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Abstract The methodology of funnel control was introduced in the
early 2000s, and it has developed since then in many respects achieving a level
of mathematical maturity balanced by practical applications. Its fundamen-
tal tenet is the attainment of prescribed transient and asymptotic behaviour
for continuous-time controlled dynamical processes encompassing linear and
nonlinear systems described by functional differential equations, differential-
algebraic systems, and partial differential equations. Considered are classes of
systems specified by structural properties — such as relative degree and stable
internal dynamics — of the systems only, the precise systems’ data are in gen-
eral unknown; the latter reflects the property that in general any model of a
dynamical process is not precise.

Prespecified are: a funnel shaped through the choice of a smooth function
and freely chosen by the designer, a fairly large class of smooth reference sig-
nals, and a system class satisfying certain structural properties. The aim is to
design, based on the structural assumptions and the input and output infor-
mation only, a single ‘simple’ control strategy — called the funnel controller —
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so that its application to any system of the given class and to any reference
signal belonging to the given class results in feasibility of the funnel control
objective: that is solutions of the closed-loop system do not exhibit blow-up
in finite time, all variables are bounded, and — most importantly — the evolu-
tion of the error between the system’s output and the reference signal remains
within the prespecified funnel.

The survey is organized as follows: In the Introduction, we describe the
genesis of funnel control for the most simple class of systems, the linear pro-
totype of single-input single-output systems with state dimension one. Before
we treat funnel control, we investigate diverse system classes for which funnel
control is feasible. After that, funnel control is shown for systems with rela-
tive degree one, systems with higher relative degree, and systems described by
partial differential equations. Finally, we discuss input constraints and appli-
cations.

Keywords nonlinear systems - adaptive control - funnel control - stabiliza-
tion - tracking
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Nomenclature

ReA, ImA

RZaa R>ou (CZav C>o¢

<'7 >
-
G1,(R)

Rls], R(s)

£(N1, Na)

L>=(I,RY)

L:loc?(:(I’ Rn)

£r(I,R")

C(I,R")

CY(I,RY)

-Acloc (I, Rn)

Wwhee (I, R")

N> M

the real, imaginary part of a complex number
A € C, respectively.

[a,00), (a,00), {A € C|ReX > a}, {N €
C|ReA > a}, a e R.

inner product on a Hilbert space.

norm on a normed space.

the general linear group of invertible real n x n
matrices

the ring of polynomials with coefficients in R
and indeterminate s, the quotient field of R[s],
respectively.

the space of bounded linear operators A :
Ny — N,, for normed spaces N; and Ns.

the Lebesgue space of all measurable essen-
tially bounded functions f : I — R" with
norm || f|le := esssup,¢;||f(t)||, where I C R
is some interval.

the set of measurable locally essentially
bounded functions f : I — R™ where I C R is
some interval.

the Lebesgue space of measurable and pth
power integrable functions f : I — R", where
I C R is some interval and p € [1, 00).

the set of continuous functions f : I — R",
where I C R is some interval.

the set of k-times continuously differentiable
functions f : I — R™, where I C R is some
interval.

the set of locally absolutely continuous func-
tions f : I — R™, where I C R is some inter-
val.

the space of functions f € L(I,R™) with
derivatives f) € L®(I,R"), i = 1,...,k,
where I C R is some interval and k € N.
(x,(N=M)z) > 0 for all z € R™\{0}, N, M €
Rnxn.
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1 Introduction

A fundamental question in systems and control theory is: “To what extent
does one need to know a dynamical process in order to influence benignly
its behaviour through choice of input?” Imprecision is inevitable in mathe-
matically modelling any such process — be it biological, economic, electrical,
mechanical, social, or any other environment that evolves with time. Given a
process — known to belong to a specific class — can one control its behaviour
knowing only the class but not which particular member of the class one hap-
pens to be dealing with? In other words, is there a single control strategy that
“works” for every member of the underlying class? In essence, the broad field
of adaptive control addresses this question — the term “adaptive” carrying the
connotation of some adjustment contrivance (explicit or implicit) to counter
the lack of precise knowledge of the process to be controlled.

Roughly speaking, adaptive control can be compartmentalised into two
categories: identifier-based strategies and its complement, non-identifier-based
strategies. The former category has its origins in the early 1950s when the
design of autopilots for high-performance aircraft triggered research in this
area. Development continued in the 1960s through the application of state
space methods and Lyapunov’s stability theory. The underlying methodol-
ogy applies in the context of a parametrized class {Py| 8 € @} to which the
particular process Py to be controlled is known to belong (but the associated
parameter 6 is not known). An identifier-based strategy explicitly incorporates
a mechanism which seeks to identify the unknown parameter by generating,
from input-output data, an estimate 6 ~ 6 and applying control appropriate to
the estimated process P;. However, according to Astrom (1983) [2], the early
years showed a “lot of enthusiasm, bad hardware and nonexisting theory”.

Identifier-based adaptive control is outside the scope of the present article.
Instead, the focus of attention is non-identifier-based adaptive control which
emerged in the 1980s in response to two basic questions:

— What structural assumptions on the process to be controlled are sufficient
(and/or necessary) to ensure the attainment of prescribed performance
objectives in some appropriate sense?

— Assuming feasibility, is there a “simple” controller that achieves the req-
uisite performance without parameter identification or estimation?

The central concern of the present paper is an exposition of the theory of funnel
control in the context of continuous-time nonlinear dynamical processes, with
control input w and output y, encompassing inter alia linear and nonlinear
systems described by functional differential equations and differential-algebraic
systems.

In its essence, the control problem to be addressed is the following: given
a class X of dynamical systems, with R"-valued input u and R™-valued out-
put y, and a class of reference signals )., determine an output-feedback
strategy which ensures that, for every system of class Y and any reference
signal y.ef of class Ve, the output y approaches the reference y.o¢ with pre-
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scribed transient behaviour and asymptotic accuracy. The twin objectives of
“prescribed transient behaviour and asymptotic accuracy” are reflected in the
adoption of a so-called “performance funnel”, defined by

Foi={(te) €Rso x R™ | (t)lel| <1} , (L.1)

in which the error function t — e(t) := y(t) — yret(t) is required to evolve; see
Fig. 1.

t-section: open ball of radius 1/p(t)

graph(e)

Fig. 1: Performance funnel F,.

The only a priori assumption on ¢ is that it belongs to the class of functions

Je>0: o) <e(l+ () foraa. t >0
(1.2)
The funnel is shaped — through the choice of the function ¢ € @ —in accordance
with the specified transient behaviour and asymptotic accuracy. Note that, for
t > 0, the funnel ¢-section F, N ({t} x R™) is the open ball in R™ of radius
1/¢(t). We stress that, in (1.1), ¢(0) = 0 is possible, in which case the funnel
0-section is the whole space R™ and so there is no restriction on the initial
value e(0): with slight abuse of terminology, in this case we refer to F, as
an “infinite funnel”. By contrast, if ¢(0) > 0, then the initial value e(0) is
restricted to the open ball of radius 1/¢(0) and we refer to F, as a “finite
funnel”. As an example of an infinite funnel consider, for € > 0 and T > 0, the
choice p1(t) = e ! min{t/T,1} for all ¢ > 0, which accords with the aim of
attaining a tracking accuracy quantified by ¢ in prescribed time T for all initial
data (see Fig. 2 wherein the illustrative values ¢ = 2 and T' = 10 are adopted).
A typical example for a finite funnel is the choice po(t) = (ae™t ++)~! for all
t > 0, where a, 8, are positive constants (see Fig. 2 wherein the illustrative
values @ = 5, f =1, v = 1/2 are adopted).
Whilst it is often convenient to choose a monotonically decreasing funnel
boundary, it might be advantageous to widen the funnel over some later time

d = {(p € ACioc(R>0,R)

@(t) >0Vt >0, liminf,_,. @(t) >0, }
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0 5 10 15

Fig. 2: Graph of an infinite and a finite funnel boundary.

intervals, for instance in the presence of periodic disturbances or strongly-
varying reference signals. The formulation (1.1) encompasses a wide variety of
funnel boundaries, see also [78, Sec. 3.2].

We will frequently use the phrase “structural assumptions” — albeit without
precise definition. What we have in mind, roughly speaking, is that various
components (functions, matrices, operators, etc.) of the differential equations
governing the evolution of the process to be controlled do not need to be
precisely known but are required only to exhibit certain properties (continuity,
invertibility, causality, etc.). In particular, these properties should be preserved
under state space transformation.

1.1 The genesis of funnel control: the scalar linear prototype

By way of motivation, we seek to illustrate the salient characteristics of
non-identifier-based adaptive control in the context of the simplest class of
continuous-time dynamical systems with control, namely, scalar linear sys-
tems of the form

@(t) = ax(t) + bu(t), z(0)=2", with output y(t) = cx(t), (1.3)

or, equivalently,
§(t) = ay(t) + cbu(t), y(0) = ca,

where the parameters a,b,c,z° € R are arbitrary and unknown to the con-
troller. Only the output y is available for control purposes. The quantity cb
amplifies/attenuates and assigns a polarity to the input w(t). In the spirit of
the latter observation, we will refer to sgn(cb) as the control direction. (We
disregard the trivial case of ¢b = 0 in which the control has no influence on
the output — a circumstance that has neither practical nor mathematical in-
terest.) The overall scenario is shown in Fig. 3, wherein y,ef is some reference
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signal which the system output is required to emulate (in some appropriate
sense).

u . Y
Sy = ay + cbu s »
e L-
(adaptive) control law ——
Yref € yref

Fig. 3: Closed-loop system

In this simple setting, we trace the development of funnel control through
two of its antecedents, namely, high-gain adaptive stabilization and high-gain
A-tracking.

1.1.1 High-gain adaptive stabilization

First, consider the problem of output feedback stabilization of (1.3), that is,
determine an output feedback strategy u(t) = f(y(t)) (if one exists) which
ensures that, for each z° € R, every solution of the feedback-controlled initial-
value problem i(t) = ax(t) + bf(cx(t)), x(0) = 2°, is global (i.e., exists on
R>) and is such that y(¢) — 0 as t — oo (in the context of Fig. 3, yrer = 0).
If we assume that (1.3) satisfies the structural property

cb >0, (1.4)

(that is, the control direction is positive) then, given any p > 0 and setting
k* := (u+a)/(cb), we see that the linear output feedback u(t) = —k*y(t) gives
the exponentially stable system @(t) = —ux(t). Thus, arbitrarily fast exponen-
tial decay is achievable by output feedback u(t) = —k*y(t) with sufficiently
large k* (the control gain in engineering parlance, whence the terminology
high-gain control). This observation is referred to as the high-gain property of
the system (1.3).

In summary, the structural property (1.4) is sufficient for feasibility of
stable behaviour by output feedback. However, in the absence of any further
knowledge of the parameters a, b, ¢, it is not possible to compute a value k* with
the requisite property that k* should be larger than the threshold value a/(cb).
Can this impasse be circumvented? This question is answered in the affirmative
if, instead of fixed-gain feedback, linear output feedback with variable gain

u(t) = —k(t)y(t) (1.5)

is adopted and the monotone non-decreasing gain k(-) is generated via the
differential equation

k) =yt)? k0)=k"€eR, (1.6)
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where £k is arbitrary. The combination of (1.3), (1.5) and (1.6) yields the
initial-value problem

y(t) = —(k(t)cb — a)y(t), y(0) =", (1.72)
k(t) = y(t)%, k(0) = K. (1.7b)

Let (y°, k%) € R? be arbitrary. The standard theory of ordinary differen-
tial equations applies to conclude that (1.7) has a unique maximal solution
(y,k): [0,w) = R% 0 < w < co. (Here, by “standard theory”, we mean ba-
sic results that can be found in elementary textbooks as, for example, [148]
or [110].) Differentiation of the positive-definite form z — 2% along the com-
ponent y(-) of the solution of (1.7) yields, for almost all ¢ € [0, w),

G (W(®)?) = 2y()y(t) = 2y(t) (a — cbk(t)) y(t)

= —2cbk(t)k(t) + 2a k(t) = —cb L (k(t)?) + 2a k(t)

which, on integration, gives
0 y(t)? = (5)2 — cb (k()2 — (K°)2) +2a(k(t) — (k). (1.8)

In view of (1.4), it immediately follows from (1.8) that k € £°([0,w),R). By
boundedness of k we may infer from (1.7a) that y is exponentially bounded.
Suppose w < oo, then the closure of the graph of (y,k): [0,w) — R? is a
compact subset of R>oxR? which contradicts maximality of the solution; hence
w = oo. Boundedness of k is equivalent to y € £%(R>0,R) and, furthermore,
invoking (1.7a) we have § € L2*(Rxq,R). Therefore, we may conclude that
y(t) — 0 as t — oo. Since the gain function k is bounded and monotone, it
converges to a finite limit.

As a consequence, subject only to the structural assumption of positive con-
trol direction ¢b > 0, every system (1.3) is stabilized by the adaptive strategy
(1.5)—(1.6) and the controller gain function % is monotone and bounded.

However, boundedness of k may fail to hold if the system (1.3) is subject to
an extraneous disturbance. This failure can be illustrated by means of a simple
example. Assume that the particular system (1.3) is given by (a,b,c) = (0,1,1)
and is subject to a spurious bounded additive signal d, in which case the
dynamics are governed by

(1) = u(t) + d(t).

Application of the control strategy (1.5)—(1.6) results in the closed-loop initial-
value problem

z(t) = —k(t)x(t) + d(t), z(0) = 29,
k(t) = x(t)?, k(0) = k°.
For purposes of illustration, assume that the disturbance is given by

4+ 3t

d:Rog >R, trs3— —12
>0 3<1+t)4/3
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a bounded function with d(t) — 3 as ¢t — oco. Then, for initial data (z", k%) =
(1,0), it is readily verified that there exists a unique global solution given by

(2,k): Rsg — B2, t > (2(t), k(t)) = ((1 +1)7U3 31+ 1) - 1)) :

Thus, whilst the objective x(t) — 0 as ¢ — oo is achieved, it is done at
the expense of an unbounded gain function k£ which, from the viewpoint of
implementation, renders the control strategy impracticable.

1.1.2 Disturbances and high-gain A-stabilization

The inability of the high-gain adaptive strategy (1.5)-(1.6) to handle bounded
disturbances can be circumvented by weakening the control objective in the
following manner. In the context of the scalar example (1.3), in place of the
objective y(t) — 0 as t — oo we substitute the weaker requirement that, as
t — 00, y(t) should approach the interval [—A, A] for some prescribed A > 0.
Introducing the distance function (parametrized by A > 0)

disty: R — R>¢, z — max{|z| — A, 0}

we seek an output feedback of the form (1.5) which ensures the requisite per-
formance: disty(y(t)) — 0 as t — oo, and boundedness of the gain function k.

Consider system (1.3) but now with an additive disturbance d €
L>(R>0,R), with norm ||d||so:

@(t) = ax(t) + bu(t) +d(t), =x(0)=2", with output y(t) = cx(t). (1.9)

Subject only to the structural assumption (1.4), that is ¢b > 0, we proceed
to show that, for any prescribed A > 0, every system (1.9) with bounded distur-
bance d(-) exhibits the requisite performance under the output feedback (1.5)
provided that the gain k is generated via the differential equation

l(t) = [y(t)] dista(y(t), Kk(0) =k° € R. (1.10)

Note that the simplicity of the strategy (1.5)-(1.6) is preserved — the novelty
in (1.10) resides in the suppression of the gain adaptation whenever the output
is inside the A-interval, i.e., |y(t)] < A. The “price” paid is that asymptotic
convergence of the output to zero is lost: instead, only an asymptotic approach
of the output to the interval [\, A] is guaranteed. However, since the latter
property holds for any prescribed accuracy parameter A > 0, the price paid is
small.

The combination of the output feedback (1.5) with the gain adapta-
tion (1.10) applied to the disturbed scalar linear prototype (1.9) yields the
closed-loop initial-value problem

y(t) = —(k(t)cb — a)y(t) + cd(t), y(0) =", (1.11a)
k(1) = [y(t)] dista(y(t), k(0) = &°. (1.11Db)
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Let (y°, k%) € R? be arbitrary. Again, the standard theory of ordinary differ-

ential equations applies to conclude that (1.11) has a unique maximal solu-

tion (y,k): [0,w) — R2, 0 < w < co. Consider the (Lyapunov-like) function
— (dist A(z))2 with derivative

2 disty(z) sign(z), z # 0

§A:R—>R7ZO—>{07 L= 0.

Differentiation along the component y(:) of the solution of (1.11) yields, for
almost all ¢ € [0,w),

4 (dista(y(t))” = x(y(t) §(t)
< 2(k:(t)cb a) ly(t)| distx(y(t)) + 2|cd(t)|]| distx(y(t))]
< —2(k(t)cb — a) k(t) + 227 e | dlloo [y(t)] dista(y(t)

—cb g (k(H)?) +2 (a+ A" el [[dl|oc) (2),

which, on integration, gives

< (dista(y(t)))*

< (dista(y°))? = eb (k(£)2 — (k°)%) +2(a+ A"Ye| [|d]loo) (k(t) — K°).
(1.12)

In view of (1.4), it immediately follows from (1.12) that k € £°°(][0,w), R). By
boundedness of k and essential boundedness of d, we may infer from (1.11a)
that y is exponentially bounded. Suppose w < oo, then the closure of the graph
of (y,k): [0,w) — R? is a compact subset of R>¢ x R? which contradicts max-
imality of the solution; hence w = co. Boundedness of k, together with (1.12),
implies dist(y(-)) € L*(R>0,R). Furthermore, in view of (1.11a), we have

¥y € L®(R>0,R). Therefore, the function ¢ — %(dis‘c)\(y(t)))2 is bounded,

and so (dist ,\(y()))2 is uniformly continuous. Noting that, for all ¢ > 0,

[ (sen)ar < [yl aisatur) ar = ko) - 1

we may infer (from boundedness of k(+)) that the absolutely continuous func-
tion (dist,\(y(-)))2 is in £'(R>0,R). By Barbélat’s Lemma we may now con-
clude that (disty (y(t)))2 — 0 as t — co. Therefore, subject only to the struc-
tural assumption ¢b > 0, for every system (1.9) with bounded disturbance d,
the adaptive strategy (1.5), (1.10) achieves the two performance objectives
dist(y(t)) — 0 as t — oo and convergence of the gain k to a finite limit.
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1.1.3 High-gain A-tracking

Consider again the class of systems with disturbance d(-) given by (1.9), but
now with the control objective of output A-tracking, that is, for arbitrary pre-
scribed A > 0 and a (suitably regular) reference signal y;., we seek a control
strategy which ensures that disty(y(t) — yref(t)) — 0 as t — oo. For the
class of admissible reference signals we choose Vet = Wl’OO(RZO,R), that is,
Yref: R>9 — R is admissible if it is bounded, absolutely continuous and has
essentially bounded derivative.

Whilst the A-tracking problem differs conceptually from the A-stabilization
problem of the previous subsection, there is no mathematical distinction
between these two problems. Indeed, let Y € Vier be arbitrary. Writing
e(t) = y(t) — yret(t), we see that the differential equation in (1.9) may be
expressed as

é(t) = ae(t) + cbu(t) + d(t),

with the function d € L>(R>o,R) given almost everywhere by

dA(t) = Cd(t) + ayref(t) - yref(t)'

Thus, we see that the A-tracking problem for system (1.9) with reference signal
Yret € Vref 18 equivalent to the A-stabilization problem for system (1.9) with
parameters (a,cb, 1, d ) and so the results of the previous subsection apply to
conclude that, under the structural assumption cb > 0, the feedback strategy

u(t) = —k(t)e(t), k(t) = |e(t)| disty(e(t)), k(0)=k° (1.13)

ensures attainment of the A-tracking objectives: disty(e(t)) — 0 as ¢ — oo and
convergence of the gain k to a finite limit.

1.1.4 Unknown control direction

Throughout the above motivational discussion on adaptive stabilization and
tracking in the restricted context of scalar systems, the structural assump-
tion (1.4) remained in force. Can this assumption be weakened or indeed re-
moved entirely? As already noted, the case ¢b = 0 is of neither practical nor
mathematical interest. The question then is: can assumption (1.4) be weakened
to

cb # 0. (1.14)

Clearly, the arguments adopted in Section 1.1.1 apply mutatis mutandis to
conclude that the feedback (a variant of (1.5), modified by the inclusion of the
control direction term sgn(cb))

u(t) = —sen(ch) k(O y(t), k() =y(®)®, kO) =K (L15)

ensures that y(t) — 0 as ¢ — oo and the monotone gain function converges
to a finite limit. However, under the weakened assumption (1.14), this mod-
ified adaptive strategy cannot be realized as the control direction sgn(cb) is
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unknown to the controller. Loosely speaking, what is required is a gain mech-
anism that can “probe” in both the positive and negative control directions.
This idea points to a control strategy of the form

u(t) = N(k(@t)y(t), k() =y(t)? k(0) =k (1.16)
where N: R — R is a continuous function with the properties
limsup N(k) = +oo and liminf N(k) = —ooc. (1.17)
k— o0 k—o0

One such function is k +— N (k) = k? cosk. This particular example exhibits
the so-called “Nussbaum properties”:

k
VEO e R: ——— | N(k)ds =
SRS R, ViR dn = L1s)
1 k '
and inf —— [ N(k)dk = —o0.

E>k0 k — kO Jio

Let N: R — R be any locally Lipschitz function such that (1.18) holds. The
combination of (1.3) and (1.16) yields the initial-value problem

§(t) = (a+ b N(RO)y(t), k) =y(®)?,  (4(0),k(0) = (°, k). (1.19)
Let (y°, k%) € R? be arbitrary. The standard theory of ordinary differen-
tial equations applies to conclude that (1.19) has unique maximal solution
(y,k): [0,w) = R2, 0 < w < 0o. Then, for almost all t € [0,w),

$ (W(D?) = 203 (t) = 2(a + DN (k(1))) k(t),
which, on integration, gives
k(t)
0 <y(t)? = (y°) + 2cb N(r)dk + 2a(k(t) — k°). (1.20)
kO

Consider the non-trivial scenario y° # 0. Seeking a contradiction, suppose that
the monotonically non-decreasing function k(-) is unbounded. Let 7 € (0,w)
be such that k(7) > k° and set o := 2a + (y°)?/(k(7) — k°). Then it follows
from (1.20) that

2ch k()
Vte|rw): 0<a+ ) =0 Ji

which, depending on the system’s control direction (unknown to the con-
troller), runs counter to one or the other of properties (1.18): specifically,
if ¢b > 0, then the second of properties (1.18) is contradicted or, if ¢b < 0,
then the first of these properties is contradicted. Thus, the supposition of un-
boundedness of k(-) is false. Having established boundedness of k(-), an argu-
ment analogous to that used in Section 1.1.1 applies to conclude that w = oo,
y(t) — 0 as t — oo and k() converges to a finite limit. Thus, via the above
gain mechanism, the efficacy of high-gain adaptive stabilization is preserved
when the assumption cb > 0 is weakened to cb # 0. The same modification
preserves the efficacy of the adaptive A-stabilizing and A-tracking controllers
in Sections 1.1.2 and 1.1.3 under the weakened assumption ¢b # 0.

N(k)dr,
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1.1.5 Funnel control

Consider again a scalar system of the form (1.3). As in Section 1.1.3, let the
class of reference signals be Ve = WI’W(RZO,R). Prescribe a performance
funnel F, as in (1.1) with m =1 and ¢ € @ as in (1.2), see Fig. 1. Denote the
funnel boundary by

OF, = {(t,e) € Rsg x R| p(t) [e| = 1}

Let 2° € R and yef € Vrer be such that o(0)|cx® — y.¢(0)| < 1. Note that
the latter is automatically satisfied in the case of an “infinite funnel”, i.e.,
©(0) = 0. Under the structural assumption c¢b > 0, we introduce the funnel
controller, given by

u(t) = —k(t)e(t), k(t) = ()1~ (p()e(®)?) ", e(t) = y(t) = puer. (1.21)

The idea underlying the gain adaptation (1.21) is that k(¢) is large if, and only
if, (¢,e(t)) is “close” to the funnel boundary 0F, which, when coupled with
the high-gain property of (1.3), precludes boundary contact.

Under the weaker structural assumption c¢b # 0, the funnel controller is
modified in the following manner: the first of equations (1.21) is replaced by

where N : R — R is any continuous function with the properties (1.17). We
stress that properties (1.18) imply properties (1.17), but the reverse implica-
tion is false: for example, the function s — N(s) = ssins exhibits proper-
ties (1.17), but fails to exhibit the Nussbaum properties (1.18).

