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Abstract

The methodology of funnel control was introduced in the early 2000s, and it has developed since then in many respects
achieving a level of mathematical maturity balanced by practical applications. Its fundamental tenet is the attainment of
prescribed transient and asymptotic behaviour for continuous-time controlled dynamical processes encompassing linear
and nonlinear systems described by functional differential equations, differential-algebraic systems, and partial differential
equations. Considered are classes of systems specified only by structural properties – such as relative degree and stable
internal dynamics. Prespecified are: a funnel shaped through the choice of a function (absolutely continuous), freely
selected by the designer, and a class of (sufficiently smooth) reference signals. The aim is to design a single ‘simple’
feedback strategy (using only input and output information) – called the funnel controller – which, applied to any
system of the given class and for any reference signal of the given class, achieves the funnel control objective: that is,
the closed-loop system is well-posed in the sense that all signals (both internal and external) are bounded and globally
defined, and – most importantly – the error between the system’s output and the reference signal evolves within the
prespecified funnel.

The survey is organized as follows. In the Introduction, the genesis of funnel control is outlined via the most simple
class of systems: the linear prototype of scalar, single-input, single-output systems. Generalizing the prototype, there
follows an exposition of diverse system classes (described by linear, nonlinear, functional, partial differential equations,
and differential-algebraic equations) for which funnel control is feasible. The structure and properties of funnel control –
in its various guises attuned to available output information – are described and analysed. Up to this point, the treatment
is predicated on an implicit assumption that system inputs are unconstrained. Ramifications of input constraints and
their incorporation in the funnel methodology are then discussed. Finally, practical applications and implementations
of funnel control are highlighted.
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1. Introduction

A fundamental question in systems and control theory is:
“To what extent does one need to know a dynamical pro-
cess in order to influence benignly its behaviour through
choice of input?” Imprecision is inevitable in mathemat-
ically modelling any such process – be it biological, eco-
nomic, electrical, mechanical, social, or any other environ-
ment that evolves with time. Given a process – known to
belong to a specific class – can one control its behaviour
knowing only the class but not which particular member of
the class one happens to be dealing with? In other words,
is there a single control strategy that “works” for every
member of the underlying class? In essence, the broad
field of adaptive control addresses this question – the term
“adaptive” carrying the connotation of some adjustment
contrivance (explicit or implicit) to counter the lack of pre-
cise knowledge of the process to be controlled.

Roughly speaking, adaptive control can be compart-
mentalised into two categories: identifier-based strate-
gies and its complement, non-identifier-based strategies.
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The former category has its origins in the early 1950s
when the design of autopilots for high-performance air-
craft triggered research in this area. Development contin-
ued in the 1960s through the application of state space
methods and Lyapunov’s stability theory. The underly-
ing methodology applies in the context of a parametrized
class {Pθ| θ ∈ Θ} to which the particular process Pθ to
be controlled is known to belong (but the associated pa-
rameter θ is not known). An identifier-based strategy ex-
plicitly incorporates a mechanism which seeks to identify
the unknown parameter by generating, from input-output
data, an estimate θ̂ ≃ θ and applying control appropri-
ate to the estimated process Pθ̂. However, according to
Åström (1983) [2], the early years showed a “lot of enthu-
siasm, bad hardware and nonexisting theory”.

Identifier-based adaptive control is outside the scope
of the present article. Instead, the focus of attention is
non-identifier-based adaptive control which emerged in
the 1980s in response to two basic questions:

� What structural assumptions on the process to be
controlled are sufficient (and/or necessary) to ensure
the attainment of prescribed performance objectives
in some appropriate sense?

� Assuming feasibility, is there a “simple” controller
that achieves the requisite performance without pa-
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rameter identification or estimation?

The central concern of the present paper is an exposi-
tion of the theory of funnel control in the context of
continuous-time nonlinear dynamical processes, with con-
trol input u and output y, encompassing linear and nonlin-
ear systems described by functional differential equations
and differential-algebraic systems.

In its essence, the control problem to be addressed is
the following: given a class Σ of dynamical systems, with
Rm-valued input u and Rm-valued output y, and a class of
reference signals Yref, determine an output-feedback strat-
egy which ensures that, for every system of class Σ and
any reference signal yref of class Yref, the output y ap-
proaches the reference yref with prescribed transient be-
haviour and asymptotic accuracy. The twin objectives of
“prescribed transient behaviour and asymptotic accuracy”
are reflected in the adoption of a so-called “performance
funnel” (see Fig. 1), defined by

Fφ := { (t, e) ∈ R≥0 × Rm | φ(t) ∥e∥ < 1} , (1.1)

in which the error function t 7→ e(t) := y(t) − yref(t) is
required to evolve.

e(0)
Fφ(t)

t = 0
Fφ

te(t) graph(e)

Figure 1: Performance funnel Fφ.

The only a priori assumption on φ : R≥0 → R is that it be-
longs to the following class of locally absolutely functions

Φ :=

φ ∈ ACloc(R≥0,R)

∣∣∣∣∣∣∣∣
φ(t) > 0 ∀ t > 0,
lim inft→∞ φ(t) > 0,
∃ c > 0 for a.a. t ≥ 0 :
|φ̇(t)| ≤ c

(
1 + φ(t)

)
 .

