small scaling parameter 𝜇 the original tracking error 𝑒 is close to 𝑠 and hence evolves in a prescribed performance funnel.
However, tuning of the scaling parameter 𝜇 has to be done a posteriori and hence depends on the system parameters and the
chosen reference trajectory; once a parameter value is fixed, error evolution in the performance funnel cannot be guaranteed
when the reference signal or system parameters are changed. Suitable values for 𝜇 need to be identified by offline simulations
which contrasts the identification-free methodology of funnel control. In particular, this approach is not model-free like standard
funnel control approaches and the controller is not robust in the sense that, when all its parameters are fixed, it works for a class
of systems satisfying some structural assumption.
Since the above approach still involves output derivatives, in a second step presented in [14], the output derivatives are estimated
using a high-gain observer as follows:

�̇�1(𝑡) = 𝑧2(𝑡) +
𝛼1
𝜀
(𝑒(𝑡) − 𝑧1(𝑡)),

�̇�2(𝑡) = 𝑧3(𝑡) +
𝛼2
𝜀2
(𝑒(𝑡) − 𝑧1(𝑡)),

⋮

�̇�𝑟−1(𝑡) = 𝑧𝑟(𝑡) +
𝛼𝑟−1
𝜀𝑟−1

(𝑒(𝑡) − 𝑧1(𝑡)),

�̇�𝑟(𝑡) = 𝐹
(
𝑡, 𝑧1(𝑡),… , 𝑧𝑟(𝑡)

)
+ Γ𝑢(𝑡) + 𝛼𝑟

𝜀𝑟
(𝑒(𝑡) − 𝑧1(𝑡)),

(33)

where 𝛼1,… , 𝛼𝑟 are such that the matrix

[
−𝛼1 1
⋮ ⋱

−𝛼𝑟−1 1
−𝛼𝑟 0

]
∈ ℝ𝑟×𝑟 is Hurwitz (similar to the 𝑞𝑖 chosen for (1)) and 𝜀 is a small

tuning parameter; actually 𝑘 = 1∕𝜀 is the high-gain parameter of the high-gain observer (33). The function 𝐹 is a nominal
model for the dynamics of (24) when 𝑢 = 0. We stress that for (33) the high-frequency gain matrix Γ needs to be known exactly.
It is shown in [14] that, for fixed system data, 𝜇 and 𝜀 can be chosen sufficiently small so that the funnel controller combined
with the high-gain observer yields a tracking error 𝑒which evolves in a prescribed performance funnel. However, the drawbacks
described above for the controller without high-gain observer remain.
An alternative to using the virtual output 𝑠 with scaling parameter 𝜇 may be to use the funnel controller (29) instead and
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to combine it with the high-gain observer (33) so that 𝑒(𝑖) is replaced by its estimate 𝑧𝑖. For relative degree 𝑟 = 3 and the
choice 𝐹 = 0 the resulting controller takes the form

�̇�1(𝑡) = 𝑧2(𝑡) +
𝛼1
𝜀
(𝑒(𝑡) − 𝑧1(𝑡)), 𝑒0(𝑡) = 𝑧1(𝑡),

�̇�2(𝑡) = 𝑧3(𝑡) +
𝛼2
𝜀2
(𝑒(𝑡) − 𝑧1(𝑡)), 𝑒1(𝑡) = 𝑧2(𝑡) + 𝑘0(𝑡)𝑒0(𝑡),

�̇�3(𝑡) = Γ𝑢(𝑡) + 𝛼3
𝜀3
(𝑒(𝑡) − 𝑧1(𝑡)), 𝑒2(𝑡) = 𝑧3(𝑡) +

d
d𝑡

(
𝑘0(𝑡)𝑒0(𝑡)

)
+ 𝑘1(𝑡)𝑒1(𝑡),

𝑘𝑖(𝑡) =
1

1 − 𝜑𝑖(𝑡)2‖𝑒𝑖(𝑡)‖2 , 𝑖 = 0, 1, 2,

𝑢(𝑡) = −𝑘2(𝑡)𝑒2(𝑡).

(34)

More explicitly, we may write

𝑒2(𝑡) = 𝑧3(𝑡) + 2𝑘0(𝑡)2
(
𝜑0(𝑡)�̇�0(𝑡)‖𝑒0(𝑡)‖2 + 𝜑0(𝑡)2𝑒0(𝑡)⊤𝑧2(𝑡)

)
𝑒0(𝑡) + 𝑘0(𝑡)𝑧2(𝑡) + 𝑘1(𝑡)𝑒1(𝑡).