Under either structural assumption ¢b > 0 or ¢b # 0, the funnel controller is
a proportional time-varying output error feedback. However, in contrast with
the A-tracking control, the control gain in (1.21) is not monotone and not
dynamically generated. Instead, at generic time ¢, the gain k(t) is statically
generated via the nonlinear function r: F, = R, (t,2) — o(t)(1—(p(t)2)?)
evaluated at (¢,e(t)). In particular, k(t) = k(t, e(t)) and, under the structural
assumption ¢b > 0, the control is given by

u(t) = —r(t, e(t)) e(t)
or, under the weaker structural assumption cb # 0,
u(t) = N(k(t,e(t))) e(t).

For purposes of exposition, we impose the weaker structural assumption ¢b # 0,
and the combination of (1.3) and the funnel controller (1.21) yields the closed-
loop initial-value problem

e(t) = (a + ch(/—e(t, e(t)))> e(t) + ayrer(t) — Gret(t), €(0) = cx® — yrer(0)

with (0,e(0)) € F,, on the relatively open domain F, C R>q x R.
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By a solution of this problem we mean an absolutely continuous function
e: [0,w) = R with w € (0, 00] and graph(e) C F,. A solution is mazimal if it
has no proper right extension that is also a solution. The theory of ordinary
differential equations applies to conclude that the initial-value problem has a
solution and every solution can be maximally extended. Let e: [0,w) — R be a
maximal solution. A maximal solution e is said to be uniformly bounded away
from the funnel boundary 0.F,, if there exists € > 0 such that |e(t)|+e < 1/¢(t)
for all ¢ € (0,w) in which case it immediately follows that w = oo and the
gain k and control u are bounded functions. Therefore, in establishing the
efficacy of funnel control, the crucial mathematical issue is to prove that every
maximal solution is uniformly bounded away from 0F,. This can be shown
via a delicate contradiction argument which is not elaborated here (but is
subsumed by the proof of a significantly more general result in the main body
of the manuscript).

Defining A := 1/liminf; ,o ¢(t) > 0, we remark that attainment of uni-
form boundedness of e away from JF, implies a fortiori attainment of the
A-tracking objective disty(e(t)) — 0 as t — oo.

1.1.6 A historical miscellany

The above considerations form an attempt to highlight fundamental character-
istics of non-identifier-based adaptive control albeit in the simplified context
of scalar linear systems. The literature abounds with generalizations in various
directions: for example, to higher-dimensional or infinite-dimensional systems
and to encompass nonlinear systems.

The idea underpinning high-gain adaptive stabilization emerged in the
early 1980s in various investigations aimed at circumventing the need for cum-
bersome parameter estimators in order to build adaptive controllers for cer-
tain high-gain stabilizable linear systems. Seminal contributions towards this
goal were made by Morse (1983) [116], Byrnes and Willems (1984) [14], and
Mareels (1984) [112]. Morse (1983) [116] conjectured the non-existence of a
smooth adaptive controller which stabilizes every system of the form (1.3) un-
der assumption (1.14). Nussbaum (1983) [118] showed that Morse’s conjecture
is false: this fact enabled the structural assumption (1.4) to be weakened to
the simple requirement (1.14). As in the case of the scalar prototype outlined
above (see also Willems and Byrnes (1984) [151]), multivariable systems with
unknown control direction are amenable to treatment using smooth functions
with the “Nussbaum properties” (1.18) (see, for example, [55,56,57,92,157]).
These lines of investigation (see the survey [76]) culminated in Mdrtensson’s
(1985) [113] fundamental contribution which, in the context of multivariable
linear systems, established that “the order of any stabilising regulator is suf-
ficient a priori information for adaptive stabilisation”.

Extension of the core idea in high-gain stabilization to the problem of track-
ing, by the system output, of a given reference signal were considered by, inter
alia, Mareels (1984) [112] and Helmke, Prdtzel-Wolters & Schmid (1990) [71].
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These investigations invoke the internal model principle: “a regulator is struc-
turally stable only if the controller utilizes feedback of the regulated variable,
and incorporates in the feedback loop a suitably reduplicated model of the
dynamic structure of the exogenous signals which the regulator is required to
process” (see Wonham (1979) [154]). In the context of high-gain asymptotic
output tracking, this means that a control strategy must incorporate a dy-
namic component capable of replicating the reference signal that the output
is required to track, which inevitably leads to complicated controller struc-
tures and places restrictions on the class V;er of allowable reference signals. By
contrast, the high-gain A-tracking approach encompasses reference signals of a
more general nature and is such that the internal model principle is obviated,
allowing control strategies of striking simplicity. The concept of A-tracking

was suggested in Mareels (1984) [112], is indirectly contained — albeit in a
somewhat different context — in Miller and Davison (1991) [114], and was first
studied for nonlinear systems in Ilchmann and Ryan (1994) [31]. For further

contributions in the context A-tracking, including applications, see the survey
by Ilchmann and Ryan (2008) [83].

The primary focus of the above historical contributions to both adaptive
stabilization and A-tracking was asymptotic performance: with the exception
of Miller and Davison (1991) [114], transient performance was not considered.
Embracing transient performance was the final step in the genesis of funnel
control. Whilst rudiments of the methodology can be found in Ilchmann (1993)
[77, Thm.7.2.1], its full potential was not recognized until Ilchmann, Ryan,
and Sangwin (2002) [36] introduced the funnel controller. A predecessor (which
also takes transient behaviour into account) is the above-mentioned work [114]
by Miller and Davison, wherein an approach that differs intrinsically from the
funnel control methodology is adopted.

2 Diverse system classes

Having presented the genesis of funnel control in the highly restrictive context
of scalar linear systems, we proceed to describe and analyse funnel control (and
variants thereof) applied to considerably larger system classes encompassing
inter alia linear and nonlinear multivariable systems, differential-algebraic sys-
tems, and infinite-dimensional systems. The breadth of these classes attests to
the mathematical maturity of the funnel control methodology. Furthermore,
the practical relevance of the approach is reflected in the recent publication of
a 650-page monograph by Hackl (2017) [66] on applications of funnel control
in mechatronics.
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2.1 The linear multivariable prototype

First, we focus on a class of square (that is, with equal number of inputs and
outputs) linear, finite-dimensional systems of the form

#(t) = Ax(t) + Bu(t), w(0)=a® €R", } (21)

y(t) = Cx(t)

where (A, B,C) € R™*"™ x R™*™ x R™*" m < n, and the space of inputs u
is U := L2 (R>o,R™). For each (z°,u) € R" x U, (2.1) has a unique solution

given by
t
z:Rsg — R, t s eMlal + / A7) Bu(7) dr.
0

We highlight some fundamental structural properties which are central to
the funnel control methodology. For successful application of funnel control
0 (2.1), the entries of (A4, B, C), the initial value, and even the state dimension
need not be known. What is required is output information and information
pertaining to the structural properties of relative degree, high-frequency gain,
and zero dynamics.

2.1.1 Relative degree

For a linear system (2.1) we define its transfer function G(s) (a rational-matrix-
valued function) by

G(s):=C(sI — A)7'B € R(s)™*™,

which can be written as a formal power series

G(s) = Z s~k ARB
k=0

with coefficients CA¥B € R™*™ k € Ny, called Markov parameters. If the
first non-zero Markov parameter in the above power series for G(s) occurs at
the power s~" and is invertible, then we say that system (2.1) has relative
degree 7.

Definition 2.1. The linear system (2.1), equivalently the triple (4, B,C), is
said to have relative degree r € N, if

CA*B =0, k=0,...,r—2 and I' := CA""!'B is invertible.

Clearly, the first condition is vacuous in the case r = 1. The Cayley-Hamilton
theorem ensures that r < n. The matrix I' = CA" !B is referred to as the
high-frequency gain matriz. It is a higher-dimensional analogue of the control
direction c¢b of Section 1.1.1.

If (2.1) fails to have a relative degree, then CA¥B = 0 for all k € Ny and
so Ce*B = 0 for all t € R. Thus, for every input function u € U, we have
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y(t) = CeAtz? for all t > 0 and so the input has no influence on the output.
Analogous to the case ¢b = 0 in Section 1.1.1, we deem a system without rel-
ative degree to be of neither practical nor mathematical interest. We are now
in a position to state our first structural assumption.

(SA1) (A, B,C) has relative degree r € N and r is known to the controller.

The terminologies “relative degree” and “high-frequency gain” have their ori-
gins in the control engineering literature, as we briefly discuss next. Let us
stress that, so far, the transfer function, defined as a rational matrix, and the
relative degree are algebraic objects. These algebraic objects allow for an ana-
lytic relationship between inputs and outputs of a system (2.1), as elucidated
in the following. The output of (2.1) is given by

t
y(t) = CeAty0 —|—/ CeA(t_T)Bu(T) dr, t>0.
0

The map t — et is exponentially bounded and so is Laplace transformable.
Its Laplace transform satisfies

V50 € Copi () (s0) = (s0l — A)7 =Y sy "V AF,
k=0

where 8 := maxjye,(4) Re A. Now, for zero initial state 20 =0, fix a >
and let u € L (R0, R™) be such that it is Laplace transformable on Cs,
(with transform @ = £(u)). Then the corresponding output y is Laplace trans-
formable on Cs, and its transform § = £(y) satisfies

Vg € Caq : (s0) = C(sol — A~ Ba(sp).

The value of §j(sg) is the product of i(sg) with the evaluation of G(s) at so,
whence the terminology “transfer function”. For later use we record that

Vso € Csp: G(s0) = £(Ce™ B)(s0). (2.2)

In the single-input, single-output context (that is, when m = 1) we have
G(s) = p(s)/q(s), where gq(s) = det(s] — A) € R[s] is the characteris-
tic polynomial of A and p(s) = Cadj(sI — A)B € R[s]. Moreover, since
lim|g| 00 G(s) = lim|go0 sT1O(I — s7'A)"'B = 0 we see that the ratio-
nal function G(s) is strictly proper and so p := degp(s) < degq(s) = n. Then
p(s) = aps” + -+ + ag with a, # 0 and so, for constants u;, € R, k € N, we
have
G(s) = s~ (=0) (apsn + - as(nP)

q(s)
Therefore, r = n — p, the difference between the degrees of the denominator
and numerator polynomials of its transfer function — whence the terminology
“relative degree”. Note that

(ap,,ul,ug,...) = (C’AT’le7 CA"B,CA™ B, )

) = o T ).
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In particular, a, = I', the high-frequency gain — so-called for the following
reason. Assume that A is Hurwitz, that is, Re A < 0 for all A € o(A), and so,
by (2.2),

VweR: Giw) = / e T CeATBdr. (2.3)
0

If the system is subjected to a sinusoidal input u(-) = sin(w-) for some w > 0,
then, defining

y**: Rso = R, ¢ |G(iw)|sin (wt + 1p(w)) = Im (G(iw)e™"),
where we used that G(iw) = |G(iw)|e*¥“) and some phase shift given by ) (w),

we may infer that the output y(-) of system (2.1) (assuming zero initial state)
satisfies

ly(t) —y> ()] =

(2.3)

¢
/ Ce**=") Bsin(wr) dr — Im (G(iw)e™")
0

t [e'e]
Im/ Ce"Be™(t =T dr — Im/ Ce?" Be(t=7)dr
0 0

= ‘Im/ CeA™ Be(t=")dqr
t

< / |Ce™ B|dT — 0
t

as t — oo. Thus, the output y approaches, as ¢ — oo, the function y** (the
so-called steady-state response) which is a harmonic oscillation of the same
frequency as the input v but amplified/attenuated by the factor |G(iw)| (the
gain) and the phase shift ¢(w). Since

G(iw) = (iw) ™" (CA" "B + (iw) 'CA"B + (iw) *CA™ ™' B +--.),

we see that (iw)"G(iw) — I' as w — oo. For this reason, I' is known as the
high-frequency gain parameter or simply (albeit a misnomer which is widely
used) the high-frequency gain.

Returning to the general m-input, m-output case, assume that (2.1) has
relative degree r € N. Let z € ACioc(R>0,R™) be the solution corresponding
to (2°,u) € R™ x U with associated output y(-) = Cx(-). Define functions
51, C 7£r € .AC]OC(RZ(),RW) by

Ee(t) = CA* a(t), k=1,...,m
Then, for all ¢ > 0,
gk(t) = OAk_lx(t) = CAkl‘(t) = gk-‘rl (t)? k= la R 17

and so embedded in system (2.1) of relative degree r is a chain (of length
r — 1) of m-dimensional integrators. In the following we seek a coordinate
transformation which makes this embedded chain explicit.
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2.1.2 Byrnes-Isidori form
Consider a system (2.1) with relative degree r > 2. Introduce matrices

C
CA
B,:=[B,AB,--- ,A'B] eR™™ and C,:=| . |eR™"
AT

Note the upper and lower triangular structures, respectively, of the product
C.B, € R™™*™" and its inverse — which exists by virtue of invertibility of I":

0 I * -t
C,B, = and (C.B,)" ' = .
r x -1 0

The inequality mr < n is an immediate consequence of invertibility of C,.B,..
Next, let W € R?**("=™7) he such that im W = ker C, and introduce

Vi=W'W)"'WT(I - B,(C,B,)™'C,) € Rlv=rm)xn,

It is readily verified that

U:= {%} has inverse U~' = [B,(C,B,)~*, W].

Moreover, by direct calculation

Omxcm
E =UB= Omxm and
r
O(n—rm)xm
5 = CU71 = [Ima Omxm7 BN Omxma Omx(nfrm):l .

Define

P = VAT’BF—l c R(n—mr)xm, Q = VAW € [&(n—mr)><(n—mr)7 and
S :=CA"W ¢ Rm*(n=mn),

Decomposing CA"B,.(C,.B,)~! € R™ ™" into r constituent blocks each of
dimension m X m, we write

CA"B.(CyB,)™" = [R1,Ra, -+ , Ro_1, R,].
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Introducing the matrix

[0 I, 0 --- 00 CA
0 0 I, 0 CA?

A=|: R ‘|, wehave AU= :
00--- 0 1,0 CAT-1
RiRy---Ro1 Ry S CA"B,(C,B,)~'C, + SV
PO 0 0@ i PC+QV

Observe that

CA"B,(C.B,) 'C,+SV = CA"(B,(C,B,) 'C,+WV) = CA'U'U = CA"

and, since VB, = 0, we have VAB,(C,B,)"'C, = VA"BI'~'C, whence
PC+QV =VA'BI'C+ VAWV =VA(B,(C,B,)'C, + WV) =V A.

We have now established that

CA
CA?
AU=| : | =UA andso A=UAU".
CA"
VA
Therefore, (A, B,C) = (UAUY,UB,CU™") is obtained by a state space

transformation of the original system (A, B, C) of relative degree r > 2 given
by

&1 Cx

52 CAzx

= : = [%} x=Ux.
& CA™ g

n Vz

In the new coordinates, the system representation of (2.1) becomes

fk(t) = §k+1(t)a k= 15 BRI S ]-7
(1) = oh_y Rie(t) + Sn(t) + Tu(t), p  with output y(t) = &1 (t).
n(t) = P&(t) + Qn(t)

oy

(2.4)
This special structure — wherein the embedded chain of integrators constitutes
the first » — 1 of its dynamic equations — is known as a Byrnes-Isidori form.
We remark in passing (and without proof) that, whilst not a canonical form,
a Byrnes-Isidori form is close to being so in the sense that if two such forms
differ, then they do so only through the triple (Q, P, S). However, any two such
triples (regarded as linear input-output systems) must be obtainable from each
other by a state space transformation; this means that the difference in two
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Byrnes-Isidori forms is resolved through coordinate transformation of the n
variable. More precisely, on the set of triples (Q, P, S) € R(r—mm)x(n—mr)
R(—mr)xm o Rmx(n=mr) we may define an equivalence relation ~ by

(Q.P,8) ~(Q.P,S)
— 3Y €Gli_m(R): (Q,P,5)=((YQY L YP,SY 1)
If (A, B,C) and (4, B,C) = (UAU',UB,CU™') are both in Byrnes-Isidori
form with corresponding subsystems (Q,P,S) and (Q,P,S), resp., then
(Q,P,S) ~ (Q,P,S) for some Y € Gl,_p,r(R) and U = diag(lymm,Y). In
this sense, a Byrnes-Isidori form is essentially unique. Because of this prop-
erty the form is often called Byrnes-Isidori normal form in the literature. For

future reference, we record that, in the context of the Byrnes-Isidori normal
form, the system transfer function is given by

G(s) = — (i Ris"™ ' —s"I + S(sI — Q)1P> r, (2.5)

A

T
Y = ZRky(kfl) +z+4+Tu o >y
u ﬁl—b k=1
! JY L A A
: — . d qr—1
: y(r 1) ... v |y 5 S
1

Fig. 4: Byrnes-Isidori form

The above discussion assumes that r > 2. In the relative degree one case r = 1
we have I' = C'B and the Byrnes-Isidori form simplifies to

£(t) = RE(H) + Sn(t) + T'u(t),
0(t) = PE(t) + Qn(t)

In all cases, the triple (@, P, S) of internal loop matrices (unique up to a state
space transformation) corresponds to a linear (n — mr)-dimensional system
with input y and output z, given by

(t) = @n(t) + Py(t), =z(t) = Sn(t), (2.7)

} with output y(t) = £(¢). (2.6)
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and referred to as the internal dynamics.

In summary, given a linear system (A, B,C) of relative degree r > 1, we
refer to its equivalent representation (2.4) as its (essentially unique) Byrnes-
Isidori form. The signal flow for a system in Byrnes-Isidori form (2.4) is de-
picted in Fig. 4:

2.1.8 Zero dynamics

Next, for the linear system (2.1), we address the following question: if the
initial data and input are such that the output vanishes identically, what
is the nature of the residual internal dynamic behaviour? With this in
mind, we proceed to define the zero dynamics ZD(A,B,C) of (2.1). Re-
call that U = Lige=(R>0,R™) and, for notational convenience, we write
X = ACioc(R>0,R™). Then

ZD(A,B,C) == { (z,u) € X x U|i(t) = Az(t) + Bu(t) ae., Cx() =0},

Equivalently, the zero dynamics may be viewed as the solution space of the
differential-algebraic system

it oo () = ¢0] ()

_4d
and so ZD(A, B,C) = kerxxy [A CdtI g] )

The zero dynamics ZD(A, B, C) are said to be
— bounded, if for all (z,u) € ZD(A, B,C) we have (z,u) € L®(R>0,R™ x
R™);
— asymptotically stable, if for all (z,u) € ZD(A, B,C) we have z(t) — 0 as
t — oo and esssup, > [lu(7)|| = 0 as t — oo.
Assume that system (2.1) has relative degree r € N. Let (Q, P, S) be the essen-
tially unique representation of the internal dynamics. If (z,u) € ZD(A, B, C),
then, in view of the Byrnes-Isidori form (2.4), we may infer:

- Crz(-) =0,
— n(-) = Va(-) satisfes n(-) = Qn(-),
—u()=—-I"18y(-) = -I"1CAz(-), and
#(t)= (I — BI71CA™ Y Az(t) a.e.,

— ZD(A,B,C) =X (x,—-I""'CA"z) x(o)erﬁlkerCAk
k=0

From the Byrnes-Isidori form, we may also infer that

A—sI B

det[ c 0

} = det(I") det(Q — sI) € R]s].

Some immediate consequences of these inferences are recorded in the following
proposition.
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Proposition 2.2 (Relative degree and zero dynamics). Assume that
system (2.1) has relative degree v € N. Let Q (unique up to similarity) be
the internal loop matriz as in (2.7). Then the zero dynamics ZD(A, B,C) are
bounded if, and only if, for all A € 0(Q) we have Re X < 0 and, if ReA =0,
then X\ is semisimple. Moreover, the following statements are equivalent:

o the zero dynamics ZD(A, B,C) are asymptotically stable;
b U(Q)CC<O;
A—- )M B

0V)\E(C>02det|: C 0:|750

We now introduce a second structural assumption.

(SA2) The zero dynamics ZD(A, B, C) are asymptotically stable.

2.1.4 High-gain stabilizability

A further structural property exhibited by linear systems of the form (2.1) —in
the relative degree one case with asymptotically stable zero dynamics — is high-
gain stabilizability by output feedback. In particular, if all eigenvalues of C' B
have positive real part and the zero dynamics ZD(A, B, C) are asymptotically
stable, then there exists k* > 0 such that, for each fixed £ > k*, the output
feedback u(t) = —ky(t), renders the closed-loop system @(t) = (A — kBC)xz(t)
asymptotically stable, i.e., 0(A—kBC) C C.g. This is the multivariable coun-
terpart of the high-gain property for the scalar prototype of Section 1.1.1 and
is — in different words — the content of the following lemma.

Lemma 2.3 (High-Gain Lemma). Consider a system (2.1) which satis-
fies (SA2) and assume that o(CB) C Csq. Then there exists k* > 0 such that,
for each fized k > k*, we have

o(A—kBC) C Cep.

Proof. Let U € R"™" be a state space transformation that takes the relative
degree one system (A, B, C) into Byrnes-Isidori form (A, B, C). In particular,

RS
PQ

CB

iova | :

}, EUB[ ] C=CU I, 0].

Therefore,

R—kCB S
P Q

By assumption, o(CB) C C.g and, by (SA2), 0(Q) C C«g, and so there exist
symmetric positive-definite matrices V € R™*™ and W € R(»~)x(n=m) guch
that

U(A—kBCU™! = [ ] = A—kBC =: A,.

V(CB)+ (CB)'V =1 and WQ+Q'W=—1I.
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Writing p := 2||VR|| + 2||VS + PTW||, elementary calculations give, for all
v € R™ and all w € R*™™,

() (om0 ()

=:U
(v\ [VR+RTV—kIVS+PTW] (v
T \w WP+ STV —I w

—k|v]? = Jw|® + 20T VRo + 20T (VS + PTW)w
—(k = woll* = llwl* + (ullv]]) fw]
(k= 52) ol = 3wl

Choosing k* > p+ % p?, we may infer that the matrix U is negative definite
for all k > k*. Therefore, 0(Ay) C Ccq for all k > k*. O

IA

IN

In passing, we remark that the converse of Lemma 2.3 is not true in general.
For example, the system

i(t) = [(1) ‘01] w(t) + H u(t), y(t) = [1, 0] (1)

satisfies ¢b > 0 and is stabilized by u(t) = —ky(t) for every fixed k£ > 0 but
the (stable) zero dynamics are not asymptotically stable, and so (SA2) fails
to hold.

Whilst Lemma 2.3 does not play an explicit role in the ensuing exposition
of funnel control, it implicitly underpins much of the underlying intuition and
early development of the funnel methodology.

2.1.5 Class L™ of linear systems amenable to funnel control

We summarize and close the above discussion with the following description
of a class of linear systems of form (2.1) which are amenable to control by fun-
nel techniques in the sense that the controllers developed in later sections are
applicable. This class comprises systems (A, B,C) of form (2.1) with known
relative degree r (assumption (SA1)), with asymptotically stable zero dynam-
ics (assumption (SA2)), and which satisfies our third structural assumption (a
higher-dimensional counterpart of assumption (1.14)):

(SA3) VveR™: v'I[v=0 <= ov=0.

Assumption (SA3) means that I is sign-definite and, stated otherwise, it is
equivalent to the requirement that either I'+I'T = 0 or —(I'+1"") = 0 (but
which of these two possible polarities holds is not known to the controller). In
particular, we define the system class

m,T.__ nxn nxm mxn TLENa(SAl)v (SA2);
L ._{(A,B,C)ER xR xR and (SA3) hold . (2.8)
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2.2 Nonlinear functional differential systems

The notions of relative degree, control direction, and zero dynamics — intro-
duced in the context of finite-dimensional linear ODE systems — when suitably
generalized underpin requisite structural assumptions for successful applica-
tion of funnel control to more diverse classes of systems.

For the sake of motivation, consider again a linear system (2.1) with relative
degree r € N in Byrnes-Isidori form (2.4). With its internal dynamics (2.7) we
may associate a linear operator

L:y() — (t — /Ot Se@t=7) py(7) d7-> . (2.9)

With initial data 1(0) = n° := Vz® and d(-) := Se®n°, the output z(-) of (2.7)
is given by
2(t) = d(t) + L(y)(1).

Introducing the (linear) operator
T: C(Rzo,er) — EFSC(RZ(),RT”),

C=(Cy o n ) <t Y RiGi(t) + L(gl)(t)> ’ (2.10)
k=1

it follows from (2.4) that (2.1) is equivalent to the functional differential system

Y™ () = d(t) + T(y, ...,y V) () + Tu(t) }

_ 0 (r—1) _ r—1,.0 (211)
y(0)=Ca", ...,y (0) =CA™ 2.