(1.2)
The funnel is shaped – through the choice of the func-
tion φ ∈ Φ – in accordance with the specified tran-
sient behaviour and asymptotic accuracy. The funnel may
be identified with the graph of the map t 7→ Fφ(t) :=(
− 1/φ(t), 1/φ(t)

)
from R>0 to the open intervals of R.

For t > 0, we refer to Fφ(t) as the funnel t-section, see
also Fig. 1. We stress that, in (1.1), φ(0) = 0 is possible,
in which case the funnel 0-section is the whole space Rm
and so there is no restriction on the initial value e(0):
with slight abuse of terminology, in this case we refer
to Fφ as an “infinite funnel”. As an example of an in-
finite funnel consider, for ε > 0 and T > 0, the choice
φ1(t) = ε−1 min{t/T, 1} for all t ≥ 0, which accords with
the aim of attaining a tracking accuracy quantified by ε
in prescribed time T for all initial data. We also stress
that, through the choice of unbounded φ ∈ Φ, the ra-
dius of the funnel t-section shrinks to zero as t → ∞,

thus enabling asymptotic tracking; see Remark 3.5 for
more details. Whilst it is often convenient to choose a
monotonically decreasing funnel boundary, it might be
advantageous to widen the funnel over some later time
intervals, for instance in the presence of periodic distur-
bances or strongly-varying reference signals. The formula-
tion (1.1) encompasses a wide variety of funnel boundaries,
see also [79, Sec. 3.2].

We will frequently use the phrase “structural assump-
tions” – albeit without precise definition. What we have
in mind, roughly speaking, is that various components
(functions, matrices, operators, etc.) of the differential
equations governing the evolution of the process to be
controlled do not need to be precisely known but are
required only to exhibit certain properties (continuity, in-
vertibility, causality, etc.). In particular, these properties
should be preserved under state space transformation.

Nomenclature

Reλ, Imλ the real, imaginary part of a complex num-
ber λ ∈ C, respectively.

R≥α, R>α,
R≤α, R<α

[α,∞), (α,∞), (−∞, α], (−∞, α), α ∈ R.

C≥α, C>α,
C≤α, C<α

complex numbers with real part in R≥α,
R>α, R≤α, R<α, respectively.

⟨·, ·⟩ inner product on a Hilbert space.
∥ · ∥ norm on a normed space.
Gln(R) the general linear group of invertible real

n× n matrices
R[s], R(s) the ring of polynomials with coefficients

in R and indeterminate s, the quotient
field of R[s], respectively.

L(N1, N2) the space of bounded linear operators A :
N1 → N2, for normed spaces N1 and N2.

L∞(I,Rℓ) the Lebesgue space of measurable essen-
tially bounded functions f : I → Rn with
∥f∥∞ := ess supt∈I∥f(t)∥, where I ⊆ R is
some interval.

L∞
loc(I,Rn) the set of measurable locally essentially

bounded functions f : I → Rn where
I ⊆ R is some interval.

Lp(I,Rn) the Lebesgue space of measurable and pth
power integrable functions f : I → Rn,
where I ⊆ R is some interval and p ∈
[1,∞).

C(I,Rn) the set of continuous functions f : I → Rn,
where I ⊆ R is some interval.

Cℓ(I,Rℓ) the set of k-times continuously differen-
tiable functions f : I → Rn, where I ⊆ R
is some interval.

ACloc(I,Rn) the set of locally absolutely continuous
functions f : I → Rn, where I ⊆ R is
some interval.

Wk,∞(I,Rn) the space of functions f ∈ L∞(I,Rn) with
derivatives f (i) ∈ L∞(I,Rn), i = 1, . . . , k,
where I ⊆ R is some interval and k ∈ N.

N ≻M ⟨x, (N − M)x⟩ > 0 for all x ∈ Rn \{0},
N,M ∈ Rn×n.
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1.1. The genesis of funnel control: the scalar linear proto-
type

By way of motivation, we seek to illustrate the salient char-
acteristics of non-identifier-based adaptive control in the
context of the simplest class of continuous-time dynamical
systems with control, namely, scalar linear systems of the
form

ẋ(t) = ax(t) + bu(t), x(0) = x0,

y(t) = cx(t) output,
(1.3)

or, equivalently, ẏ(t) = ay(t) + cb u(t), y(0) = cx0, where
the parameters a, b, c, x0 ∈ R are arbitrary and unknown
to the controller. Only the output y is available for
control purposes. The quantity cb amplifies/attenuates
and assigns a polarity to the input u(t). In the spirit
of the latter observation, we will refer to sgn(cb) as the
control direction. (We disregard the trivial case of cb = 0
in which the control has no influence on the output – a
circumstance that has neither practical nor mathematical
interest.)

