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Abstract. A square matrix A has the usual Jordan canonical form that de-

scribes the structure of A via eigenvalues and the corresponding Jordan blocks.
If A is a linear relation in a finite-dimensional linear space H (i.e., A is a linear

subspace of H × H and can be considered as a multivalued linear operator),

then there is a richer structure. In addition to the classical Jordan chains
(interpreted in the Cartesian product H×H), there occur three more classes of

chains: chains starting at zero (the chains for the eigenvalue infinity), chains

starting at zero and also ending at zero (the singular chains), and chains with
linearly independent entries (the shift chains). These four types of chains give

rise to a direct sum decomposition (a Jordan-like decomposition) of the linear

relation A. In this decomposition there is a completely singular part that has
the extended complex plane as eigenvalues; a usual Jordan part that corre-

sponds to the finite proper eigenvalues; a Jordan part that corresponds to the
eigenvalue ∞; and a multishift, i.e., a part that has no eigenvalues at all. Fur-

thermore, the Jordan-like decomposition exhibits a certain uniqueness, closing

a gap in earlier results. The presentation is purely algebraic, only the structure
of linear spaces is used. Moreover, the presentation has a uniform character:

each of the above types is constructed via an appropriately chosen sequence

of quotient spaces. The dimensions of the spaces are the Weyr characteristics,
which uniquely determine the Jordan-like decomposition of the linear relation.

1. Introduction

Let H be a finite-dimensional linear space over C and let A be a linear operator
in H with domA = H, i.e., A is defined everywhere and admits a representation as
a matrix. Then there is at least one eigenvalue λ ∈ C and to each eigenvalue belong
chains of linearly independent vectors x1, . . . , xn, the so-called Jordan chains

(1.1) (A− λ)xn = xn−1, (A− λ)xn−1 = xn−2, . . . , (A− λ)x1 = 0.

The Jordan canonical form of a matrix offers a decomposition in terms of these
Jordan chains. For each λ ∈ C define the sequence of quotient spaces

(1.2) ker (A− λ),
ker (A− λ)2

ker (A− λ)
,
ker (A− λ)3

ker (A− λ)2
, · · ·

and the corresponding Weyr characteristic by the sequence

(1.3) dimker (A− λ), dim
ker (A− λ)2

ker (A− λ)
, dim

ker (A− λ)3

ker (A− λ)2
, · · · .

Then the Jordan canonical form is the unique representative of the equivalence
class of A with respect to similarity, and it is uniquely determined by the Weyr
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characteristic. Furthermore, two matrices are similar if and only if their Weyr
characteristics coincide.

For a recent treatment of the Weyr characteristic of matrices and a historical
discussion see [24] (and also [25]). The above condition that domA = H ensures
the existence of at least one eigenvalue. If this condition is not satisfied or if A
is a linear relation (multivalued operator), then new phenomena may occur. For
instance, it may happen that A has no eigenvalues at all and the Jordan canonical
form breaks down.

The purpose of the present note is to derive a general decomposition for a linear
relation A in a finite-dimensional space H over C, i.e., A is a subspace of H × H.
Linear relations in linear spaces date back to [1], see also [2, 5, 10, 23]. Compared
to linear operators, linear relations may have an eigenvalue ∞ with its own Jordan
chains. However, in the context of a linear relation A there is also a new feature: it
may happen that the usual point spectrum σp(A) is equal to the extended complex
plane. For instance, this is the case when there exists a nontrivial element in
kerA ∩ mulA. By splitting off the so-called completely singular part AS of A,
there remains the proper point spectrum σπ(A) of A, consisting of finitely many
points in C ∪ {∞}; see [5]. The main result is the following Jordan-like direct sum
decomposition of the linear relation A:

(1.4) A = AS ⊕ Jλ1
(A)⊕ · · · ⊕ Jλl

(A)⊕ J∞(A)⊕AM ,

where Jλ(A) stands for the Jordan part corresponding to λ ∈ σπ(A) = {λ1, . . . , λl}∪
{∞}, and AM is a multishift, i.e., a linear operator without eigenvalues; cf. The-
orem 6.1 for the precise meaning of (1.4). For each component in (1.4), there is,
parallel to the case of matrices in (1.3), a suitably chosen sequence of quotient spaces
with its own Weyr characteristic. The collection of the Weyr characteristics of each
part defines the Weyr characteristic of the linear relation A; cf. Definition 6.3. It is
a complete set of invariants which justifies to view (1.4) as a Jordan-like decompo-
sition: The decomposition (1.4) is uniquely determined by the Weyr characteristic
and it is the unique representative of the equivalence class with respect to strict
similarity; cf. Section 6.

In a sense, the present paper can be seen as a completion of the results in [22]
with a purely linear algebra approach; see also [5]. In fact, the decomposition
derived in [22] exhibits a certain non-uniqueness; cf. Section 6. This is resolved by
utilizing the concept of a reducing sum decomposition, which is intrinsically unique;
cf. Section 2. To achieve such a decomposition, it is required to use a completely
different construction of the subrelations.

The present paper is organized as follows: The necessary notions of root spaces,
chains and reducing sum decompositions for linear relations are recalled in Section 2.
The construction of each part in the decomposition (1.4) of the linear relation A
follows a uniform pattern: The discussion of the four kinds of sequences of quotient
spaces, and the resulting chain structure is the content of Sections 3, 4, and 5; see
(3.2), (4.5), (4.21), (4.39), and (5.1). In Section 6 the main decomposition results of
the paper are collected and explained in terms of the Weyr characteristic. Section
6 also contains a brief discussion of related literature.

The above characterization of linear relations via their Weyr characteristics is
new and allows for a variety of applications, in particular to linear matrix pencils.
With any linear pencil one may associate a kernel and a range representation,
which are two different linear relations. The relationship between the reducing sum
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decomposition (1.4) of these linear relations and the Kronecker canonical form of
the original matrix pencil is of great interest.

2. Preliminaries

2.1. Linear relations. A linear relation A in a finite dimensional linear space H
is a subspace of H × H. In the following a brief review of the usual notions in the
context of linear relations is given:

domA = {x ∈ H : ∃ y ∈ H with (x, y) ∈ A}, domain,

kerA = {x ∈ H : (x, 0) ∈ A}, kernel,

ranA = {y ∈ H : ∃x ∈ H with (x, y) ∈ A}, range,

mulA = {y ∈ H : (0, y) ∈ A}, multivalued part.

Note that the inverse of A is a linear relation given by A−1 = {(y, x) : (x, y) ∈ A}.
Hence there are the formal identities domA−1 = ranA and kerA = mulA−1. In
addition, recall the following definitions of the product and sum of linear relations
A and B; and, in particular, of A− λ and λA when λ ∈ C:

AB = {(x, z) ∈ H× H : ∃ z ∈ H with (x, z) ∈ B, (z, y) ∈ A}, product,

λA = {(x, λy) ∈ H× H : (x, y) ∈ A},
A+B = {(x, y + z) ∈ H× H : ∃ (x, y) ∈ A with (x, z) ∈ B}, sum,

A− λ = A− λI = {(x, y − λx) ∈ H× H : (x, y) ∈ A},

where I = {(x, x) ∈ H× H : x ∈ H} stands for the identity operator.

2.2. Root spaces and Jordan chains. The usual point spectrum σp(A) is the
set of all eigenvalues λ ∈ C ∪ {∞} of the relation A:

(2.1)
σp(A) =

{
λ ∈ C ∪ {∞} : ker (A− λ) ̸= {0}, if λ ∈ C,

or mulA ̸= {0}, if λ = ∞
}

The root spaces Rλ(A) of A for λ ∈ C ∪ {∞} are linear subspaces of H defined by

Rλ(A) = span{ker (A− λ)i : λ ∈ C, i ∈ N},
R∞(A) = span{mulAi : i ∈ N}.

(2.2)

Note that x ∈ Rλ(A), λ ∈ C, if and only if for some n ∈ N there exists a chain of
elements in H× H of the form

(2.3) (xn, xn−1 + λxn), (xn−1, xn−2 + λxn−1), . . . , (x2, x1 + λx2), (x1, λx1) ∈ A

such that x = xn, the “endpoint” of (2.3); for all 1 ≤ i ≤ n one has (xi, 0) ∈ (A−λ)i.
If x1 ̸= 0, then the chain in (2.3) is said to be a Jordan chain for A corresponding
to the eigenvalue λ ∈ C. Likewise, y ∈ R∞(A) if and only if for some m ∈ N there
exists a chain of elements in H× H of the form

(2.4) (0, y1), (y1, y2), . . . . . . . . . , (ym−2, ym−1), (ym−1, ym) ∈ A

such that y = ym, the “endpoint” of (2.4). If y1 ̸= 0, then the chain in (2.4) is said
to be a Jordan chain for A corresponding to the eigenvalue ∞; for all 1 ≤ i ≤ m
one has (0, yi) ∈ Ai. The total root space Rr(A) of A is a linear subspace of H
defined by

(2.5) Rr(A) = span {Rλ(A) : λ ∈ C ∪ {∞}} ;
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see (2.2). Clearly, an element belongs to Rr(A) if and only if it is the “endpoint”
in the above sense of a chain in (2.3) or of a chain in (2.4).

2.3. Singular chains. The singular chain subspace Rc(A) of A is a linear subspace
of the total root space Rr(A) defined by

(2.6) Rc(A) = R0(A) ∩R∞(A);

cf. [22]. Note that u ∈ Rc(A) if and only if for some k ∈ N there is a chain of
elements of the form

(2.7) (0, uk), (uk, uk−1), . . . . . . . . . , (u2, u1), (u1, 0) ∈ A

such that u = ul for some 1 ≤ l ≤ k. The chain in (2.7) is said to be a singular
chain for A. It is clear from (2.7) that Rc(A) ⊂ domA ∩ ranA, and that Rc(A) ̸=
{0} implies that kerA ∩ Rc(A) and mulA ∩ Rc(A) are non-trivial. The singular
chain space Rc(A) can also be written as follows (for a proof, see [5]): for any
λ, µ ∈ C ∪ {∞} with λ ̸= µ one has

(2.8) Rc(A) = Rλ(A) ∩Rµ(A)

so that, in particular,

(2.9) Rc(A) ⊂ Rλ(A), λ ∈ C ∪ {∞}.

2.4. Proper point spectrum. In order to discuss a reducing sum decomposition
(see Definition 2.1 below) in terms of Rc(A) and Rr(A), one needs to consider a
certain restriction of the point spectrum of A. It is clear that if Rc(A) ̸= {0}, then
Rλ(A) ̸= {0} for all λ ∈ C ∪ {∞}, so that σp(A) = C ∪ {∞}. In fact, it is known
that, due to finite-dimensionality,

σp(A) = C ∪ {∞} if and only if Rc(A) ̸= {0},

see [22, Prop. 3.2, Thm. 4.4]. The proper point spectrum, see [5], is a subset of the
point spectrum σp(A) and defined by

(2.10) σπ(A) = {λ ∈ σp(A) : Rλ(A) \Rc(A) ̸= ∅} ,

cf. (2.9). The elements in σπ(A) are called the proper eigenvalues of A. As a
consequence of (2.10), observe that

(2.11) Rr(A) = span {Rλ(A) : λ ∈ σπ(A)} ∪Rc(A).

Note that if Rc(A) = {0}, then σπ(A) = σp(A). Entries of chains belonging to
different proper eigenvalues in σπ(A) are linearly independent and hence

|σπ(A)| ≤ dimH,

see [5], so that σπ(A) is a finite set, since H is assumed to be finite-dimensional.
The proper point spectrum σπ(A) of a linear relation A will be the substitute for
the usual point spectrum σp(A) in the operator case.



JORDAN-LIKE DECOMPOSITION FOR RELATIONS 5

2.5. Shift chains. To complete the description of the structure of a linear relation
A, one needs to go beyond the total root space Rr(A). A collection of linearly
independent elements x1, . . . xn in H is called a shift chain if

(2.12) (x1, x2), . . . , (xn−1, xn) ∈ A.

Shift chains, in a sense, extend the notions of singular and Jordan chains:

• if additionally (xn, 0) ∈ A, then (2.12) is a Jordan chain at 0,
• if additionally (0, x1) ∈ A, then (2.12) is a Jordan chain at ∞,
• if additionally (0, x1), (xn, 0) ∈ A, then (2.12) is a singular chain.

On the other hand, they exhibit completely different spectral properties: the linear
relation spanned by the elements in (2.12) is an operator without point spectrum
in C. A linear relation A in a finite-dimensional linear space H is said to be a
multishift if A has no eigenvalues in C∪{∞} (i.e., if A is a linear operator without
eigenvalues in C). It will be shown that there exists a linear subspace Rm(A) ⊂ H,
spanned by entries of shift chains, such that it complements the subspace Rr(A),
and the graph restriction of A to Rm(A) is given by

(2.13) AM = A ∩ (Rm(A)×Rm(A));

cf. Theorem 5.2. The relation AM in (2.13) is a multishift.

2.6. Reducing sum decompositions. Here is a brief review of reducing sum
decompositions for linear relations in a linear space H. Recall that subspaces Hj ⊂ H
for j = 1, . . . , n of H are said to form a direct sum, denoted by

(2.14) H1 ⊕ H2 ⊕ · · · ⊕ Hn

if 0 = x1+x2+ . . .+xn with elements xj ∈ Hj implies that xj = 0 for j = 1, . . . , n.
In particular, each x ∈ H1 + H2 + · · · + Hn admits a sum x = x1 + x2 + . . . + xn

with unique elements xj ∈ Hj for j = 1, . . . , n.
A linear relation A in a linear space H is a linear subspace of H × H. The

componentwise sum A1 +̂A2 of linear relations A1 and A2 in a linear space H is
defined as the sum of the subspaces in H× H:

A1 +̂A2 = {(x+ u, y + v) ∈ H× H : (x, y) ∈ A1, (u, v) ∈ A2}.