Albeit a functional differential form, the advantage of (2.11) is that it is an
rth-order functional differential equation in the variable y(-) only. This rep-
resentation is the key to extending the results to more general situations, in
particular to nonlinear and infinite-dimensional systems with the structure de-
picted in Fig. 5, with appropriate hypotheses (to be elucidated in due course)
on the causal operator T and the nonlinear function f.

2.2.1 Benign operators

Next, we make precise what we mean by a “causal operator with benign
properties”. Two fundamental requirements are causality and bounded-input,
bounded-output behaviour of the operator. Causality we impose without fur-
ther comment (other than to say that, throughout, we assume that the under-
lying systems are nonanticipative). Bounded-input, bounded-output behaviour
may be regarded as a counterpart of the assumption of asymptotically stable
zero dynamics (SA3). Linearity of the operator is not required. Instead, we
impose only a local Lipschitz condition which plays a role in ensuring well-
posedness of the underlying system under feedback control. In particular, we
introduce the following class of operators.
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! YD)
vod Z causal operator « -

: z2=T(y,...,y" Y y oo

: with benign properties DE—
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1
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Fig. 5: Structure of nonlinear functional differential systems

Definition 2.4 (Operator class T},"?). For n,q € N and h > 0 the set T}
denotes the class of operators T: C([—h,00),R™) — L (R>,R?) with the
following properties.

(TP1) Causality: T is causal, that is, for all ¢, 8 € C([—h,o0),R™) and all
t>0,
Cli=ng =0l—ngy = T(Olp.g = TO)lo,-
(TP2) Local Lipschitz property: for each t > 0 and all £ € C([—h,t],R"),
there exist positive constants cg,d,7 > 0 such that, for all (1,(; €
C([~h, 00), B") with Gy = € and [Ci(s) — €| < 6 for all s €
[t,t+ 7] and ¢ = 1,2, we have

ess SuPye(r i) [IT(C)(8) = T(C2)(8)I| < cosupses 40 [1€1(8) = Ca(s)]]-

(TP3) Bounded-input bounded-output (BIBO) property: for each ¢; > 0,
there exists co > 0 such that, for all ¢ € C([—h,00),R™),

SUDs e[ p.00) IS <1 == ess sup5 | T(C)(B)[] < co.
Simply expressed
Ty :={T:C([~h,00),R") = LS. (R>0,R?) | (TP1) — (TP3) hold } .

This formulation embraces inter alia nonlinear delay elements and hysteretic
effects, as we shall briefly illustrate.

Nonlinear delay elements. For i =0,...,k, let ¥;: R x R™ — R? be mea-
surable in its first argument and locally Lipschitz in its second argument, uni-
formly with respect to its first argument. Precisely, for each £ € R™, ¥;(-,£)
is measurable, and for every compact C' C R™, there exists a constant ¢ > 0
such that

fora.a. t € R V&, & € O ||W(t,&1) — (L, &) < f|ér — &)
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Let h; >0,i=0,...,k, and set h := max; h;. For y € C([—h,00),R™), let

0 k
T = [ Bolsplt+9)ds+ D Blty(t— ), 20,

—ho i=1

The operator T, so defined (which models distributed and point delays), is of
class T}"; for details, see [130].

Hysteresis. A large class of nonlinear operators T : C(R>o,R) = C(R>¢,R),
which includes many physically-motivated hysteretic effects, is defined in [109].
These operators are contained in the class ']T(l)’l of the present paper. Specific
examples include relay hysteresis, backlash hysteresis, elastic-plastic hysteresis,
and Preisach operators. For further details, see [85].

2.2.2 Admissible nonlinearities

Next, and with reference to Figure 5, we proceed to make precise the admissible
nonlinearities f.

Definition 2.5 (Class of nonlinearities N”%™). For p,q,m € N the set
NP:¢™ denotes the class of functions f € C(RP x R? x R™ R™) with the
following property.

(NP1) There exists v* € (0,1) such that, for every compact K, C RP and
compact K, C RY the continuous function

x: R = R, s»—>min{(v,f(5,z,—sv)>‘ (6,2) € K, x Ky, }

vER™, v < [o] < 1
is such that sup,cg x(s) = o0.

Property (NP1) may appear somewhat arcane. However, when interpreted in
a linear context, it becomes more transparent. Assume that f is linear, and
so there exist L1 € R™*P| Ly € R™*% and I' € R™*™ such that f: (J,z,v) —
L16 + Loz + I'v. Assume that I' is not sign-definite. Then there exists © such
that ||9]| =1 and (0, I'0) = 0. Let v* € (0,1) and define the compact annulus
Ky, = {veR™|v* <|v|| <1}. Set K, = {0} and K, = {0}. Then the
function x satisfies

VseR: x(s) = Urélli{n (= s(v,I'v)) < —s(d, ') = 0.

Therefore, property (NP1) fails to hold. This establishes the implication
(NP1) = I' sign-definite.

To establish the reverse implication, assume that I" is sign-definite. Then there
exists o € {—1,+1} such that oI is positive definite. Choose v* = 1 and
let K, C R? and K, C R? be any compact sets. Define

c:=min{ (v, 10+ Loz) |0 € K,, 2z€ Ky, vEK,,}, ~:= min (v,0l'v)>0.

veEKm,
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Let (sp,) be an unbounded real sequence such that o, := —os,, > 0 for alln €
N. It follows that

VneN: x(sp)>c+ vrélll(r,l,, (= sp(v, I'v)) =c+ oy Urén}i{r;(v,af@ =c+o,y
and so, since 0, — o0 as n — oo, we see that property (NP1) holds. In
summary, we have established the following equivalence.

Proposition 2.6. Let Ly € R™*P [, € R™*? gnd I' € R™*™. Then the
linear map f:RP x R? x R™ — R™, (§,z,v) — L1d + Loz + v, satisfies:

f has property (NP1) — I' s sign-definite.

Thus, (NP1) may be regarded as a nonlinear generalization of (SA2).

Next, we identify a necessary condition for property (NP1) to hold. We
say that a map g: R™ — R™ is quasi-coercive, if there exist o € {—1,+1}
and a sequence (x,) in R™\{0}, with ||z,|| — oo as n — o0, such that
ollzn || Han, g(2,)) — 00 as n — oco.

Proposition 2.7. Assume that f € C(RP x R? x R™ R™) has property (NP1).
Then, for all (0,z) € RP x RY, the function f(6,z,-): R™ — R™ is quasi-
coercive.

Proof. Let (0,z) € RP x R? be arbitrary and choose K, := {0} and K, := {z}.
By (NP1), there exists v* € (0, 1), an unbounded monotone sequence (s,) in
R\{0} and a sequence (v,) in the annulus K,, := {v € R™| v* < ||v|| < 1}
such that

X(sn) = m}i{n (v, (8,2, —8,0)) = (Un, f(J, 2, —Spvy)) = 0O as n — oo.
vEKm

By unboundedness and monotonicity of the sequence (s,,), there exist o €
{-=1,41} and n* € N such that o, := —os, > 0 for all n > n*. Write
Xy = —8pU, and so 0 < 0,0* < ||z,|| < o, for all n > n*. Therefore,
|zn] — 0o as m — oo and o, ||z, ||~ > 1 for all n > n*. Moreover,

V>0 ollz, "N @, f(0,2,20)) = onllznll " on, (5,2, =snvn) > X(50)-

Therefore, f(9, z,-) is quasi-coercive. O

2.2.8 Class N™" of functional differential systems amenable to funnel control

We summarize the above discussion with the following characterization of a
class of nonlinear functional differential systems which will be shown to be
amenable to control by funnel techniques. The system representative of this
class, parametrized by m,r € N; takes the form

y () = F(A®), Ty, 9, 9" )(0), ult)), (2.12)
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with initial data

_no =y° e Y([—=h,0],R™), if h >0,
Yli—no =¥ ([ ], R™) } (2.13)

(y(0),--+ g D(0) = (1), - ,y2) €R™, if h =0,

where h > 0 quantifies the “memory” in the system and, for some p,q € N,
feNpem T e T,"™9 and d € L(R>0,RP). The representative system may
be identified with a triple (d, f, T) and so we write

N™T={(d, f,T)|de L®(R>o,RP), feNP™ TecT,"™ pqgeN, h>0}.

We show that the class of linear systems £™", as defined in (2.8), is indeed
contained in the class N™" for any m,r € N, for which we recall that (2.1) is
equivalent to (2.11).

Lemma 2.8. Let (A, B,C) € L™ for some m,r € N, with associated Byrnes-
Isidori form (2.4). Let the operator T be as in (2.10). Define f: R™ x R™ x
R™ — R™, (§,z,u) + 6 + z + Tu. Let n° € R*™™" be arbitrary and define
d(-) := Se?@n°. Then (d, f,T) € N™.

Proof. Clearly, d is bounded by (SA2) and Proposition 2.2. We show that
T € Ty"™™. It is easy to see that the operator T satisfies properties (TP1)
and (TP2) of the class T;"™"™. The BIBO property (TP3) is closely related
to property (SA2) of the system (A, B,C). First observe that the transfer
function C(sI — A)"!B € R(s)™ ™ of (A,B,C) is invertible over R(s)
by (2.5), since I' is invertible. Then we have the following:

[ ,%3.3] (A, B, C) stabilizable & detectable,
C(sI — A)™'B has no zeros in Cxg

$ 10, Cor. 2.8]

(A, B, C) satisfies (SA3)

(A, B, C) stabizable,
& detectable,
T satisfies (TP3)

[144, Thm. 3.21] (A, B, C) stabilizable & detectable,
S(sI —Q)~'P has no poles in Cx

For the last equivalence above we note that, by [144, Thm. 3.21], the condition
that S(sI — Q)~'P has no poles in Cx¢ is equivalent to external stability
of (Q,P,S) which, in turn, is equivalent to bounded-input, bounded-output
stability of the operator L in (2.9) (characterized by the existence of v > 0
such that ||Ly|le < 7]yl for all y € L£L°(R>g,R™)). It is readily seen that
the latter stability property is equivalent to T satisfying (TP3).

Finally, to conclude that f € N™™™ it suffices to note that, by (SA3) and
Proposition 2.6, (NP1) holds. O
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2.2.4 Input nonlinearities

In addition to accommodating the issue of (unknown) control direction, the
generic formulation (2.12) with associated high-gain property encompasses a
wide variety of input nonlinearities. Consideration of a scalar system of the
simple form

y(t) = fi(y(®) + f2(y(t) B(u(t)) (2.14)
with f1 € C(R,R), f2 € C(R,R\{0}) and $ € C(R,R), will serve to illustrate
this variety. The assumption that f; is a non-zero-valued continuous function
ensures a well-defined control direction (unknown to the controller). Without
loss of generality, we may assume that fo € C(R,Rsg); if fo is negative-valued,
then, in (2.14), simply replace f2 by — f> and 5 by —3. We impose the following
conditions on 8 € C(R,R):

B is surjective, with |B(7)| — o0 as |7] = oo, (2.15)

which is equivalent to the requirement that one of the following conditions
hold:
lim B(r) =400 or lim p(7)= Foo.

T—+o0 T—to0

We proceed to show that system (2.14) has the high-gain property. Set v* = %,
let K1 C R be compact and define

Ay =[-1,-3]U[3,1], cp:=min{ v f1(2) | (z,v) € K1 x A; } €R.
Consider the function
x: R=>R, s—min{ v(fi(z)+ fa(z)B(=sv)) | (z,v) € K1 x A; }.
Then
VseR: x(s) >c1+min{ vfa(z)8(—sv) | (z,v) € K1 x A1 }.  (2.16)

Let M > 0 be arbitrary. To conclude that the high-gain property holds, it
suffices to show that there exists s € R such that

V(z,v) € K1 x Ay : vfa(2)B(—sv) > M.
Define

co = min fo(z) >0 and c3 :=2M/cs.
z€K,

By properties of 3, there exist 0 € {—1,1} and ¢4 > 0 such that
V1 >cy: Blor) >es N —B(—o1) > cs.

Let (z,v) € K; x A; be arbitrary. Fix s € R such that os < —2¢4 and
so |sv| > ¢4. Then

v|fa(2)B(o]|sv]), if v CocC
vfg(z)ﬂ(—sv):{||f()ﬂ(| ) >0} 2C3

2% _ )y,
[v| f2(2)( = B(—alsv])), if v <0 o

2
Therefore, the high-gain property holds.
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2.2.5 Dead-zone input

An important example of a nonlinearity 8 = D with properties (2.15) is a
so-called dead-zone input of the form

DT(”)? 'UZbr,
D:R—=R, ves D)= 0, by <0< by,
Dy(v), v <1

with unknown deadband parameters b; < 0 < b, and unknown functions
Dy, D, € C(R,R) which satisfy, for unknown o € {—1,1},

D;(b)) = Dy(b;) =0  and 9lgrolo oD, (s) = oo, sggloo oD(s) = —o0.

Note that the above assumptions allow for a much larger class of func-
tions Dy, D, compared to e.g. [117], where assumptions on their derivatives
are used. In particular, in the present context, D; and D, need not be differ-
entiable or monotone.

2.3 Differential-algebraic systems

In the last decades the interest in control design for systems described by
differential-algebraic equations (DAEs) steadily increased. In the simplest case,
those equations are combinations of differential equations with algebraic con-
straints, restricting the dynamics to certain subspaces or submanifolds of the
state space. However, in general the constraints are not obvious and may also
impose restrictions on the possible choices of input functions or, at the other
extreme, completely free variables are possible which may occur in the out-
put. Therefore, a thorough analysis of DAEs is necessary and we refer to the
textbooks [10,98,99], to name but a few.

2.8.1 Linear differential-algebraic systems

Here, we focus on linear differential-algebraic system given by the equations
4 Ba(t) = Az(t) + Bu(t),
y(t) = C(t),
where E;A € R™*™ B € R™™ C € R™*™; we write [E, A, B,C| € X m.
We allow for singular E. In the extreme case of E =0, (2.17) consists only of
algebraic equations.
Solutions — we define in due course what a solution is — exhibit quite differ-

ent features compared to linear ODE systems (2.1). Consider the linear DAE
system (in X 1)

ai 1o (mi) = [o2) (529) + [3] wor

v =01 (247).

(2.17)

(2.18)
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which can be reformulated as y(t) = (t). Therefore, this system does not have
a free input, the latter must be differentiable; the state is not determined by u
but the derivative of © determines x.

Moreover, it is necessary to re-visit the concept of relative degree given in
Definition 2.1: for system (2.18), a relative degree in the sense of Definition 2.1
does not exist. First, we may observe that it is possible to extend the definition
of a transfer functions to DAE systems (2.17), where the so-called matriz pencil
sE—A € R[s]™*™ is reqular, i.e., det(sE— A) € R[s]\{0}. In this case, sE— A is
invertible over the quotient field R(s) and we may define the transfer function
by

G(s) :==C(sE — A)"'B e R(s)™*™.

For single-input, single-output systems (as discussed in Section 2.1.1), the
relative degree equals the difference between the degrees of the denominator
and numerator polynomials in the transfer function G(s) = p(s)/q(s). For
system (2.18), the transfer function can be computed as

=01 [ 5][] =

thus p(s) = s and ¢(s) = 1 which yields a relative degree r = deggq(s) —
degp(s) = —1. In fact, for differential-algebraic systems a negative relative
degree is quite common, which means that the underlying system contains a
chain of differentiators (instead of integrators as for ordinary differential equa-
tions with positive relative degree). For general differential-algebraic systems,
it is possible to extend the notion of relative degree to r € Z. Then again, this
enables us to derive a decomposition of the system which exposes the underly-
ing chains of integrators and differentiators as well as the zero dynamics; this
generalizes the Byrnes-Isidori form, see Remark 2.9 below.

In the current [linear context, the appropriate solution concept for
differential-algebraic equations is that of the behavioral approach, intro-
duced by Jan C Willems [119] (see also [120,150]), wherein the behavior of
[E, A, B,Cle X, is defined as

n
S e [ o

The zero dynamics ZD(E, A, B,C) of (2.17) are defined, similar to linear
ODE systems, as those elements (z,u,y) of Byg 4 p,c] for which the output y
is (almost everywhere) zero:

ZD(E,A,B,C) = { (z,u) € Lioc(R>0,R" X R™) | (z,u,0) € Bg ap,c] |-
Analogous to the ODE case, the zero dynamics are said to be bounded, if

(x,u) € L2R>0,R" x R™) for all (z,u) € ZD(E, A, B,C) and are said to
be asymptotically stable, if esssup, >|(x(7),u(7))| — 0 as t — oo for all
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(x,u) € ZD(E, A, B,C). It is shown in [11, Lem. 3.11] that the zero dynamics
ZD(E, A, B,C) are asymptotically stable if, and only if,

A—)AEB
V)\GCZ(). det[ 8. 0:| # 0.

Another crucial system property, in particular for control purposes, is that
every smooth function R>¢ — R can be generated as the output of the system
for some appropriate input. This leads to the notion of right invertibility (which
has been introduced and analyzed for ODE systems e.g. in [128,134], see also
the textbook [144, Sec. 8.2]); we call [E, A, B,C| € X, ., right invertible, if

vy € COO(RZOaRm) 3 (x,u) € Llloc(RaRn X Rm) : ($,’U,, y) € %[E,A7B,C]-

For a right-invertible system [E, A, B,C] € X, ,,, with asymptotically stable
zero dynamics, a distillation of results from [9] (in particular, Lemma 4.2.5,
Theorem 4.2.7, Proposition 4.2.12 & Remark 4.3.10 therein; see also [11, Sec-
tion 3]) establishes that (2.17) is equivalent to

za(t) = Vz_: N* By,
k=0
0= Aglxl(t) — Eglil(t) — Egg.’).i'z(t) + A23$3(t) + u(t), (2'19)
E3(t) = Qus(t) + Asi2 (1),
y(t) = 1 (b),

where z1(t) € R™, x9(t) € R™, x3(t) € R™ with ng = vm and n3 = n —
(v+ 1)m, N € R"*"2 jg nilpotent with index of nilpotency v, and all other
matrices are of conforming size. Moreover, Q € R™*"s is Hurwitz, that is,

o(Q) € Cxo.

Remark 2.9. The form (2.19) is a generalization of the Byrnes-Isidori
form (2.4) of linear systems (A, B, C'). More precisely, assume that E in (2.17)
is invertible (without loss of generality, we may assume that £ = I) and so, in
Byrnes-Isidori form, the system (of relative degree r) is given by (2.4). Setting
ny = (r — 1)m and writing

0 0---00 I,

I, 0 --- 00 0
N=|0In-- 001" g, = ;

0 0---1,0 0

(each being vacuous if r = 1 and, for r > 1, N is nilpotent with index v = r—1),
we have )

v—1 y(t)

SN Ena 0@ = |

k=0 y(rfl)(t)
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and so the first of relations (2.19) is simply a re-affirmation of the first set of
r — 1 equations in (2.4). The second set of equations (2.4) can be re-written as

0=r"" (Rly(t) + Roy(t) + Z Riy* V(1) — 4 (1) + Sn(t)> + u(t)
k=3

which, on setting Agy = F_lRl, FEo = —F_1R27 Foo =
—~I'7YRs,...,R.,—1I,) and As3 = I'"1S, coincides with the second of equa-
tions (2.19). Finally, on setting As; = P, the third of equations (2.4) and
(2.19) coincide. In summary, we have shown that, in the case of invertible E,
the form (2.19) of system (2.17) is equivalent to its Byrnes-Isidori form (2.4).

Returning to the general case of right-invertible systems [F, A, B,C| €
Yn,m with asymptotically stable zero dynamics, and adopting the “Byrnes-
Isidori” form (2.19), we see that, by nilpotency of N, (sN — I,,)"! =
— SV N*sk. Define

v—1
—Ag +sEo +ZE22NkE113k+2 — Aoz (s, — Q) 1Az =: H(s) € R(s)™ ™
k=0
and observe that (cf. also [I1, Rem. A.4]), if sE — A is regular with
invertible transfer function G(s) = C(sE — A)7!B, then G(s)~! =

H(s). We define the degree of a vector of rational functions h(s) =
T
(P1(8)/q1(5), -, Pm(3)/am(s)) € R(s)™ Dy

deg h(s) := | nax (degpi(s) — degqi(s)).
Let hi(s), ¢ = 1,...,m, denote the columns of H(s) and write r; :=
max{degh;(s),0}, i = 1,...,m: right-multiplication of H(s) by a permuta-
tion matrix P € R™*™ (corresponding to a re-ordering of the components of
the system output, if necessary) ensures that, without loss of generality, we
may assume the ordering r1 > -+ > 7, (> 0). Observe that the following are

well defined: limg_, oo 7" h;(s) =: h; eR™, i=1,...,m. Write
Iy := élggo H(s)diag(s™™,...,s7") = [h1,..., hy] € R™*™ (2.20)

Let £ € {1,...,m} be such that, for all ¢ € {1,...,m}, r;, = 0 implies i > £.
Define

Iy=[hy,..., hy] € R (2.21)
As introduced in [30], the m-tuple (r1,...,7,) is said to be the truncated
vector relative degree of [E, A, B,C|, if tk I, = ¢.

Remark 2.10. At first glance, it might seem more natural to call the m-
tuple (71, ...,rn) the vector relative degree and to call the ¢-tuple (r1,...,7¢)
the truncated vector relative degree. However, a concept of “vector relative
degree” already exists for DAE systems (see Def. 2.7 in [30]) which differs
from (ry,...,r,) insofar as it may also contain negative entries: the terminol-
ogy “truncated” refers to the extant notion of vector relative degree with its
negative terms excised.
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Although the situation of arbitrary truncated vector relative degree is ex-
tensively explored in [30], for purposes of exposition we restrict ourselves here
to the case of truncated strict relative degree, that is, we assume that there
exists r € Nsuch that ry = ... =rp=rand ryy1 = ... = r,, = 0; this relative
degree is denoted by the pair (r,£). Observe that, if rk I; = ¢, then (invoking
a suitable re-ordering of the components of the system input if necessary), we
may assume, without loss of generality, that I, takes the form

I, = m with I" € Gly(R). (2.22)

Remark 2.11. The concept of truncated strict relative degree generalizes the
concept of relative degree for linear systems (A, B, C) introduced in Defini-
tion 2.1. To see this, let E = I in (2.17) and assume that (A, B, C) has relative
degree 7 € N, i.e., (SA1) holds. Then I' = CA"™"!B € R™*™ is invertible and
for F(s) := s"G(s) € R(s)™ ™ we have that F(s) = I' + G(s), where G(s) is

strictly proper, i.e., lims_,o, G(s) = 0 and so the degree of each of its elements

is not greater than —1: deg G(s);; < —1, i,j = 1,...,m. We show that F(s)
is invertible over R(s). Let p(s) = (p1(s),...,pm(s))T € R(s)™ be such that

F(s)p(s) = 0. Let J i= { j € {1,...,m} | p; #0 } andso p;(s) = p;(s)/g5(s),
p;(s) # 0, for all j € J. Seeking a contradiction, suppose that J # (). Since
p(s) = —I'"'G(s)p(s) and deg G(s);; < —1, we have

Vied: degpi(s) = degz (- Fﬁlé(s))i,pj(s) < —1+4 maxdeg p;(s),
; J jeJ
jeJ
and so, for some j € J, we arrive at the contradiction
degp;(s) —degqg;(s) < —1+degp;(s) — degg;(s).

Therefore, p(s) = 0 and so F((s)~! € R(s)™*™. It follows that G(s) is invertible
and so, recalling (2.5),

H(s)=G(s) ' =-1"" (Z Ris"™ ' —s"I + S(sI — Q)—1P> .

Clearly, each column h;(s) = H(s)e; has degree degh;(s) =rfori=1,...,m
and so ¢ = m. Moreover, I is invertible:

Iy= lim s "H(s)=1"".

§—00
Therefore, [I, A, B, C] has truncated strict relative degree (r,m).

Returning to the general context of differential-algebraic systems of form
(2.17), we posit the following structural assumptions:

(DA1) [E, A, B, (] is right-invertible and has asymptotically stable zero dy-
namics,

(DA2) [E, A, B,C] has a truncated strict relative degree (r, £) which is known
to the controller,
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(DA3) I is sign-definite.