ẏ = ay + cbu

(adaptive) control law

y

+−
yref ∈ Yref

e

u

Figure 2: Closed-loop system

The overall scenario is shown in Fig. 2, wherein yref is
some reference signal which the system output should em-
ulate (in some appropriate sense). In this simple setting,
we trace the development of funnel control through two of
its antecedents, namely, high-gain adaptive stabilization
and λ-tracking.

1.1.1. High-gain adaptive stabilization

First, consider the problem of output feedback stabiliza-
tion of (1.3), that is, determine an output feedback strat-
egy u(t) = f(y(t)) (if one exists) which ensures that, for
each x0 ∈ R, every solution of the feedback-controlled
initial-value problem ẋ(t) = ax(t) + bf(cx(t)), x(0) = x0,
is global (i.e., exists on R≥0) and is such that y(t) → 0
as t→ ∞ (in the context of Fig. 2, yref = 0). If we assume
that (1.3) satisfies the structural property

cb > 0, (1.4)

(that is, the control direction is positive) then, given
any µ > 0 and setting k∗ := (µ + a)/(cb), we see that
the linear output feedback u(t) = −k∗y(t) gives the ex-
ponentially stable system ẋ(t) = −µx(t). Thus, arbitrar-
ily fast exponential decay is achievable by output feed-
back u(t) = −k∗y(t) with sufficiently large k∗ (the con-
trol gain in engineering parlance, whence the terminology
high-gain control). This observation is referred to as the
high-gain property of the system (1.3). In summary, the
structural property (1.4) is sufficient for feasibility of sta-
ble behaviour by output feedback. However, in the absence
of any further knowledge of the parameters a, b, c, it is not
possible to compute a value k∗ with the requisite property
that k∗ should be larger than the threshold value a/(cb).

Can this impasse be circumvented? This question is an-
swered in the affirmative if, instead of fixed-gain feedback,
linear output feedback with variable gain

u(t) = −k(t)y(t) (1.5)

is adopted and the monotone non-decreasing gain k(·) is
generated via the differential equation

k̇(t) = y(t)2, k(0) = k0 ∈ R, (1.6)

where k0 is arbitrary. The combination of (1.3), (1.5)
and (1.6) yields the initial-value problem

ẏ(t) = −(k(t)cb− a)y(t), y(0) = y0,

k̇(t) = y(t)2, k(0) = k0.
(1.7)

Let (y0, k0) ∈ R2 be arbitrary. The standard theory of or-
dinary differential equations applies to conclude that (1.7)
has a unique maximal solution (y, k) : [0, ω) → R2, 0 <
ω ≤ ∞. (Here, by “standard theory”, we mean basic re-
sults that can be found in elementary textbooks as, for
example, [148] or [111].) Differentiation of the positive-
definite form z 7→ z2 along the component y(·) of the so-
lution of (1.7) yields, for almost all t ∈ [0, ω),

d
dt

(
y(t)2

)
= 2y(t)ẏ(t) = 2y(t)

(
a− cbk(t)

)
y(t)

= −2cb k(t)k̇(t) + 2a k̇(t) = −cb d
dt

(
k(t)2

)
+ 2a k̇(t)

which, on integration, gives

0 ≤ y(t)2 = (y0)2 − cb
(
k(t)2 − (k0)2

)
+ 2a

(
k(t)− (k0)

)
.

(1.8)
In view of (1.4), it immediately follows from (1.8) that
k ∈ L∞([0, ω),R). By boundedness of k we may infer
from (1.7) that y is exponentially bounded. Suppose ω <
∞, then the closure of the graph of (y, k) : [0, ω) → R2 is a
compact subset of R≥0×R2 which contradicts maximality
of the solution; hence ω = ∞. Boundedness of k is equiv-
alent to y ∈ L2(R≥0,R) and, furthermore, invoking (1.7)
we have ẏ ∈ L2(R≥0,R). Therefore, we may conclude that
y(t) → 0 as t → ∞. Since the gain function k is bounded
and monotone, it converges to a finite limit. Thus, sub-
ject only to the structural assumption of positive control
direction cb > 0, every system (1.3) is stabilized by the
adaptive strategy (1.5)–(1.6) and the controller gain func-
tion k is monotone and bounded. However, boundedness
of k may fail to hold if the system (1.3) is subject to an
extraneous disturbance. This failure can be illustrated by
means of a simple example. Assume that the particular
system (1.3) is given by (a, b, c) = (0, 1, 1) and is subject
to a spurious bounded additive signal d, in which case the
dynamics are governed by

ẋ(t) = u(t) + d(t).

Application of control (1.5)–(1.6) gives the closed-loop
initial-value problem

ẋ(t) = −k(t)x(t) + d(t), x(0) = x0,

k̇(t) = x(t)2, k(0) = k0.
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For purposes of illustration, assume that the disturbance
is given by

d : R≥0 → R, t 7→ 3− 10 + 9t

3(1 + t)4/3
,

a bounded function with d(t) → 3 as t → ∞. Then, for
initial data (x0, k0) = (1, 0), it is readily verified that there
exists a unique global solution given by

(x, k) : R≥0 → R2,

t 7→
(
x(t), k(t)

)
:=
(
(1 + t)−1/3 , 3

(
(1 + t)1/3 − 1

))
.