If a sum A1 +̂A2 +̂ · · · +̂An of linear relations Aj in H is direct, it is denoted by

A1 ⊕A2 ⊕ · · · ⊕An.

For any linear subspace X ⊂ H one defines the graph restriction of A to X as
A′ = A ∩ (X× X), so that A′ is a linear relation in X.

Define the linear space H(A) by H(A) = domA+ ranA. Then clearly,

(2.15) A ⊂ H(A)× H(A) ⊂ H× H.

Hence A coincides with its graph restriction to H(A). Moreover, one sees that H(A)
is the smallest subspace X ⊂ H with the property that A ⊂ X× X ⊂ H× H.

Definition 2.1. Let A be a linear relation in a linear space H. If

(2.16) A = A1 ⊕A2 ⊕ · · · ⊕An

is a direct sum of its graph restrictions Aj to subspaces Hj ⊂ H for j = 1, . . . , n,
which form a direct sum H1⊕H2⊕· · ·⊕Hn, then the decomposition (2.16) is called
a reducing sum decomposition of A with respect to (H1, . . . ,Hn).
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Instead of calling (2.16) a reducing sum decomposition of A with respect to
(H1, . . . ,Hn), it is frequently called a reducing sum decomposition of A with respect
to (2.14).

Lemma 2.2. Let A be a linear relation in H with a reducing sum decomposi-
tion (2.16) with respect to (H1, . . . ,Hn). If H = domA+ ranA, then

(2.17) Hj = domAj + ranAj , j = 1, . . . , n.

Proof. It follows from (2.14) and (2.16) that

domA = domA1 ⊕ · · · ⊕ domAn, ranA = ranA1 ⊕ · · · ⊕ ranAn,

so that since domAj + ranAj ⊂ Hj for j = 1, . . . , n, one has

domA+ranA = (domA1+ranA1)⊕· · ·⊕ (domAn+ranAn) ⊂ H1⊕· · ·⊕Hn ⊂ H.

Therefore, the identity H = domA+ ranA implies that (2.17) holds. □

Note that Lemma 2.2 implies that for any reducing sum decomposition (2.16)
with respect to (H1, . . . ,Hn) one has that, since A ⊂ H(A)×H(A), H1⊕· · ·⊕Hn =
H(A).

Finally, it is emphasized that any reducing sum decomposition is intrinsically
unique when the decomposition H(A) = H1⊕· · ·⊕Hn is fixed, as the linear relations
Aj , 1 ≤ j ≤ n, are defined as the graph restrictions of A to Hj .

3. The completely singular part of a linear relation

Let A be a linear relation in a finite-dimensional linear space H. The completely
singular part AS of A is a linear relation defined as the graph restriction of A to
the singular chain subspace Rc(A):

(3.1) AS = A ∩ (Rc(A)×Rc(A)).

A linear relation A in H is called completely singular if A = AS . In this section
it will be shown that AS is spanned by singular chains as in (2.7). The existence
of such a basis was established in [22, Thm. 7.2]. The new proof in Theorem 3.2
below is more in line with similar constructions in later sections and it reveals
some additional properties of the basis elements and the connection to the Weyr
characteristic.

The construction of the basis of singular chains is based on an appropriate choice
of quotient spaces involving Rc(A). First, recall that kerAk ⊂ kerAk+1 for all
k ≥ 1. The sequence of quotient spaces Kk(A) is defined by

(3.2) K1(A) = kerA ∩Rc(A), Kk(A) :=
kerAk ∩Rc(A)

kerAk−1 ∩Rc(A)
, k ≥ 2.

Indeed, since the denominator is included in the numerator, each quotient space
Kk(A), k ≥ 2, is well defined. The Weyr characteristic of A with respect to the
sequence of quotient spaces in (3.2) is defined as the sequence (Bk)k≥1 with

(3.3) Bk := dimKk(A), k ≥ 1.

Observe that if Rc(A) = {0}, then Bk = 0 for all k ≥ 1. In this case AS is trivial.
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Now the case Rc(A) ̸= {0} will be considered. Then the sequence in (3.3) is not
trivial, although ultimately the entries are zero. To see this, observe that since the
linear space H is finite-dimensional the number

(3.4) d = min
{
k ∈ N : kerAk+1 ∩Rc(A) = kerAk ∩Rc(A)

}
is well defined.

Lemma 3.1. Let A be a linear relation in a finite-dimensional space H and assume
Rc(A) ̸= {0}. Let d ≥ 1 be given by (3.4), then for k > d one has

kerAk ∩Rc(A) = kerAd ∩Rc(A) and, hence, Bk = 0.

Moreover, B1 ≥ 1.

Proof. Due to (3.4) it suffices to show that kerAk ∩ Rc(A) = kerAk+1 ∩ Rc(A)
for some k ∈ N implies that kerAk+1 ∩Rc(A) = kerAk+2 ∩Rc(A). Therefore, let
x ∈ kerAk+2 ∩Rc(A). Then there exist x1, . . . , xk+1 such that

(3.5) (x, xk+1), (xk+1, xk)(xk, xk−1), . . . , (x1, 0) ∈ A.

As x ∈ Rc(A), also xj ∈ Rc(A) for 1 ≤ k ≤ k+ 1. Moreover, xk+1 ∈ kerAk+1 and,
by assumption, xk+1 ∈ kerAk ∩Rc(A). Thus there exist x′

1, . . . , x
′
k−1 such that

(xk+1, x
′
k−1), (x

′
k−1, x

′
k−2), . . . , (x

′
1, 0) ∈ A.

In combination with (3.5) one obtains

(x, xk+1), (xk+1, x
′
k−1), (x

′
k−1, x

′
k−2), . . . , (x

′
1, 0) ∈ A

and x ∈ kerAk+1 ∩Rc(A) follows. This shows

kerAk+2 ∩Rc(A) ⊂ kerAk+1 ∩Rc(A).

The opposite inclusion follows from the fact that kerAk+1 ⊂ kerAk+2.
To see that B1 ≥ 1, observe that Rc(A) ̸= {0} implies kerA∩Rc(A) ̸= {0}. □

Theorem 3.2. Let A be a linear relation in a finite-dimensional space H and
assume Rc(A) ̸= {0}. Let d ≥ 1 be given by (3.4), then the Weyr characteristic
(Bk)k≥1 in (3.3) satisfies

(3.6) B1 ≥ B2 ≥ · · · ≥ Bd ≥ 1 and Bk = 0, k > d.

Moreover, there exist singular chains for A of the following form
(3.7)

(0, xi
d), (x

i
d, x

i
d−1), (x

i
d−1, x

i
d−2), . . . , (x

i
2, x

i
1), (xi

1, 0), 1 ≤ i ≤ Bd,
(0, xi

d−1), (x
i
d−1, x

i
d−2), . . . , (x

i
2, x

i
1), (x

i
1, 0), Bd + 1 ≤ i ≤ Bd−1,

. . .
...

...
...

(0, xi
2), (x

i
2, x

i
1), (x

i
1, 0), B3 + 1 ≤ i ≤ B2,

(0, xi
1), (x

i
1, 0), B2 + 1 ≤ i ≤ B1,

where {[x1
k], . . . , [x

Bk

k ]} is a basis of Kk(A), 1 ≤ k ≤ d, and, consequently, the

elements in the set
{
xi
k : 1 ≤ i ≤ Bk, 1 ≤ k ≤ d

}
are linearly independent in H.

Furthermore, the completely singular part AS defined in (3.1) admits the represen-
tation

AS = span
{
(0, xi

k), (x
i
k, x

i
k−1), . . . , (x

i
2, x

i
1), (xi

1, 0) :

Bk+1 + 1 ≤ i ≤ Bk, 1 ≤ k ≤ d
}
.

(3.8)



8 THOMAS BERGER, HENK DE SNOO, CARSTEN TRUNK, AND HENRIK WINKLER

In particular, domAS = ranAS = Rc(A) and the total dimension of AS is

(3.9) dimAS = 2B1 +B2 +B3 + . . .+Bd−1 +Bd.

Proof. The main tool in the proof is the existence of linear relations Ak ⊂ Kk(A)×
Kk−1(A), 2 ≤ k ≤ d, which are injective, i.e., kerAk = {0}. From this, it follows
that the sequence (Bk)k≥1 is nonincreasing. The singular chains for A will be
constructed via suitably chosen bases in each of the quotient spaces Kk(A), 1 ≤
k ≤ d, beginning with Kd(A) and working backwards to K1(A). This procedure is
carried out in a number of steps.

Step 1 : Let 1 ≤ k ≤ d and let x ∈ [x] ∈ Kk(A). Then there exists y ∈ H such that

(x, y) ∈ A, x ∈ kerAk ∩Rc(A), y ∈ kerAk−1 ∩Rc(A).

For k = 1 this means that (x, 0) ∈ A. To see the implication, note that by definition
x ∈ kerAk ∩ Rc(A). Since x ∈ kerAk, there is some y ∈ kerAk−1 such that
(x, y) ∈ A and (y, 0) ∈ Ak−1. Since x ∈ Rc(A), it follows that y ∈ Rc(A). Therefore
one concludes that y ∈ kerAk−1 ∩Rc(A).

Step 2 : Define the linear relation Ak ⊂ Kk(A)× Kk−1(A), 2 ≤ k ≤ d, as follows:
(3.10)
Ak := {([x], [y]) ∈ Kk(A)× Kk−1(A) : ∃ (x′, y′) ∈ A with [x′] = [x] and [y′] = [y]} .

By Step 1 it is clear that Ak is defined on all of Kk(A), 1 ≤ k ≤ d.
Moreover, Ak is injective for k ≥ 2, that is, kerAk = {0}. To see this, let

([x], [0]) ∈ Ak. Then there exists (x′, y′) ∈ A with [x] = [x′] ∈ Kk(A) and [y′] =
[0] ∈ Kk−1(A). Hence x′ ∈ kerAk∩Rc(A) and y′ ∈ kerAk−2∩Rc(A). As y′ ∈ Rc(A)
there exists z′ ∈ Rc(A) with (z′, y′) ∈ A. Thus, z′ ∈ kerAk−1 and (x′ − z′, 0) ∈ A.
Since kerA ⊂ kerAk−1, it follows that

x′ = x′ − z′ + z′ ∈ kerA+ kerAk−1 ⊂ kerAk−1.

This gives [x] = [x′] = 0 and shows that Ak is injective. As a consequence, the
sequence (Bk)k≥1 is nonincreasing. Recall that Bk = 0 for k > d by Lemma 3.1.

Step 3 : The construction of the singular chains for A is associated with the quotient
spaces Kd(A), . . . , K1(A), where d ≥ 1. Since dimKd = Bd, let

(3.11) {[v1d], . . . , [v
Bd

d ]}

be some basis for Kd(A).

First assume that d = 1. In this case (vi1, 0) ∈ A, 1 ≤ i ≤ B1. As vi1 ∈ Rc(A),
there exist zi2 ∈ Rc(A) with (zi2, v

i
1) ∈ A, so that zi2 ∈ kerA2 ∩ Rc(A) = kerA ∩

Rc(A) by (3.4). Hence (zi2, 0) ∈ A, and it follows that (0, vi1) = (zi2, v
i
1)−(zi2, 0) ∈ A.

Thus with the choice xi
1 = vi1, 1 ≤ i ≤ B1, the theorem has been proved when d = 1.

Next assume that d ≥ 2. Then there are d− 1 linear relations

Ad ⊂ Kd(A)×Kd−1(A), Ad−1 ⊂ Kd−1(A)×Kd−2(A), . . . , A2 ⊂ K2(A)×K1(A),

of the form (3.10). With the choice (3.11) it follows from Step 1 that there are
elements vid−1 such that for 1 ≤ i ≤ Bd:

(vid, v
i
d−1) ∈ A, vid ∈ kerAd ∩Rc(A), vid−1 ∈ kerAd−1 ∩Rc(A).
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As vid ∈ Rc(A), there exists zid+1 ∈ Rc(A) such that (zid+1, v
i
d) ∈ A, and since

vid ∈ kerAd this implies zid+1 ∈ kerAd+1. Therefore, by (3.4) one concludes that

zid+1 ∈ kerAd ∩Rc(A). Thus there exist numbers αi,j
d , j = 1, . . . , Bd, with

zid+1 = yid−1 +

Bd∑
j=1

αi,j
d vjd,

where yid−1 ∈ kerAd−1 ∩Rc(A). Hence, one finds ui
d−1 ∈ kerAd−2 with

(yid−1, u
i
d−1) ∈ A,

andzid+1, u
i
d−1 +

Bd∑
j=1

αi,j
d vjd−1

 =

yid−1 +

Bd∑
j=1

αi,j
d vjd, u

i
d−1 +

Bd∑
j=1

αi,j
d vjd−1

 ∈ A,

which, via (zid+1, v
i
d) ∈ A, implies0, vid − ui

d−1 −
Bd∑
j=1

αi,j
d vjd−1

 ∈ A.

This result suggests to define the elements xi
d, 1 ≤ i ≤ Bd, by

xi
d := vid − ui

d−1 −
Bd∑
j=1

αi,j
d vjd−1, 1 ≤ i ≤ Bd.