We now introduce a class of DAEs, which will be shown to be amenable to
funnel control,

LD™™ .= { [E,A,B,C] € Ypm | n €N, (DA1),(DA2),(DA3) hold }.
Remark 2.12. If [I,,A,B,C] € X, ,,, then it is readily verified that As-

sumptions (DA1), (DA2), (DA3) all hold if, and only if, Assumptions (SA1),
(SA2), (SA3) all hold. Therefore,

{ (A, B,C) ‘ (I, A, B,C] € LD™" } — L

where the latter is defined in (2.8).
As shown in [30, Sec. 2.3], a system [E, A, B,C] € LD™" is equivalent to

() = 3 Reayt™ V() + Puyri(t) + Saas(t) + Dug(t),
k=1

- _ . (2.23)
0= ZRk,2y§k U(t) -+ ng[[(t) + SQIEg(t) + Ful(t) + UI](t),
k=1

Qﬁg(t) = Ql’g(t) + A31y<t)a

where yr = (yla"'7y€) € RZ’ Yrr = (yé-'rl)"'ay’rﬂ) € Rm—f, ur =
(U1, ... ug) € R upr = (wpgny - ooy Up) € RTE

2.3.2 Nonlinear differential-algebraic systems

Similar to the extension of the Byrnes-Isidori form (2.4) to the nonlinear func-
tional differential systems (2.12), the representation (2.23) of linear DAE sys-
tems can be extended to incorporate a class of nonlinear DAE systems, cf. [25,

]. For motivation, consider [E, A, B,C] € LD""? and assume that its repre-
sentation is in form (2.23). Analogous to (2.7), we introduce the linear operator

t
L: C(R>o,R™) = C(R>o,R™), y— (t — / eQ(th)Agly(T) dT) .
0

Define operators
T1: C(R>0, RY X --- x R x R™74) — C(Rs0, R™),

(Cl, L 7(7'79) — (t — ZRk,ICk(t) =+ SlL(Cl, 9)(t) =+ P19(t)> ,

k=1

T2: C(R>0,R™) = C(Rx0, R™7), y > (t— SaL(y)(t))
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and set d(-) := e x3(0), di(-) := S1d(-) and da(-) := Sad(-). We may now
identify (2.23) with the functional differential-algebraic system

(1) = di () + To(yr -y yar) () + FPug(8),
RN (k—1) §
0= Z Rioyr () +Poyrr(t)+do(t)+To(yr, yrr) (t)+ur () +urr(t).
k=1

(2.24)
Next, we extend this prototype to encompass nonlinear functional differential-
algebraic equations (with memory quantified by h > 0) of the form

yi(rr)(t) =fi (d1 (t), T1(yr, .- 7yy71),y11)(t),u1(t)) ,

0= falyr(t),- -,y ) + falyrr(®)) + fa(da(t), Taolyr, yrr)(t))
+ fs(ur(t) + fo(t)urr(t)

(2.25)
with initial data
Yrl—no =y} € C"71([~h,0],RY),
yll‘[_h’o] = y?] € C([_hv OLRm_Z)v lf h > 0,
(Z/I(O), o e 7y§'r‘_1) (0)’ yII(O)) f— (y?71’ “ee 7y?77_7 y?[) 6 Rer(rfl)Z’ if h — 0.
(2.26)

We proceed to make precise the admissible operators and functions in the
above extended formulation. We first define a subclass of the operator class of
Definition 2.4.

Definition 2.13 (Operator class T’} ). For h > 0, n,q € N, the set T)"}) o
denotes the subclass of operators T : C([—h, 00), R") — C!(R>q, RY) such that
T € T}"? and, in addition, there exist g € C(R™ x R%,R?) and T € T}"? such
that -

V(€ C([=h,00),R") VI >0: F(TO)(t) = g(¢(1), T()(1))-

We like to note that the additional assumption of the class ']I‘Z:]qD AR formu-
lated above essentially requires that T is the solution operator of a functional
differential equation with input (.

Remark 2.14. Recall that the operator Ts in (2.24) takes the form Ty: y —
SoL(y). If 0(Q) C C_, then it is easy to see that Ty € T("?. Furthermore,

ETa(y)(t) = S2Any(t) + T(y)(t), where T:y— S$HQL(y)

m,m—q
and so Ty € TO’DAE .

Now, for m,r € N and ¢ € {0,...,m}, the representative nonlinear DAE
system (2.25) may be identified with a tuple (dy,ds, fi1,..., fs, T1,T2) on
which we impose the following assumptions: for some 8 > 0 and £,p € N,

dy,dy € L2(Rx,RP), f1 € NP9 fo € CHR™,R™F),

f3 € CL(R™ R™1), f, € C(RPHI,R™),

f5 € (€' N L) (Rs0, RI™0%0) | fi € (C' 1 L) (R0, R), (2.27)
V>0 [fo(t)] > 8, Ty e Ty V™ Ty e Ty,
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where NP:%¢ is as in Definition 2.5. Thus, we are led to consideration of the
following nonlinear functional differential-algebraic system class, parametrized
by m,r € Nand £ € {0,...,m}:

>
ADmTE { (dy,do, 1, -, fo, Ta, Ts) (2.27) holds for some h > 0, } '

B>0,q,peN

Recalling the equivalent representations (2.23) and (2.24) of any linear system
[E,A,B,C] € LD™"*, we have the inclusion

EDm,r,q C Nsz,r,Z.

We also remark that, if £ = m, then y;; and the second of relations (2.25) are
vacuous, in which case (2.12) and (2.25) are equivalent and so

N = D

3 Funnel control: the relative-degree-one case
3.1 Systems of class N1

Here, as an expository precursor to a result for systems of arbitrary (but
known) relative degree, we focus attention on relative-degree-one systems of
the form

y|[,h$()] = yo S C([—h,O],Rm), if h >0,
y(0) = y° e R™, if h =0,

(3.1)
and (d, f,T) € N™!. Choose (as control design parameters) ¢ € &, a sur-
jection N € C(R>o,R), and a bijection o € C!([0,1),[1,00)). For example,
N: s+ ssins and a: s — 1/(1 — s) suffice. Let yer € WH(R50, R™). The
funnel control is given (formally) as

u(t) = (Noa)(Jlu@®)*)w(t),  w(t) =) (y(t) — yret(t)). (3-2)

Theorem 3.1. Consider system (3.1) with (d, f, T) € N™! m € N. Choose
¢ € &, a surjection N € C(Rxo,R), and a bijection o € C*([0,1),[1,00)). Let
Yref € WI’W(RZO,R’”) be arbitrary and assume that

©(0)[ly(0) = yrer (0)]| < 1. (3-3)

Then the funnel control (3.2) applied to (3.1) yields an initial-value problem
which has a solution (in the sense of Carathéodory), every solution can be
mazimally extended and every mazimal solution y : [—h,w) — R™ has the
properties:

() = (). (@) () ut). with {

(i) w= oo (global existence);
(ZZ) u € [’OO(RZmRm); AS WLOO([_}% Oo)va);
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(1ii) the tracking error e: R>g — R™, t — y(t) — yret(t) evolves in the fun-
nel F, and is uniformly bounded away from the funnel boundary

0F, ={ (t,0) € R0 x R™ | p(t)|[¢]| =1 }

in the sense that there exists € € (0,1) such that o(t)|e(t)| < e for all
t>0.

This result is a special case of a more general result in Theorem 4.1 below.

3.2 Systems of class ND"1*

Funnel control has been shown for a couple of subclasses of systems (2.17)

in [9], see also [24,23,11]. The general case has been considered recently in [30].
Although a slightly different approach (with a stronger assumption on f1) has
been considered in [30], in view of [20] it is straightforward to extend the

results to the following framework.

Again, choose ¢; € &, a surjection N € C(R>o,R), and a bijection
a € Cl([O, 1)7 [1700)) Let Yref S WLOO(RZO;RM) with Yref = (yref,Ivyref,II)a
where Yrer,1 = (Yref,1,- - Yref,e) and Yref,11 = (Yref,e415- - - » Yref,m). The first
component of the funnel control is given (formally) as

ur(t) = (Noa)(Jlw®)|*)w(t),  w(t)=rt)(yr(t) — prets(t)).  (3.4)

Next, we define the second control component uyr. Since I' as in (2.20) plays
the role of the inverse of the high-frequency gain matrix, cf. [9, Rem. 5.3.9 (iv)],
but is not assumed invertible, the non-invertible part induces algebraic con-
straints in the control law. In order to guarantee feasibility of funnel con-
trol, these constraints need to be resolved, which is possible when the ini-
tial gain is chosen large enough, see also [9, Rem. 5.2.1]. Choosing ¢ €
@ N WL (R0, R), this leads to a funnel controller of the form

k

urr(t)=—k(t)err(t), err(t)=yrr(t) — yrer,11(t), k(t)= o O2eri O
(3.5

where the initial gain k > 0 is required to satisfy

k> 5 esssupisol fa(0)] (3.6)

8 being the lower bound for |fg| from the definition of ND™". In the case
of systems in the subclass £D™ ', with representative (2.24), the latter con-
dition reduces to k > || P2/l

Remark 3.2. Since the second equation in (2.25) is an algebraic equation
we need to guarantee that it is initially satisfied for a solution to exist. In
essence, this is the issue of consistency or well-posedness of the closed-loop
system. Since Ty € T}, is causal it “localizes”, in a natural way, to an
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operator Ty : C([~h,w] — R™) — C([0,w] — RY), cf. [¢4, Rem. 2.2]. With
some abuse of notation, we will henceforth not distinguish between Ty and
its “localization” Ts. Then, in the case of relative degree r = 1, an initial
condition y° = (y9,49;) as in (2.26) (for h > 0) is called consistent for the
closed-loop system (2.25), (3.4), (3.5), if

fa (U2(0)) + f3(471(0)) + fa(d2(0), T2(y°)(0)) + f5(0)ur(0) + f6(0)urr(0) (: O),
3.7
where u7(0),usr(0) are defined by (3.4) and (3.5), respectively. If h = 0, then
the initial values are adjusted accordingly as in (2.26).
Regarding (2.25) as a model of some real-world dynamical process, it is rea-
sonable to assume consistency in the absence of feedback — otherwise, the
integrity of the model is suspect. In the context of DAEs, and invoking the
behavioral approach [120,150], a clear distinction between inputs, states, and
outputs is often not possible during the modeling procedure. The interpreta-
tion of variables should be done after the analysis of the model reveals the free
variables, which “can be viewed as unexplained by the model and imposed on
the system by the environment” [120]. In this way the physical meaning of the
system variables is respected. In the presence of feedback, the input variables
ur, ury should be part of any consistency condition, as they are constituents
of the model.

Feasibility of the controller (3.4), (3.5) for DAE systems
(dy,da, f1,..., fe, T1,Ty) € ND™" is shown in [30, Thm. 4.3].

Theorem 3.3. Consider system (2.25) with (dy,...,dq, f1,..., f5,T1,T2) €
ND™YE meN, (e {0,...,m}. Choose 1 € @, 11 € DN WH(R50,R),
a surjection N € C(Rso,R), a bijection a € C*([0,1),[1,00)), and k > 0 such
that (3.6) holds. Let yref € W1 (R0, R™) be arbitrary and assume that the
initial data is consistent, in the sense that (3.7) holds, and

1(0)[lyr(0) = yrer, 1 (0)[| <1 and  @r1(0)|lyrr(0) — yrer,rr(0) < 1. (3.8)

Then the funnel control (3.4), (3.5) applied to (2.25) with r = 1 yields an
ingtial-value problem which has a solution (in the sense of Carathéodory), every
solution can be mazimally extended and every mazimal solution y : [—h,w) —
R™ has the properties:

(i) w =00 (global existence);

(ii) u € L®(R>0,R™), y € WH°([—h,00),R™), k € L>®(R>0,R);

(1i1) the tracking errors er(t) = yr(t) — Yrer,1(t) and err(t) = yrr(t) — yrer,11(t)
evolve in the funnels F,, and F,,,, resp., and are uniformly bounded
away from the respective funnel boundary in the sense that there exist
e € (0,1) such that

V> 0: or(t)ller®)l < e and ori(t)|lerr(t)] <.

This result is a consequence of [30, Thm. 4.3] with straightforward mod-
ifications accounting for the controller part (3.4), which follows from Theo-
rem 3.1.
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4 Funnel control: the higher-relative-degree case

Approaches to funnel control of systems of relative degree greater than one sep-
arate into two categories according to the information available for feedback to
the controller. Throughout, it is (reasonably) assumed that the instantaneous
values of the system output and reference signal are available. However, in
cases of relative degree greater than one, the derivatives of the output and ref-
erence signals play a role. In applications, such derivatives may or may not be
available for feedback: we distinguish these two scenarios via the terminology
derivative and non-derivative feedback, respectively.

In the context of the first scenario, it might be argued that the control
problem is reducible to that of the relative-degree-one case. For example, con-
sider the relative-degree-two system §j(t) = f(d(t),y(t),9(t), u(t), y(0) = °,
9(0) = v°, and assume that the output derivative 7 is available for feedback.
Introducing the surrogate output z(t) = y(t) + y(¢), the system may be ex-
pressed as

y(t) = —y(t) + 2(t),  2(t) = —y(t) + z(t) + f(d(t), y(t),5(t), u(t))
which, on defining Ty: C(R>,R™) — C(R>0,R™) by To(2)(t) :=
fg e~ (=%)2(s)ds and writing dy: t — e~ 'y, takes the form

() = f(d(1), T() (1), ult), 2(0) =20 =y" +2",
d(-) = (d(-),do(-);  T:zr (2, To(2))

with f: (5, w, ’U) = ((51, 52), (wl, U)Q), ’U) — —(’LU2+d2)+UJ1 +f(51, wo+ds, w1 —
wg — do,v). This is a system of relative degree one amenable to funnel con-
trol through application of Theorem 3.1. However, this simple observation is
somewhat misleading. Application of Theorem 3.1 ensures prescribed transient
and asymptotic behaviour of the surrogate output z(-) but the true objective
of causing that the actual output y(-) to evolve in a prescribed funnel is not
guaranteed. Attainment of the true objective using derivative feedback is the
subject of Theorem 4.1 below.

For systems of relative degree two or higher, the use of differentiators in the
generation of output derivatives inevitably raises well-known issues of accuracy
and sensitivity to “noise”. To ameliorate these issues, dynamic processes with
properties “smoother” that those of differentiators are frequently adopted.
These processes act more benignly on available inputs and outputs to produce
surrogate signals which are fed back to the controller in place of derivatives.
Such approaches form the second scenario of non-derivative feedback.

4.1 Derivative feedback
4.1.1 Functional differential and nonlinear differential-algebraic systems

We present a recent result on funnel control for the class N™", which general-
izes an earlier contribution from [29], see Section 4.1.2. It also sheds some new
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light on systems with unknown control directions, which remains an active re-
search area, see e.g. [47,108,107,59,156, 158, 159]. We stress that several of the
classes discussed in those papers (albeit with some restrictions if necessary) are
contained in the class of nonlinear systems (2.12). What the aforementioned
approaches also have in common is a level of complexity greater than that of
the funnel controller that we describe below.

Information available for feedback. Throughout, it is assumed that the instan-
taneous value of the output y(t) and its first 7 — 1 derivatives g(t), ...,y =D ()
are available for feedback. Admissible reference signals are functions ¥y, €
W (R>o,R™). The instantaneous reference value yf(t) is assumed to be

accessible to the controller and, if » > 2, then, for some 7 € {1,...,r}, the
derivatives ¢ree(t), . . ., yg; 1)(t) (a vacuous list if # = 1) are also accessible for
feedback. In summary, for some 7 € {1,...,r}, the following instantaneous
vector is available for feedback purposes:
e(t) = (6(0)(t)7 sy e(fil)(t)v y(f) (t)a ceey y(ril)(t)) € R™, } (4 1)
e(t) == y(t) — yret(t), '

with the notational convention that e(¥) = e and e(t) = (e(0(¢),...,e" V(1))
ifr=r.

Feedback strategy. As before, primary ingredients in the feedback construc-
tion, are the funnel control design parameters:

p €@, bounded if 7 <7,

N € C(R>o,R), a surjection, (4.2)
a € CH[0,1),[1,00)), a bijection.
These functions are open to choice. For notational convenience, define
B:={weR™ ||w]| <1} and v: B—=R™ w a(|w|?)w. (4.3)
Next, we introduce continuous maps pr: D — B, k= 1,...,r, recursively as
follows:
Dl ZZB, p11D14)B, mr—=m,
e M Dy_
D, = e, eka (7717 s Nk l)e k—1> , 4.4
¥ { (o) M+ ¥(pk—1(m1, - -, me—1)) € B (44
pr: D= B, (1) = i+ (pe—1(Ems - ome—1)).

Note that each of the sets Dy, is non-empty and open. With reference to Fig. 6,
and with e and p, defined by (4.1) and (4.4), the funnel controller is given by

u(t) = (Noa)(lw®)|*)wt), — wt)=p(p(t)e(t)), (4.5)

which, in the relative degree one case r = 1, corresponds to (3.2).
The efficacy of funnel control for systems (2.12) belonging to the class A"
was established in [20]: we restate this result here.
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TCENICOR R R ORTO) Py )

System (d, f, T) € N™"

u(t) = (N o) (w®)]*) w(t) w(t) = pr(p(B)e(t)) f——(ret, - yles )

I
‘ a, N ‘4
Design parameters as in (4.2) —

Funnel controller (4.5)

A

Fig. 6: Construction of the funnel controller (4.5) depending on its design
parameters; taken from [20].

Theorem 4.1. Consider system (2.12) with (d, f, T) € N™", m,r € N, and
initial data as in (2.13). Choose the triple (o, N, ) of funnel control design
parameters as in (4.2) and let yrer € W (R>0,R™) be arbitrary. Assume

that, for some i € {1,...,r}, the instantaneous vector e(t), given by (4.1), is
available for feedback and the following holds:
¢(0)e(0) € Dy, (4.6)

(trivially satisfied if ©(0) = 0). Then the funnel control (4.5) applied
to (2.12) yields an initial-value problem which has a solution (in the sense
of Carathéodory), every solution can be mazimally extended and every maxi-
mal solution y : [—h,w) = R™ has the properties:

(i) w =00 (global existence);
(i) u € L®(R>0,R™), y € W ([—h,00),R™);
(iii) the tracking error e: R>q — R™ as in (4.1) evolves in the funnel F, and
1s uniformly bounded away from the funnel boundary

OF, ={ (t,Q) € R0 x R™ [ p(t)[IC =1}

in the sense that there exists € € (0,1) such that o(t)|e(t)| < e for all
t>0.
(iv) If# > 1 and @ is unbounded, then e®(t) = 0 ast — oo, k=0,...,7—1.

Remark 4.2. The above result presents a possible anomaly: performance of
funnel control might seem to contradict the internal model principle which
asserts that “a regulator is structurally stable only if the controller [..] in-
corporates [..] a suitably reduplicated model of the dynamic structure of the
exogenous signals which the regulator is required to process” [154, p. 210]. Di-
verse sources echo this principle — one such source is noted in [75]: a young
Mark Twain, when apprenticed to a Mississippi river pilot, recorded the lat-
ter’s advice on navigating the river in the words “you can always steer by
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the shape that’s in your head, and never mind the one that’s before your
eyes” [147, Ch.VIII]. But the funnel controller has no “shape” in its “head”,
it operates only on what is before its eyes. It does not incorporate “a suit-
ably reduplicated model [..] of the exogenous signals”. How is this potential
anomaly to be resolved? The internal model principle applies in the context of
exact asymptotic tracking of reference signals. In the case of a bounded funnel
function ¢, only approximate tracking, with non-zero prescribed asymptotic
accuracy, is assured and so the anomaly evaporates.

But what of the case of an unbounded funnel function ¢, which is per-
missible whenever # = r? In this case, exact asymptotic tracking is achieved.
Returning to the control-theoretic origins of the internal model principle, sum-
marised in [154, p.210] as “every good regulator must incorporate a model of
the outside world”, we regard the term “good regulator” as most pertinent. A
fundamental ingredient of the funnel controller is the quantity o (t)e(t) which,
in the case of unbounded ¢, inevitably leads to an ill-conditioned computation
of the product of “infinitely large” and “infinitesimally small” terms. Such a
controller cannot be deemed “good”. Whilst of theoretical interest, the case of
unbounded ¢ is of limited practical utility.

Remark 4.3. We like to note that, although a “switching function” N is used
in the control design (4.5) to account for the unknown control direction, there
are cases where a simpler design can be used. If the control direction is known,
more precisely, if it is known that the function x : R — R in (NP1) satisfies
either

(i) sup x(s) = o0 or (ii) sup x(s) =
s>0 <0

for all compact K, C R? and compact K, C R, then the choice N : s — s
suffices in case (i), and N : s — —s suffices in case (ii). Theorem 4.1 remains
valid in each case.

For DAE systems (2.25) the controller (4.5) needs to be adjusted appro-
priately, that is for yper,; € W™ (R0, R™) we define the signal

er(t)= (e (),....eY V@), ..yl V) €R™, er(8)=yr(t) — yreta (D),
and for 5 € ¢ we set
ur(t) = (Noa)(lw®)[P)w(t),  wt)=p(er(t)er(t)), (4.7)

which is combined with the controller (3.5) for the algebraic part that stays
unchanged. Furthermore, we extend the notion of consistent initial values
from (3.7) to arbitrary relative degree, i.e., to the condition

£z (5900, - (89) 7 (0)) + Fa(ufr(0)) + f1(d(0), Ta(uf, v1)
+/5(0)ur (0) + fo(0)urr(0) = 0.

We note that funnel control for DAE systems with arbitrary relative degree
has been discussed in [9,23], however for system classes smaller than (2.25).

(4.8)
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The result given below is a consequence of [30, Thm. 4.3], with slight modifi-
cation. In fact, it is a straightforward combination of Theorems 4.1 and 3.3,
since the controller (3.5) of the algebraic part does not change.

Theorem 4.4. Consider the DAE system (2.25) with
(dy,....ds, f1,-. ., f5,T1, To) e ND™™ m,reN, £€{0,...,m}.

Choose a triple (a, N, pr) of funnel control design parameters as in (4.2),
@11 € D NWEH2(Rso,R) and k > 0 such that (3.6) holds. Let yrer be such
that Yret,1 € WT7OO(RZQ,RE) and Yret, 11 € Wl’OO(RZQ,Rmfg), assume that the
initial data is consistent, in the sense that (4.8) holds, and

v1(0)er(0) €D, (asin (4.4) with m =+£) and wrr(0)|lyrr(0) — yret,11(0)]| < 1.

(4.9)
Then the funnel control (4.7), (3.5) applied to (2.25) with r = 1 yields an
ingtial-value problem which has a solution (in the sense of Carathéodory), every
solution can be mazimally extended and every mazimal solution y : [—h,w) —
R™ has the properties:

(i) w= o0 (global existence);

(ii) v e L®(R>o,R™), y € W([—h,0),R™), k € L>*(R>¢,R);

(7ii) the tracking errors er(t) = yr(t) — yrer,1(t) and err(t) = yrr(t) — yrer, 11(%)
evolve in the funnels F,, and F,,,, resp., and are uniformly bounded
away from the respective funnel boundary in the sense that there exist
e € (0,1) such that

V> 0: pr®)fler®) <e and @rr(t)|lerr(t)] <e.

4.1.2 Antecedent approaches

A relative degree two funnel controller. In the case of single-input, single-
output, nonlinear systems with relative degree two and asymptotically stable
zero dynamics, a funnel controller has been proposed by Hackl, Hopfe, Ilch-
mann, Mueller, Trenn (2013) [68] (see also the modification in [60]). The aim
in the control design was to avoid the backstepping procedure from [37] (see
Section 4.2.3) by using a linear combination of the output and its derivative
instead.

The systems which are considered in [68] are of the form (2.12) with m = 1,
r =29 =0and f(,nu) = fi(6,n) + f2(9,n)u for suitable functions f;
and fo. It is assumed that f2(d,n) > 0 everywhere. The work [68] introduces
a funnel controller which feeds back the error e and its derivative. Compared
to Theorem 4.1, it possible to directly prescribe the evolution of the error
derivative. The controller reads

ult) = —k§(t)e(t) — kx(t)é(t),

. (t) _ (t)
ko(t) =t M) = =

(4.10)
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The funnel functions g for the error and ¢ for the derivative of the error
have to satisfy (o, p1) € ®%; the latter class is defined by

@2?:{(900901)6(15x¢ 3§ >0 fora.a.t>0: }

(1/01)(#) + 5 (1/00)(t) > 6

where @ is as in (1.2). The motivation for the definition of ®? is that the
derivative funnel F, must be large enough to allow the error to follow the

funnel boundaries; for more details see [68]. Feasibility of the control (4.10) is
shown in [68, Thm. 3.1].
As shown in [60,61], see also [66, Sec. 9.4.4], the equation for u(t) in the

controller (4.10) can be modified such that

u(t) = —ko(t)%e(t) — ko(t)k1(t)e(t) (4.11)

and feasibility of the control is still guaranteed; in [60,61] this is shown for a
certain class of linear systems, but the extension to nonlinear systems (2.12)
as discussed above is straightforward.