Thus, whilst the objective x(t) → 0 as t→ ∞ is achieved,
it is done at the expense of an unbounded gain function k
which, from the viewpoint of implementation, renders the
control strategy impracticable.

1.1.2. Disturbances and high-gain λ-stabilization

The inability of the high-gain adaptive strategy (1.5)-(1.6)
to handle bounded disturbances can be circumvented by
weakening the control objective in the following manner.
In the context of the scalar example (1.3), in place of the
objective y(t) → 0 as t → ∞ we substitute the weaker
requirement that, as t → ∞, y(t) should approach the
interval [−λ, λ] for some prescribed λ > 0. Introducing
the distance function (parametrized by λ > 0)

distλ : R → R≥0, z 7→ max{|z| − λ , 0}

we seek an output feedback of the form (1.5) which ensures
the requisite performance: distλ(y(t)) → 0 as t→ ∞, and
boundedness of the gain function k.

Consider system (1.3) but now with an additive distur-
bance d ∈ L∞(R≥0,R), with norm ∥d∥∞:

ẋ(t) = ax(t) + bu(t) + d(t), x(0) = x0,

with output y(t) = cx(t).
(1.9)

Subject only to the structural assumption (1.4), that
is cb > 0, we proceed to show that, for any prescribed λ >
0, every system (1.9) with bounded disturbance d(·) ex-
hibits the requisite performance under the output feed-
back (1.5) provided that the gain k is generated via the
differential equation

k̇(t) = |y(t)| distλ(y(t)), k(0) = k0 ∈ R. (1.10)

Note that the simplicity of the strategy (1.5)-(1.6) is pre-
served – the novelty in (1.10) resides in the suppression
of the gain adaptation whenever the output is inside the
λ-interval, i.e., |y(t)| ≤ λ. The “price” paid is that asymp-
totic convergence of the output to zero is lost: instead,
only an asymptotic approach of the output to the inter-
val [−λ, λ] is guaranteed. However, since the latter prop-
erty holds for any prescribed accuracy parameter λ > 0,
the price paid is small.

The combination of the output feedback (1.5) with
the gain adaptation (1.10) applied to the disturbed scalar
linear prototype (1.9) yields the closed-loop initial-value
problem

ẏ(t) = −(k(t)cb− a)y(t) + cd(t), y(0) = y0, (1.11a)

k̇(t) = |y(t)| distλ(y(t)), k(0) = k0. (1.11b)

Let (y0, k0) ∈ R2 be arbitrary. Again, the standard the-
ory of ordinary differential equations applies to conclude
that (1.11) has a unique maximal solution (y, k) : [0, ω) →
R2, 0 < ω ≤ ∞. Consider the (Lyapunov-like) function

z 7→
(
distλ(z)

)2
with derivative

δλ : R → R, z 7→
{

2 distλ(z) sign(z), z ̸= 0
0, z = 0.

Differentiation along the component y(·) of the solution
of (1.11) yields, for almost all t ∈ [0, ω),

d
dt

(
distλ(y(t))

)2
= δλ(y(t)) ẏ(t)

≤ −2
(
k(t)cb− a

)
|y(t)| distλ(y(t)) + 2|c d(t)| distλ(y(t))

= −cb d
dt

(
k(t)2

)
+ 2

(
a+ λ−1|c| ∥d∥∞

)
k̇(t),

which, on integration, gives

0 ≤
(
distλ(y(t))

)2 ≤
(
distλ(y

0)
)2 − cb

(
k(t)2 − (k0)2

)
+ 2
(
a+ λ−1|c| ∥d∥∞

) (
k(t)− k0

)
. (1.12)

In view of (1.4), it immediately follows from (1.12) that
k ∈ L∞([0, ω),R). By boundedness of k and essential
boundedness of d, we may infer from (1.11a) that y is
exponentially bounded. Suppose ω < ∞, then the clo-
sure of the graph of (y, k) : [0, ω) → R2 is a compact
subset of R≥0 × R2 which contradicts maximality of the
solution; hence ω = ∞. Boundedness of k, together
with (1.12), implies distλ(y(·)) ∈ L∞(R≥0,R). Further-
more, in view of (1.11a), we have ẏ ∈ L∞(R≥0,R). There-
fore, the function t 7→ d

dt

(
distλ(y(t))

)2
is bounded, and

so
(
distλ(y(·))

)2
is uniformly continuous. Noting that, for

all t ≥ 0,∫ t

0

(
distλ(y(τ))

)2
dτ ≤

∫ t

0

|y(τ)|distλ(y(τ)) dτ = k(t)−k0,

we may infer (from boundedness of k(·)) that the uni-

formly continuous function
(
distλ(y(·))

)2
is in L1(R≥0,R).

By Barbǎlat’s Lemma we may now conclude that(
distλ(y(t))

)2 → 0 as t → ∞. Therefore, subject
only to the structural assumption cb > 0, for every sys-
tem (1.9) with bounded disturbance d, the adaptive strat-
egy (1.5), (1.10) achieves the two performance objectives
of dist(y(t)) → 0 as t→ ∞ and convergence of the gain k
to a finite limit.