The controller (34) is very sensitive with respect to the choice of the initial values. If 𝑧1(0) ≠ 𝑒(0), then enormous peaks in
the generated control 𝑢 at the beginning are to be expected because of the peaking phenomenon of the high-gain observer,
cf. [2, 18, 32]. To circumvent the peaking, saturation is commonly used. However, we stress that a saturation of the observer
states as suggested in [14] is not possible here, since this only leads to infeasibility of the controller (the closed-loop system
does not have a global solution). Instead, the control input must be directly saturated using

𝑢(𝑡) = sat
(
−𝑘2(𝑡)𝑒2(𝑡), �̄�

)
, (35)

where �̄� > 0 is the saturation level and

sat ∶ ℝ ×ℝ → ℝ, (𝑣, �̄�) →
{

𝑣, |𝑣| ≤ �̄�,
sign(𝑣) �̄�, |𝑣| > �̄�.

While the peaking phenomenon can be avoided by the saturation of the input, care must be taken with the choice of the saturation
level, because values which are too small may lead to infeasibility of the controller in the sense that the solution leaves the domain
of the closed-loop differential equation in finite time. Appropriate saturation levels must be identified, and we stress that a formal
feasibility proof for the controller (34) with and without saturation (35) does not exist yet. Therefore, we consider (34), (35) only
for reasons of comparison.
In (34) only the scaling parameter 𝜀 from the high-gain observer remains. Nevertheless, the choice of 𝜀 still depends on the
system parameters, thus most of the drawbacks remain. Note also that the high-frequency gain matrix Γ still appears in (34),
however, due to input saturation, it is possible to relax this and use some nominal model instead, cf. [31]. We compare the
controller (34), (35) to the controller (32) in a simulation in Section 5.2. For the exact same simulation setup, the controller (34)
with saturation (35) (when 𝜀 is sufficiently small) performs better than (32). However, we note that (34), (35) requires a lot of
computational effort, which dramatically increases when |𝑧1(0) − 𝑒(0)| increases; more often than not the numerical methods
were not able to provide a solution in our simulations. Such a behavior does not happen for the controller (32) which uses the
funnel pre-compensator, which hence seems preferable to (34) in practical applications, where real-time capability is required.
Let us summarize the drawbacks of the controller (34), (35) compared to (32):

• no feasibility proof is available for (34) (with or without (35));

• (34) is not model-free and suitable values for 𝜀 need to be identified by offline simulations;

• the choice of 𝜀 depends on the system parameters and the reference trajectory, hence, once it has been fixed, changes in
the system parameters may lead to infeasibility;

• the computational effort for (34), (35) is very sensitive with respect to the choice of initial values and dramatically increases
when |𝑧1(0) − 𝑒(0)| increases.
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5 SIMULATIONS

5.1 Mass on car system
We illustrate the combined funnel controller and funnel pre-compensator in (31) and (32) by a simulation for a mass-spring
system mounted on a car from [43], see Fig. 7 , and compare it to the simulation of the funnel controller (29) for this system
as performed in [5]. As depicted in Fig. 7 , the mass 𝑚2 (in kg) moves on a ramp which is inclined by the angle 𝛼 (in rad) and
mounted on a car with mass 𝑚1 (in kg). We assume that we may control the force 𝑢 = 𝐹 (in N) acting on it. The equations of
motion are given by [

𝑚1 + 𝑚2 𝑚2 cos 𝛼
𝑚2 cos 𝛼 𝑚2

](
�̈�(𝑡)
�̈�(𝑡)

)
+
(

0
𝑘𝑠(𝑡) + 𝑑�̇�(𝑡)

)
=
(
𝑢(𝑡)
0

)
, (36)

where 𝑥 (in m) is the horizontal car position and 𝑠 (in m) the relative position of the mass on the ramp. The constants 𝑘 (in N∕m),
𝑑 (in Ns∕m) are the coefficients of the spring and damper, resp. The output is the horizontal position of the mass on the ramp,

𝑦(𝑡) = 𝑥(𝑡) + 𝑠(𝑡) cos 𝛼.

F

y

a=const

x

s

FIGURE 7 Mass on car system.

The system (36) can be reformulated such that it belongs to the class (24), see [43], with a relative degree 𝑟 depending on the
angle 𝛼 and the damping 𝑑. We distinguish three cases, where the first two correspond to the same experimental setup as in [5].