The modification (4.11) is advantageous compared to (4.10), since the latter
yields a badly damped closed-loop system response and may lead to admissi-
bility problems in applications since speed measurement is usually very noisy.
The controller (4.10) (and its modification (4.11)) is simple and its practicabil-
ity has been verified experimentally. Its advantage is that the performance of
both e and é may be prescribed. However, there is no straightforward extension
to systems with relative degree larger than two.

Non-backstepping feedback for higher relative degree. A funnel controller for
systems with arbitrary relative degree r € N was introduced by DBerger,
Hoang, and Reis (2018) [29] for systems of the form (2.12) with ¢ = 0 and
f(6,n,u) = f1(8,n) + f2(6,n)u for suitable functions f; and fo such that
f2(0,m) + f2(0,m) T = 0 everywhere.

The controller introduced in [29], which does not involve any back-
stepping procedure, is an output error feedback of the form wu(t) =
F(t,e(t),é(t),...,e" (1)), where e(t) = y(t) — yrer (t) evolves within the per-
formance funnel F, which is determined by a function ¢ belonging to

RV R ,<p(r) are bounded,
D, :=¢ o €C'(R>0,R) | (1) >0 for all 7 > 0, . (4.12)
and liminf, ,o o(7) >0



Funnel control — a survey 47

The controller is of the form

eo(t) = e(t) = y(t) — yret(t),
el(t) = éo(t) + ko(f €0 t),
eg(t) = 61(t) + kl(t €1 t)7
(4.13)
er—1(t) = ér—2(t) + kr—2(t) er—2(),
1
ki(t) = . i=0,...,r—1,
1 —;(t)?|les(£)]1?
u(t) = —kr—1(t) e,—1(1),
where the reference signal and funnel functions satisfy:
Yref € WT’OO(RZmRm)a ®o S @T, Y1 S @r—la ceey Pr—1 S @1_ (414)
We stress that ég,...,€é,.—2 in (4.13) merely serve as short-hand notations
and may be resolved in terms of e, k; and ¢;, i =0,...,7 — 1, where e is

assumed to be available to the controller. Therefore, the control law may be
reformulated accordingly; in the following we determine the funnel controllers
explicitly for the cases r =1 and r = 2.

r=1: The control law (4.13) reduces to the “classical” funnel con-
troller (1.21).
r = 2: We obtain the controller

u(t)
ko(t)

k1 (£)(e(t) + Ko(t)e(t)),
1

T 1= gWlle®?’

1

T 12D + ko@e®)2

k1 (t)

We stress that this controller is different from both the relative degree
two funnel controller (4.10) and its modification (4.11).

Feasibility of the control (4.13) is shown in [29, Thm. 3.1]. We empha-
size that, compared to the bang-bang funnel controller (which is another an-
tecedent approach discussed in detail in Section 6.2) and the relative degree
two funnel controller (4.10), the funnel functions ¢g,...,¢,—1 in the con-
troller (4.13) do not have to satisfy any compatibility condition. However,
the control design (4.13) involves successive derivatives of the auxiliary error
variables e;, which exhibit an increasing complexity for higher relative degree,
which is also illustrated by the explicit control law for the casesr =2 and r = 3
presented above. The simple funnel control design (4.5) helps to resolve these
issues.
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4.1.8 Prescribed performance control

An alternative approach to funnel control has been developed by Bechlioulis
and Rovithakis (2008) [3], which is called prescribed performance control. In
the first contributions, feedback linearizable systems [3], strict feedback sys-
tems [4] and general multi-input, multi-output systems which are affine in the
control [5] have been considered. An extension to systems with dead-zone in-
put and time-delays is presented by Na (2013) in [117] and further explored
by Theodorakopoulos and Rovithakis (2015) in [139]. Using so called perfor-
mance functions, which are special funnel boundaries, and a transformation
that incorporates these performance functions, the original controlled system
is transformed into a new one for which boundedness of the states, via the
prescribed performance control input, can be proved. Therefore, the tracking
error evolves in the funnel defined by the performance functions.

However, strictly speaking the controllers presented in [3,4,5] are no fun-
nel controllers since they are not of high-gain type. They have in common
that neural networks are used to approximate the unknown nonlinearities of
the system, which contrasts the classical funnel control methodology where
parameter estimators are not used. Problems of the approximation may be
that disturbances or small errors in the approximation cause the tracking er-
ror to leave the performance funnel. Although a certain level of robustness is
ensured, the controllers are not inherently robust since they are not of high-
gain type. Furthermore, the controllers are prone to common challenges for
approximation-based control schemes, both with the design and implemen-
tation, in particular the selection of the size of the neural network and the
number of network parameters as well as the high order of the dynamics of
the resulting controller because of the neural weight adaptive laws. Moreover,
some parameters of the neural network must be chosen large enough, but it is
not known a priori how large and suitable values must be identified by several
simulations.

These drawbacks have been resolved by Bechlioulis and Rovithakis
(2011) [6], where the neural networks are avoided in the control design for
single-input, single-output strict feedback systems. However, the controller
is dynamic and incorporates r differential equations, where r is the relative
degree of the system; this is due to the compensation of possibly unknown
control directions and the controller is static in case of known directions. The
dynamic component can be viewed as a filter, and it is needed in addition to
the derivatives of the output. Finally, this filter is avoided in Bechlioulis and
Rovithakis (2014) [7] and the complexity of the controller is further reduced;
also, a feature of this controller is that no derivatives of the reference signal
are needed. The class of systems considered in [7] are so called pure feedback
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systems, which are of the form

= fk(xl(t),...,zk+1(t)), k=1,...,r—1,
= fr(d(t), z1(t),. ..,z (t),m(t), u(t)), with output y(t) = 21 (t),
() = g(d(t), z1(t), ...z (8), (),

(4.15)
and initial data

(1’1(0)7' t 7%(0)777(0)) = (1'?7 axgvno) ER™ x -« x R™ x R%. (416)

The considerations in [7] are restricted to the case of no disturbances (d = 0)
and trivial internal dynamics (¢ = 0); further, the partial derivatives 2L

Oy
and % are assumed to be uniformly positive definite. We stress that in this

system class no internal dynamics and no uncertainties or disturbances are
allowed; the influence of the latter is discussed in [140]. Compared to [7], in
the system class considered in [6] internal dynamics of a certain hierarchical
structure are allowed; these dynamics are called “dynamics uncertainty” there.

The prescribed performance controller for the above described system class
as introduced in [7] is of the following form: First, a performance function p is
chosen, which is usually of the form

p(t) = (po — poc)e™ " + pos, t>0,

where pg > poo > 0, £ > 0. Clearly, p(t) := p(t)~! defines a finite performance
funnel with ¢ € @ for @ as in (1.2). For ¢ = 1,...,r choose performance
functions p;(t) = ¢;(t)~! and constants k; > 0 and let

1 1+ sm
Tf: (-1,1)™ = R™, (sl,...,sm)r—><ln< +81>,...,1n< ts >>,

1—81 1—Sm

other choices for Ty are possible (as long as it is continuously differentiable
and bijective), but the above function is the standard choice in the literature.
The prescribed performance controller is then given by

ar(t) = =k Ty (91.(8) (21(8) = yres (1)) ).
as(t) = —k2Ty (Wz(’f) (2(t) — al(t))),
(4.17)

ar(t) = —k, Ty (00 (8) (0, (8) = a1 (1)),
u(t) = a, (),

where the performance functions must be such that forall j =1,...,mand i =
2,...,7 we have p1(0)|z1,;(0) —yrer,;(0)| < 1 and ¢;(0)|z;,;(0) —a;—1,;(0)] < 1.

It is shown in [7, Thm. 2] that the controller (4.17) applied to a sys-
tem (4.15) satisfying the conditions mentioned above, leads to a closed-loop
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system which has a solution and every maximal solution is global and bounded.
Furthermore, each component e;(t) = 1,;(t) — Yref,i(t) of the tracking error
evolves in the performance funnel defined by o1 (t) = p1(t) 7}, i.e.,

Vi=1,....mVt>0: (t,elt)) € Fo,.

Although funnel control and prescribed performance control achieve the
same control objective and look similar in their controller structure, the two
system classes (2.12) (amenable to funnel control) and (4.15) (amenable to
prescribed performance control) are different and a thorough comparison of
the two approaches is still missing.

4.2 Non-derivative feedback via two methodologies: filtering and
pre-compensation

Now we turn attention to the second scenario wherein derivative information
on the output and reference signal are not available to the controller. In this
scenario, a dynamic component (which we will label either a filter or a pre-
compensator!), operating on available system input and output error data, is
incorporated in the control design in order to generate a vector of “surrogate”
variables & which deputises for the (unavailable) output derivatives in some
appropriate sense, and which is used in a feedback u(t) = U(t, e(t), &(t)) based
only the available instantaneous information (t,e(t),£&(t)). We illustrate the
main features by means of a simple example.

|
u(t) System:
u(t) =U(t,e(t), €(t)) 3 input u, output vy, — y(¢)

output error € = Yy — Yrer
(u(t), e(t))
~

surrogate Dynamic control
£t component

Fig. 7: General structure.

1 We use these terms loosely: they are intended to indicate a rationale that seeks to
compensate for the unavailability of output derivatives through (dynamic) operations on
available input and output signals. The terms “filter” and “pre-compensator” are adopted
solely to distinguish the two distinct methodologies.
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4.2.1 Motivating example: the double integrator

For purposes of illustration, consider the simplest scalar system of relative
degree two:

y(t) = gu(t)a g>0, (y(o)a y(O)) - (yO’,UO) € R? (418)

and, for ease of exposition, assume that yyer = 0. Assume furthermore that the
funnel parameter ¢ is of class @ N W' (R>, R) with p(0) = 0. As before, let
a € C*([0,1),[1,00)) be a bijection and define ~ as in (4.3). By Theorem 4.1
and Remark 4.3, we know that the feedback control

u(t) = —y(e®)y(t) +v(e(t)y(t)))

ensures that the maximal solution (unique by standard arguments) of (4.18) is
global, bounded and y evolves in the prescribed performance funnel F,,. How-
ever, this result assumes availability of the “velocity” y(¢) for feedback, which,
in the presence of noise, may lead to an ill-posed problem, cf. [66, Sec. 11.1.4].
So what if the velocity is inaccessible? We highlight two approaches to ad-
dressing this question.

Filtering. Augment the double integrator (input «) with a “filter” also driven
by wu: )
§(t) = =£(t) +u(t), £(0)=0.
Solely for simplicity of exposition, we have adopted the filter initial condition
£(0) = 0. Introducing the variable z(t) := y(t) — y(t) — g&(t), the augmented
system takes the form
§t) = y(t) + 2(t) + g £(t), y(0) = °
2(t) = —z(t) — y(t), 2(0) = 29 =0 —¢° (4.19)
E(t) = —€(1) + u(?), £(0) = 0.
Temporarily viewing the first two of the above equations as an independent
system — with input &, output y and initial data (y(0), 2(0)) = (y°,2°) — we

have
(55) =4 (20) o0 w0 = (%5)

A= [_11 _11], b= (g), c:=[10].

Observe that I' = ¢b = g # 0 and

YA€ Cso: det {A_CMS] — (14 A\)g #0.

Thus, this (independently viewed) system is of relative degree r = 1 has
asymptotically stable zero dynamics ZD(A,b,c) and satisfies (SA1)—(SA3).
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Therefore, (A,b,¢) € L1, In this illustrative context, the operator T given
by (2.10) has the form

T: C(R>0,R) = C(R>0,R), y—y—L(y), L:yw— (t > fote_(t_s)y(s)ds) :
Defining dy € £>°(R>0,R) by do(t) := e~*2° writing f: (6,¢,v) — 0 + ¢ + gv,

we have

y(t) = f(do(t), (Ty)(),£(1)), (0) =y". (4.20)
By Lemma 2.8, (do, f,T) € N'! and so (in view of by Theorem 3.1, Re-
mark 4.3, and setting v: v — —a(v?)v with the special choice a(s) = 1/(1—s))
the strategy £(t) := v(p(t)y(t)) ensures that the global solution of (4.20) is
bounded and y evolves in the performance funnel F,. However, this observa-
tion is predicated on the premise that £ is a variable open to choice. But this
is not the case: £ must lie in the solution set of the filter

8= {€ € AC(R0,R) | € = L(w), u € L35 (R0, R)}.

Writing 6: ¢ — (Lu)(t) — v(¢(t)y(t)) and d: t — do(t) + gb(t), system (4.20)
may be expressed as

g(t) = £(d(t), (Ty)(), 1 (e (y(1)),  y(0) =y’ (4.21)

Therefore, if u € L5Y (R>0,R) can be chosen such that 6 (and so, d) is bounded,
then (d, f,T) € NV and, again invoking Theorem 4.1 and Remark 4.3, it
follows that every maximal solution is bounded (and so has domain R>¢) and y
evolves in the performance funnel . Consequently, the issue to be addressed
is the design of a feedback strategy, based only on the available instantaneous
information triple (¢, y(t),£(t)), which ensures boundedness of §. With this as
objective, let u € L2 (R>,R) and let (y,z,€): [0,w) — R® be the unique
solution of the initial-value problem (4.21). Then |p(¢)y(t)| < 1 for all ¢t €
[0,w) and (4.19) holds. Therefore, y and z are bounded and so, by the first of
equations (4.19), there exists a constant ¢; > 0 such that |y(¢)| < ¢ (14 [£(¢)])
for all t € [0,w). Writing k(t) = a(@?(t)y%(t)) = 1/(1 — ¢*(t)y?(t)), then,
by boundedness of ¢, y, and essential boundedness of ¢, we may infer the
existence of c5 > 0 such that || (k(t), (¢y)'(t))|| < c2k(t)? (1+[£(t)]) for almost
all t € [0,w). Introducing ~;: [1,00) x (=1,1) = R, (k,v) — —kv, we have

(LSr(p(B)y())” = (L7 (kD) 0()y(1))?
< IV (), o)y @) 121 (k). (py) (&) |
< AP (1) + K2 (1) (k1) 1+ |E@®)))° for aa.t € [0,w).

Therefore, for almost all ¢ € [0,w) we have

00)() < 0) (€01) — rle(y(®))
< —OE() + 0(u(t) + 0(0)] | S (2D (1)))]
< —02(t) + 0(8) (ul(t) — 7 (p()y(1)) + 3 20%(1) (E e Oy(®))” + 33,
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Defining
Y21 [1,00) x (—=1,1) x R = R,

2
(k. ¢) = m(k,m) — (17 + £%) (K21 + €))7 (¢ = (w,m))
we see that, the feedback strategy

u(t) =72 (K1), p(t)y(1),£1)), k() = a(¢®()y* (1))
which uses only the instantaneous information triple (t,y(t),{(t)), ensures
0(t)0(t) < —6%(t) + 1c3 for almost all t € [0,w), whence boundedness of 6.

Therefore, w = oo and the requisite performance is achieved. In the context
of Fig. 7, we have &(-) = &(-).

Pre-compensation. Augment the double integrator with a “pre-compensator”
driven by the input v and output y:

E1(t) = &(t) + (g1 + prk(t) (y(t) — &(1)),

&(t) = Gu(t) + (a2 + poh() (0 - 60). (©01.L0) =00
1

t) = 2
: 1= (p1(t)(y(t) — &1(1)))

with g, g;, p; > 0 (design parameters open to choice) and ¢ := 2. Analogous
to the filtering case, solely for simplicity of exposition, we have adopted the
pre-compensator initial condition (£1(0),&2(0)) = (0,0). The above structure
resembles a high-gain observer [53,96] with time-varying gain function, how-
ever they serve a different purpose. In contrast to high-gain observer theory,
the variable & is not used to approximate the derivative y of the output. In-
stead, &, serves as a “surrogate output” which is close to the true output y
in the sense that the difference y(-) — &1 (+) evolves within a prescribed perfor-
mance funnel. The derivative él of the surrogate output is known and so is
available for control purposes. Viewed as a system with input u and output &;
(with the derivative £, also available for feedback), we seek to apply the funnel
controller (4.5) in the context of the pre-compensated double integrator given
by the conjunction of (4.18) and (4.22).

To ensure feasibility of the above approach, we need to show that the
augmented system (4.18)-(4.22) satisfies the assumptions of Theorem 4.1. To
this end, we first proceed to show that the augmented system may be expressed
in the form (2.12). For simplicity of exposition only, choose § = ¢1 = ¢2 =
p1 = 1 (leaving the design parameter ps > 0 to be determined). Introducing
the variables z1 := y — &1, 20 := § — g2, we arrive at a representation of the
augmented system with input v and output &;:

EL(1) = (14 pok(0)z1 () + & ((L+ k()21 (0) +u(?),
(62(0),61(0)) = (0. (1 + p2)y”),

£1(1) = 2(t) — g1+ k()21 (1) + (9~ V&), 21(0) =4,
55(1) = —g(1+ pok(D)21(t), k(1) = b 22(0) = o°.

(4.23)
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Temporarily replacing & by an arbitrary function ¢ € C (R>0,R), consider the
second and third subsystems of (4.23) as an initial-value problem with input

¢:
40 = Q) - (=% ) p+ (1 -0) (1) 10+ 6= 1) ) <0,

o) = (28) 5 2(0) =20 = (22) Q= E (ﬂ L P= (plz) 20

By the standard theory of differential equations this initial-value problem has,
for all (2Y,¢) € R? x C(Rxo,R), a unique maximal solution z: [0,w) — R?
and graph(z) C D = {(¢,0) = (t,601,62) € R>o x R?| ¢1(¢)|61] < 1}. By
properties of ¢ and continuity of z1, there exists ¢; > 0 such that |21 (¢)| < ¢1
for all ¢ € [0,w). Noting that @ is Hurwitz, let P = PT = 0 be the unique
solution of PQ + QTP+ 1 = 0. Set py = 1/3 and observe that

2

o[

‘31] and Vi e[0,w): 2(Px(t),p) = 21 (D).

Writing V': t — (Pz(t),2(t)) and invoking standard estimates, we have, for
some positive constants ¢y and c3,

V(t) = 2(Pz(t), £(1))
—[lz@)1I* = gk() (21 (£)* + 2/ P11 = gl (e1V2 + [CB)) 121l
—CQV(t) + 63(1 + C(t)Q),

IAN A

for almost all ¢ € [0,w), whence
t
Vte[0,w): V(t) <e etV (0) +/ e~ (=T ey (14 ¢(r)?) dr. (4.25)
0

Therefore, w = co. In summary, we now know that, for every (z°,¢) € R? x
C(R>g,R), the initial-value problem (4.24) has unique global solution, which
we denote by o(+,2%,¢) =: (21(), 22(-)) = 2(-): R>¢ — R? and o1 (t)]z1(¢)| < 1
for all ¢ > 0. Introducing the operator (more precisely, the generic member
of a family {T,o| 2° € R} of operators parameterized by z°: for notational
simplicity we suppress the dependence on 2°)

2() = 0(,2°%¢) = (21(-), 22(")) and kit 1/(1 = (p1(t)z1(t))?),
(4.26)
we proceed to show that this operator is of class Té’4. Causality is clear, and so
property (TP1) holds. With view to establishing the bounded-input bounded-
output property (TP3), let ¢ € C(R>0,R) and, invoking (4.25), we may infer
that, for all ¢5 > 0 there exists cg > 0 such that

T: C(Rzo,R) — Eloooc(Rszzl)a ¢ (27k7<)7 }

sup|C(t)| <es = supllz(®)| < cs. (4.27)
t>0 t>0
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By (4.24), we have 21(t) = z2(t) — g(1 + k(¢))z1(t) + (g — 1)¢(¢) for all ¢ > 0
and so , for all ¢5 > 0 there exists ¢; > 0 such that

supl((t)|<es = ((cpl(t)zl(t))z)':chqk(t)(gol(t)zl(t))2 for aa.t >0

(4.28)
(wherein boundedness of ¢, and essential boundedness of its derivative have
been used). Therefore, to conclude property (TP3) it suffices to show that,
for all ¢ > 0 there exists ¢g > 0 such that sup,~¢k(t) < c¢g for all ¢
with sup,~q |¢(t)] < ¢5. Fix ¢5 > 0 arbitrarily and let ¢; > 0 be such that
(4.28) holds. We claim that (p1(t)z1(t))? < cg := c7/(g + ¢7) for all t > 0.
Suppose otherwise. Then, by continuity, there exist 0 < a < b < oo such
that o1(a)z1(a))?® = cg and (¢1(t)z1(t))? > cg for all t € (a,b), whence
cr — gk(t)(p1(t)21(t))? < 0 for all t € (a,b) which, in conjunction with (4.28),
leads to the contradiction:

b
0> (p1(b)z1(b)* — (¢p1(a)z1(a))? = / ((pr(H)21(1)) dt < 0.
Therefore,

sup [((t)] <5 = sup(p1(t)z1(t)® < s < 1. (4.29)
t>0 t>0

Writing cg := c5 + cg + (1 — cg) %, we have

sup[((t)] <es == sup||T(O)(1)] < co
t>0 t>0

and so property (TP3) holds. It remains to establish the local Lipschitz prop-
erty (TP2).

To this end, let ¢t > 0 and £ € C([0,t],R) be arbitrary and set 7 = § = 1.
Define

_ Clog =& Vs et t+1]: |¢(s) —&(t)] <1,
Z {CEC(RZOR) VLOtZ]t—i-l: C(s) =C(t+1) }

To conclude that (TP2) holds, it suffices to prove the existence of a constant
co > 0 such that:

(Cez — swp [T -TEOGN <o sup [¢(s)—C(s)]. (430)
s€[t,t+1] s€ft,t+1]

First, some preliminary observations. Setting ¢5 := ||{]|cc + 1 we have ||(]|co <
¢5 for all ¢ € Z and so, recalling (4.27) and (4.29),

(eZ = |zlloc <cs and (p1()z1(t)* < eg < 1,

) o= (z21(1),22(1) = (,Az07§) Let ¢,(, € Z be arbitrary. Write
/(1= (p1()z1())?) and k() == 1/(1 = (p1(-)21(-))?), where, as be-
fore, (21(-),22(-)) = 2() = o(-,2°,¢) and (21(:), 22(")) = £(-) = o(:,2°,¢).
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Clearly, k(s),k(s) € [1,(1 — cg)7'] for all s > 0. Noting further that
[(1—v)"t—(1—-9)" 1|<(1—08) 2|v — 9] for all v, 9 € [0, cg], we have

V>0 [k(s)—k(s)| < (1=cs)"*[(p(5)21(5))° = (21(s)21(5))*| S colz1 (5) =21 (s)],

where cg := 2||¢1]]o0 (1 — cg) "2/Cs. Setting c10 := cgcg + (1 — cg)~*, we have

Vs >0 |k(s)zi(s) = k(s)21(5)] < k(s) = k()llz1(s)] + k(s)[z1(s) — 21(5)]

< crollz(s) = 2(s)]-

Invoking (4.24),

V205 2(6) — £ = Qx(s) — () + (o~ D(E(s) ~ &9 (o

whence, on writing ¢11 := ||Q|| + g — 1|g c10V/2,

Vselt,t+1]: |2(s)— ||<011/ [l 2( Tlldr+lg=1] sup [¢(r)={()]-
TE[t,t+1]

By Gronwall’s lemma, we may conclude that

sup ||z(s) — 2(s)|| < 12 sup  |¢(s) — é(s)| where ¢19 1= |g — 1|e“t.
s€[t,t+1] se[t,t+1]

Therefore, (4.30) holds with ¢y = (1 + cg)ciz + 1 and so T € Ty™. Defining
f € C(R? x R* x R,R) by

f: (dvna u) :((d17d2)7 (7717 v a774)au) =
(L4 pans)m + 2n3d1n3 (dams + di(n2 — g(L+n3)m + (g — 1)na))
+ (L +m3)(n2 — g1 +n3)m + (g — V)ma) +u,

it is readily verified that (4.23) may be expressed in the form of the functional
differential equation

E1(t) = £(d(1), T(&)(1),u(t), d(t) = (p1(t),1()), (£1(0),€1(0)) = (0, 59°),

where T € ’]I‘(l)’4 is the causal operator, associated with the initial data 2% =
(y°,v°), given by (4.26). Clearly, the triple (d, f,T) is of class N'? and so is
amenable to funnel control. Moreover, both & () and its derivative &;(¢) are
available for feedback.