1.1.3. High-gain λ-tracking

Consider again the class of systems with disturbance d(·)
given by (1.9), but now with the control objective of output
λ-tracking, that is, for arbitrary prescribed λ > 0 and a
(suitably regular) reference signal yref, we seek a control
strategy which ensures that distλ(y(t)−yref(t)) → 0 as t→
∞. For the class of admissible reference signals we choose
Yref = W1,∞(R≥0,R), that is, yref : R≥0 → R is admissible
if it is bounded, absolutely continuous and has essentially
bounded derivative.
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Whilst the λ-tracking problem differs conceptually from
the λ-stabilization problem of the previous subsection,
there is no mathematical distinction between these two
problems. Indeed, let yref ∈ Yref be arbitrary. Writing
e(t) = y(t) − yref(t), we see that the differential equation
in (1.9) may be expressed as

ė(t) = ae(t) + cbu(t) + d̂(t),

with the function d̂ ∈ L∞(R≥0,R) given almost every-
where by

d̂(t) = cd(t) + ayref(t)− ẏref(t).

Thus, we see that the λ-tracking problem for system (1.9)
with reference signal yref ∈ Yref is equivalent to the λ-
stabilization problem for system (1.9) with parameters

(a, cb, 1, d̂ ) and so the results of the previous subsection
apply to conclude that, under the structural assump-
tion cb > 0, the feedback strategy

u(t) = −k(t)e(t), k̇(t) = |e(t)| distλ(e(t)), k(0) = k0

(1.13)
ensures attainment of the λ-tracking objectives:
distλ(e(t)) → 0 as t → ∞ and convergence of the
gain k to a finite limit.

1.1.4. Unknown control direction

Throughout the above motivational discussion on adap-
tive stabilization and tracking in the restricted context of
scalar systems, the structural assumption (1.4) remained
in force. Can this assumption be weakened? As already
noted, the case cb = 0 is of neither practical nor mathemat-
ical interest. The question then is: can assumption (1.4)
be replaced by

cb ̸= 0. (1.14)

Clearly, the arguments adopted in Section 1.1.1 apply mu-
tatis mutandis to conclude that the feedback (a variant
of (1.5), modified by the inclusion of the control direction
term sgn(cb))

u(t) = − sgn(cb) k(t) y(t), k̇(t) = y(t)2, k(0) = k0

(1.15)
ensures that y(t) → 0 as t → ∞ and the monotone gain
function converges to a finite limit. However, under the
weakened assumption (1.14), this modified adaptive strat-
egy cannot be realized as the control direction sgn(cb) is
unknown to the controller. Loosely speaking, what is re-
quired is a gain mechanism that can “probe” in both the
positive and negative control directions. This idea points
to a control strategy of the form

u(t) = N(k(t)) y(t), k̇(t) = y(t)2, k(0) = k0, (1.16)

where N : R → R is a continuous function with the prop-
erties

lim sup
k→∞

N(k) = +∞ and lim inf
k→∞

N(k) = −∞. (1.17)

One such function is k 7→ N(k) = k2 cos k. This particular
example exhibits the so-called “Nussbaum properties”:

for all k0 ∈ R,

sup
k>k0

1

k − k0

∫ k

k0
N(κ) dκ = ∞,

inf
k>k0

1

k − k0

∫ k

k0
N(κ) dκ = −∞.

(1.18)

Let N : R → R be any locally Lipschitz function such
that (1.18) holds. The combination of (1.3) and (1.16)
yields the initial-value problem

ẏ(t) = (a+ cbN(k(t)))y(t), y(0) = y0

k̇(t) = y(t)2, k(0) = k0.
(1.19)

Let (y0, k0) ∈ R2 be arbitrary. The standard the-
ory of ordinary differential equations applies to conclude
that (1.19) has unique maximal solution (y, k) : [0, ω) →
R2, 0 < ω ≤ ∞. Then, for almost all t ∈ [0, ω),

d
dt

(
y(t)2

)
= 2y(t)ẏ(t) = 2

(
a+ cbN(k(t))

)
k̇(t),

which, on integration, gives

0 ≤ y(t)2 = (y0)2 + 2cb

∫ k(t)

k0
N(κ)dκ+ 2a

(
k(t)− k0

)
.

(1.20)
Consider the non-trivial scenario y0 ̸= 0. Seeking a con-
tradiction, suppose that the monotonically non-decreasing
function k(·) is unbounded. Let τ ∈ (0, ω) be such that
k(τ) > k0 and set α := 2a + (y0)2/(k(τ) − k0). Then it
follows from (1.20) that

∀ t ∈ [τ, ω) : 0 ≤ α+
2cb

k(t)− k0

∫ k(t)

k0
N(κ) dκ,

which, depending on the system’s control direction (un-
known to the controller), runs counter to one or the other
of properties (1.18): specifically, if cb > 0, then the second
of properties (1.18) is contradicted or, if cb < 0, then the
first of these properties is contradicted. Thus, the suppo-
sition of unboundedness of k(·) is false. Having established
boundedness of k(·), an argument analogous to that used
in Section 1.1.1 applies to conclude that ω = ∞, y(t) → 0
as t → ∞ and k(·) converges to a finite limit. Thus, via
the above gain mechanism, the efficacy of high-gain adap-
tive stabilization is preserved when the assumption cb > 0
is weakened to cb ̸= 0. The same modification preserves
the efficacy of the adaptive λ-stabilizing and λ-tracking
controllers in Sections 1.1.2 and 1.1.3 under the weakened
assumption cb ̸= 0.