Case 1: If 0 rad < 𝛼 < 𝜋
2
rad, see Fig. 7 , then system (36) has relative degree 𝑟 = 2 and the high-frequency gain matrix

reads Γ = sin2 𝛼
𝑚1+𝑚2 sin

2 𝛼
> 0 ∕kg. For the simulation, we choose the reference trajectory 𝑦ref (𝑡) = cos 𝑡 m, the parameters 𝑚1 =

4 kg, 𝑚2 = 1 kg, 𝑘 = 2N∕m, 𝑑 = 1Ns∕m, the initial values 𝑥(0) = 𝑠(0) = 0m, �̇�(0) = �̇�(0) = 0m∕s, and 𝛼 = 𝜋
4
rad. For the

controller (31) we choose the initial values 𝑧1(0) = 𝑧2(0) = 0, the funnel functions

𝜑0(𝑡) = 𝜑2(𝑡) = 2(5𝑒−2𝑡 + 0.1)−1, 𝜑1(𝑡) = (1.3𝑒−4𝑡 + 0.01)−1,

and Γ̃ = 1
4
∕kg > 1

9
∕kg = Γ. The parameters 𝑞𝑖, 𝑝𝑖 are determined by the coefficients of the Hurwitz polynomial

(𝑠 + 5)2 = 𝑠2 + 10𝑠 + 25,

by which 𝑞1 = 10 and 𝑞2 = 25. Therefore, 𝐴 =
[
−10 1
−25 0

]
and the Lyapunov equation 𝐴⊤𝑃 + 𝑃𝐴 = −𝐼2 has the solution

𝑃 =

[
13
10

− 1
2

− 1
2

63
250

]
,

by which 𝑝1 = 1 and 𝑝2 = 125
63

. Obviously the initial errors lie within the respective funnel boundaries and all assumptions of
Corollary 4.1 are satisfied, thus it yields that funnel control is feasible. The sum 𝜑−1

0 +𝜑−1
2 equals the funnel boundary as chosen

for the simulation in [5], hence the results may be compared.
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Fig. 8 a: Funnel and tracking error
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FIGURE 8 Simulation of the controller (31) for the mass on car system (36) with 𝛼 = 𝜋
4
rad.

The simulation of the controller (31) applied to (36) over the time interval 0 − 10 s has been performed in MATLAB (solver:
ode15s, rel. tol.: 10−14, abs. tol.: 10−10) and is depicted in Fig. 8 . Fig. 8 a shows the tracking error and the funnel bound-
ary, while Fig. 8 b shows the corresponding input function generated by the controller. It can be seen that the proposed funnel
controller (31) guarantees that the tracking error evolves within the prescribed performance funnel and it yields a similar per-
formance of the input as the controller (29) when we compare it to the simulation results in [5]. A video clip of the simulation
can be found in the supplementary material.

Case 2: If 𝛼 = 0 rad and 𝑑 ≠ 0Ns∕m, see Fig. 9 , then system (36) has relative degree 𝑟 = 3 and high-frequency gain matrix
Γ = 𝑑

𝑚1𝑚2
> 0 ∕kgs. For the simulation, we choose the reference trajectory 𝑦ref (𝑡) = cos 𝑡 m, the parameters 𝑚1 = 4 kg, 𝑚2 =

1 kg, 𝑘 = 2N∕m, 𝑑 = 1Ns∕m and the initial values 𝑥(0) = 𝑠(0) = 0m, �̇�(0) = �̇�(0) = 0m∕s.
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FIGURE 9 Mass on car system with 𝛼 = 0 rad.

For the controller (32) we choose the initial values 𝑧𝑖,𝑗(0) = 0, 𝑖 = 1, 2, 𝑗 = 1, 2, 3, the funnel functions

𝜑0(𝑡) = 𝜑3(𝑡) = 𝜑4(𝑡) = 3(10𝑒−2𝑡 + 0.1)−1, 𝜑1(𝑡) = (2.5𝑒−3𝑡 + 0.01)−1, 𝜑2(𝑡) = (15𝑒−20𝑡 + 0.01)−1

and Γ̃ = 0.8∕kgs > 1
4
∕kgs = Γ such that (25) is satisfied. The parameters 𝑞𝑖, 𝑝𝑖 are determined by the coefficients of the Hurwitz

polynomial
(𝑠 + 5)3 = 𝑠3 + 15𝑠2 + 75𝑠 + 125,
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by which 𝑞1 = 15, 𝑞2 = 75 and 𝑞3 = 125. Therefore, 𝐴 =
[ −15 1 0

−75 0 1
−125 0 0

]
and the Lyapunov equation 𝐴⊤𝑃 + 𝑃𝐴 = −𝐼3 has the

solution

𝑃 =

⎡⎢⎢⎢⎣
58
5

− 1
2
− 136

125
− 1

2
136
125

− 1
2

− 136
125

− 1
2

1333
3125

⎤⎥⎥⎥⎦ ,
by which 𝑝1 = 1, 𝑝2 =

1383
391

and 𝑝3 =
2230
333

. The initial errors lie within the respective funnel boundaries and all assumptions of
Corollary 4.1 are satisfied, thus it yields that funnel control is feasible.
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FIGURE 10 Simulation of the controller (32) for the mass on car system (36) with 𝛼 = 0 rad.