Clearly, xi
d ∈ kerAd ∩ Rc(A) for 1 ≤ i ≤ Bd, and they provide a basis for the

quotient space Kd(A):

(3.12) span{[x1
d], . . . , [x

Bd

d ]} = Kd(A) with (0, xi
d) ∈ A, 1 ≤ i ≤ Bd.

Again, by Step 1, with the elements xi
d from (3.12) there exist elements xi

d−1 such
that for 1 ≤ i ≤ Bd:

(xi
d, x

i
d−1) ∈ A, xi

d ∈ kerAd ∩Rc(A), xi
d−1 ∈ kerAd−1 ∩Rc(A).

Observe that by definition
([xi

d], [x
i
d−1]) ∈ Ad,

so that by Step 2 the elements [xi
d−1], 1 ≤ i ≤ Bd, are linearly independent

in Kd−1(A). Since dimKd−1(A) = Bd−1 ≥ Bd, one can enlarge the family

{[x1
d−1], . . . , [x

Bd

d−1]} by choosing elements [vBd+1
d−1 ], . . . , [v

Bd−1

d−1 ] such that

span{[x1
d−1], . . . , [x

Bd

d−1], [v
Bd+1
d−1 ], . . . , [v

Bd−1

d−1 ]} = Kd−1(A).

By Step 1 there exist elements vid−2 such that for Bd + 1 ≤ i ≤ Bd−1:

(vid−1, v
i
d−2) ∈ A, vid−1 ∈ kerAd−1 ∩Rc(A), vid−2 ∈ kerAd−2 ∩Rc(A).

Similar to the procedure leading to xi
d it is then possible to find elements xi

d−1 ∈
kerAd−1 ∩Rc(A), Bd + 1 ≤ i ≤ Bd−1, and to obtain a basis for the quotient space
Kd−1(A):

(3.13) {[x1
d−1], . . . , [x

Bd−1

d−1 ]} with
(xi

d, x
i
d−1) ∈ A for 1 ≤ i ≤ Bd,

(0, xi
d−1) ∈ A for Bd + 1 ≤ i ≤ Bd−1,

so that the basis {[x1
d−1], . . . , [x

Bd−1

d−1 ]} of Kd−1(A) is in the desired form.
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Continuing in this way by induction, one finds as successors to (3.13), that for
1 ≤ j ≤ d− 1 there exist elements

xi
d−j ∈ kerAd−j ∩Rc(A), 1 ≤ i ≤ Bd−j ,

which give a basis for the quotient space Kd−j(A):
(3.14)

{[x1
d−j ], . . . , [x

Bd−j

d−j ]} with
(xi

d−j+1, x
i
d−j) ∈ A for 1 ≤ i ≤ Bd−j+1,

(0, xi
d−j) ∈ A for Bd−j+1 + 1 ≤ i ≤ Bd−j ,

so that the basis {[x1
d−j ], . . . , [x

Bd−j

d−j ]} of Kd−j(A) is in the desired form. Note that

for j = d − 1 the construction implies that (xi
1, 0) ∈ A, 1 ≤ i ≤ B1. Hence the

assertion concerning the existence of singular chains for the completely singular
part AS has been proved.

Step 4 : It follows from the construction in Step 3 that {[x1
k], . . . , [x

Bk

k ]} is a basis
of Kk(A), 1 ≤ k ≤ d. Then the representatives{

xi
k : 1 ≤ i ≤ Bk, 1 ≤ k ≤ d

}
are linearly independent in H. To see this, assume that for some cik ∈ C

d∑
k=1

Bk∑
i=1

cikx
i
k = 0.

Forming equivalence classes in Kd(A), it follows by definition that [xi
k] = [0] ∈ Kd(A)

for i = 1, . . . , Bk and k = 1, . . . , d−1, and since {[x1
d], . . . , [x

Bd

d ]} is a basis of Kd(A)
the reduced equality

Bd∑
i=1

cid[x
i
d] = 0

implies that c1d = . . . cBd

d = 0. Forming equivalence classes in Kd−1 and proceeding
in a similar way, it ultimately follows that cik = 0 for all the coefficients, which
proves the claim.

Step 5 : It will be shown that (3.8) holds. In fact, by the construction in Step 3 it
suffices to show that AS is contained in the right-hand side of (3.8). To this end,
let (x, y) ∈ AS , so that (x, y) ∈ A and x, y ∈ Rc(A). If y = 0, then

x ∈ kerA ∩Rc(A) = K1(A) = span{x1
1, . . . , x

B1
1 }

and the assertion is shown. If y ̸= 0, then y ∈ kerAk for some 1 ≤ k ≤ d and hence
x ∈ kerAk+1. Choose maximal k ≥ 1 with the property [y] ∈ Kk(A) \ {[0]}. If
k = d, then

y = yd−1 +

Bd∑
i=1

γixi
d,

where γi ∈ C, i = 1, . . . , Bd, and yd−1 ∈ kerAd−1 ∩Rc(A). It follows that

(x, y) = (x, yd−1) +

Bd∑
i=1

γi
(
0, xi

d

)
,
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and it remains to show that (x, yd−1) is contained in the right-hand side of (3.8).
Note that x ∈ kerAd+1 ∩ Rc(A) = kerAd ∩ Rc(A) by (3.4). To continue by an
inductive argument, assume now that k < d. Then one can write y as

y = yk−1 +

Bk∑
i=1

γixi
k,

where γi ∈ C, i = 1, . . . , Bk, and yk−1 ∈ kerAk−1 ∩ Rc(A). Hence, there exists
yk ∈ kerAk ∩Rc(A) with (yk, yk−1) ∈ A and it follows thatyk +

Bk+1∑
i=1

γixi
k+1, y

 = (yk, yk−1) +

Bk+1∑
i=1

γi(xi
k+1, x

i
k) +

Bk∑
i=Bk+1+1

γi(0, xi
k) ∈ A,

where (0, xi
k) ∈ A for Bk+1 + 1 ≤ i ≤ Bk was used, see Step 3. Since [yk] = [0] ∈

Kk+1(A), this gives Bk+1∑
i=1

γixi
k+1

 , [y]

 ∈ Ak+1,

whereas it is clear that ([x], [y]) ∈ Ak+1. By Step 2, the linear relation Ak+1 is
injective, so that

[x] =

Bk+1∑
i=1

γixi
k+1


in Kk+1(A) and therefore x = xk +

∑Bk+1

i=1 γixi
k+1 with some xk ∈ kerAk ∩Rc(A).

Hence, one obtains

(x, y) = (xk, yk−1) +

Bk+1∑
i=1

γi
(
xi
k+1, x

i
k

)
+

Bk∑
i=Bk+1+1

γi
(
0, xi

k

)
.

From this it follows that to show (x, y) ∈ (kerAk+1 ∩Rc(A))× (kerAk ∩Rc(A)) is
a linear combination of elements from the right-hand side of (3.8), it is sufficient
to show the same for (xk, yk−1) ∈ (kerAk ∩ Rc(A)) × (kerAk−1 ∩ Rc(A)). By
repeating the above procedure one arrives at elements (x1, y0) = (x1, 0), where
x1 ∈ kerA∩Rc(A) = K1(A). Obviously, x1 can be written as a linear combination
of the elements x1

i , i = 1, . . . , B1, and therefore, (x1, 0) is a linear combination of
elements of the form (x1

i , 0). Thus (x, y) belongs to the right-hand side of (3.8).

Step 6 : It remains to show (3.9), which directly follows from (3.7). □

4. The root part of a linear relation

Let A be a linear relation in a finite-dimensional linear space H, and let AS be
its completely singular part (3.1). The linear relation Aλ, λ ∈ C ∪ {∞}, is defined
as the graph restriction of A to the root space Rλ(A):

(4.1) Aλ = A ∩ (Rλ(A)×Rλ(A)).

By (2.9) one has that AS ⊂ Aλ, λ ∈ C ∪ {∞}. The root part AR of A is a linear
relation defined as the graph restriction of A to the total root subspace Rr(A) in
(2.5):

(4.2) AR = A ∩ (Rr(A)×Rr(A)).
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Hence it is clear that AS ⊂ Aλ ⊂ AR, λ ∈ C ∪ {∞}.
If λ ̸∈ σπ(A), then Rc(A) = Rλ(A) and AS = Aλ. However, if λ ∈ σπ(A),

then Rc(A) ⊂ Rλ(A) and AS ⊂ Aλ with strict inclusion. there is a reducing sum
decomposition for Aλ of the form

(4.3) Aλ = AS ⊕ Jλ(A),

where Jλ(A) is a Jordan operator (if λ ∈ C) or a Jordan relation (if λ = ∞), see
Definition 4.1 below. Moreover, it will be shown that Jλ(A) is spanned by the
corresponding Jordan chains as in (2.3) or (2.4); see Theorems 4.4 and 4.5 below.
Then in Theorem 4.6 below it will be shown that

(4.4) AR = AS ⊕ Jλ1(A)⊕ · · · ⊕ Jλl
(A)⊕ J∞(A),

where λ1, . . . , λl ∈ σπ(A) and ∞ ∈ σπ(A) are the proper eigenvalues of A. If
∞ /∈ σπ(A), then the term J∞(A) in (4.4) is absent.

In this section, the identity (4.3) will first be shown for the case λ = 0 in Lemma
4.3. The case when λ ∈ C will be obtained in Theorem 4.4 by a shift of the relation
from Lemma 4.3. Likewise, the case when λ = ∞ will be obtained in Theorem 4.5
by an inversion of the relation from Lemma 4.3.

Definition 4.1. A linear relation A in a finite-dimensional linear space H is called
a Jordan operator in H (corresponding to λ ∈ C), if domA = H, mulA = {0}, and
σp(A) = {λ}. The relation A is called a Jordan relation in H (corresponding to
∞), if A−1 is a Jordan operator (corresponding to 0 ∈ C).

Note that Jordan operators are essentially matrices and Jordan relations corre-
spond to injective multi-valued operators. In particular, it is clear that a Jordan
relation (corresponding to ∞) satisfies ranA = H, kerA = {0}, and σp(A) = {∞}.

The construction of the Jordan operator Jλ(A) for λ = 0 is based on an appro-
priate choice of a sequence of quotient spaces involving A. The sequence of quotient
spaces Vk(A) is defined by

(4.5) V1(A) =
kerA+Rc(A)

Rc(A)
, Vk(A) =

kerAk +Rc(A)

kerAk−1 +Rc(A)
, k ≥ 2.

Indeed, since the denominator is contained in the numerator, each quotient space
Vk(A), k ≥ 1, is well defined. Define the sequence (dk)k≥1 by

(4.6) dk := dimVk(A), k ≥ 1.

Note that the three conditions 0 ̸∈ σπ(A), Rc(A) = R0(A) and dk = 0 for all k ≥ 1
are all equivalent.

Now the case 0 ∈ σπ(A) or, equivalently, Rc(A) ⊊ R0(A), will be considered.
Then the sequence in (4.6) is not trivial, although ultimately the entries are zero.
To see this, observe that since the space H is finite-dimensional, the number

(4.7) v = min
{
k ∈ N : kerAk+1 +Rc(A) = kerAk +Rc(A)

}
is well defined.

Lemma 4.2. Let A be a linear relation in a finite-dimensional space H and assume
0 ∈ σπ(A). Let v ≥ 1 be given by (4.7), then for k > v one has

kerAk +Rc(A) = kerAd +Rc(A) and, hence, dk = 0.

Moreover, d1 ≥ 1.
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Proof. In view of (4.7), by induction it is sufficient to show that kerAk +Rc(A) =
kerAk+1 + Rc(A) for some natural number k implies that kerAk+1 + Rc(A) =
kerAk+2 + Rc(A). Let x ∈ kerAk+2 + Rc(A) and write x = xk+2 + xc with
xk+2 ∈ kerAk+2 and xc ∈ Rc(A). Then there exist x1, . . . , xk+1 such that

(xk+2, xk+1), (xk+1, xk)(xk, xk−1), . . . , (x1, 0) ∈ A.

As xk+1 ∈ kerAk+1 ⊂ kerAk+1 + Rc(A) = kerAk + Rc(A) by assumption, there
exists x′

c ∈ Rc(A) such that xk+1 − x′
c ∈ kerAk and there exist x′

1, . . . , x
′
k−1 such

that

(xk+1 − x′
c, x

′
k−1), (x

′
k−1, x

′
k−2), . . . , (x

′
1, 0) ∈ A.

As x′
c ∈ Rc(A) there is y′c ∈ Rc(A) with (y′c, x

′
c) ∈ A and one concludes

(xk+2 − y′c, xk+1 − x′
c), (xk+1 − x′

c, x
′
k−1), (x

′
k−1, x

′
k−2), . . . , (x

′
1, 0) ∈ A

so that xk+2 ∈ kerAk+1+Rc(A) follows. This shows kerAk+2+Rc(A) ⊂ kerAk+1+
Rc(A). The opposite inclusion follows from the fact that kerAk+1 ⊂ kerAk+2.

To see that d1 ≥ 1, observe that 0 ∈ σπ(A) implies Rc(A) ⊊ kerA. Hence,
Rc(A) ⊊ Rc(A) + kerA, which proves the claim. □

Lemma 4.3. Let A be a linear relation in a finite-dimensional space H with 0 ∈
σπ(A). Let v ≥ 1 be given by (4.5), then the sequence (dk)k≥1 in (4.6) satisfies

d1 ≥ d2 ≥ · · · ≥ dv ≥ 1 and dk = 0, k > v.