1.1.5. Funnel control

Consider again a scalar system of the form (1.3). As in
Section 1.1.3, let the class of reference signals be Yref =
W1,∞(R≥0,R). Prescribe a performance funnel Fφ as
in (1.1) with m = 1 and φ ∈ Φ as in (1.2), see Fig. 1. Let
x0 ∈ R and yref ∈ Yref be such that φ(0)|cx0−yref(0)| < 1.
Note that the latter is automatically satisfied in the case of
an “infinite funnel”, i.e., φ(0) = 0. Under the structural
assumption cb > 0, we introduce the funnel controller,
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given by

u(t) = −k(t)e(t), k(t) = φ(t)
(
1− (φ(t)e(t))2

)−1
,

e(t) = y(t)− yref . (1.21)

The idea underlying the gain adaptation (1.21) is that k(t)
is large if, and only if, (t, e(t)) is “close” to the the bound-
ary of the funnel t-section which, when coupled with the
high-gain property of (1.3), precludes boundary contact.

Under the weaker structural assumption cb ̸= 0, the
funnel controller is modified in the following manner: the
first of equations (1.21) is replaced by

u(t) = N(k(t))e(t),

where N : R → R is any continuous function with the
properties (1.17). We stress that properties (1.18) imply
properties (1.17), but the reverse implication is false: for
example, the function s 7→ N(s) = s sin s exhibits prop-
erties (1.17), but fails to exhibit the Nussbaum proper-
ties (1.18).

Under either structural assumption cb > 0 or cb ̸= 0,
the funnel controller is a proportional time-varying output
error feedback. However, in contrast with the λ-tracking
control, the control gain in (1.21) is not monotone and
not dynamically generated. Instead, at generic time t, the
gain k(t) is statically generated via the nonlinear function

κ : Fφ → R, (t, z) 7→ φ(t)
(
1 − (φ(t)z)2

)−1
evaluated at

(t, e(t)). In particular, k(t) = κ(t, e(t)) and, under the
structural assumption cb > 0, the control is given by

u(t) = −κ(t, e(t)) e(t)

or, under the weaker structural assumption cb ̸= 0,

u(t) = N
(
κ(t, e(t))

)
e(t).

For purposes of exposition, we impose the weaker struc-
tural assumption cb ̸= 0, and the combination of (1.3) and
the funnel controller (1.21) yields the closed-loop initial-
value problem

ė(t) =
(
a+ cbN

(
κ(t, e(t))

))
e(t) + ayref(t)− ẏref(t)

with e(0) = cx0 − yref(0) and (0, e(0)) ∈ Fφ, on the rela-
tively open domain Fφ ⊆ R≥0 × R.

By a solution of this problem we mean an absolutely
continuous function e : [0, ω) → R with ω ∈ (0,∞] and
graph(e) ⊆ Fφ. A solution is maximal, if it has no proper
right extension that is also a solution. The theory of or-
dinary differential equations applies to conclude that the
initial-value problem has a solution and every solution can
be maximally extended. Let e : [0, ω) → R be a maximal
solution. A maximal solution e is said to evolve strictly in-
side the performance funnel Fφ, if there exists ε > 0 such
that φ(t)|e(t)| + ε ≤ 1 for all t ∈ [0, ω), in which case it
immediately follows that ω = ∞ and the gain k and con-
trol u are bounded functions. Therefore, in establishing
the efficacy of funnel control, the crucial mathematical is-
sue is to prove that every maximal solution evolves strictly
inside Fφ. This can be shown via a delicate contradiction
argument which is not elaborated here (but is subsumed
by the proof of a significantly more general result in the

main body of the manuscript).
We remark that, for prescribed λ > 0, if φ ∈ Φ is

chosen so that lim inft→∞ φ(t) ≥ λ−1, then attainment of
strict evolution of e inside Fφ implies a fortiori attainment
of the λ-tracking objective distλ(e(t)) → 0 as t→ ∞.

1.1.6. A historical miscellany

The above considerations form an attempt to highlight
fundamental characteristics of non-identifier-based adap-
tive control albeit in the simplified context of scalar linear
systems. The literature abounds with generalizations in
various directions: for example, to higher-dimensional or
infinite-dimensional systems and to encompass nonlinear
systems.