The simulation of the controller (32) applied to (36) over the time interval 0 − 10 s has been performed in MATLAB (solver:
ode15s, rel. tol.: 10−14, abs. tol.: 10−10) and is depicted in Fig. 10 , where the tracking error is shown in Fig. 10 a and the input
in Fig. 10 b. We see that the funnel controller (32) is able to guarantee that the tracking error evolves within the prescribed
performance funnel. The performance of the control input generated by (32) is comparable to that generated by the controller (29)
in the simulation results in [5]; we stress that the controller (32) does not require availability of �̇� and �̈�. A video clip of the
simulation can be found in the supplementary material.

Case 3: If 𝛼 = 0 rad, 𝑑 = 0Ns∕m and 𝑘 ≠ 0N∕m, then system (36) has relative degree 𝑟 = 4 and high-frequency gain matrix
Γ = 𝑘

𝑚1𝑚2
> 0 ∕kgs2. For this case we did not state a feasible funnel controller in Section 4 since we were not able to extend

the result of Theorem 3.1 to the case 𝑟 ≥ 4, cf. also Remark 3.2. Nevertheless, the funnel controller (29) may be combined with
the funnel pre-compensator cascade (17), (18) even in the case 𝑟 = 4, however a feasibility proof does not exist for the resulting
controller. We omit the statement of the controller (which extends along the lines of (31) and (32)) and only provide a simulation
for it which may serve as a motivation for future research for a feasibility proof.
For the simulation, we choose the reference trajectory 𝑦ref (𝑡) = sin 𝑡 m, the parameters 𝑚1 = 4 kg, 𝑚2 = 1 kg, 𝑘 = 2N∕m, 𝑑 =
0Ns∕m and the initial values 𝑥(0) = 𝑠(0) = 0m, �̇�(0) = �̇�(0) = 0m∕s. For the controller we choose the initial values 𝑧𝑖,𝑗(0) = 0,
𝑖 = 1, 2, 3, 𝑗 = 1,… , 4, the funnel functions

𝜑0(𝑡) = 𝜑4(𝑡) = 𝜑5(𝑡) = 𝜑6 = 4(10𝑒−2𝑡 + 0.1)−1, 𝜑1(𝑡) = 𝜑2(𝑡) = (4𝑒−3𝑡 + 0.1)−1, 𝜑3(𝑡) = (10𝑒−20𝑡 + 0.1)−1

and Γ̃ = 0.6∕kgs2 > 0.5∕kgs2 = Γ. The parameters 𝑞𝑖, 𝑝𝑖 are determined by the coefficients of the Hurwitz polynomial

(𝑠 + 5)4 = 𝑠4 + 20𝑠3 + 150𝑠2 + 500𝑠 + 625,

by which 𝑞1 = 20, 𝑞2 = 150, 𝑞3 = 500 and 𝑞4 = 625. Therefore, 𝐴 =
[ −20 1 0 0
−150 0 1 0
−500 0 0 1
−625 0 0 0

]
and the solution of the Lyapunov equation

𝐴⊤𝑃 + 𝑃𝐴 = −𝐼4 leads to 𝑝1 = 1, 𝑝2 =
2817
5771

, 𝑝3 =
3029
150

and 𝑝4 =
6197
263

.
The simulation of the funnel controller (29) combined with the funnel pre-compensator cascade (17), (18) for 𝑟 = 4 applied

to (36) over the time interval 0 − 10 s has been performed in MATLAB (solver: ode15s, rel. tol.: 10−14, abs. tol.: 10−10) and is
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Fig. 11 a: Funnel and tracking error
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FIGURE 11 Simulation of the funnel controller (29) combined with the funnel pre-compensator cascade (17), (18) for 𝑟 = 4
for the mass on car system (36) with 𝛼 = 0 rad and 𝑑 = 0Ns∕m.

depicted in Fig. 11 . The tracking error is shown in Fig. 11 a and the input in Fig. 11 b. We see that prescribed performance
of the tracking error is achieved, although nor formal feasibility proof is available yet.