Moreover, there exist Jordan chains for A corresponding to the eigenvalue 0 of the
following form:

(4.8)

(xi
v, x

i
v−1), (xi

v−1, x
i
v−2), . . . , (x

i
2, x

i
1), (xi

1, 0), 1 ≤ i ≤ dv,
(xi

v−1, x
i
v−2), . . . , (x

i
2, x

i
1), (xi

1, 0), dv + 1 ≤ i ≤ dv−1,
. . .

...
...

...
(xi

2, x
i
1), (xi

1, 0), d3 + 1 ≤ i ≤ d2,
(xi

1, 0), d2 + 1 ≤ i ≤ d1,

where {[x1
k], . . . , [x

dk

k ]} is a basis of Vk(A) in (4.5), 1 ≤ k ≤ v, and, consequently,

the elements in the set
{
xi
k : 1 ≤ i ≤ dk, 1 ≤ k ≤ v

}
are linearly independent in H.

Then the linear space R0(A) has the direct sum decomposition

(4.9) R0(A) = Rc(A)⊕ X0(A),

where the space X0(A) is given by

X0(A) = span
{
xi
k : 1 ≤ i ≤ dk, 1 ≤ k ≤ v

}
.

Furthermore, with respect to (4.9), the graph restriction of A to R0(A)×R0(A),

A0 = A ∩ (R0(A)×R0(A))

has the reducing sum decomposition

(4.10) A0 = AS ⊕ J0(A),

where the linear relation J0(A) = A ∩ (X0(A)⊕ X0(A)) admits the representation

J0(A) = span
{
(xi

k, x
i
k−1), . . . . . . , (x

i
2, x

i
1), (xi

1, 0) :

dk+1 + 1 ≤ i ≤ dk, 1 ≤ k ≤ v
}
.

(4.11)
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In fact, J0(A) is a Jordan operator in X0(A) corresponding to 0 ∈ C and the total
dimension of J0(A) is

(4.12) dim J0(A) = d1 + d2 + . . .+ dv−1 + dv.

Proof. The main tool in the proof is the existence of linear operators Ak : Vk(A) →
Vk−1(A), 2 ≤ k ≤ v, which are injective. From this, it follows that the sequence
(dk)k≥1 is nonincreasing. The Jordan chains for A will be constructed via suitably
chosen bases in each of the quotient spacesVk(A), 1 ≤ k ≤ v, beginning withVv(A)
and working backwards to V1(A). This procedure is carried out in a number of
steps.

Step 1 : Let 1 ≤ k ≤ v and [x] ∈ Vk(A). Then there exist x1, y1 ∈ H such that

(x1, y1) ∈ A, x1 ∈ kerAk, y1 ∈ kerAk−1 with [x1] = [x].

To see this, observe that for x ∈ [x] one has x = x1 + x2 with x1 ∈ kerAk and
x2 ∈ Rc(A). Hence, there is some y1 ∈ kerAk−1 such that (x1, y1) ∈ A. It follows
from

x− x1 ∈ Rc(A) ⊂ kerAk−1 +Rc(A),

that [x] = [x1].

Step 2 : Define the linear relation Ak ⊂ Vk(A)×Vk−1(A), 2 ≤ k ≤ v, by:

Ak :=
{
([x], [y]) ∈ Vk(A)×Vk−1(A) :

∃ (x′, y′) ∈ A with [x′] = [x] and [y′] = [y]
}
.

(4.13)

Since kerAk−1 ⊂ kerAk−1+Rc(A), it follows from Step 1 that Ak is defined on all
of Vk(A), 2 ≤ k ≤ v.

Moreover, Ak is an operator. To prove this, let ([0], [y]) ∈ Ak. Hence, there
exists (x′, y′) ∈ A with y′ ∈ kerAk−1 + Rc(A), such that [x′] = [0] ∈ Vk(A) and
[y′] = [y] ∈ Vk−1(A). In particular,

x′ = x′
1 + x′

2 with x′
1 ∈ kerAk−1 and x′

2 ∈ Rc(A).

Therefore, there exist y′1 ∈ kerAk−2 with (x′
1, y

′
1) ∈ A, and y′2 ∈ Rc(A) with

(x′
2, y

′
2) ∈ A. It follows that (0, y′ − y′1 − y′2) ∈ A, thus y′3 := y′ − y′1 − y′2 ∈

R∞(A) ∩R0(A) = Rc(A). Note that

y′ = y′1 + y′2 + y′3 with y′1 ∈ kerAk−2 and y′2 + y′3 ∈ Rc(A),

which implies that [y] = [y′] = [0] ∈ Vk−1(A).
Furthermore, Ak is injective. To prove this, let ([x], [0]) ∈ Ak. Hence, there

exists (x′, y′) ∈ A with [x] = [x′] ∈ Vk(A) and [y′] = [0] ∈ Vk−1(A). In particular,

y′ = y′1 + y′2 with y′1 ∈ kerAk−2 and y′2 ∈ Rc(A).

Therefore, there exists x′
2 ∈ Rc(A) with (x′

2, y
′
2) ∈ A. Thus it follows from

(x′ − x′
2, y

′
1) ∈ A and y′1 ∈ kerAk−2,

that x′−x′
2 ∈ kerAk−1. In other words, x′ ∈ kerAk−1+Rc(A), which implies that

[x] = [x′] = [0] ∈ Vk(A).

Step 3 : The construction of the Jordan chains forA, corresponding to the eigenvalue
0 ∈ σπ(A), is associated with the quotient spaces Vv(A), . . . , V1(A), where v ≥ 1.
Since dimVv(A) = dv, let

(4.14) {[x1
v], . . . , [x

dv
v ]}
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be a basis of Vv(A).

First assume that v = 1. Then by Step 1 each [xi
1] has a representative xi

1 such
that (xi

1, 0) ∈ A, 1 ≤ i ≤ d1. This agrees with the statement of the lemma.

Next assume that v ≥ 2. Then there are v − 1 mappings:

Av : Vv(A) → Vv−1(A), Av−1 : Vv−1(A) → Vv−2(A), . . . , A2 : V2(A) → V1(A),

of the form (4.13). By Step 1, without loss of generality one may assume that the
choice (4.14) is such that there are elements xi

v−1 so that for 1 ≤ i ≤ dv:

(4.15) (xi
v, x

i
v−1) ∈ A, xi

v ∈ kerAv, xi
v−1 ∈ kerAv−1.

As xi
v−1 ∈ kerAv−1, 1 ≤ i ≤ dv, there exists xi

v−2 ∈ kerAv−2 with (xi
v−1, x

i
v−2) ∈

A. In addition, by the definition of Av, one has

Av[x
i
v] = [xi

v−1], 1 ≤ i ≤ dv,

Since Av : Vv(A) → Vv−1(A) is injective by Step 2, the elements [xi
v−1], 1 ≤ i ≤ dv,

are linearly independent in the space Vv−1(A). Now choose [xdv+1
v−1 ], . . . , [x

dv−1

v−1 ] ∈
Vv−1(A) such that

(4.16) {[x1
v−1], . . . , [x

dv
v−1], [x

dv+1
v−1 ], . . . , [x

dv−1

v−1 ]}

forms a basis of Vv−1(A). Hence, by Step 1, without loss of generality one may

assume that xdv+1
v−1 , . . . , x

dv−1

v−1 are chosen such that there exist elements xi
v−2 so that

for dv + 1 ≤ i ≤ dv−1:

(xi
v−1, x

i
v−2) ∈ A, xi

v−1 ∈ kerAv−1, xi
v−2 ∈ kerAv−2.

Furthermore, via the basis in (4.16) for Vv−1(A), one finds elements xi
v−2 ∈

kerAv−2 such that (xi
v−1, x

i
v−2) ∈ A for 1 ≤ i ≤ dv−1.

Repeating this procedure a number of times, one finally arrives at a basis of
V1(A) of the form {[x1

1], . . . , [x
d1
1 ]} with elements xi

1 ∈ kerA such that

(xi
1, 0) ∈ A, 1 ≤ i ≤ d1.

Step 4 : The elements in X0(A) =
{
xi
k : 1 ≤ i ≤ dk, 1 ≤ k ≤ v

}
are linearly in-

dependent. In fact, this follows in the same way as in Step 4 of the proof of
Theorem 3.2, when one replaces d by v, Kd(A) by Vv, and Bk by dk.

Step 5 : The direct sum decomposition in (4.9) holds. In order to see that X0(A)∩
Rc(A) = {0}, one uses a similar argument in Step 4: if y ∈ Rc(A), then [y] = 0 in
all spaces Vk, and so y ∈ X0(A) ∩Rc(A) implies y = 0.

It is clear that Rc(A) ⊕ X0(A) ⊂ R0(A). To see that equality holds, note that
the definition of v gives R0(A) = kerAv +Rc(A), while Rc(A) = kerA0 +Rc(A).
Hence, it follows from (4.5) that

dim
R0(A)

Rc(A)
= dim

kerAv +Rc(A)

kerA0 +Rc(A)
=

v∑
k=1

dimVk = dimX0(A),

which completes the argument. Thus (4.9) has been shown.

Step 6 : Define the linear relation J0(A) by (4.11). Then it is clear that J0(A) ⊂ A0

and it follows from (4.9) that dom J0(A) = X0(A). Since the sum (4.9) is direct,
one sees that the sum (4.10) is direct.
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It is clear that AS ⊕ J0(A) ⊂ A0. To see the reverse inclusion, let (x, y) ∈ A0.
Since x ∈ R0(A), it follows from (4.9) that x = x1 + x2 with x1 ∈ X0(A) =
dom J0(A) and x2 ∈ Rc(A). Hence there exist elements y1 ∈ ran J0(A) and y2 ∈
Rc(A) such that (x1, y1) ∈ J0(A) and (x2, y2) ∈ AS . With (x, y) ∈ A this gives
(0, y − y1 − y2) ∈ A, hence

y − y1 − y2 ∈ mulA ∩R0(A) ⊂ Rc(A),

so that (0, y − y1 − y2) ∈ AS . It follows that

(x, y) = (x2, y2) + (0, y − y1 − y2) + (x1, y1) ∈ AS ⊕ J0(A),

thus A0 ⊂ AS ⊕ J0(A). Hence the identity (4.10) has been shown. The identity
J0(A) = A ∩ (X0(A)⊕ X0(A)) is obvious from (4.10).

By construction, J0(A) is an operator in X0(A). Assume that (x, λx) ∈ J0(A)
for some λ ̸= 0. Then one sees

x ∈ Rλ(A) ∩R0(A) = Rc(A)

by (2.8). Hence x ∈ Rc(A)∩X0(A) = {0} by Step 4 and σp(J0(A)) = {0} is proved.
In particular, J0(A) is a Jordan operator in X0(A) corresponding to 0 ∈ C.

Step 7 : It remains to show (4.12), which directly follows from (4.8). □

Before stating Theorem 4.4, some properties of the shifted relation A−λ, λ ∈ C,
will be discussed. Fix λ ∈ C. Then one has the obvious identities

(4.17) Rλ(A) = R0(A− λ), R∞(A− λ) = R∞(A).

It is clear from (2.6) and (4.17) that

Rc(A− λ) = Rλ(A) ∩R∞(A),

which, invoking (2.8), gives

(4.18) Rc(A) = Rc(A− λ).

It is clear that λ ∈ σp(A) if and only if 0 ∈ σp(A − λ). This equivalence can be
refined:

λ ∈ σπ(A) ⇔ 0 ∈ σπ(A− λ);

cf. (2.10) and (4.18). Hence, one obtains for the total root space (see (2.11)) that

Rr(A) = Rr(A− λ).

As a consquence of (4.18) and (3.1) the relation AS − λ is given by

A ∩ (Rc(A)×Rc(A))− λ = (A− λ) ∩ (Rc(A)×Rc(A))

= (A− λ) ∩ (Rc(A− λ)×Rc(A− λ)),

which leads to the identity

(4.19) AS − λ = (A− λ)S .

Similarly, according to (4.17) and (4.1), the relation Aλ − λ is given by

A ∩ (Rλ(A)×Rλ(A))− λ = (A− λ) ∩ (Rλ(A)×Rλ(A))

= (A− λ) ∩ (R0(A− λ)×R0(A− λ)),

which leads to the identity

(4.20) Aλ − λ = (A− λ)0.
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For the case λ ∈ σπ(A) ∩ C it will be shown that the linear relation Aλ, given
in (4.1), has the reducing sum decomposition Aλ = AS ⊕ Jλ(A) involving the
completely singular part AS and a Jordan operator Jλ(A). The sequence of quotient
spaces Zk(A, λ) is defined by

Z1(A, λ) :=
ker (A− λ) +Rc(A)

Rc(A)
,

Zk(A, λ) :=
ker (A− λ)k +Rc(A)

ker (A− λ)k−1 +Rc(A)
, k ≥ 2.

(4.21)

Since the denominator is included in the numerator, each quotient space Zk(A),
k ≥ 1, is well defined. The Weyr characteristic of A with respect to the quotient
spaces (4.21) is defined as the sequence (Wk(λ))k≥1, where

(4.22) Wk(λ) := dimZk(A, λ).

One sees from (4.21) and (4.18) that

(4.23) Zk(A, λ) = Vk(A− λ), Wk(λ) = dimVk(A− λ), λ ∈ C.

Since H is finite-dimensional, the number

(4.24) s(λ) = min
{
k ∈ N : ker (A− λ)k+1 +Rc(A) = ker (A− λ)k +Rc(A)

}
is well defined, as follows from (4.7) (with A replaced by A − λ) and (4.18). The
following theorem will be proved by means of Lemma 4.3 via a shift.