Applying Theorem 4.1 in this context and adopting the performance funnel
Fo, with @1 := 2¢ (recall that F, is the performance funnel stipulated ab
initio for the double integrator plant), we know that the control

u(t) = =7 (21 (1) + (1 (B (1))
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ensures that, for some 1 € (0,1), ¢1(¢)|&1(¢)] < &1 for all t > 0. We also know
that o1 (t)|y(t) — &1(8)] = ¢1]z1(t)| < 1 for all £ > 0, and so

POyt = 3e1ly()] < 3 (L1)]y(t) — &1(O] + er(B)]€2(1)])

<3(l+e)=e<1

Therefore, the performance objective is achieved by the dynamic component

(t) Ea(t) + (1 + k(1) (y(t) — &1(2)),
&(t) = ult) + (1 + 3k(®)(y(t) — & (1)), (€1(0),£2(0) = (0,0),
k) = srornm—amr

in conjunction with the feedback

u(t) = —y(e1(t)(&2() + (1 + k() (y(t) — &1(1)) +7(p1(H)&i(1)))

which requires only the available instantaneous information quadruple
(t,y(t),&1(t), &2(t)). In the context of Fig. 7, we have £(-) = (£&1(+), &2()).

4.2.2 System class

Having highlighted their main ingredients via the simplest of relative-degree-
two systems, we now describe the above two methodologies in the broad con-
text of systems of relative degree r > 2 with the general structure depicted
in Fig. 5 — a natural generalization of the linear Byrnes-Isidori form (2.11) —
under the additional structural assumptions. In particular, the systems to be
studied are affine in the control and are represented by functional differential
equations, with R™-valued input v and output y, of the form

y () = Fd(0), Ty, g, ..,y V)(#) + Tult),

where I' € G1,,(R), f € C(R? x RL,R™) and T € T}™% ¢ > rm. The
“additional structural assumptions” are as follows. First, it is assumed that T
is of the (highly structured) form given by

T(Ch"'v@“) = (Clﬂ"'vcraT(Clw"aCT))
where T € T;"™? (¢ = G — rm) satisfies

(TP3’) for all ¢; > 0 there exists ¢z > 0 such that for all
<17 ) CT’ € C([_h7 Oo)va) :

sup |G@)[ < = sup [T(G,...,¢) )] < co
te[—h,00) t€[0,00)

Secondly, the function f € C(RP x R™" x R%,R™) is assumed to take the form

f(d7<7n) :fA(d7C1vaCT»77) :ZRzCz+f(d7n)v

i=1
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where f € C(RP xR%,R™) and R; € R™*™, ¢ =1,...,r. Thirdly, I" is assumed
to be sign definite: |(v, ['v)| > 0 for all v # 0. In summary, with r > 2, the
generic system to be investigated under the two methodologies is

y () =D Ry V() + £(d®t), T(y, 5, ...y )(1) + Tu(t), (4.31)
i=1
with initial data

=y eC™1(]-h,0],R™), if h >0,
y‘[fh,O] Y (l ] } (4.32)

)
((0),9(0),...,y"10)) = (12,93, ...,yy 1), ifh=0,

where I' € GL,,(R) is sign definite, R; € R™*™ ¢ =1,...,r, f € C(RP x
R?,R™), T € T, such that (TP3’) holds, and the disturbance d is essentially
bounded.

Remark 4.5. The assumption that the generic system is affine in the con-
trol can be weakened. Assume instead that the input enters via a function
g € C(R™,R™) and posit the existence of a sign-definite I' € Gl,,(R) such
that v — g(v)—I'v is bounded (which, for example, permits dead zone effects),
then, for any input u(-) (of class £72.), the function d,: t — g(u(t)) — I'u(t)
is essentially bounded and so the system with input operator ¢ is sub-
sumed by the form (4.31) on replacing f by the C(RPT™ x R4, R™)-function

((dv,d2),n) — f(d1,n) + da.

4.2.8 Funnel control with filtering

Let N € C"(R>0, R) be surjective (for example, N: k — rsin k suffices) and let
a: [0,1) — [1,00) be a r-times continuously differentiable bijection such that
o' = aoa for some function a: [1,00) — R>q (for example, a: s = (1 —5)77,
B > 0, suffices). Again, let B denote the open unit ball centred at 0 in R™.
Define

v:B=R™, v (Noa)([[v][*)v, 7t [l,00) x B—=R™,(k,v) — N(k)v,
and projections

m ROTU™ SR e = (&, 6y) = (61,00 0,6), i=1,...,7r—1.
Fix y > 0 (a design parameter) and define v;: [1,00) x B x R=Dm 5 R™
i =2,...,r, by the recursion

Yi(, v, mio1€) i= Yim1 (K, v, Ti-2§)

— (a1 + ImemrD (D) v 728 )
X (W71 = Yiea (R, 0, mi0€))  (4.33)
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wherein D denotes the differentiation operator, D~y;_1 being the Jacobian of
Yi—1 with

IDYie1 (5 P = 1017i-1Co o NP+ 182%i1 (o5 P+ 103731 C, )1,
where 0; denotes differentiation with respect to the j-th argument. We adopt
the convention (k,v,m€) = (k,v), in other words, the symbol 7 is vacuous.
In particular, we record that || Dv;(k,v, mo€)||> = N'(k)?||v]|> + N (k)2

Augment the system (4.31) by a linear input “filter” of the form

&(t) = —p&(t)+&ipm(t), i=1,...,r=2, &_1(t) = —p&_1(t)+u(t), (4.34)

with & (t) € R™ and arbitrary initial data &(0) = &) € R™, i =1,...,r — 1.
The augmented system takes the form

(}28) B [61 l?“] (“ééﬁ) + []g] =1 f(d(t), T(y)(t)) + [g] u(t),  (4.35)

with output (Cy(t)>7 where

&(t)
B [
y(t &t
=100, yoo=| . |, ew=| """ |
yrH (1) &ro1(t)
0 I -0 0 —pI T 0] 0
A=t il =i, F=| i | and G= |
0o 0 .---1 0 0 0--- I
RlRQ"'Rr I 0 0“-7,[1[_ 1

Let yref € W™ (R0, R™) be arbitrary. We introduce the control

u(t) =7, (k(t), p(t)e(t), £(1)),
e(t) = y(t) — yret (1), k(t) = a(e®*()]e(t)]),

which will ensure attainment of the performance objectives of boundedness of
all signals and evolution of the tracking error in the performance funnel.
Note that, if we set 7 = 1 in (4.36), then

u(t) = y1.(k(t), p(t)e(t)) = v(p(t)e(t)) = (N o a)(@(t)*[le(t)]|*)p(t)e(t)

and so, as is to be expected, we recover the (non-dynamic) controller (3.2). In
the case of relative degree r = 2 and = 1, we have the dynamic controller

(4.36)

(1) = —€(t) + ult),
u(t) = p(t)e(t) = (alh(®)) (1+ [€ON)* (N BO)e@lle)])’
+ N(k(®)?) (64) = 1w De(®))),
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with k(t) := a(@?(t)e(t)|?).
In the general case r > 2, the efficacy of the control (4.36) was established
in [87]. We restate this result here, tailored to the present framework.

Theorem 4.6. Consider the initial-value problem (4.31)—(4.32). Choose
(o, N,@) such that ¢ € &, N € C'(Rso,R) is surjective, and o €
C"([0,1),[1,0)) is bijective with o/ = aoa for some function a: [1,00) — Rx>q.
Let yret € WH (R0, R™) be such that ¢(0)||y(0) — yres(0)|| < 1 (trivially
satisfied if ©(0) = 0). Then the control (4.36) applied to the augmented
system (4.35), with initial data given by (4.32) and the initial condition
£(s) = €9 e RUD™ for all s € [~h, 0], yields an initial-value problem which
has a solution (in the sense of Carathéodory), every solution can be maximally
extended and every mazimal solution (y,€): [—h,w) — R™ xRT=1D™ has the
properties:

(i) w =00 (global existence);
(i) u € L®(Rsg,R™), & € L®(Rso, RC=V™) ¢ € W([—h,00),R™)
where y = Cy;
(1ii) the tracking error e = y — Yrer: R>g — R™ evolves in the funnel F, and

there exists € € (0,1) such that p(t)|e(t)|| < e for allt > 0.

Remark 4.7. The recursive procedure in (4.33) — generating the feedback
function 4, in the control (4.36) — is a form of backward induction struc-
turally reminiscent of the “back-stepping” procedure developed in the 1990s
by Kotokovic and others [97,111] in a different context of feedback stabiliza-
tion of nonlinear systems. Such procedures risk falling victim to the “curse
of dimensionality”, a phrase coined by Bellman [3, Preface| in the develop-
ment of Dynamic Programming, and indeed (4.33) is not exempt from this
risk. The “curse” refers to adverse features that arise with increasing dimen-
sion. In the present setting, dimension equates to relative degree r. For ex-
ample, set a: s > (1 — s)~! and consider the case wherein I" is known to
be positive definite (and so N: K — —k may be chosen). As before, write
k(-) = a(p?(-)|le(-)||?), which, if r = 1, enters as a simple multiplier or gain in
the feedback control, viz. u(t) = —k(t)p(t)e(t). However, for r > 2, the recur-
sive procedure in (4.33) generates multipliers (embedded in the feedback con-
trol) of the form k(¢)P, the exponent p of which may become impractically large
even for moderately low values of r. Funnel control with pre-compensation
(discussed in more detail in the following section) seeks to circumvent this
drawback, but not without paying a cost in complexity: as shall be seen, the
dynamic order of the pre-compensator is r(r — 1), whereas the dynamic order
of the filter is r — 1.
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4.2.4 Funnel control with pre-compensation

In this section we describe a recent approach to funnel control with non-
derivative feedback which avoids the backstepping procedure. A straightfor-
ward idea to do this was the use of a high-gain observer; see the classical
works [53,96,131,141] and the survey [95]. One advantage of high-gain ob-
servers is that they can be used to estimate the system states without knowing
the exact parameters (in contrast to observer synthesis, see e.g. [46,52] and
the references therein); only some structural assumptions, such as a known
relative degree, are necessary. Furthermore, they are robust with respect to
input noise. The drawback is that in most cases it is not known a priori how
large the high-gain parameter k in the observer must be chosen and appropri-
ate values must be identified by offline simulations. If £ is chosen unnecessarily
large, the sensitivity to measurement noise increases dramatically. High-gain
observers with time-varying gain functions k(-) and corresponding adaptation
laws are proposed in [43,133]. However, they are not able to influence the
transient behaviour of the observation error.

The combination of the adaptive high-gain observer from [43] with a A-
tracker has been successfully developed by Bullinger and Allgéwer (2005) [12].
In the recent paper by Chowdhury and Khalil (2019) [18] the funnel controller
from [806] is combined with a high-gain observer (for a similar result on pre-
scribed performance control, discussed in Section 4.1.3, see [51]). For SISO
systems with higher relative degree a virtual (weighted) output is defined such
that the system has relative degree one with respect to this virtual output.
Then funnel control is feasible and it is shown that (ignoring the additional
use of a high-gain observer) for sufficiently small weighting parameter in the
virtual output, the original tracking error evolves in a prescribed performance
funnel. However, tuning of the weighting parameter has to be done a posteriori
and hence depends on the system parameters and the chosen reference trajec-
tory. Therefore, this approach is not model-free like standard funnel control
approaches and the controller is not robust, since small perturbations of the
reference signal may cause the tracking error to leave the performance funnel.

Berger and Reis (2018) [38] presented a controller which uses only dy-
namic output feedback (and no derivatives of the output), avoids the back-
stepping procedure, and guarantees evolution of the tracking error within a
prescribed performance funnel for the class of linear systems with relative de-
gree two. This controller is based on the combination of the relative degree
two funnel controller (4.10) with a funnel pre-compensator (4.22). The fun-
nel pre-compensator for systems with arbitrary degree was developed in [39].
Combinations of the funnel pre-compensator with the funnel controller (4.13)
are discussed in [32] with applications to underactuated multibody systems.
The general funnel pre-compensator, with R™-valued state (&1(-), - ,&:(+)),
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is defined as follows:

&) = &(t) + (@1 + p1k()) (y(t) — &(1)),
&) = &(t) + (g2 + P2k (1)) (y(t) — & (1)),

ér—l(t) = gr(t) + (QT—l +pr—1k(t))(y(t) - gl (t))7

() = (qr + prk()) (y(t) — &1(8)) + Tu(t),

(El(o)vafr(o)) = (5(1)77679) ER™ x -+ X Rm,
1

T 12y — &2

(4.37)

k(t)

with design parameters p; > 0, ¢; > 0, I'eGl, (R) and funnel function ¢ € @.
We write
4! q1
p=|: and q=
Dr qr

The adaptation scheme for k(t) in (4.37) is non-dynamic and non-monotone,
and it guarantees prescribed transient behaviour of the difference y(-) — & (+),
which we refer to as the compensator error. Another advantage of the fun-
nel pre-compensator (4.37) is that no higher powers of the gain function k
are involved in (4.37) (cf. the discussion in Remark 4.7). Moreover, the pre-
compensator obviates the need for estimates of the underlying model as re-
quired in the context of high-gain observers, see [1,94].

In contrast to other approaches, the signals v and y given to the funnel pre-
compensator (4.37) are not necessarily the input and output corresponding to
some system or plant. We only assume that they are signals belonging to the
following set parameterized by r € N:

yr=H € L2(Rx0, R™),
Pri=1 (u,y) € Line.(R0, R™) x Wi (R0, R™) | 4" —T'ue L2°(R50, R™),

loc

I' € G1,,(R)
The vector q = (qi,...,¢.) " is chosen such that the matrix
—q1 1...0
Q=|  i|er (4.38)
—Qqr—1 0...1
—qr 0...0

(with characteristic polynomial s” + ¢,.s" ! +- -+ ¢q;) is Hurwitz, i.e., 0(Q) C
C_.Let R=R" =0 and

p— l:P_lr .P2:|7 Pl ER, P2 ERlX(r_l), P4 ER(T—l)X(T—l)
P Py
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be such that
Q'"P+PQ+R=0, P=P" ~0. (4.39)

The vector p is uniquely determined by q and R via the following construction:

- H—Rff%r

1
p=|:|:=pP! . :( _ ). 4.40
: : _P4 1P2T ( )
br 0

The pre-compensator (4.37) is a nonlinear and time-varying system, yet
it is simple in its structure and its dimension depends only on the “rela-
tive degree” r given by P,. The set P, of signals (u,y) ensures error evo-
lution within the funnel. For a schematic of the construction of the funnel
pre-compensator (4.37) see also Fig. 8.

rm Choose R=R" > 0 and solve
Choose q = < : ) such that Q"P+PQ+R=0, P>0; Choose I € R™*™
r - E N Py Py
—a 1 /LetP:[Pz‘v P;],PleRandset
_ : .. e . : Di ~
Q= I I Hurwitz <p1> < 1 ) ' a
L —ar 0 P= : = _
! P —Py P zT 4
Funnel
Choose ¢ € @ > pre-compensator
\ ¢ ([t
>
p(t)™!

Fig. 8: Construction of the funnel pre-compensator (4.37) depending on its
design parameters; taken from [39)].

It is shown in [39] that for signals (u,y) € P, with r > 2, the funnel pre-
compensator (4.37) has a unique maximal solution (1, ...,&,): moreover, the
(absolutely continuous) solution is bounded (and so has interval of existence
R>¢) and

Je>0Vt>0: |ly@t) —&@)] < p@) ! —e.

Thus, with each admissible quadruple (p,q, I, ), we may associate a funnel
pre-compensator operator FP(p, q, I0):Pr — L>®(R>0,R™), (u,y) — &
(or, more precisely, a family of such operators parameterized by the initial
data: for notational simplicity, we suppress the dependency on this arbitrary
data.)

While the funnel pre-compensator is able to achieve prescribed transient
behaviour of the compensator error e; = y — &, we like to stress that no
transient behaviour can be prescribed for the errors e; = y=D — ¢ for i =
2,...,r—1and e, = I'T"'y=1 — ¢, since ¢,...,y" 1) are not known.
Therefore, the variables &5, ..., &, from the funnel pre-compensator cannot be
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viewed as estimates for the derivatives ¢, ...,y 1. The following construction
seeks to circumvent this shortfall. Choose admissible (p¢, q’, I, ;) with I" €
Gl,,(R) and p’,q' € R", ; € &, (defined as in (4.12)), i = 1,...,r — 1.
Consider the cascade of (r — 1) funnel pre-compensators

FP,_10FP,_o5...0FPy: P. — EOO(RZQ,Rm), (u, y) — {7"—1,1 =z,
where FP; := FP(p‘,q’, I, p;), with implicitly-associated initial data &0 :=
(€1,...,&),) € R™ x --- x R™. Thus, for (u,y) € P, and notationally

identifying &1 with y, the R™-valued function &; := (&.1,...,& ), where
&1 =FP;(u,&_11) andi=1,...,r — 1, is given by

&i(t) = Ag;(t) + (@ + ki(t)p") @ Iy) (Gi—1,1(t) — &1 (1)) + Bu(t),
&i(0) = &7,

ki(t)

(4.41)
1

Tl o2& 1a () — G2

where ® is the Kronecker product, with

0l, 0 ---0 0
001I,---0 0
A= .|, B:= :
00 0 ---1I, (l
00 0---0 r

and the cascade output is given by z(t) = &.—1 1(¢). The situation is illustrated
in Fig. 9. The dynamic order of the cascade is r(r — 1).

1 5 5, grf,
(wy) € Py f—Lof PP, [y Ep, | T .
FP,_ i
| u T T . N '

Fig. 9: Cascade of funnel pre-compensators (4.41) applied to signals (u,y) €
P,; taken from [39].

It is shown in [39] that for signals (u,y) € P, with » > 2 such that

Y, 9, ...,y are bounded, the funnel pre-compensator cascade (4.41) has
bounded (absolutely continuous) solutions & = (&;1,...,&) with bounded
gain functions k;, i =1,...,7r — 1, and

Vie {1, RN 1} de; >0Vt>0: ||fi_171(t) — fi,l(t)” < @i(t)il — &4,

where & 1 = y. Furthermore,

Ve 05 ) — 20 < 3 (@) - ). (142
=1
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Remark 4.8. The output z of the pre-compensator cascade is (r — 1)-
times continuously differentiable with explicitly-computable (in terms of avail-
able signals) derivatives. In particular, recursively defining functions =;, i =
1,...,7—1, by

1(t) == ((J;_l +p7{‘1kr_1(t)) (&r—21(t) — &—1,1(1)),
1(t) = (q:_l +pz_1k7’—1(t)) (57"—2,1(75) - gr—l,l(t)) + Ez{—l(t)v

[n)

(1)

we have ‘
20 =& i)+ Zi(t), i=1,..r—1

The essence of the pre-compensation approach to funnel control is to feedback
the known variables z,%,...,2(""1 as surrogates for the output variable y
and its unknown derivatives ¥, ...,y Y. Detailed characterizations of the
surrogate variables and their dependencies on available signals are contained
in [39)].

Application to systems with stable internal dynamics. We may now turn to
the application of the funnel pre-compensator cascade in the control of sys-
tem (4.31)—(4.32). In particular, the input-output pair (u,y), associated with
the latter system, is used to drive the cascade, generating the variable z. The
resulting augmented system, viewed with input u and output z, is amenable
to funnel control as in the context of Theorem 4.1. The output z satisfies the
relation (4.42), and its derivatives (up to order r — 1) are known explicitly as
shown in Remark 4.8. Thus, the funnel controller (4.5) may be applied in or-
der to achieve the tracking objective of prescribed transient behaviour (of the
primal system output y) in the absence of knowledge of the derivatives y@,
i=1,...,7r—1, cf. Fig. 7.

Since the funnel controller (4.5) requires a bounded-input, bounded-output
property of the internal dynamics of the system (cf. Theorem 4.1; we speak of
“stable internal dynamics” for brevity) we need to ensure that this property
is preserved under interconnection with the funnel pre-compensator cascade.
This can be achieved for the generic system (4.31)—(4.32), as shown in [39] for
relative degree two or three and, for arbitrary relative degree, in the recent
work [100]. In essence, what needs to be established is that the augmented
system (the conjunction of (4.31) and (4.41) with input « and output z :=
&-_1,1) can be equivalently written as

20(t) = F(d(t), T(z, 2,..., 20 D) 1)) + Tu(t), (4.43)
with initial data

zli_p0 = 2" € CTH([=h, 0], R™), if b > 0,}

)
(2(0), 2(0), ..., 27 1(0)) = (20,28,..., 20 ,), if h =0, (4.44)

for some d € L(Rso,R"), F € C(R” x RZ, R™) and an operator T € ;™.
The initial data is determined by the initial data on the primal system in con-
junction with the initial data on the pre-compensator cascade, the latter being
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open to choice and the former being such that y(0) is known. The following
result is taken from [100].

Theorem 4.9. Consider a system (4.31)~(4.32) and assume that ' = ' = 0.
Further consider the cascade of funnel pre-compensators FP._10...0 FP,
defined by (4.41) with p1 € @, and w2 = ... = Yr_1 := py for some p > 1.
Choose pre-compensator initial data such that

©1(0) l°(0) — &7,

(For example. 521 =194%0),i=1,...,r— 1 suffices.) Furthermore, let p and q
be such that (4.38), (4.39), (4.40) hold and set (p',q’) = (p,q),i=1,...,r—1.
Moreover, assume thatfi =Ie R™m>™ §=1,...,r—1, such that =TT =0
and M1 = (1"f’1)—r > 0. Finally, assume that

| <1, PSD(O)”@OAJ_ ?,1||<17 1=2,...,7r—1

~_ . fp—1 P
>3 = |I,-IT} < , ) 4.45
r=z H || mln{r2 4p2(p+1)7‘21} ( )
Then the conjunction of (4.31) and (4.41) can be equivalently written in the
form of a system (4.43) with input u, output z := £_1 1 and initial data (4.44).
Moreover, the following holds:

u€ L (R50,R™) = Fee(0,1)VE>0: pro1(®)|lyt) —2z()|| <e

where p1 :=p/(p+1r—2).

By virtue of the above result, the funnel controller (4.5) may be applied to
the conjunction of (4.31) and (4.41) with input v and output z := §,._1 1, i.e.,
to system (4.43). For the case of relative degree r = 2 the resulting controller
structure was already discussed in Section 4.2.1. In the following we consider
the general case. The additional combination of this controller structure (for
the cases = 2 and r = 3) with an open-loop control strategy is discussed
in [32] with some applications to underactuated multibody systems.

Corollary 4.10. Consider system (4.31)—(4.32) with the notation and assump-
tions of Theorem 4.9 in force. Choose a triple (o, N, ¢) of funnel control design
parameters as in (4.2) and let yrer € W (R>o,R™) be arbitrary. Assume
that, for some # € {1,...,r}, the instantaneous values Yref(t), . .. ,yr(zgl)(t)
are known and so, setting (9 (t) = e(t) := 2(t) — yre(t), the vector

e(t) = (e),...,e" V@), 2 @),...,2"D(1)
(that is, (4.1) with y(t) replaced by z(t)) is available for feedback. Choose
pre-compensator initial data such ¢(0)e(0) € D,.. Then the funnel control
u(t) = (Noa)(lu@®)|*)w(t),  w(t)=p(20(t)e(t))

(corresponding to (4.5) with ¢ replaced by 2¢) applied to the augmented sys-
tem (4.43) yields an initial-value problem which has a solution (in the sense of
Carathéodory), every solution can be maximally extended and every mazimal
solution z : [—h,w) — R™ has the properties:
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(i) w= oo (global existence);
(i) uw e L®(R>o,R™), z € W([—h,0),R™);
(iii) there exists €1 € (0,1) such that 2p(t)||2(t) — yret (t)|| < €1 for all t > 0.

Moreover, setting o1 := 2p~(p + 1 — 2)p in the pre-compensator, then, by
Theorem 4.9, there exists e € (0,1) such that

20()ly(t) — 2(t)|| < ez, forallt > 0.

Writing € := %(81 + &9), gives

(iv) e@)ly(t) — yres(t)| < for all t >0,
and so the performance objective is achieved.