5.2 Comparison with controller based on high-gain observer
We compare the combination of funnel controller and funnel pre-compensator cascade to the combination of funnel controller
and high-gain observer. To this end, we consider the mass on car system (36) with 𝛼 = 0 rad, i.e., Case 2 with relative degree
𝑟 = 3. For the simulation we chose the same setup as described in Case 2 above and the corresponding parameters for the
controller (32), however with the different initial values 𝑧1,1(0) = 𝑧2,1(0) = 0.02 for the pre-compensator states. For the
controller (34) with saturated input (35) we choose the initial values 𝑧1(0) = −0.98, 𝑧2(0) = 𝑧3(0) = 0, the funnel functions

𝜑0(𝑡) = (10𝑒−2𝑡 + 0.1)−1, 𝜑1(𝑡) = (2.5𝑒−3𝑡 + 0.01)−1, 𝜑2(𝑡) = (15𝑒−20𝑡 + 0.01)−1,

𝛼𝑖 = 𝑞𝑖 for 𝑖 = 1, 2, 3, and 𝜀 = 1∕20 as well as saturation level �̄� = 10.
The simulation of the controllers (32) and (34), (35), resp., applied to (36) over the time interval 0 − 10 s has been performed

in MATLAB (solver: ode15s, rel. tol.: 10−14, abs. tol.: 10−10) and is depicted in Fig. 12 , where the tracking errors are shown in
Fig. 12 a and c and the corresponding inputs in Fig. 12 b and d. It can be seen that, because of the saturation, the performance
of the controller (34), (35) is better than that of the controller (32) depicted in Fig. 10 .
We stress that further increasing |𝑧1(0)−𝑒(0)| resulted in a dramatic increase of the computational effort: for 𝑧1,1(0) = 𝑧2,1(0) =
0.05 and 𝑧1(0) = −0.95 the computations took only a couple of seconds for the controller (32) on our machine (Intel Core i5-
3570, 8 GB RAM), while it were about 90 minutes for the controller (34), (35). The huge difference in runtime may be explained
by the dimensions of the gains in this case: the maximum of 𝑘2 in (32) is approximately 2.5 ⋅103 and 𝑘2 in (34) is approximately
3 ⋅ 104. Therefore, the controller (34), (35) does not seem to be suitable for real-time control applications and, together with
other drawbacks which are discussed in Remark 4.3, this questions its usefulness in real-world applications.

6 CONCLUSION

In the present paper we have introduced the funnel pre-compensator as a novel and simple adaptive pre-compensator, which
resembles the structure of high-gain observers. We showed that the funnel pre-compensator is feasible for the large class of signal
pairs 𝑟. The proposed adaptation scheme for the pre-compensator gain is of low complexity and inherently robust since its
design is model-free, and we showed that it guarantees prescribed transient behavior of the compensator error. Using a cascade of
funnel pre-compensators, we proved that it is possible to obtain an artificial output with explicitly known derivatives which tracks
the system output with prescribed transient behavior. As an application in adaptive control, we showed that for a certain class
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0 2 4 6 8 10
-30

-20

-10

0

10

20

time t / s

u
/
N

 

 

u(t)

Fig. 12 b: Input function for (32)

0 2 4 6 8 10
-1

-0.5

0

0.5

1

time t / s

y
!

y
r
e
f
/
m

 

 

y(t)! yref(t)
ϕ0(t)
!1

Fig. 12 c: Funnel and tracking error for (34)
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FIGURE 12 Simulation of the controllers (32) and (34), (35) for the mass on car system (36) with 𝛼 = 0 rad.

of nonlinear systems, the interconnection with the funnel pre-compensator cascade has input-to-state stable internal dynamics
provided the relative degree does not exceed three. This guarantees feasibility of a novel funnel controller which consists of a
funnel pre-compensator cascade in conjunction with the recently developed funnel controller from [5]; this new controller does
not require the derivatives of the output. We have compared this controller to the combination of the funnel controller from [5]
with a high-gain observer.

The results that we obtained in Sections 3 and 4 suggest that the funnel pre-compensator is a suitable tool for resolving the
problem of higher relative degree in stabilization and tracking problems with prescribed performance. If a system has a higher
relative degree and derivatives of the output are not available, then a filter or observer is frequently used to obtain approximations
of the output derivatives, see the survey [24] and the references therein. As explained there, the concept of funnel control is
usually combined with a back-stepping procedure to overcome the higher relative degree, which however is quite complicated
and impractical, cf. [20, Sec. 4.4.3]. Nevertheless, in the last sentence of [24, Sec. 6] it is conjectured that the combination of a
high-gain observer with a funnel-type controller might be beneficial for tracking of higher relative degree systems. In Section 4
we have shown that the funnel pre-compensator, which resembles a high-gain observer, may be used to achieve this for systems
with relative degree two or three. Systems of higher relative degree are the topic of future research.
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