Theorem 4.4. Let A be a linear relation in a finite-dimensional space H with
λ ∈ σπ(A) ∩ C, and let s(λ) ≥ 1 be given by (4.24). Then the Weyr characteristic
(Wk(λ))k≥1 in (4.22) satisfies

W1(λ) ≥ W2(λ) ≥ · · · ≥ Ws(λ)(λ) ≥ 1 and Wk(λ) = 0, k > s(λ).

Moreover, there exist Jordan chains for A corresponding to λ of the form:

(xi
s(λ), x

i
s(λ)−1 + λxi

s(λ)), . . . , (x
i
2, x

i
1 + λxi

2), (xi
1, λx

i
1), 1 ≤ i ≤ Ws(λ)(λ),

(xi
s(λ)−1, x

i
s(λ)−2 + λxi

s(λ)−1), . . . , (x
i
1, λx

i
1), Ws(λ)(λ) + 1 ≤ i

≤ Ws(λ)−1(λ),
. . .

...
...

(xi
2, x

i
1 + λxi

2), (xi
1, λx

i
1), W3(λ) + 1 ≤ i ≤ W2(λ),

(xi
1, λx

i
1), W2(λ) + 1 ≤ i ≤ W1(λ)

where {[x1
k], . . . , [x

Wk(λ)
k ]} is a basis of Zk(A, λ) in (4.21), 1 ≤ k ≤ s(λ), and, con-

sequently, the elements in the set
{
xi
k : 1 ≤ i ≤ Wk(λ), 1 ≤ k ≤ s(λ)

}
are linearly

independent in H. Then the linear space Rλ(A) has the direct sum decomposition

(4.25) Rλ(A) = Rc(A)⊕ Xλ(A),

where the linear space Xλ(A) is given by

(4.26) Xλ(A) = span
{
xi
k : 1 ≤ i ≤ Wk(λ), 1 ≤ k ≤ s(λ)

}
.

Furthermore, with respect to (4.25), the graph restriction of A to Rλ(A)×Rλ(A),

Aλ = A ∩ (Rλ(A)×Rλ(A))

has the reducing sum decomposition

(4.27) Aλ = AS ⊕ Jλ(A),
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where the linear relation Jλ(A) = A ∩ (Xλ(A)× Xλ(A)) admits the representation

Jλ(A) = span
{
(xi

k, x
i
k−1 + λxi

k), . . . . . . , (x
i
2, x

i
1 + λxi

2), (xi
1, λx

i
1) :

Wk+1(λ) + 1 ≤ i ≤ Wk(λ), 1 ≤ k ≤ s(λ)
}
,

(4.28)

In fact, Jλ(A) is a Jordan operator in Xλ(A) corresponding to λ and the total
dimension of Jλ(A) is

(4.29) dim Jλ(A) = W1(λ) +W2(λ) + . . .+Ws(λ)(λ).

Proof. The assumption λ ∈ σπ(A) ∩ C implies that 0 ∈ σπ(A − λ). Now apply
Lemma 4.3 where A, v, and dk are replaced by A − λ, s(λ), and Wk(λ). Then
s(λ) ≥ 1 and it is clear that (Wk(λ))k≥1 in (4.22) is nonincreasing with Wk(λ) = 0
for k > s(λ), as follows from (4.23).

Moreover, with the Jordan chains in Lemma 4.3 interpreted for A − λ at the
eigenvalue 0, the present Jordan chains for A at the eigenvalue λ follow. For this
purpose recall that

(un, un−1 + λun), . . . , (u2, u1 + λu2), (u1, λu1)

is a (Jordan) chain for A at λ if and only if

(un, un−1), (un−1, un−2), . . . , (u2, u1), (u1, 0)

is a (Jordan) chain for A−λ at 0. The statement about the basis of Zk(A, λ) follows
from (4.22).

According to Lemma 4.3, R0(A− λ) has the direct sum decomposition

(4.30) R0(A− λ) = Rc(A− λ)⊕ X0(A− λ),

and, with respect to (4.30), the linear relation (A − λ)0 has the reducing sum
decomposition

(4.31) (A− λ)0 = (A− λ)S ⊕ J0(A− λ).

Using (4.17) and (4.18) in (4.30) gives the direct sum decomposition (4.25), where
Xλ(A) = X0(A− λ). Likewise, using (4.20), (4.19) in (4.31), one obtains

Aλ − λ = (AS − λ)⊕ J0(A− λ),

or, in other words, the reducing sum decomposition (4.27), where Jλ(A) = J0(A−
λ) + λ. Recall from Lemma 4.3 that

X0(A− λ) = span
{
xi
k : 1 ≤ i ≤ Wk(λ), 1 ≤ k ≤ s(λ)

}
,

which gives (4.26). Likewise, one has from Lemma 4.3 that

J0(A− λ) = (A− λ) ∩ (X0(A− λ)⊕ X0(A− λ)),

which leads to

Jλ(A) = A ∩ (Xλ(A)× Xλ(A)),

as stated in the theorem. Similarly,

J0(A− λ) = span
{
(xi

k, x
i
k−1), . . . . . . , (x

i
2, x

i
1), (xi

1, 0) :

Wk+1(λ) + 1 ≤ i ≤ Wk(λ), 1 ≤ k ≤ s(λ)
}
,

which gives (4.28). Finally, from Lemma 4.3 one obtains

dom J0(A− λ) = X0(A− λ) and σp(J0(A− λ)) = {0},
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which shows that Jλ(A) is a Jordan operator in Xλ(A) corresponding to λ. The
formula (4.29) directly follows from the representation (4.28). □

Before stating Theorem 4.5, some general properties of the inverse A−1 of a
linear relation A will be discussed. It is easy to see that for λ ∈ C one has:

(4.32) ker (A− λ) = ker

(
A−1 − 1

λ

)
, λ ̸= 0, and kerA = mulA−1,

and it is therefore clear that

λ ∈ σp(A) ⇐⇒ 1

λ
∈ σp(A

−1), λ ̸= 0,

0 ∈ σp(A) ⇐⇒ ∞ ∈ σp(A
−1).

(4.33)

In a more general context, one also has

(4.34) Rλ(A) = R 1
λ
(A−1), λ ̸= 0, and R0(A) = R∞(A−1),

see [5, Lem. 3.2]. It is clear from (4.34) that

(4.35) Rc(A) = Rc(A
−1).

Moreover, the equivalences in (4.33), together with (4.34) and (4.35), lead to

λ ∈ σπ(A) ⇐⇒ 1

λ
∈ σπ(A

−1), λ ̸= 0,

0 ∈ σπ(A) ⇐⇒ ∞ ∈ σπ(A
−1).

Thus, it follows from the definition of the total root space (see (2.11)) that

(4.36) Rr(A) = Rr(A
−1).

As a consequence of (4.35) and (3.1), the completely singular part (A−1)S of A−1

is given by

(A−1)S = A−1 ∩ (Rc(A
−1)×Rc(A

−1)) = A−1 ∩ (Rc(A)×Rc(A)),

which leads to the identity

(4.37) ((A−1)S)
−1 = A ∩ (Rc(A)×Rc(A)) = AS .

Similarly, according to (4.34) and (4.1), the relation (A−1)0 is given by

(A−1)0 = A−1 ∩ (R0(A
−1)×R0(A

−1)) = A−1 ∩ (R∞(A)×R∞(A)),

which leads to the identity

(4.38) ((A−1)0)
−1 = A ∩ (R∞(A)×R∞(A)) = A∞.

For the case ∞ ∈ σπ(A) it will be shown below that the linear relation A∞
has the reducing sum decomposition A∞ = AS ⊕ J∞(A) involving the completely
singular part AS and a Jordan relation J∞(A). The sequence of quotient spaces
Wk(A) is defined by

(4.39) W1(A) :=
mulA+Rc(A)

Rc(A)
, Wk(A) :=

mulAk +Rc(A)

mulAk−1 +Rc(A)
, k ≥ 2.

Since the denominator is included in the numerator, each quotient space Wk(A),
k ≥ 1, is well defined. The Weyr characteristic of A with respect to the quotient
spaces (4.39) is defined as the sequence (Ak)k≥1, where

(4.40) Ak := dimWk(A), k ≥ 2.
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One sees from (4.32) and (4.35) that

(4.41) Wk(A) = Vk(A
−1), Ak = dimWk(A) = dimVk(A

−1).

Since H is finite-dimensional, the number

(4.42) ℵ = min
{
k ∈ N : mulAk+1 +Rc(A) = mulAk +Rc(A)

}
is well defined, as follows from (4.7) (with A replaced by A−1) and (4.35). The
following theorem will be proved by means of Lemma 4.3 via an inversion.

Theorem 4.5. Let A be a linear relation in a finite-dimensional space H with
∞ ∈ σπ(A), and let ℵ ≥ 1 be given by (4.42). Then the Weyr characteristic
(Ak)k≥1 in (4.40) satisfies

A1 ≥ A2 ≥ · · · ≥ Aℵ ≥ 1 and Ak = 0, k > ℵ.

Moreover, there exist Jordan chains for A corresponding to the eigenvalue ∞ of the
form

(0, xi
1), (xi

1, x
i
2), . . . , (xi

ℵ−2, x
i
ℵ−1), (xi

ℵ−1, x
i
ℵ), 1 ≤ i ≤ Aℵ,

(0, xi
1), (xi

1, x
i
2), . . . , (xi

ℵ−2, x
i
ℵ−1), Aℵ + 1 ≤ i ≤ Aℵ−1,

...
... . .

. ...
(0, xi

1), (xi
1, x

i
2), A3 + 1 ≤ i ≤ A2,

(0, xi
1), A2 + 1 ≤ i ≤ A1,

where {[x1
k], . . . , [x

Ak

k ]} is a basis of Wk(A) in (4.39), 1 ≤ k ≤ ℵ, and, consequently,
the elements in the set

{
xi
k : 1 ≤ i ≤ Ak, 1 ≤ k ≤ ℵ

}
are linearly independent in H.

Then the linear space R∞(A) has the direct sum decomposition

(4.43) R∞(A) = Rc(A)⊕ X∞(A),

where the linear space X∞(A) is given by

(4.44) X∞(A) = span
{
xi
k : 1 ≤ i ≤ Ak, 1 ≤ k ≤ ℵ

}
.

Furthermore, with respect to (4.43), the graph restriction of A to R∞(A)×R∞(A),

A∞ = A ∩ (R∞(A)×R∞(A))

has the reducing sum decomposition

(4.45) A∞ = AS ⊕ J∞(A),

where the linear relation J∞(A) = A ∩ (X∞(A)× X∞(A)) is given by

J∞(A) = span
{
(0, xi

1), (xi
1, x

i
2), . . . . . . , (x

i
k−1, x

i
k) :

Ak+1 + 1 ≤ i ≤ Ak, 1 ≤ k ≤ ℵ
}
.

(4.46)

In fact, J∞(A) is a Jordan relation in X∞(A) corresponding to ∞ and the total
dimension of J∞(A) is

(4.47) dim J∞(A) = A1 +A2 + . . .+Aℵ.

Proof. The assumption ∞ ∈ σπ(A) implies that 0 ∈ σπ(A
−1). Now apply

Lemma 4.3 where A, v, and dk are replaced by A−1, ℵ, and Ak. Then ℵ ≥ 1
and it is clear that (Ak)k≥1 in (4.40) is nonincreasing with Ak = 0 for k > ℵ, as
follows from (4.41).
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Moreover, with the Jordan chains in Lemma 4.3 interpreted for A−1 at the
eigenvalue 0, the present Jordan chains for A at the eigenvalue ∞ follow. For this
purpose recall that

(un, un−1), (un−1, un−2), . . . . . . . . . , (u2, u1), (u1, 0)

is a Jordan chain for A at 0 if and only if

(0, u1), (u1, u2), . . . . . . . . . , (un−2, un−1, (un−1, un)

is a Jordan chain for A−1 at ∞. The statement about the basis of Wk(A) follows
from (4.41).

According to Lemma 4.3, R0(A
−1) has the direct sum decomposition

(4.48) R0(A
−1) = Rc(A

−1)⊕ X0(A
−1),

and, with respect to (4.48), the linear relation (A−1)0 has the reducing sum decom-
position

(4.49) (A−1)0 = (A−1)S ⊕ J0(A
−1).

Using (4.34) and (4.35) in (4.48) gives the direct sum decomposition (4.43), where
X∞(A) = X0(A

−1). Likewise, using (4.37), (4.38), and taking inverses in (4.49),
one obtains the reducing sum decomposition (4.45), where J∞(A) = (J0(A

−1))−1.
Recall from Lemma 4.3 that

X0(A
−1) = span

{
xi
k : 1 ≤ i ≤ Ak, 1 ≤ k ≤ ℵ

}
,

which gives (4.44). Likewise, one has from Lemma 4.3

J0(A
−1) = A−1 ∩ (X0(A

−1)⊕ X0(A
−1)),

which, taking inverses, leads to

J∞(A) = A ∩ (X∞(A)× X∞(A)),

as stated in the theorem. Similarly,

J0(A
−1) = span

{
(xi

k, x
i
k−1), . . . . . . , (x

i
2, x

i
1), (xi

1, 0) :

Ak+1 + 1 ≤ i ≤ Ak, 1 ≤ k ≤ ℵ
}
.

Taking the inverse of the linear relations on both sides of the above equation
gives (4.46). Note that J0(A

−1) is an operator and that kerJ∞(A) = mulJ0(A
−1) =

{0}; hence the relation J∞(A) is injective. Finally, recall from Lemma 4.3 that

dom J0(A
−1) = X0(A

−1) and σp(J0(A
−1)) = {0},

by which J∞(A) is a Jordan relation in X∞(A) corresponding to ∞. The for-
mula (4.47) directly follows from the representation (4.46). □

Theorems 4.4 and 4.5 will now be combined to show the main result of this
section: a reducing sum decomposition of the root part.