The idea underpinning high-gain adaptive stabilization
emerged in the early 1980s in various investigations aimed
at circumventing the need for cumbersome parameter es-
timators in order to build adaptive controllers for certain
high-gain stabilizable linear systems. Seminal contribu-
tions towards this goal were made by Morse (1983) [117],
Byrnes and Willems (1984) [45], and Mareels (1984) [113].
Morse (1983) [117] conjectured the non-existence of a
smooth adaptive controller which stabilizes every system
of the form (1.3) under assumption (1.14). Nussbaum
(1983) [119] showed that Morse’s conjecture is false: this
fact enabled the structural assumption (1.4) to be weak-
ened to the simple requirement (1.14). As in the case of
the scalar prototype outlined above (see also Willems and
Byrnes (1984) [151]), multivariable systems with unknown
control direction are amenable to treatment using smooth
functions with the “Nussbaum properties” (1.18) (see, for
example, [57, 58, 59, 93, 157]). These lines of investi-
gation (see the survey [77]) culminated in M̊artensson’s
(1985) [114] fundamental contribution which, in the con-
text of multivariable linear systems, established that “the
order of any stabilising regulator is sufficient a priori in-
formation for adaptive stabilisation”.

Extension of the core idea in high-gain stabilization
to the problem of tracking, by the system output, of a
given reference signal were considered by, inter alia, Ma-
reels (1984) [113] and Helmke, Prätzel-Wolters & Schmid
(1990) [73]. These investigations invoke the internal model
principle: “a regulator is structurally stable only if the
controller utilizes feedback of the regulated variable, and
incorporates in the feedback loop a suitably reduplicated
model of the dynamic structure of the exogenous signals
which the regulator is required to process” (see Wonham
(1979) [154]). In the context of high-gain asymptotic out-
put tracking, this means that a control strategy must in-
corporate a dynamic component capable of replicating the
reference signal that the output is required to track, which
inevitably leads to complicated controller structures and
places restrictions on the class Yref of allowable reference
signals. By contrast, the high-gain λ-tracking approach
encompasses reference signals of a more general nature and
is such that the internal model principle is obviated, allow-
ing control strategies of striking simplicity. The concept
of λ-tracking was suggested inMareels (1984) [113], is indi-
rectly contained – albeit in a somewhat different context –
in Miller and Davison (1991) [115], and was first studied
for nonlinear systems in Ilchmann and Ryan (1994) [82].
For further contributions including applications, see the
survey by Ilchmann and Ryan (2008) [84].
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The primary focus of the above historical contributions to
both adaptive stabilization and λ-tracking was asymptotic
performance: with the exception of Miller and Davison
(1991) [115], transient performance was not considered.
Embracing transient performance was the final step in the
genesis of funnel control. Whilst rudiments of the method-
ology can be found in Ilchmann (1993) [78, Thm. 7.2.1],
its full potential was not recognized until Ilchmann, Ryan,
and Sangwin (2002) [87] introduced the funnel controller.
A predecessor (which also takes transient behaviour into
account) is the above-mentioned work [115] by Miller and
Davison, wherein an approach that differs intrinsically
from the funnel control methodology is adopted.

2. Diverse system classes

Having presented the genesis of funnel control in the highly
restrictive context of scalar linear systems, we proceed to
describe and analyse funnel control (and variants thereof)
applied to considerably larger system classes encompass-
ing linear and nonlinear multivariable systems, differential-
algebraic systems, and infinite-dimensional systems. The
breadth of these classes attests to the mathematical matu-
rity of the funnel control methodology. Furthermore, the
practical relevance of the approach is reflected in the 650-
page monograph by Hackl (2017) [68] on applications of
funnel control in mechatronics.

2.1. The linear multivariable prototype

First, we focus on a class of square (that is, with equal
number of inputs and outputs) linear, finite-dimensional
systems of the form

ẋ(t) = Ax(t) +B u(t), x(0) = x0 ∈ Rn,
y(t) = C x(t)

}
(2.1)

where (A,B,C) ∈ Rn×n × Rn×m × Rm×n, m ≤ n, and
the space of inputs u is U := L∞

loc(R≥0,Rm). For each
(x0, u) ∈ Rn × U , (2.1) has a unique solution given by

x : R≥0 → Rn, t 7→ eAtx0 +

∫ t

0

eA(t−τ)Bu(τ) dτ.

We highlight some fundamental structural properties
which are central to the funnel control methodology. For
successful application of funnel control to (2.1), the en-
tries of (A,B,C), the initial value, and even the state di-
mension need not be known. What is required is output
information and information pertaining to the structural
properties of relative degree, high-frequency gain, and zero
dynamics.

2.1.1. Relative degree

For a linear system (2.1) we define its transfer func-
tion G(s) (a rational-matrix-valued function) by

G(s) := C(sI −A)−1B ∈ R(s)m×m,

which can be written as a formal power series

G(s) =

∞∑
k=0

s−(k+1)CAkB

with coefficients CAkB ∈ Rm×m, k ∈ N0, called Markov
parameters. If the first non-zero Markov parameter in the
power series for G(s) occurs at the power s−r and is invert-
ible, then we say that system (2.1) has relative degree r.

Definition 2.1. The linear system (2.1), equivalently the
triple (A,B,C), is said to have relative degree r ∈ N, if
CAkB = 0 for k = 0, . . . , r − 2, and Γ := CAr−1B is
invertible.