Remark 4.11. The funnel pre-compensator successfully circumvents “the
curse of dimensionality” associated with the filtering approach (as discussed
in Remark 4.7). However, the adage “there ain’t no such thing as a free lunch”
applies?: circumvention of the curse via pre-compensation comes with a price.
First, the system matrix I" in (4.31) is required to be symmetric and positive
definite (only sign definiteness is required for filtering). More restrictive is as-
sumption (4.45) in Theorem 4.9 which essentially means that the controller
matrix I" in the funnel pre-compensators needs to be “sufficiently close” to
the (unknown) system matrix I". How close is specified by the bound on the
right-hand side, which becomes tighter as the relative degree r increases. Max-
imizing this bound with respect to the choice of design parameter p > 1 gives
(approximately)

0.117, r=3
I, — TT7Y| < $0.054, r=4
0.027, r=5.

This indicates that I" must be known to a high degree of accuracy. For more
comments on the role of assumption (4.45) see [100, Rem. 3.10].

5 Systems described by partial differential equations

Early intimations on funnel control for infinite-dimensional systems modelled
by partial differential equations may be found in Ilchmann, Ryan, and Sang-
win (2002) [36]. However, in a general infinite-dimensional context, many open
questions and challenges remain. We briefly describe some recent findings in
the following three sub-sections, which we preface with some basic facts per-
taining to linear infinite-dimensional systems in the abstract form

5(t) = A=(t) + BC(t), #(0) = 20 € D(A)
(5.1)
n(t) = Cz(t),
2 In an optimization context, Wolpert and Macready [152,153] paraphrase their concept

of a no-free-lunch theorem as “any two algorithms are equivalent when their performance is
averaged across all possible problems”.
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where A is the generator of a strongly continuous semigroup of bounded linear
operators on a real Hilbert space H. In what follows, for brevity, technicalities
are suppressed: the reader is referred to the succinctly-written treatise [140]
for full details; the survey article [145] is likewise recommended. Recall that a
semigroup (T(t))i>0 on H is a parameterized family of operators in £(H, H)
satisfying T(0) = I and T(t + s) = T'(¢)T(s), for all s,t > 0, where I denotes
the identity operator. The semigroup is said to be strongly continuous if, for
all z € H, | T(t)z — z|| — 0 as t \y 0. The growth bound of the semigroup is
defined as

wT:inf{weR

sup e 7(0)] <o |

t>0

and, for any w > wr, there exists a constant ¢, such that
VE>0: [|[T®)] < cpe*t.

The semigroup is exponentially stable, if wp < 0.

We assume that the (densely defined) operator A has non-empty resolvent
set o(A). Introduce the (Hilbert) spaces Hy and H_;, where H; = D(A)
equipped with the graph norm and H_; is the completion of H with respect
to the norm given by ||z||_1 = ||(8I — A)~'z||, where 3 is any element of o(A).
Then H; C H C H_; with dense and continuous injections. As a map H; —
H, A is bounded, that is, A € £(H;, H), and has a unique extension A_; €
£(H,H_4). Furthermore, the semigroup (7'(t));>0 on H extends uniquely to
a semigroup (7_1(¢))¢>0 with generator A_;.

We are now in a position to formulate assumptions on the triple (A, B, C),
specifically tailored to our context of funnel control. First, we assume that ¢
and 7 are, respectively, Rf-valued and R%-valued functions. Secondly, we as-
sume that (A, B, C) is a regular well-posed system, that is:

(i) A is the generator of a strongly continuous semigroup (7'(t)):>o0-
(ii) B is an admissible control operator (in the terminology coined by Curtain
and Weiss [19]); that is, B € £(R*, H_;) and

t
by (— / T_i(t—7)B((r)dr isin £(£3([0,],R"), H) for all t > 0.
0
(iii) C is an admissible observation operator; that is, C € £(H;,R?) and

Uy 2z CT()z s in £((Hy, | - |m), £2([0,1],R9)) for all ¢ > 0.

(iv) For some w € R, there exists an analytic function G : Cs, — RI*¢
(referred to as a transfer function) which satisfies

Vs€Csy: G'(s)=—-C(sI — A)?B (5.2)

and limge s— 00 G($) exists.
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The subtlety of assumption (ii) is that @; generates a H-valued function, even
though the function B((-) takes its values in an the larger space H_1; loosely
speaking, the “smoothing” effect of the semigroup saves the day. In passing
we note that assumption (ii) is equivalent to

i
3t >0V¢ e L£2([0,t],RY) : /T,l(t—T)Bc(T)dT € H.
0

For ¢ € L2 (Rxo,R"), the mild solution of the initialised differential equation

loc

in (5.1) is given by
2(t) = T(t)2° + D4(Clio,yy), t=0.

As a consequence of (iii), ¥ can be extended to a bounded operator from H
to L£2([0,t],RY).

5.1 Infinite dimensional internal dynamics

Consider again system (5.1) and assume that (A, B, C) is regular well-posed.
With this system, for every zy € H; we may associate a map

T: C(R>0,RY) = L3 (R50,RY), (= n=(t— (CT ()2 + CD:(Cl104)))

for which, as shown in [33], properties (TP1) and (TP2) of Definition 2.4 hold.
If, in addition, (A4, B, C) is bounded-input bounded-output stable, i.e., the in-
verse Laplace transform of each of the components of the transfer function G
is a real-valued measure with bounded total variation, then property (TP3)
also holds and so T € Té’q; note that exponential stability of the semigroup
(T'(t))+>0 is sufficient for this property to hold. If f € NP%™ (recall Defini-
tion 2.5), d € L>®(R>0,RP) and setting £ = rm, we may conclude that the
system

y () = F(AE), Ty -y D) (1), u(b))

(with the structure of Figure 5) is amenable to funnel control via Theorem 4.1.
Note that the class of operators T considered in [33] is much larger and also
allows for certain nonlinear output operators associated with the differential
equation in (5.1).

A particular application of the above-outlined result was considered in [34],
in the context of the control of the horizontal movement of a water tank. The
problem is modelled via the linearized Saint-Venant equations and subject to
sloshing effects. It is shown that the overall system belongs to the above system
class and hence tracking with prescribed transient behaviour can be achieved.
We will return to this example in Section 7.3.
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5.2 Linear infinite-dimensional systems with integer-valued relative degree

The following class of single-input, single-output, linear infinite-dimensional
systems (A4, b, ¢), coming from partial differential equations and of the general
form (5.1), were considered by lichmann, Selig, and Trunk (2016) [39]:

i(t) = Az(t) + bu(t), z(0) =" € D(A), (5.3a)
y(t) = (=(1),0), (5.3b)

where

(A1) A: D(A) — H is the generator of a strongly-continuous semi-
group (T'(t))+>0 of bounded linear operators on a real Hilbert space H
with inner product (-, -),

and b, c € H with, for some r € N,

(A2) beD(A") and ¢ € D((A%)"),
(A3) (A" 1b,c) #0 and (A7b,c) =0 for all j =0,1,...,r — 2.

For finite-dimensional systems (in which case, H ~ R™ for some n € N) |
assumptions (A1) and (A2) are superfluous, and assumption (A3) is the rel-
ative degree r property from Definition 2.1. For infinite-dimensional systems,
assumption (Al) is ubiquitous in systems theory, see e.g. [50] and has al-
ready been discussed above; assumption (A2) is very restrictive from a prac-
tical point of view (for example, if {2 is the spatial domain of an underly-
ing PDE, then control/observation on the domain boundary and pointwise
control/observation concentrated at points in the interior of {2 are both ex-
cluded). For w > wr (the growth bound of the semigroup), the function
s = G(s) := {c,(sI — A)71b) is a transfer function on C, (recall that it
is unique up to a constant). Assumptions (A2) and (A3) imply, by [115,
Lem. 2.9], that that the transfer function of the system satisfies
lim s"G(s)#0 and  lim s"'G(s) = 0. (5.4)
s—o00, seER s—o0, seER
It follows a fortiori that, under assumptions (A1)-(A3), system (A, b, c) is
regular well-posed. In [389], it is shown that the class of such systems allows
for a Byrnes-Isidori form similar to that discussed in Section 2.1.2 for finite-
dimensional systems. The only difference is that the internal dynamics are
described by a subsystem of the form (2.7), where @ is the generator of a
strongly continuous semigroup in a Hilbert space Hg and S : Hg — R,
P :R — Hg are bounded linear operators. In particular, systems (2.7) with
these properties are subclasses of the regular well-posed infinite-dimensional
systems (5.1) as discussed above. Therefore, under the assumption that @ gen-
erates an exponentially stable and strongly continuous semigroup, the com-
ments in Section 5.1 apply to conclude that funnel control is feasible for (5.3)
by Theorem 4.1.
A special case of this result was considered in [39, Thm.5.2] for the case
of relative degree r = 1. In particular, this covers the heat equation with
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Neumann boundary conditions (as, for example, a metal bar of unit length
that can be uniformly heated on every point) modelled by

O (€, t) = O (€, t) + u(t), (&,1) € [0,1] x Rsg,
z(£,0) = 2°(8), £€l0,1],
Oex(0,t) = Oex(1,t) =0, (5.5)
y(t) = [y cos?(m€)x(€,t) dE, ¢ > 0.

The evaluation of the function z(&,t) represents the temperature at position &
and time t; the initial temperature profile is 2°(¢), and u(t) denotes the heat
input at time t. Setting H = £2([0,1],R), defining b,c € H by b(¢) = 1
c(&) = cos? ¢, and with

A:D(A) = H, fr f"with D(A) == {f e W"?([0,1],R)| f/(0) =0 = f'(1)},

this example can be written as (5.3) satisfying (A1)—(A3) and so is amenable
to funnel control.

As already mentioned, a limitation of the above approaches is that bound-
edness of the control and observation operators in (5.3) is assumed and hence
no boundary control is possible. Moreover, if one introduces Dirichlet bound-
ary conditions in the above example instead of Neumann conditions, then
neither does it satisfy (A1)-(A3), nor does it have a relative degree, nor does
the Byrnes-Isidori form exist.

5.3 Infinite-dimensional systems without well-defined relative degree

While the classes discussed in the previous sections seem quite general, not
even every linear, infinite-dimensional system has a well-defined (integer-
valued) relative degree: In that case, results as in [29,33,86,89] cannot be
applied. Instead, the feasibility of funnel control has to be investigated directly
for the (nonlinear) closed-loop system. As the first contribution in this regard,
Reis and Selig (2015) [127] considered a boundary controlled heat equation
with Neumann boundary control and a Dirichlet-like boundary observation,

da(e,t) = Acx(€1),  (E.) € 2 x Ro,
ult) = By(E 1), (6.t) € 92 x Bog,
y(t) = / 2(6,t)doe, (E.1) € D2 x R, (5:6)
£(£,0) = 2(6), ceo,

where £2 C R? denotes a bounded domain with uniformly C2-boundary 912.
This example is considerably different from the finite dimensional case and
from (5.5). Although it can be formulated as an infinite-dimensional linear
system of the form (5.3), the operators b and ¢ are now unbounded; b maps to
the space D(A*) D H = L2(£2,R) and c is defined on a proper subset of H.
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Therefore, a Byrnes-Isidori form cannot be expected, and the product ¢b, which
indicates the relative degree, does not exist.

Nevertheless, feasibility of funnel control is shown in [127, Thm. 4.2]. The
proof is based on modal approximation of the input-output map by finite-
dimensional linear systems with asymptotically stable zero dynamics and rel-
ative degree one. It is shown that funnel control is feasible for these truncated
systems and that the sequence of solutions to the closed-loop truncated sys-
tems contains a convergent subsequence. The limit of this subsequence will
solve a nonlinear Volterra equation that represents the input-output behaviour
of the heat equation system (5.6) under funnel control (1.21). This solution re-
sults in a well-defined input signal u € £ (R, R). Inserting this signal into
the heat equation (5.6) yields a solution to the funnel controlled heat equation
in the sense of well-posed linear systems. It is then shown that this solution x
solves the partial differential equation formed by (5.6), (1.21) in a stronger
sense and that it has additional regularity and boundedness properties.

Essentially, it is also possible to reformulate (5.6) as a regular well-posed
system of the form (5.1) with the help of Section 5.2 in Staffans [138]. However,
this would require a high level of technicalities and it is easier to analyze the
system in the boundary control formulation (5.6). As an extension of those
results, Puche, Reis and Schwenninger (2021) [123] consider a fairly general
class of boundary control systems of the form

z(t) =Ax(t), x(0) = xo,
u(t) = Ba(t), (5.7)
y(t) = Cx(t),

where 2, B, € are linear operators and the R™-valued functions u and y are
interpreted as the input and the measured output y, resp., whereas x is called
the state of the system. Typically, 2 is a differential operator on a Hilbert
space H and ‘B, ¢ are boundary control and observation operators, resp. The
system class is specified by the following assumptions:

(i) The system is (generalized) impedance passive, i.e., there exists a € R
such that

Re (Az, )i < Re (Bz) ' (Cx) + a|z]|} for all 2 € D(A).

(if) There exists 5 > a, such that the operator A|yer ¢ (i.e., the restriction of
A to ker € C D()) satisfies ran(A|xere — 8I) = H.

%} : D) — R™ x R™ is onto.

(iii) The operator ¢

Under the above assumptions, the zero dynamics of system (5.7) are de-
scribed by a strongly continuous semigroup, which is generated by the restric-
tion of 2 to the kernel of €. Furthermore, it follows from the Lumer-Philips-
Theorem that the semigroup is exponentially stable, if & < 0. This property
resembles the asymptotic stability of the zero dynamics in the finite dimen-
sional case.
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Feasibility of funnel control can be shown for the class (5.7), under assump-
tions (i)—(iii) with @ < 0, by invoking m-dissipative operators and a “clever”
change of coordinates. This class encompasses hyperbolic boundary control
systems in one spatial variable (e.g., the lossy transmission line), hyperbolic
systems in several spatial variables (e.g., the wave equation in two spatial
dimensions), and parabolic systems with Neumann boundary control (e.g.,
the heat equation). Further classes of boundary controlled port-Hamiltonian
systems are discussed in the recent works [119,126], which are amenable to
funnel control in the case of co-located input-output structures (i.e., actuators
and sensors are placed at the same position) and finite dimensional input and
output spaces — but this has not been proved yet. Specific examples which
belong to this class are Maxwell’s equations, Oseen’s equations (linearized
incompressible flow), and advection-diffusion equations.

Furthermore, in the context of infinite-dimensional systems which do
not have a well-defined relative degree, feasibility of funnel control has also
been investigated for the monodomain equations with the FitzHugh-Nagumo
model (which represent defibrillation processes of the human heart) [17] and
the Fokker-Planck equation for a multidimensional Ornstein-Uhlenbeck pro-
cess [14].

6 Input constraints

Up to this point, all exposition and discussion of funnel control has been pred-
icated on an implicit assumption that the input variables are unconstrained in
magnitude. From a practical point of view, this may be deemed unrealistic. In
most physically-based applications, control inputs are subject to constraints.
Can funnel control accommodate such features? Given that the idea underlying
the methodology is that inputs can take remedial control action of sufficiently
large magnitude so as to avoid contact with the funnel boundary, it is clear
that some additional feasibility conditions are mandatory if the inputs are
constrained. Not unexpectedly, such feasibility conditions translate into “suf-
ficiently small” requirements on the initial data, disturbances and reference
signals associated with the process to be controlled, together with restrictions
on the underlying performance funnel.

6.1 Funnel control with saturation

If the vector of control inputs is restricted to take its values in the closed ball
m = {w e R™| ||w| < u} for some & > 0, then it is natural to accommodate
this input constraint by adopting the saturation function:

alloll~to, vl > 7

v, otherwise. (6.1)

satgz: R™ — BT, v+—>{

For the purpose of motivation, consider again the scalar linear proto-
type (1.3) with ¢b > 0, but now with input values constrained to the interval
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[—u, u]. The unconstrained funnel controller (1.21) is replaced by the saturated
control strategy

u(t) = —satg(k(t)e(t)), }
k() =) (1= (p®)e(®)?) ", e(t) =y(t) — yret(t).

We compare the unconstrained closed-loop system (1.3), (1.21), i.e.,

—1 (6.2)

é(t) = (a—cb k(1)) e(t) + ayrer(t) — Gret(t), €(0) = ca® — yrer(0) (6.3)
with the constrained closed-loop system (1.3), (6.2), i.e.,
é(t) = ae(t) — cb satg(k(t)e(t)) + ayrer(t) — Gret(t), €(0) = cx® — yrer(0). (6.4)

In either case, the initial data condition ¢(0)|e(0)| < 1 (trivially satisfied if
©(0) = 0) is clearly necessary for attainment of the funnel control objective.
However, whilst this condition is also sufficient in the unconstrained case, it
fails to be so in the constrained case. Feasibility of the tracking objective in the
presence of input saturation inevitably involves an interplay between the plant
data (a, b, ¢, 2°), the reference signal y,.f, the function ¢ € @ and the saturation
level . For instance, if a > 0, then it is readily verified that a|cz®|/(cb) < @ is
a necessary condition for feasibility; furthermore, the saturation level u should
also, loosely speaking, be commensurate with the W norm of the reference
signal y,cr. To illustrate the interplay between @ and the funnel function ¢,
consider the case wherein a = 0, yof(-) = 0 and ¢ is such that its reciprocal
1 = 1/p is a monotonically decreasing, globally Lipschitz continuous function
with Lipschitz constant A. Assume feasibility of the tracking objective (and
so |y(t)| < 4(t) for all t > 0). Then,

t
At < (0) = (t) < ¥(0) —y(t) = ¥(0) —y(0) — /0 y(s)ds < cbu

for all t > 0, and so cbu > A is a necessary condition for feasibility. This case

serves to illustrate that the saturation level must be large enough so that the

control can accommodate local “steepness” of the funnel boundary.

For multi-input, multi-output linear systems (2.1) with CB + (CB)" = 0
and asymptotically stable zero dynamics, it is shown in Hopfe, Ilchmann,
Ryan (2010) [73, Thm. 4.1] that the application of the funnel controller (1.21)
is feasible provided a feasibility inequality holds. The latter means that u
must be sufficiently large in terms of the system data, the initial data, ¢,
Yref, Uref, and . This inequality is a very conservative bound, but it ensures
feasibility of funnel control. The case of componentwise saturation constraints
is discussed as well, which requires a componentwise funnel control strategy,
see [73, Thm. 4.3].

We stress that the above-mentioned feasibility inequality does not involve
the initial tracking error. The maximal value of the input u = —ke of the
unconstrained closed-loop system (6.3) depends on the initial deviation. Hence,
in case of the constrained closed-loop system (6.4), it is possible that the
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saturation is active on a time interval [0, §] when the initial error is large. As
shown in [73], there is a time 7 > 0 such that the saturation becomes inactive
and, moreover, it is inactive for all t > 7.

In the highly specialized context of the scalar system (1.3), the result of [73,
Thm. 4.1] translates into the following: if

p(0)]cr® —yres () < 1 and b > [al ([lloc + lpretlloo) + liret oo + Il
6.5

then the simple control strategy (6.2) ensures attainment of the tracking objec-
tive (and, moreover, the gain function k is bounded). Furthermore, if the first
inequality in (6.5) is replaced by ¢(0)|cz® — yrer(0)] < @(1 + @)1, then input
saturation does not occur and so the control strategy coincides with (1.21).

A generalization to nonlinear systems, but restricted to single-input, single-
output, is presented in Hopfe, Ilchmann, Ryan (2010) [74]. For SISO systems
with relative degree two and asymptotically stable zero dynamics, a variant
of funnel control with input saturation is given in Hackl, Hopfe, Ilchmann,
Mueller, Trenn (2013) [68, Thm. 3.3]. For a special class of nonlinear SISO
systems arising in chemical reactor models see Ilchmann and Trenn (2004) [90];
this contribution shows that the more information one has about the system
the less conservative the feasibility condition is.

6.2 Bang-bang funnel control

To treat systems with arbitrary relative degree a bang-bang funnel control
strategy has been developed. This approach avoids the backstepping proce-
dure (cf. Section 4.2.3) and uses derivative feedback, similar to the funnel
control methods discussed in Section 4.1. However, the control input switches
only between two values and is hence able to respect input constraints. This
approach again requires a set of feasibility assumptions.

The bang-bang funnel controller is introduced by Liberzon and Trenn
(2010) [104] for nonlinear systems with relative degree one or two and later
generalized to arbitrary relative degree in [105]. The case of time delays is
discussed in [106] for relative degree two systems. The systems considered
in [105] are of the form (4.15) with m = 1, no disturbances (that is d = 0)
and fi(z1,...,z41) = xipr fori=1,...,r—Tas well as f.(n,71,...,7,,u) =
fn,ze,... 2) + g(n, 21, ..., 2, )u for suitable functions f and g such that g
is positive.

The bang-bang funnel controller switches between two values and the con-
trol law is given by

U™, ifq(t)=1t

w(ty= U > Halt)=true, (6.6)
Ut, if q(t) = false,

where U~ < UT' and ¢ : R>o — {true, false} is the switching signal deter-

mined by the switching logic & depending on the error signal. The situation

is illustrated in Fig. 10.
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Fig. 10: Closed-loop system consisting of the bang-bang funnel controller ap-
plied to a system (4.15); taken from [105].

The switching logic S : (e,é,...,e""1) = q itself is quite involved and
defined using r blocks By, ..., B,_1, where r € N is the relative degree of the
system (4.15), as follows:

S(e) =Bro1(e" M, gr1, 1),
(gihi) = Bic (e qica,thicn), i=r—1,...,2,
(q1,%1) = Bo(e).

The hierarchical structure of the switching logic is illustrated in Fig. 11.

d d d d
? dt ¢ dt dt r=2) dt o(r=1)
q1 l q2 Gr—2 l qr—1 l

o))
S
~
o]
e
v ¥
~N- N~
]
i
™)
~N- N~
=
i
_

Fig. 11: Illustration of the switching logic S containing the blocks By, ..., B,_1;
thanks to our colleague Stephan Trenn (U Groningen) for this figure.

For the precise definition of the blocks B; we refer to [105]; here we present
a brief overview of their functioning. In principle, each block ensures that e(*)
evolves within the funnel F,,, where the funnel functions ¢y, ..., p,—1 need
to satisfy certain feasibility conditions. Furthermore, B; drives e to a certain
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q; = true q; = false

e (6) < —pi()~1 + e,

e (t) < max{v;(t), \] } +ef

i

Gi+1 = false Qi+1 = true @i+1 = false

Yiy1 = _% (90;1) Yiy1 = % (s&;l) Vix1 = U;

e(t) > min{1;(t), 7)\;} — 5? e(t) > Lpi(t)’l — 5?“

L J

Fig. 12: Illustration of the functioning of the blocks B; in the switching logic
of the bang-bang funnel controller; taken from [104].

region specified by the input signals ¢; : R>g — {true, false} and ¢; : R>g —
R, the meaning of which is as follows:

¢ =true = make e smaller than min{;, —A; },

¢; =false = make e bigger than max{t;, A\ },

where \;, A € RZ? represent the desired minimal or maximal value for ()
(with the aim to increase or decrease the previous derivative el=1) by a certain
rate). Additional safety distancese; ,e; € Rsq contained in B; trigger an event
when the error is close to the funnel boundaries, cf. also Fig. 12.

For feasibility of the bang-bang funnel controller (6.6) the funnel func-
tions ;, the safety distances ¢; and the design parameters )\;,)\j need to
satisfy several feasibility conditions (in particular, existence of certain settling
times is assumed) and the input values U~ and U™ need to be small or large
enough, resp., in a certain sense.

If all requirements are met, then the closed-loop system has a global solu-
tion so that the switching signal ¢ has locally finitely many switches and the

tracking error e and its derivatives ¢, ..., e("1) evolve within their respective
performance funnels, see [105].
We emphasize that the bang-bang funnel controller from [105] is the only

available controller which is able to respect input constraints and a prescribed
performance of the tracking error for systems with arbitrary relative degree.
Nevertheless, it has the following drawbacks, which should be addressed in
future research:

e the controller is restricted to single-input, single-output (SISO) systems;

e the assumptions on the input values U~ and U™ are very conservative, so
that they are typically much larger than actually needed;

e the involved feasibility conditions on the funnel boundaries, the safety dis-
tances and the settling times are quite complicated;

e the switching may lead to an unnecessarily high power consumption in
practice and hence excite oscillations.
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6.3 Funnel control under arbitrary input constraints

In the above described approaches, the saturation level © must be sufficiently
large in order to ensure feasibility of funnel control under input saturation.
The reason for this is the inflexibility of the output constraints, given by the
performance funnel for the tracking error. In the recent work [16] a different
viewpoint is taken. There, the input constraints are considered to be hard
constraints, being imposed by the physical limitations of the system. On the
other hand, the output constraints are considered to be soft constraints, which
can be weakened whenever this is inevitable in order to meet the input con-
straints. To achieve this, a modified control design was proposed, where the
funnel boundary v (t) = 1/p(t) is no longer prescribed for all ¢ > 0 as in the
above described approaches, but it is dynamically generated and becomes part
of the controller design. The generation mechanism for t(¢) is such that it has
a prescribed shape (determined by the parameters in the differential equation
which can be chosen a priori by the designer) whenever the saturation is not
active, that is u(t) = —k(t)e(t) in the context of (6.4). In this case, the con-
troller satisfies the input constraints imposed by the saturation function and
achieves the prescribed performance of the tracking error; it further exhibits
the same controller performance as the unconstrained funnel controller. When
the saturation is active the performance funnel described by v (t) is widened
according to a dynamic equation so that the input constraints are still met —
in this case, it deviates from the prescribed shape. As soon as the satura-
tion becomes inactive again, the performance funnel recovers its desired shape
exponentially fast.