Theorem 4.6. Let A be a linear relation in a finite-dimensional space H and let
σπ(A) \ {∞} = {λ1, . . . , λl}. For all λ ∈ σπ(A) \ {∞} let Jλ(A) be the Jordan
operator in Xλ(A) corresponding to λ such that Aλ = AS ⊕ Jλ(A) is the reducing
sum decomposition as in Theorem 4.4 and, if ∞ ∈ σπ(A), let J∞(A) be the Jordan
relation in X∞(A) such that A∞ = AS ⊕ J∞(A) is the reducing sum decomposition
as in Theorem 4.5. Then Rr(A) has the direct sum decomposition

(4.50) Rr(A) = Rc(A)⊕ Xλ1(A)⊕ · · · ⊕ Xλl
(A)⊕ X∞(A).
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Furthermore, with respect to (4.50), the linear relation AR has the reducing sum
decomposition

(4.51) AR = AS ⊕ Jλ1
(A)⊕ · · · ⊕ Jλl

(A)⊕ J∞(A).

Furthermore, one has the equalities

(4.52) Rr(A) = domAR + ran J∞(A) = ranAR + dom J0(A).

If ∞ /∈ σπ(A), then the space X∞(A) and the linear relation J∞(A) are absent.

Proof. First, it will be shown that the identity (4.50) holds and that the sum is
direct. Recall from Theorem 4.4 that Rλi

(A) = Rc(A)⊕Xλi
(A) for 1 ≤ i ≤ l, and

Rλ(A) = Rc(A) for λ /∈ σπ(A) by (2.10). Hence, the following identity is clear:

Rr(A) = Rc(A) + Xλ1
(A) + · · ·+ Xλl

(A) + X∞(A).

To see that the sum on the right-hand side is direct, let the elements xc ∈ Rc(A),
xi ∈ Xλi(A), 1 ≤ i ≤ l, and x∞ ∈ X∞(A) be such that

xc + x1 + · · ·+ xl + x∞ = 0.

Then it follows from [5, Cor. 4.5] that

xi ∈ Rλi
(A) ∩

Rc(A) +R∞(A) +

l∑
j=1,j ̸=i

Rλj
(A)

 = Rc(A), 1 ≤ i ≤ l,

hence xi ∈ Xλi
(A) ∩ Rc(A) = {0}. In a similar way one obtains x∞ = 0 and

concludes that xc = 0. Thus the sum in (4.50) is direct.

Next, it will be shown that the identity (4.51) holds and that the sum is direct.
Observe that it follows from (4.50) that the sum

AS ⊕ Jλ1
(A)⊕ · · · ⊕ Jλl

(A)⊕ J∞(A)

is direct. From Theorem 4.4 and Theorem 4.5 one finds that

AS ⊕ Jλ1
(A)⊕ · · · ⊕ Jλl

(A)⊕ J∞(A) ⊂ AR.

In order to show the reverse inclusion, let (x, y) ∈ AR. Then x ∈ Rr(A) and,
by (4.50), there exist xc ∈ Rc(A), xi ∈ dom Jλi(A), 1 ≤ i ≤ l, and x∞ ∈ ran J∞(A)
such that

x = xc + x1 + · · ·+ xl + x∞.

Hence, there exist yc ∈ Rc(A) with (xc, yc) ∈ A and yi ∈ ran Jλi
(A) with (xi, yi) ∈

A for 1 ≤ i ≤ l so that

(x, y) = (xc, yc) + (x1, y1) + · · ·+ (xl, yl) + (x∞, ỹ := y − yc − y1 − · · · − yl) ∈ A.

In particular, one has

(xc, yc) ∈ AS , (xi, yi) ∈ Jλi , 1 ≤ i ≤ l, and (x∞, ỹ) ∈ A.

As x∞ ∈ R∞(A) it follows that ỹ ∈ R∞(A). By (4.43) there exist ỹ∞ ∈ X∞(A)
and ŷ ∈ Rc(A) such that ỹ = ỹ∞ + ŷ, and x̃∞ ∈ X∞(A) such that (x̃∞, ỹ∞) ∈
J∞(A) ⊂ A. Then

(x, y) = (xc, yc) + (x1, y1) + · · ·+ (xl, yl) + (x̃∞, ỹ∞) + (x∞ − x̃∞, ŷ) ∈ A

and one sees that the last term belongs to A. But since x∞ − x̃∞ ∈ X∞(A) and
ŷ ∈ Rc(A) it follows that x∞ − x̃∞ ∈ Rc(A) ∩ X∞(A) = {0}, thus x∞ = x̃∞.
Therefore, (x, y) belongs to the right-hand side of (4.51).
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Finally, equation (4.52) directly follows from Theorems 3.2, 4.4 and 4.5. □

Recall from (2.15) that the restriction of A to H(A) = domA+ranA is formally
the same relation but in a possibly smaller space. In particular the space Rr(A) is
contained in H(A):

Rr(A) ⊂ domA+ ranA.

As a consequence of Theorem 4.6 it is possible to characterize when equality holds.
The case of strict inclusion will be considered in detail in Section 5.

Corollary 4.7. Let A be a linear relation in a finite-dimensional space H. Then
the following statements are equivalent:

(i) domA+ ranA = Rr(A),
(ii) domA ⊂ Rr(A),
(iii) ranA ⊂ Rr(A).

Proof. (i) ⇒ (iii) is clear.
(iii) ⇒ (i): Since ranA ⊂ Rr(A), it suffices to show that domA ⊂ Rr(A).

Assume that x ∈ domA, then (x, y) ∈ A for some y ∈ ranA ⊂ Rr(A). Then
y = yr + y0 with yr ∈ ranAR and y0 ∈ dom J0(A) according to (4.52), hence
(xr, yr) ∈ AR for some xr ∈ Rr(A). The decomposition

(x, y) = (xr, yr) + (x− xr, y0)

shows that (x− xr, y0) ∈ A. Due to y0 ∈ dom J0(A) ⊂ kerAi for some i one finds
x− xr ∈ kerAi+1 ⊂ Rr(A). Hence, it follows that x ∈ Rr(A).

(ii) ⇔ (iii): This is due to the symmetry when A is replaced by A−1; cf. (4.36).
□

5. The multishift part of a linear relation

Let A be a linear relation in a finite-dimensional space H. In this section it will
be shown that there exists a linear subspace Rm(A) ⊆ H spanned by entries of
linearly independent shift chains such that the restriction of A to Rm(A)×Rm(A)
is a multishift.

The construction of the shift chains in A is based on an appropriate choice of a
sequence of quotient spaces. The sequence of quotient spaces Mk(A) is defined by

(5.1) M0(A) :=
domA+ ranA

ranA+Rr(A)
, Mk(A) :=

ranAk +Rr(A)

ranAk+1 +Rr(A)
, k ≥ 1.

Indeed, as the denominator is included in the numerator, each quotient space
Mk(A), k ≥ 0, is well defined. The Weyr characteristic of A with respect to
(5.1) is defined as the sequence (Ck)k≥0, where

(5.2) Ck := dimMk(A), k ≥ 0.

If domA + ranA = Rr(A), then by Corollary 4.7 this condition is equivalent to
ranA ⊂ Rr(A). This implies that ranAk ⊂ Rr(A) for all k ≥ 1, so that Ck = 0 for
all k ≥ 0. In this case one may define Rm(A) := {0} and then the restriction AM

is given by AM = A ∩ (Rm(A)×Rm(A)) = {0, 0}.

Now consider the case that the inclusion Rr(A) ⊂ domA+ranA is strict. Then
the sequence in (5.2) is not trivial, although ultimately the entries are zero. To see
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this, observe that since the linear space H is finite-dimensional, the number

(5.3) m = min
{
k ∈ N : ranAk+1 +Rr(A) = ranAk +Rr(A)

}
is well defined.

Lemma 5.1. Let A be a linear relation in a finite-dimensional space H and assume
that the inclusion Rr(A) ⊂ domA+ ranA is strict. Then the Weyr characteristic
(Ck)k≥0 is nontrivial. In fact, with m given by (5.3), one has

(5.4) ranAk +Rr(A) = ranAk+1 +Rr(A), k ≥ m,

and it follows that Ck = 0, k ≥ m. Moreover,

(5.5) ranAk ⊂ Rr(A), k ≥ m,

which, in particular, implies that m ≥ 2 and, consequently, C1 ≥ 1.

Proof. The proof is divided into a number of steps.

Step 1 : First observe that

(5.6) Rr(A) + ranAk = R0(A) + ranAk, k ≥ 1.

To prove (5.6) it suffices to show that the left-hand side is contained in the right-
hand side. Recall from (4.50), that

Rr(A) = R̸=0(A)⊕ X0(A) where R̸=0(A) = Rc(A)⊕
∑

λ∈σπ\{0}

Xλ(A).

Fix k ≥ 1. Since Rc(A) is spanned by entries of singular chains (2.7), it is clear
that Rc(A) ⊂ ranAk. Moreover, for λ ∈ σπ(A) \ {0,∞} the Jordan operator
Jλ(A) defined in Theorem 4.4 is a bijection in Xλ(A), from which it follows that
ran Jλ(A) = Xλ(A). Hence,

Xλ(A) = ran(Jλ(A))k ⊂ ranAk,

where the last inclusion follows from Jλ(A) ⊂ A. For the Jordan relation J∞(A)
defined in Theorem 4.5 it is immediate that ranJ∞(A) = X∞(A), so that

X∞(A) = ran(J∞(A))k ⊂ ranAk,

where the last inclusion is due to J∞(A) ⊂ A. Therefore one finds that

R̸=0(A) ⊂ ranAk, k ≥ 1.

Hence (5.6) has been shown.

Step 2 : In order to prove (5.4), by (5.6) it is sufficient to show that

(5.7) ranAk +R0(A) = ranAk+1 +R0(A), k ≥ m.

By induction it suffices to show that ranAk +R0(A) = ranAk+1 +R0(A) for some
k ≥ m implies that ranAk+1 +R0(A) = ranAk+2 +R0(A). It will be shown that

(5.8) ranAk+1 +R0(A) ⊂ ranAk+2 +R0(A),

since the converse inclusion follows from the inclusion ranAk+2 ⊂ ranAk+1. Let
x ∈ ranAk+1 +R0(A). Then x = xr + x0 for some xr ∈ ranAk+1 and x0 ∈ R0(A).
Furthermore, there exists xk ∈ ranAk such that (xk, xr) ∈ A. By assumption one
has

xk = xk+1 + z0 with xk+1 ∈ ranAk+1 and z0 ∈ R0(A).
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and hence there exists y0 ∈ R0(A) with (z0, y0) ∈ A. With (xk+1 + z0, xr) ∈ A it
follows that (xk+1, x−x0− y0) ∈ A and x−x0− y0 ∈ ranAk+2. Hence one obtains
x ∈ ranAk+2 +R0(A). This shows (5.8).

Step 3 : To prove (5.5), it suffices to show that ranAm ⊂ Rr(A), since ranAk ⊂
ranAm for k ≥ m. Let x ∈ ranAm, then x = x1 + x0

1 with x1 ∈ ranAm+1 and
x0
1 ∈ R0(A) by (5.7). Hence, there exists y1 ∈ ranAm with (y1, x1) ∈ A. Again

by (5.7), y1 = x2 + x0
2 with x2 ∈ ranAm+1 and x0

2 ∈ R0(A), and there is some
x1
2 ∈ R0(A) such that (x0

2, x
1
2) ∈ A. With (x2 + x0

2, x1) = (y1, x1) ∈ A it follows
that (x2, x1 − x1

2) ∈ A.
Next observe that there exists y2 ∈ ranAm with (y2, x2) ∈ A, and by (5.7),

y2 = x3+x0
3 with x3 ∈ ranAm+1 and x0

3 ∈ R0(A). Moreover, there are x1
3 ∈ R0(A)

and x2
3 ∈ R0(A) such that (x0

3, x
1
3) ∈ A and (x1

3, x
2
3) ∈ A. With (x3 + x0

3, x2) =
(y2, x2) ∈ A it follows that (x3, x2 − x1

3) ∈ A, and

(x3, x2 − x1
3), (x2 − x1

3, x1 − x1
2 − x2

3)

form a chain in A. A continuation of this argument leads to a chain of the form

(zn, zn−1), . . . , (z3, z2), (z2, z1) ∈ A,

where each zk is of the form zk = xk + z0k with xk ∈ ranAm+1 and z0k ∈ R0(A).
Let l ≥ 2 be the smallest index such that z1, . . . , zl−1 are linearly independent and
zl ∈ span {z1, . . . , zl−1}. Let B = span {(zk, zk+1) : 1 ≤ k ≤ l − 1}. Then B is an
everywhere defined linear operator in span {z1, . . . , zl−1} = Rr(B) with B ⊂ A−1.
By means of (4.36) one has that Rr(B) ⊂ Rr(A

−1) = Rr(A), thus z1 ∈ Rr(A).
Hence, x = x1 + x0

1 = z1 − z01 + x0
1 ∈ Rr(A) follows.

Step 4 : If m = 1, then it follows from (5.5) that ranA ⊂ Rr(A). By Corollary 4.7
this contradicts the assumption that the inclusion Rr(A) ⊂ domA+ranA is strict.
Thus m ≥ 2 and, in particular, ranA2+Rr(A) is a proper subset of ranA+Rr(A),
which implies that C1 ≥ 1. □

Theorem 5.2. Let A be a linear relation in a finite-dimensional space H and
assume that the inclusion Rr(A) ⊂ domA + ranA is strict, so that m in (5.3)
satisfies m ≥ 2. Then the Weyr characteristic (Ck)k≥0 in (5.2) satisfies

C0 = C1 ≥ · · · ≥ Cm−1 ≥ 1 and Ck = 0, k ≥ m.

Moreover, there exist shift chains for A of the following form
(5.9)

(xi
0, x

i
1), (x

i
1, x

i
2), . . . , (x

i
m−3, x

i
m−2), (xi

m−2, x
i
m−1), 1 ≤ i ≤ Cm−1,

(xi
0, x

i
1), (x

i
1, x

i
2), . . . , (x

i
m−3, x

i
m−2), Cm−1 + 1 ≤ i ≤ Cm−2,

...
... . .

. ...
(xi

0, x
i
1), (x

i
1, x

i
2), C3 + 1 ≤ i ≤ C2,

(xi
0, x

i
1), C2 + 1 ≤ i ≤ C1,

where {[x1
k], . . . , [x

Ck

k ]} is a basis of Mk(A), 0 ≤ k ≤ m − 1. The elements in{
xi
k : 1 ≤ i ≤ Ck, 0 ≤ k ≤ m− 1

}
are linearly independent in H. Then H(A) =

domA+ ranA has the direct sum decomposition

(5.10) H(A) = Rr(A)⊕Rm(A),

where

(5.11) Rm(A) := span
{
xi
k : 1 ≤ i ≤ Ck, 0 ≤ k ≤ m− 1

}
.
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Furthermore, with respect to the decomposition (5.10), the relation A has the re-
ducing sum decomposition

(5.12) A = AR ⊕AM ,

where AM := A ∩ (Rm(A)×Rm(A)) admits the representation

AM = span
{
(xi

0, x
i
1), (x

i
1, x

i
2), . . . . . . , (x

i
k−1, x

i
k) :

Ck+1 + 1 ≤ i ≤ Ck, 1 ≤ k ≤ m− 1
}
.

(5.13)

In fact, AM is a multishift and the total dimension of AM is

(5.14) dimAM = C1 + C2 + . . .+ Cm−2 + Cm−1.

Proof. Throughout the proof the identity (5.6) will be used. The proof is carried
out in several steps.

Step 1 : For 1 ≤ k ≤ m− 1, define the linear relations

B̂k := {([y], [x]) ∈ Mk(A)×Mk−1(A) : ∃ (x′, y′) ∈ A with [x′] = [x] and [y′] = [y]} .

It is shown that B̂k : Mk(A) → Mk−1(A) are injective operators, i.e., dom B̂k =

Mk(A) and ker B̂k = mul B̂k = {[0]} for 1 ≤ k ≤ m−1. Moreover, ran B̂1 = M0(A).

To see that dom B̂k = Mk(A) let [y] ∈ Mk(A), then y = y1+y2 with y1 ∈ ranAk

and y2 ∈ R0(A), and there exists x ∈ ranAk−1 (x ∈ domA if k = 1) such that
(x, y1) ∈ A. Since y − y1 = y2 ∈ R0(A) one has [y] = [y1] and as further [x] ∈
Mk−1(A) it follows ([y], [x]) = ([y1], [x]) ∈ B̂k.

To see that mul B̂k = {[0]} let ([0], [x]) ∈ B̂k. Then there exist y′ ∈ [0] and
x′ ∈ [x] such that (x′, y′) ∈ A. Hence there exist y1 ∈ ranAk+1 and y2 ∈ R0(A)
with y′ = y1 + y2. Therefore, (x1, y1) ∈ A with some x1 ∈ ranAk. It follows that
(x′−x1, y2) ∈ A, and since y2 ∈ R0(A) one obtains x′−x1 ∈ R0(A). Consequently,
[x] = [x1] and x1 ∈ ranAk +R0(A) which gives [x] = [0] ∈ Mk−1(A).

To see that ker B̂k = {[0]} let ([y], [0]) ∈ B̂k. Then there exists x′ ∈ [0] and
y′ ∈ [y] such that (x′, y′) ∈ A. Hence there exist x1 ∈ ranAk and x2 ∈ R0(A) with
x′ = x1+x2. Furthermore, there exists y2 ∈ R0(A) with (x2, y2) ∈ A. It follows that
(x1, y

′ − y2) ∈ A, which together with x1 ∈ ranAk implies that y′ − y2 ∈ ranAk+1.
Consequently, [y] = [y2] and y2 ∈ ranAk+1+R0(A) which gives [y] = [0] ∈ Mk(A).

To see that ran B̂1 = M0(A) let [x] ∈ M0(A). Then x = x1+x2 with x1 ∈ domA

and x2 ∈ ranA, and there exists y1 with (x1, y1) ∈ A so that ([y1], [x1]) ∈ B̂1. Since
x− x1 ∈ ranA it follows that [x] = [x1] and the statement of Step 1 is shown.

The properties of B̂k imply that

C0 = C1, Ck−1 ≥ Ck, 2 ≤ k ≤ m.

Step 2 : Let {[x1
m−1], . . . , [x

Cm−1

m−1 ]} be a basis of Mm−1(A). Then, for i =

1, . . . , Cm−1, x
i
m−1 = xi

0+x̃i
m−1 with xi

0 ∈ R0(A) and x̃i
m−1 ∈ ranAm−1. Therefore,

there are elements xi
m−2 ∈ ranAm−2 with (xi

m−2, x̃
i
m−1) ∈ A, and [xi

m−1] = [x̃i
m−1]

for i = 1, . . . , Cm−1, thus it is shown that {[x̃1
m−1], . . . , [x̃

Cm−1

m−1 ]} is a basis of

Mm−1(A) and [xi
m−2] = B̂m−1[x̃

i
m−1] for i = 1, . . . , Cm−1. Since B̂m−1 is injec-

tive by Step 1, the elements [x1
m−2], . . . , [x

Cm−1

m−2 ] ∈ Mm−2(A) are linearly indepen-

dent. Now choose additional linearly independent elements [xi
m−2] ∈ Mm−2(A),

Cm−1 + 1 ≤ i ≤ Cm−2 (note that this range is empty if Cm−1 = Cm−2), with
xi
m−2 ∈ ranAm−2 (this can be achieved by substracting appropriate elements from
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R0(A) without changing the equivalence class) such that {[x1
m−2], . . . , [x

Cm−2

m−2 ]}
forms a basis of Mm−2(A).

To continue in an inductive way, assume that, for some 2 ≤ k ≤ m − 2,
{[x1

k], . . . , [x
Ck

k ]} is a basis of Mk(A) such that x1
k, . . . , x

Ck

k ∈ ranAk. Then there

exist xi
k−1 ∈ ranAk−1 such that (xi

k−1, x
i
k) ∈ A for i = 1, . . . , Ck. Therefore,

[xi
k−1] = B̂k[x̃

i
k] for i = 1, . . . , Cm−1 and, since B̂k is injective by Step 1, the el-

ements [x1
k−1], . . . , [x

Ck

k ] ∈ Mk−1(A) are linearly independent. Choose additional

linearly independent elements [x̃i
k−1] ∈ Mk−1(A) for Ck + 1 ≤ i ≤ Ck−1 with

xi
k−1 ∈ ranAk−1 such that {[x̃1

k−1], . . . , [x̃
Ck−1

k−1 ]} is a basis of Mk−1(A).

This procedure continues until one arrives at a basis {[x1
1], . . . , [x

C1
1 ]} of M1(A)

with x1
1, . . . , x

C1
1 ∈ ranA. Then there are elements xi

0 with (xi
0, x

i
1) ∈ A for i =

1, . . . , C1 = C0. Since [xi
0] = B̂1[x̃

i
1] for i = 1, . . . , C0 and B̂1 : M1(A) → M0(A)

is bijective by Step 1, {[x1
0], . . . , [x

C0
0 ]} is a basis of M0(A). In the end, the shift

chains as in the statement of the theorem have been constructed.

Step 3 : It follows from the construction in Step 2 that {[x1
k], . . . , [x

Ck

k ]} is a basis of

Mk(A), 0 ≤ k ≤ m−1. To see that the elements
{
xi
k : 1 ≤ i ≤ Ck, 0 ≤ k ≤ m− 1

}
are linearly independent in H, assume that

(5.15)

m−1∑
k=0

Ck∑
i=1

cikx
i
k = 0.

By (5.6)
∑m−1

k=1

∑Ck

i=1 c
i
kx

i
k ∈ ranA +R0(A), so that by taking equivalence classes

in (5.15) with respect to M0(A), one obtains

C0∑
i=1

ci0[x
i
0] = 0 ∈ M0(A),

which implies that ci0 = 0 for 1 ≤ i ≤ C0. Note that therefore the assumption
(5.15) is reduced to

m−1∑
k=1

Ck∑
i=1

cikx
i
k = 0.

Now form equivalence classes in M1(A) and proceed in a similar way. Then ulti-
mately it follows that cik = 0 for all the coefficients, which proves the claim.

Step 4: To show (5.10), first observe that it is clear that Rr(A) +Rm(A) ⊂ H(A).
To see that equality holds, it will be shown that

(5.16) dim
domA+ ranA

Rr(A)
=

m−1∑
k=0

Ck.

To this end, observe the following identity

dim
domA+ ranA

Rr(A)
= dim

domA+ ranA

ranA+Rr(A)

+

m−1∑
k=1

dim
ranAk +Rr(A)

ranAk+1 +Rr(A)
+ dim

ranAm +Rr(A)

Rr(A)
,
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where for the last term one has by Lemma 5.1 that

dim
ranAm +Rr(A)

Rr(A)
= dim

Rr(A)

Rr(A)
= 0.

This gives (5.16). To see that the sum (5.10) is direct, let x ∈ Rr(A) ∩ Rm(A),
then x is of the form as the left hand side of equation (5.15). Since x ∈ Rr(A) one
further has that [x] = 0 ∈ Mk(A) for all 0 ≤ k ≤ m − 1. Then, similar to Step 3,
it follows that x = 0.

Step 5: It will be shown that

(5.17) ranA ∩Rm(A) = span
{
xi
k : 1 ≤ i ≤ Ck, 1 ≤ k ≤ m− 1

}
.

It is clear by construction of Rm(A) that the right-hand side is contained in the
left hand side, so it suffices to show that

dim
(
A ∩Rm(A)

)
=

m−1∑
k=1

Ck.

By (5.10) it follows that

dim ranA = dim
(
ranA ∩Rr(A)

)
+ dim

(
ranA ∩Rm(A)

)
,

so it remains to show that

(5.18) dim
ranA

ranA ∩Rr(A)
=

m−1∑
k=1

Ck.

To this end, observe that

(5.19) dim
domA+ ranA

Rr(A)
= dim

domA+ ranA

ranA+Rr(A)
+ dim

ranA+Rr(A)

Rr(A)
.

By (5.16) the left-hand side of the above equation equals
∑m−1

k=0 Ck and the first
term on the right-hand side is C0. Hence,

m−1∑
k=1

Ck = dim
ranA+Rr(A)

Rr(A)
= dim

ranA

ranA ∩Rr(A)
,

where the last equality is due to [17, Lem 2.2]. This proves (5.18).

Step 6 : For (5.12) it suffices to show that A ⊂ AR +̂AM and that the sum is
direct. Let (x, y) ∈ A, so that y ∈ ranA. Then by (5.10) one has y = yr + ym with
yr ∈ ranA ∩ Rr(A) and ym ∈ ranA ∩ Rm(A). Therefore, invoking (5.17), there
are xr ∈ Rr(A) and xm ∈ Rm(A) such that (xr, yr) ∈ AR and (xm, ym) ∈ AM . It
follows that (x−xr−xm, 0) ∈ A, thus x−xr−xm ∈ R0(A) and (x−xr−xm, 0) ∈ AR.
Therefore, one obtains that (x− xm, y − ym) ∈ AR and hence

(x, y) = (x− xm, y − ym) + (xm, ym) ∈ AR +̂AM .

That the sum (5.12) is direct follows from (5.10).

Step 7 : It will be shown that (5.13) holds. It is clear that the right-hand side
is contained in the left-hand side. For the converse inclusion, let (x, y) ∈ A ∩
(Rm(A)×Rm(A)). Since y ∈ ranA∩Rm(A), by (5.17) there is some xm ∈ Rm(A)
with (xm, y) ∈ AM . It follows that x−xm ∈ Rm(A)∩R0(A) = {0} by (5.10), thus
x = xm and (5.13) is shown. It is a direct consequence of (5.13) that AM is an
operator (i.e., mulAM = {0}), and that σp(AM ) = ∅, thus AM is a multishift.
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Step 8 : It remains to show (5.14), which directly follows from (5.9). □

The following is a consequence of Theorem 5.2. It is implicitly contained in [22].

Corollary 5.3. Let A be a linear relation in a finite-dimensional linear space H.
Then the following statements are equivalent:

(i) A is a multishift (i.e., σp(A) = ∅);
(ii) there exists a basis for H of the form (5.11) and A is given by the right-hand

side of (5.13).

6. Main result: Jordan-like decomposition

In this section the main result of this note will be stated. Any linear relation
in a finite-dimensional space admits a reducing sum decomposition into a com-
pletely singular relation, a Jordan relation, and a multishift. This is obtained by
a combination of Theorems 3.2, 4.6, and 5.2. Furthermore, it will be shown that
the chain structure of singular chains, Jordan chains, and shift chains of any such
decomposition is uniquely determined by A and given by its Weyr characteristics.
Moreover, it turns out that the resulting decomposition of A is a unique represen-
tative of the equivalence class of with respect to the notion of strict equivalence
(see Definition 6.5).