The idea to readjust the funnel boundary when the input saturation be-
comes active was already formulated in [69] for relative degree one systems,
however the saturation level must still be sufficiently large. The same control
design as in [16] was independently developed in [142] for relative degree one
systems in the context of prescribed performance control. Higher relative de-
gree systems with input amplitude and rate constraints are considered in the
recent work [143]. Again, both works [142,143] still require sufficiently large
saturation levels.

To illustrate the idea of [16] let us again consider the case of the scalar
system (1.3) with ¢b > 0. Then the input-constrained funnel controller is given
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with the controller design parameters
a>0, >0, v°>B/a.

The controller essentially consists of a standard funnel controller appended by
the dynamics for the funnel boundary. The idea is that, if the saturation is not
active and hence x(v(t)) = 0 on an interval [tg, ¢1], then the funnel boundary
is of the form ¢ (t) = th(tg)e 1) 4 g (1 — e~2(t=%)); if the saturation is
active and hence £(v(t)) > 0, then the funnel boundary is widened according
to the dynamics of the controller in order to guarantee the input constraints.
After a period of active saturation, the boundary recovers to its prescribed
shape exponentially fast.

This contrasts classical funnel control approaches, where the performance
funnel is always prescribed a priori. Here, it is determined by a dynamical
system, which is influenced by the input and the tracking error. Since the fun-
nel boundary is then used to determine these quantities in turn, a feedback
structure arises, for which existence of global solutions needs to be proved.
To this end, special care must be taken with the potential singularities that
are introduced by the controller (6.7) in the closed-loop differential equation:
additional to the singularity at |le(t)|| = v(t) introduced by the gain func-
tion k(t), in (6.7) the dynamics for ¢ (t) contain a singularity at |le(¢)|| = 0.
However, the latter is unproblematic, since x(v(t)) = 0 whenever |le(t)|| < §
for some 6 > 0.

It must be emphasized that no minimal saturation level @ is required — the
controller (6.7) is feasible under arbitrary input constraints. A drawback of this
fact is that for very small saturation levels the saturation may be active over
an infinite time horizon, forcing the funnel boundary ¥ to grow unbounded.
This severely complicates the feasibility proof of the control design, which for
classical funnel control approaches heavily relies on the boundedness of the
funnel boundary and its derivative.

What can be shown for the scalar system (1.3) is that for any y.s €
C'(R>0,R) and y° € R such that [y — yer(0)] < ¥° the closed-loop sys-
tem (1.3), (6.7) has a global solution (y,v) : R>o — R? such that |e(t)| < v(t)
for all ¢ > 0. If even yer € WH>(R>0,R) and the saturation level @ is suffi-
ciently large, then additionally ||v(t)|| < @ for all ¢ > 0 and the funnel bound-
ary v is bounded.

Special care must be taken when the controller (6.7) is to be applied to non-
linear systems. Since the saturation level & can be chosen arbitrary, solutions
may exhibit a finite escape time in general. As an example consider

§(t) = y(t)* +sata(v(t), y(0) =1, (6.8)
and assume that the saturation is active with negative sign (a positive control
value would only lead to an earlier blow-up), i.e., satg(v(t)) = —u. Then

y(t) > y(t)? — @, from which it follows that y(t) > z(t) for all t € [0,w) with

N a\/§+1+(1—\/ﬁ)e2ﬁt
Z(t)_f\/ﬁ+1_(1_\/ﬁ)€2x/ﬁt'
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It is straightforward to see that for & > 1 we have that z(t) is defined for all
t > 0, thus w = oo and hence a global solution exists in this case. However, if
u < 1, then the denominator of z(t) has a zero at

wzﬁln(%),

and hence the solution exhibits a blow-up on the finite interval [0,w) in this
case. It is clear that, since the maximal possible saturation is already active,
no control law would be able to prevent this blow-up. Therefore, in the case of
nonlinear systems a certain sector bound property of the nonlinearity is neces-
sary to ensure the feasibility of the input-constrained funnel controller (6.7).
In [16] the case of general nonlinear functional differential equations of
relative degree r € N, satisfying a sector bound property is considered. Addi-
tionally, the high-gain property is not needed and for the internal dynamics
only a “local” bounded-input bounded-output property is required. The con-
troller (6.7) for the case of r > 1 again consists of a version of the relative
degree r funnel controller, appended by the dynamics for the funnel bound-
aries, where the widening effect due to an active saturation propagates from
the r-th funnel boundary to the first through the dynamic equations. The
situation is depicted in Fig. 13 and the controller design parameters are

ap>ag>...>a, >0, p;>1 fori=1,...,r—1,
fori=1,...,r,

Bi >0, 1/)?>Bi

N € C(R>¢,R) a surjection.

h

Yy () = f(d(), T(y, G, -,y D) (B), u(t)) Yy, .y

System

h

i ) 5 PR
Git) = pibisa (1) — agt(t) + B — pi 2L, Y ei(t) = e(t) = y(t) — pet(t)

Dp(t) = =t (t) + By + () 2L2D) i1 (t) = e (t) + ki(t)ei(t)

e (D)1l er
Tv
v
(r=1)

u(t) = N (ke (1)) er () K & (et - - 95 )

u(t) = satg(v(t))

Input-constrained funnel controller

Fig. 13: Construction of the input-constrained funnel controller and its internal
feedback loops; taken from [16].
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7 Applications

Funnel control was found a useful tool in various applications in several fields
of engineering. Straightforward applications can be found in mechanical engi-
neering, robotics and mechatronics, but also in voltage and current control of
electrical circuits or synchronous machines tracking problems are frequently
encountered for which funnel control proved to be an appropriate choice. And
even into areas where a successful application is not so obvious, like control
of chemical reactor models, control of peak inspiratory pressure of artificial
ventilation units and oxygenation control during artificial ventilation therapy,
funnel control found its way.

In the following subsections we consider the applications for relative degree
one systems and systems with higher relative degree separately. In each case we
provide an overview of the available applications to the best of our knowledge.
Additionally, for illustration purposes we pick one of the applications and
discuss in detail that it fits into the respective system class and hence funnel
control is feasible.

We note that applications for prescribed performance control — the relative
of funnel control discussed in Subsection 4.1.3 — can be found in the recent
comprehensive survey [41].

7.1 Relative degree one systems
The following applications are available for systems with relative degree one.

application ‘ discussed in

speed control of industrial servo-systems [62,

)

)

and [66, Ch. 11]
speed control of wind turbine systems [63,65] and [66,
Ch. 12]
current control of electric synchronous machines [64] and [66,
Ch. 14]

voltage and current control of linear electrical circuits | [37]

power flow control in intermediate DC bus of electri- | [136]
cal drives
temperature control of chemical reactor models [90]

control of peak inspiratory pressure of artificial ven- | [122]
tilation units
oxygenation control during artificial ventilation ther- | [121]

apy
adaptive cruise control with guaranteed safety [35,30]

synchronization of multi-agent systems [103]

control of the containment of epidemics [15]
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As an example we consider a discretized transmission line [54] (described
by a differential-algebraic equation) and show that it is amenable to funnel
control; this example is taken from [37]. The discretized transmission line is
depicted in Fig. 14, where n is the number of spacial discretization points.

Rr/n Ly/n Rr/n Ly/n Rr/n Lr/n

Cr/n Gr/n

Fig. 14: Discretized transmission line; taken from [37].

Using modified nodal analysis (MNA), see [72] and the survey [125], we
may obtain a model of the circuit which is described by a linear differential-
algebraic equation of the form (2.17), where

sAcCAl + ArGAJL Ap Ay ~Az 0
sE—A= —A] sL 0|, B=C"=|0 0 |, (71
—A) 0 0 0 —1In,
T = (WTJZJ\T;)T» U = (i:—Zr’U;}r)Ta Y= (_'U%—’ _i;—)—rv (7'2)
and
C E Rncxnc7g e Rngxn(_;’[: e Rngxn57
Ac e R"e*mc Ap € R"*"9 A, € R"X"2 A, € R"*™W A; € R"e*"T,
n=mne+ng+ny, m=ng+ny.
(7.3)

Here A¢, Ag, Az, Ay and Az denote the element-related incidence matrices, C,
G and L are the matrices expressing the constitutive relations of capacitances,
resistances and inductances, 7)(t) is the vector of node potentials, i, (¢), iy (¢),
i7(t) are the vectors of currents through inductances, voltage and current
sources, and vy(t), vz(t) are the voltages of voltage and current sources.
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For the discretized transmission line as in Fig. 14 the element related inci-
dence matrices can be calculated as

ol -
Ac = diag [O , 0} S H € RC@n+1)xn,
1 1
1] L
1] 1 1
A’R = dlag |:_1 sy |:_1:| R -1 , AC c IR(27L-"-1)><2717
- 0
0 1 1
A, = diag 1], { } ey { } € R@n+1)xn,
1 -1 -1

Ay =[1,0,...,0]" € RZ+L
Az =10,...,0,1]T € R?"+L,

The matrices expressing the constitutive relations of capacitances, resistances
(and conductances, resp.) and inductances are given by

CT n

C=—1In, G = diag (Ina gTIn> ) L= &
n n

n

R I,.

The circuit in Fig. 14 does not contain any ZL-loops. Further, the only
VCL-cutset of the circuit is formed by the voltage source and the inductance
of the left branch. It hence follows from [37, Prop. 7.4] that (2.17) has asymp-
totically stable zero dynamics. Then, by Theorem 3.3, funnel control is feasible
for (2.17) and any sufficiently smooth reference signal. For simulations of var-
ious scenarios and corresponding figures we refer to [37].

7.2 Higher relative degree systems
The following applications are available for systems with higher relative degree.

application ‘ discussed in

position control of industrial servo-systems [60,67,68]

and [66, Ch. 11]
joint position control of rigid-link revolute-joint | [70,28,29,32]
robotic manipulators and [66, Ch. 13]
position control for a robotic manipulator with kine- | [22]

matic loop
force control for a mass on car system [

permanent magnet synchronous motor service system | [45]
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oxygenation control during artificial ventilation ther- | [121]
apy

As an example we consider a robotic manipulator from [70], see also [66,
Ch. 13] and [93, p. 77|, as depicted in Fig. 15. The robotic manipulator is
planar, rigid, with revolute joints and has two degrees of freedom.

Fig. 15: Planar rigid revolute joint robotic manipulator; taken from [29].

The two joints are actuated by u; and uz (in Nm). We assume that the links
are massless, have lengths [; and Iy (in m), resp., and point masses m; and mq
(in kg) are attached to their ends. The two outputs are the joint angles y;
and y, (in rad) and the equations of motion are given by (see also [137, pp. 259])

M(y(8))i(t) + Cy(t),5(1))y(t) + Gy(t)) = u(t) (7.4)

with initial value (y(0),9(0)) = (O rad?, 0 (rad/s)z), inertia matrix M : R? —
R2X2,

ml? + mao(12 + 13 + 21113 cos(yz2)) ma (I3 + l1l2 cos(yg))]

M(y1,y2) = { m2(l§ +1yly cos(ys)) mglg

centrifugal and Coriolis force matrix C' : R? x R? — R2%2,

—2mpolqls sin(yg)vl —malils Sin(y2)02:|

C(yl’y27vl’v2) = [ —m21112 sin(yg)vl 0

and gravity vector G : R? — R2,

myly cos(y1) + ma(ly cos(y1) + Iz cos(yr + y2)))

G(y1,y2) =g < mals cos(y1 + ),

where g = 9.81m/s? is the acceleration of gravity. If we multiply system (7.4)
with M (y(t))~!, which is pointwise positive definite, from the right we see that
the resulting system belongs to the class (2.12) with » = m = 2. Therefore,
Theorem 4.1 yields that funnel control is feasible. For simulations of various
scenarios and corresponding figures we refer to the works [26,29].
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7.3 Systems with partial differential equations

The following applications are available for systems containing partial differ-
ential equations.

application \ discussed in

]
]

boundary control of heat propagation problems

control of a lossy transmission line

control of defibrillation processes for the human heart

]
]

[

[
mean value control of molecular systems [31]

[

[

force control for a moving water tank

As an example we consider the moving water tank system from [34], which
is depicted in Fig. 16.

Fig. 16: Horizontal movement of a water tank; taken from [34].

We neglect the wheels’ inertia and friction between the wheels and the
ground, and assume that there is an external force acting on the water tank,
denoted by u(t). The measurement output is the horizontal position y(t) of the
water tank, and the mass of the empty tank is denoted by m. The dynamics
of the water under gravity g can be described by the Saint- Venant equations,
cf. [132], as

8th + ag(hl)) = O,
2 7.5
Oy + O (1]2 +gh>+hS(Z>:—gj (7:5)

with boundary conditions v(¢,0) = v(¢,1) = 0 and friction term S : R — R.
Here h : R>o x [0,1] — R denotes the height profile and v : R>¢ x [0,1] = R
the (relative) horizontal velocity profile, where the length of the container is
normalized to 1. As in [34] we use a linearized version of these equations as
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follows:

B . [0 hod 0.
Oz = Az +bj = — {g@g 2 ] z 4+ (_1)y (7.6)

with boundary conditions z9(t,0) = z2(¢,1) = 0, b = (0,—1)T and friction
coefficient p = £5'(0) > 0. The state space in which z(¢) evolves is X =
L2([0,1];R?) and A : D(A) C X — X,

D(A) = { (21,22) eX (77)

21,29 € WH2(]0, 1];R),}

By conservation of mass in (7.6), fol z1(t,¢)d¢ = hg for all t > 0. The model
is completed by the momentum

p(t) = mi(t) + / 21(6,0) (22(6, ) + 9(1)C, t> 0. (78)

Substituting the absolute velocity xo = 25 + ¢ for z3, 1 = 21 and using the

balance law p(t) = u(t) and (7.6) we obtain the nonlinear model on the state
space X:

Orx = Az + by) (7.9a)

mii(t) = $a1(t, V220 (), 2(8)) — 2phoi(t) + u(d) (7.90)

where (f,g) = fol f(s)g(s)ds. This system can be written as

§(t) =TE)() + -, (7.10)

where the operator T is formally given by

T(n)(t) = %fﬂl(ta 9o + %(@1@),%2@» — hon(t))

with z being the strong solution of
z(t) = A(x(t) + br](t)), z(0) = .
It is then shown in [34] that T € Ty" and hence (7.10) belongs to the class

N2 thus Theorem 4.1 yields that funnel control is feasible. For simulations
and corresponding figures we refer to [34].

8 Future research and open problems

In the present section we discuss exciting topics in funnel control and open
problems which seem worth pursuing to us.
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8.1 Model predictive control (MPC)

MPC is a well-established control technique which relies on the iterative so-
lution of optimal control problems (OCPs), see the textbooks [58,124]. Re-
cently, [20,18,27] have introduced funnel-like ideas to overcome some limita-
tions in MPC. The latter means that “artificial” assumptions are imposed to
find an initially feasible solution and to ensure recursive feasibility of MPC
(i.e., solvability of the OCP at a particular time instant automatically implies
solvability of the OCP at the successor time instant). It was shown that these
assumptions are superfluous when “funnel-like” stage costs are introduced so
that the costs grow unbounded when the tracking error approaches the funnel
boundary. More precisely, in contrast to simply adding the constraints on the
tracking error to the OCP with standard quadratic stage costs, funnel MPC is
initially and recursively feasible, without imposing state constraints or termi-
nal conditions and independent of the length of the prediction horizon. These
results hold for a large class of nonlinear multi-input multi-output systems with
relative degree one, very similar to the class N™!, as shown in [20]. Utilizing
so called feasibility constraints and extending the stage costs by additional
terms (similar to the gain functions in (4.13)), applicability of funnel MPC
to systems with arbitrary relative degree was shown in [18]. However, the pa-
rameters involved in the feasibility constraints are very hard to determine and
usually conservative estimates must be used. But then again, initial and re-
cursive feasibility cannot be guaranteed. Furthermore, the stage cost function
used in [18] is rather complex and (together with the feasibility constraints
in the optimal control problem) leads to an increased computational effort.
These drawbacks have been resolved in the recent work [19], where a modified
and simple stage cost is used and the feasibility constraints are avoided.

In [21] the combination of funnel MPC with an additional funnel control
feedback loop was investigated, and it was shown that this leads to a control
scheme which achieves the tracking objective even in case of severe model-plant
mismatches. This resolves another limitation of classical MPC: It requires
a sufficiently accurate model to predict the system behavior and compute
the optimal control in each step. In the approach from [21], funnel MPC is
safeguarded by the additional funnel controller, to guarantee the evolution
of the tracking error within the funnel boundaries. Another extension of this
approach is presented in [101], where a framework to improve the model by
learning it’s parameters from data is introduced, while it is still safeguarded
by the funnel controller component. The situation is illustrated in Fig. 17. A
limitation of the approach is that the learning scheme must guarantee that the
“improved model” is again a member of the considered class of models, which,
so far, is only clear for simple learning algorithms restricted to linear models.
Furthermore, the extension to arbitrary relative degree is an open problem.
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Fig. 17: Structure of robust funnel MPC with additional learning component;
taken from [101].

8.2 Partial differential equations

In the context of systems containing partial differential equations, an impor-
tant challenge is the treatment of systems with inputs and outputs which are
not co-located, that means the actuators and sensors are not placed at the
same position.

Note that all boundary control systems considered in Section 5.3, as e.g. the
heat equation (5.6), have co-located inputs and outputs. Another illustrative
example is a vibrating string, where the control (e.g. a force) acts at the same
boundary where the measurement is taken (e.g. a velocity). In the following we
describe two prototypical examples for systems in one spatial variable which
illustrate the more realistic situation where the input and output are not co-
located.

First, consider the wave equation

(&, t) = Ra(Et), (&1) € [0, x Rso,
u(t) = 0ex(0,1), t € Ry,
y(t) = Oex(4, 1), t € Ry,
0=2a(0,1), t € Rsg.

(8.1)

This equation describes a vibrating string of length ¢, where the input and
output consist of a scaled force at the left and right hand side, resp. Further-
more, the boundary condition 0 = 2(¢,t) means that the right hand side of the
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string is clamped. The application of an input causes a wave which is travelling
with speed ¢ > 0 to the right hand side, where it is reflected. Consequently,
any input action influences the output with a delay of 7 = =. A standard
funnel controller is not able to deal with this behavior, since a “bad choice” of
the reference signal and funnel boundary may potentially drive the tracking
error outside the performance funnel within the time interval [0, 7], without
the control being able to counteract.
As a second model problem, consider the heat equation

By (€,1) = kdzx(&,1),  (€,1) €[0,4] x Rso,
u(t) = 0ex(0,t), € Rsg, 52)
y(t) = =(4, 1), t € Rxo,
0=dcx(l,t), t€Rsg

with k£ > 0, and boundary control formed by the temperature flux at the left
hand side. Then the output is given by the temperature at the right hand
side, and the condition 0 = a%x(& t) describes a perfect isolation at the right
hand side. In contrast to the wave equation, the problem of a delayed control
action does not occur here, due to the infinite propagation speed of heat.
However, the diffusive effect implies that the output y : R~y — R is infinitely
smooth, regardless of a possibly non-smooth v € L>(R<¢). In a certain sense,
this corresponds to an infinite relative degree. A look at the zero dynamics,

e., (8.2) under the additional condition y = 0, results in an equation with
Neumann and Dirichlet boundary values at the same part of the boundary,
which is not well-posed. Also for this example, standard funnel control is not
feasible in general.

The above adumbrated problems suggest — for completely different rea-
sons — that standard funnel control does not achieve the objective of track-
ing with prescribed performance of the tracking error for the systems (8.1)
and (8.2). Suitable modifications of the funnel controller and, probably, addi-
tional (smoothness, quantitative) assumptions on the funnel boundary ¢ and
the reference signal y,of are necessary.

8.3 Various other open problems

In the present final subsection we collect some more open problems, not as
prominent as in Subsections 8.1-8.2, but worth mentioning.

Systems with unstable zero dynamics: Recently, funnel control for systems
which do not have asymptotically stable zero dynamics has been investigated.
First results on funnel control for systems which are not minimum phase are
given in [12] for uncertain linear systems and in [28] for a nonlinear robotic
manipulator. Further research is necessary to extend the results to general
nonlinear systems.
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Sampled-data funnel control: Recently, Lanza et al. [102] have investigated
funnel control for sampled-data systems with Zero-order Hold, showing that
for a sampling rate below a certain threshold (depending on the system pa-
rameters, the reference signal and the funnel boundary) the tracking error
evolves within the prescribed performance funnel — also between the sampling
instances. This result even covers the general class N™" of nonlinear systems
with arbitrary relative degree. Future research should focus on relaxing the
estimates for the sampling rate threshold (which are quite conservative) and
funnel control methods for discrete time systems.

Output-feedback funnel control: Although the result of Theorem 4.9 shows
that, in principle, funnel control by output-feedback is possible by utilizing a
funnel pre-compensator (cascade), the assumptions on the systems class are
still quite restrictive. In particular, especially for higher relative degree, the
controller parameter matrix I must be so close to the plant parameter I in
order to satisfy (4.45), that it this actually seems to be close to assuming that I"
is known. Further research is necessary to relax those restrictive conditions.

Funnel cruise control: Berger and Rauert [36] have developed a “funnel cruise
controller” as a universal adaptive cruise control mechanism for vehicle fol-
lowing which guarantees that a safety distance to the leader vehicle is never
violated. Open problems are the treatment of acceleration constraints and
string stability of vehicle platoons.

Funnel control with internal models: There are contributions on funnel control
in combination with internal models — i.e., models of the exogenous signals
such as reference signals or disturbances, cf. [155]. It is shown in [382] for linear
systems with relative degree one that this combination achieves asymptotic
tracking. In [66, Ch. 7 & 10] it is shown that this control is also efficient in the
presence of measurement noise: the tracking error does not “follow” the noise
and hence it does not get close to the funnel boundary and, as a consequence,
the gain function does not attain unnecessary large values. In the end, the
incorporation of internal models leads to an increased level of robustness of
the overall controller design and, from an applications point of view, funnel
control cannot be implemented in real-world systems without internal models.
However, the results in [60] are restricted to the case of relative degree one
and two, and higher relative degree is still an open problem.

Robustness in the gap metric: Robustness of adaptive controllers has been an
issue already in the 1980s, see e.g. [91,129]. So called universal adaptive con-
trollers, including the funnel controller, do satisfy the desired control objective
for a whole class of systems. In this sense, these controllers are already robust.
However, it is still an issue as to whether the controller continues to maintain
performance if a system of the underlying class is subjected to perturbations,
for example to unmodelled dynamics, which take it outside the class. One fa-
mous tool to quantify robustness is the gap metric, with which the distance
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of two systems is measured as the gap of their corresponding graphs. In [30]
it is shown that the funnel controller (1.21) applied to a linear system (2.1)
is robust in the following sense: it may be applied to a system not satisfying
any of the classical conditions of relative degree one, known sign of the high-
frequency gain and asymptotically stable zero dynamics as long as the initial
conditions and the disturbances are “small” and the system is “close” (in terms
of a “small” gap) to a system satisfying the classical conditions. An extension
of this result to systems with relative degree two is derived in [68]. It is an
open problem as to whether similar gap metric results hold for funnel control
for higher relative degree nonlinear and/or differential-algebraic systems.

Fault tolerant funnel control: Berger [13] has recently developed a fault tol-
erant funnel control mechanism for nonlinearly perturbed linear systems.
The method utilizes the Byrnes-Isidori form for time-varying linear systems
from [79]. The extension to fully nonlinear systems is a topic of future research.

Funnel control versus prescribed performance control: Prescribed performance
control (see Subsection 4.1.3) and funnel control are closely related. A thor-
ough comparison of the complexity of the controllers and the assumptions on
the system class is still missing. This may lead to new controllers with less
complexity which work for a larger class of systems.
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