Theorem 6.1. Let A be a linear relation in a finite-dimensional space H. Then
there exist linear relations AS , Jλ1(A), . . . , Jλl

(A), J∞(A), AM , all contained in A,
where {λ1, . . . , λl} = σπ(A) ∩ C, such that

(6.1) A = AS ⊕ Jλ1(A)⊕ · · · ⊕ Jλl
(A)⊕ J∞(A)⊕AM ,

is a reducing sum decomposition of A with respect to

(6.2) H(A) = Rc(A)⊕ Xλ1
(A)⊕ · · · ⊕ Xλl

(A)⊕ X∞(A)⊕Rm(A)

with the spaces defined in Theorems 3.2, 4.6, and 5.2. Furthermore,

(a) AS is completely singular in Rc(A);
(b) Jλi

(A) is a Jordan operator in Xλi
(A) corresponding to λi for 1 ≤ i ≤ l;

(c) J∞(A) is a Jordan relation in X∞(A);
(d) AM is a multishift in Rm(A).

Any of the linear relations in (6.1) may be absent, if the corresponding space in (6.2)
is trivial.

Remark 6.2. The following special cases may serve to illustrate Theorem 6.1.

(a) Consider the case of a trivial singular chain subspace Rc(A) = {0}. Then
the completely singular part is absent and the treatment in Section 4 becomes
simpler. In this case the quotient spaces Zk(A, λ) in (4.21) are given by

(6.3) ker (A− λ),
ker (A− λ)2

ker (A− λ)
,
ker (A− λ)3

ker (A− λ)2
, · · · ,

whereas the quotient spaces Wk(A) in (4.39) are given by

(6.4) mulA,
mulA2

mulA
,
mulA3

mulA2
, · · · .

Recall that Rc(A) = {0} implies that σπ(A) = σp(A). Hence, if λ ̸∈ σp(A),
then the Weyr characteristic corresponding to (6.3) is the null sequence and,
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similarly, if ∞ ̸∈ σp(A), then the Weyr characteristic corresponding to (6.4) is
the null sequence.

(b) Consider the case of a trivial multivalued part mulA = {0}. Then certainly
Rc(A) = {0} (and the comments of (a) apply), but additionally the quotient
spaces in (6.4) are trivial. The Weyr characteristic for (6.3) then essentially
coincides with that considered in [25] for linear operators.

(c) Consider the case of domA = H. Then AM equals the zero space. Assume that
AM ̸= {(0, 0)}. As (6.1) is a reducing sum decomposition, one can assume, for
simplicity, A = AM . As A = AM is a multishift, it has no eigenvalues and for
every for every pair (x, y) ∈ A the entries x, y are linearly independent. Let
(x1, x2) ∈ A. As domA = H, it follows that x2 ∈ domA, hence there exists x3

with (x2, x3) ∈ A. Now, {x1, x2} is linearly independent but {x1, x2, x3} might
be linearly independent or not. If it is linearly independent, then there exists
x4 with (x3, x4) ∈ A. Again, {x1, x2, x3, x4} is linearly independent or not. If
it is linearly independent, then there exists x5 with (x4, x5) ∈ A. This can be
continued. Finally, as domA = H is finite dimensional, this procedure shows
that there is a smallest natural number m, 2 ≤ m ≤ dimH, with the properties

{x1, . . . , xm} are linearly independent,
{x1, . . . , xm+1} are not linearly independent,
(xi, xi+1) ∈ A for i = 1, . . . ,m.

Therefore, one has xm+1 =
∑m

i=1 αixi for some αi ∈ C, i = 1, . . . ,m. Set
M := span{x1, . . . , xm} and define the matrix

T :=


0 · · · 0 α1

1
...

. . .
...

1 αm

 .

Let λ ∈ C be an eigenvalue of T with eigenvector β = (β1, . . . , βm)⊤ ∈ Cm\{0},
i.e., Tβ = λβ. Then x :=

∑m
i=1 βixi ∈ M is nontrivial and since (xi, xi+1) ∈ A

for i = 1, . . . ,m one finds that for

z := β1x2 + . . .+ βm−1xm + βmxm+1

one has (x, z) ∈ A. Observe that by xm+1 =
∑m

i=1 αixi it follows

z = α1βmx1 + (α2βm + β1)x2 + . . .+ (αmβm + βm−1)xm

and since 
α1βm

α2βm + β1

...
αmβm + βm−1

 = T

β1

...
βm

 = λ

β1

...
βm

 ,

one has that

z = λβ1x1 + . . .+ λβmxm = λx

so that (x, λx) ∈ A and hence A has an eigenvalue, a contradiction. Therefore,
the quotient spaces in (5.1) are trivial, and the corresponding Weyr character-
istic given by (5.2) is the null sequence. That is, the multishift part is absent.
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(d) As a consequence of (a)–(c), the classical result of the Jordan canonical form for
linear operators A in a finite-dimensional space H is covered by Theorem 6.1.
Since in particular domA = H and mulA = {0}, the Weyr characteristic of A
is that corresponding to the spaces (6.3) and A has the reducing sum decom-
position

A = Jλ1(A)⊕ · · · ⊕ Jλl
(A),

with Jordan operators Jλi
(A) whose structure coincides with that of classical

Jordan blocks according to the representation (4.28).

In order to justify calling (6.1) a Jordan-like decomposition for linear relations
it needs to exhibit a certain uniqueness. Recall that for the fixed decomposition
of H(A) in (6.2), any reducing sum decomposition is intrinsically unique, cf. Sec-
tion 2. Moreover, the Jordan-like decomposition is uniquely determined by the
Weyr characteristic of A; in particular, if any two linear relations have the same
Weyr characteristic, then they have the same Jordan-like decomposition. To see
this, recall that for a linear relation A in a finite-dimensional linear space H the
Weyr characteristic corresponding to the sequence of quotient spaces

(a) in (3.2) is given by the sequence B := (Bk)k≥1 in (3.3);
(b) in (4.21) is given by the sequece W (λ) := (Wk(λ))k≥1 in (4.22);
(c) in (4.39) is given by the sequence A = (Ak)k≥1 in (4.40);
(d) in (5.1) is given by the sequence C := (Ck)k≥0 in (5.2).

Note that each of these Weyr characteristics is a finitely supported nonincreasing
sequence, which may be the null sequence. The Weyr characteristics corresponding
to all different proper complex eigenvalues {λ1, . . . , λl} = σπ(A)∩C will be collected
in a single sequence:

(6.5) W := (W (λ1),W (λ2), . . . ,W (λl)).

Definition 6.3. Let A be a linear relation in a finite-dimensional linear space H.
The collection of the sequences

(6.6) (B,W,A,C),

given by (3.3), (6.5), (4.40), and (5.2), is called the Weyr characteristic of the
linear relation A.

The Jordan-like decomposition (6.1) of a linear relation A in Theorem 6.1 is
completely determined by the Weyr characteristic of A, which follows from the
construction in Theorems 3.2, 4.6, and 5.2. Moreover, one has the following result.

Proposition 6.4. Any two linear relations in a finite-dimensional space H with
the same Weyr characteristic have the same reducing sum decomposition (6.1) with
respect to the same subspace decomposition (6.2).

In the remainder of this section consider finitely supported nonincreasing se-
quences

(6.7)
(
(Bk)k≥1, (W

1
k )k≥1, . . . , (W

l
k)k≥1, (Ak)k≥1, (Ck)k≥0

)
,

where any of the sequences may be a null sequence. Then, by the above results, it is
possible to construct a linear relation (given by the Jordan-like decomposition (6.1))
which has (6.7) as Weyr characteristic. But to which extent is this relation unique?
To answer this question one introduces the following notion of strict equivalence.
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Definition 6.5. The linear relations S1 and S2 in a finite-dimensional space H are
said to be strictly equivalent if there exists an invertible matrix T such that

(x, y) ∈ S2 ⇐⇒ (T−1x, T−1y) ∈ S1(6.8)

or, what is the same,

S2 = TS1T
−1.(6.9)

Note that (6.9) is understood in the sense of multiplication of linear relations.
The following theorem is taken from [13].

Theorem 6.6. Two linear relations in a finite-dimensional space H are strictly
equivalent if and only if their Weyr characteristics coincide.

As a direct consequence of Proposition 6.4 and Theorem 6.6, it follows that the
Jordan-like decomposition (6.1) is a unique representative of the equivalence classes
with respect to strict equivalence. Furthermore, one has the following result.

Theorem 6.7. For any given finitely supported nonincreasing sequences (6.7) (and
a finite-dimensional space H with sufficiently large dimension) there exists, up to
strict equivalence, exactly one linear relation A in H with Weyr characteristic (6.7).

Remark 6.8. The Jordan-like decomposition of linear relations derived in The-
orem 6.1 resolves a “non-uniqueness issue” of the decomposition from [22]. A
componentwise direct sum decomposition of a linear relation A into a completely
singular relation, a Jordan part and a multishift was derived in [22]. However,
this decomposition does not exhibit uniqueness as the following example shows:
For linearly independent elements x1, x2, x3 in a finite-dimensional linear space H
define

A1 := span{(0, x1), (x1, x2), (x2, 0)}, A2 := {(x1, x3)}
and A := A1⊕A2. Obviously, Rc(A) = span{x1, x2} andRr(A) = span{x1, x2, x3}.
Clearly, A1 is completely singular and A2 is a multishift, but A1 ⊕ A2 is not a
reducing sum decomposition. Furthermore, there is an alternative decomposition
of A into

A = A1 ⊕A3, A3 = span{(0, x3 − x2)},
where A3 consists of a Jordan chain at ∞. Both decompositions are possible in
the framework of [22]. On the other hand, the Jordan-like decomposition (6.1)
in Theorem 6.1 is a reducing sum decomposition, and hence unique for the fixed
decomposition of H(A) in (6.2).

It should also be stressed that in the present paper the reducing sum decompo-
sitions are derived in the setting of linear spaces; no further structure (such as an
inner product) is required.

Remark 6.9. The presentation of some of the material in [22] was inspired by the
results in [18, 19]. In the setting of (what is now called) almost Pontryagin spaces,
Kaltenbäck and Woracek considered selfadjoint extensions of symmetric relations
with defect numbers (1, 1); one of the requirements was the existence of a shift
chain relative to the isotropic part of the almost Pontryagin space. The multishifts
in [22] were introduced with the work of Kaltenbäck and Woracek in mind. Shifts
have also been considered in the context of Pontryagin spaces; see for instance [11],
where references to further work can be found.



JORDAN-LIKE DECOMPOSITION FOR RELATIONS 33

Remark 6.10. Let E,F ∈ Cn×m be matrices and let sE−F be the corresponding
matrix pencil. Associated with E and F are two linear relations
(6.10)
E−1F = {(x, y) ∈ Cm × Cm : Fx = Ey} and FE−1 = {(Ex,Fx) : x ∈ Cm} ,

which were already studied in [3, 4]. Usually, E−1F is called the kernel represen-
tation and FE−1 the range representation (see also [9]). Matrix pencils have a
canonical form, the so-called Kronecker canonical form [6, 12, 20]. There is a
deep connection between the range and the kernel representation and the corre-
sponding matrix pencil. This was already utilized in [8, 14, 15, 16, 21]. A complete
set of invariants for the Kronecker canonical form are four multi-indices: the finite
and infinite elementary divisors, the column and the row minimal indices. These
quantities measure the sizes of the different blocks in the Kronecker canonical form.
Moreover, two matrix pencils are strictly equivalent if and only if all the four indices
coincide [12]. They are completely determined by the so-called Wong sequences [7],
which are certain sequences of subspaces; the geometric approach in [7] is, in its
spirit, close to the approach in the present paper (although not quotient spaces
have been used). The relationship between linear relations and matrix pencils is
investigated in [9, 13] and it will be continued in upcoming papers.
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[21] L. Leben, F. Mart́ınez Peŕıa, F. Philipp, H. Winkler, and C. Trunk, Finite rank perturbations

of linear relations and singular matrix pencils, Complex Anal. Oper. Theory 15 (2021), Article

37.
[22] A. Sandovici, H.S.V. de Snoo, and H. Winkler, The structure of linear relations in Euclidean

spaces, Lin. Alg. Appl. 397 (2005), 141–169.

[23] A. Sandovici, H.S.V. de Snoo, and H. Winkler, Ascent, descent, nullity, defect, and related
notions for linear relations in linear spaces, Lin. Alg. Appl. 423 (2007), 456–497.

[24] H. Shapiro, The Weyr characteristic, The American Mathematical Monthly 106 (1999) 919–
929.

[25] H. Shapiro, Linear Algebra and Matrices. Topics for a Second Course, Providence, RI: Amer-

ican Mathematical Society (AMS), 2015.

Universität Paderborn, Institut für Mathematik, Warburger Str. 100, 33098 Pader-
born, Germany

Email address: thomas.berger@math.upb.de

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence,

University of Groningen, P.O. Box 407, 9700 AK Groningen, Netherlands

Email address: h.s.v.de.snoo@rug.nl

Institut für Mathematik, Technische Universität Ilmenau, Weimarer Straße 25,

98693 Ilmenau, Germany
Email address: carsten.trunk@tu-ilmenau.de

Institut für Mathematik, Technische Universität Ilmenau, Weimarer Straße 25,

98693 Ilmenau, Germany
Email address: henrik.winkler@tu-ilmenau.de