Clearly, the first condition is vacuous in the case r = 1.
The Cayley-Hamilton theorem ensures that r ≤ n. The
matrix Γ = CAr−1B is referred to as the high-frequency
gain matrix. It is a higher-dimensional analogue of the
control direction cb of Section 1.1.1. We are now in a po-
sition to state our first structural assumption.

(SA1) (A,B,C) has relative degree r ∈ N and r is
known to the controller.

Remark 2.2. The terminologies “relative degree” and
“high-frequency gain” have their origins in the early con-
trol engineering literature in which a “frequency domain”
or “transfer function” approach to linear systems was cen-
tral: the former terminology originates in the difference r
between the degrees of the denominator and numerator
polynomials in transfer functions of single-input, single-
output systems; the latter terminology reflects the fact
that, in “steady state”, the output from a stable single-
input, single-output system driven by a sinusoidal input
is sinusoidal of the same frequency ω with magnitude am-
plified/attenuated by a “gain” |g(ω)| with the property
that |g(ω)|/ωr → Γ as ω → ∞ and so, in this sense, Γ
characterizes “high-frequency” behaviour.

Assume that (2.1) has relative degree r ≥ 2. Let x ∈
ACloc(R≥0,Rn) be the solution corresponding to (x0, u) ∈
Rn×U , with associated output y(·) = Cx(·). Define func-
tions ξ1, . . . , ξr ∈ ACloc(R≥0,Rm) by

ξk(t) := CAk−1x(t), k = 1, . . . , r.

Then, for all t ≥ 0,

ξ̇k(t) = CAk−1ẋ(t) = CAkx(t) = ξk+1(t), k = 1, . . . , r−1,

and so embedded in system (2.1) of relative degree r is a
chain (of length r−1) ofm-dimensional integrators. In the
following, a coordinate transformation is described which
makes this embedded chain explicit.

2.1.2. Byrnes-Isidori form

Consider system (2.1) with relative degree r ≥ 2. Intro-
duce matrices

Br :=
[
B, AB, · · · , Ar−1B

]
∈ Rn×mr

and Cr :=


C
CA
...

CAr−1

 ∈ Rmr×n

and observe that CrBr ∈ Rmr×mr is invertible. Let W ∈
Rn×(n−mr) be such that imW = kerCr and write

V := (W⊤W )−1W⊤(I −Br(CrBr)
−1Cr

)
∈ R(n−rm)×n.
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Then, U :=

[
Cr
V

]
is invertible, with inverse U−1 =[

Br(CrBr)
−1, W

]
. Define

P := V ArBΓ−1, Q := V AW, S := CArW,

and partition CArBr(CrBr)
−1 into r constituent blocks

each of dimension m×m:

CArBr(CrBr)
−1 =

[
R1, R2, · · · , Rr−1, Rr

]
.

The similarity transformation (A,B,C) →
(UAU−1, UB,CU−1) yields the equivalent represen-
tation of (2.1)

ξ̇k(t) = ξk+1(t), k = 1, . . . , r − 1,

ξ̇r(t) =

r∑
k=1

Rkξk(t) + Sη(t) + Γu(t),

η̇(t) = Pξ1(t) +Qη(t),

y(t) = ξ1(t),

(2.2)

where ξk(·) = CAk−1x(·), k = 1, . . . , r and η(·) = V x(·).
This special structure – wherein the embedded chain of
integrators constitutes the first r− 1 of its dynamic equa-
tions – is known as a Byrnes-Isidori form. We remark
in passing (and without proof) that, whilst not a canoni-
cal form, a Byrnes-Isidori form is close to being so in the
sense that if two such forms differ, then they do so only
through the triple (Q,P, S). However, any two such triples
(regarded as linear input-output systems) must be obtain-
able from each other by a state space transformation; this
means that the difference in two Byrnes-Isidori forms is re-
solved through coordinate transformation of the η variable.
More precisely, if (Ã, B̃, C̃) and (Â, B̂, Ĉ) (with associ-
ated triples (Q̃, P̃ , S̃) and (Q̂, P̂ , Ŝ)) are two Byrnes-Isidori
forms in the similarity orbit of (A,B,C), then (Q̃, P̃ , S̃)
and (Q̂, P̂ , Ŝ) are similar. In this sense, a Byrnes-Isidori
form is essentially unique. Because of this property, the
form is often called Byrnes-Isidori normal form in the lit-
erature. For future reference, we record that, in the con-
text of the Byrnes-Isidori normal form, the system transfer
function is given by

G(s) = −

(
r∑
i=1

Ris
i−1 − srI + S(sI −Q)−1P

)−1

Γ, (2.3)

The above discussion assumes that r ≥ 2. In the rel-
ative degree one case r = 1 we have Γ = CB and the
Byrnes-Isidori form simplifies to

ξ̇(t) = Rξ(t) + Sη(t) + Γu(t),

η̇(t) = Pξ(t) +Qη(t),

y(t) = ξ(t).

In all cases, the triple (Q,P, S) of internal loop matrices
(unique up to a state space transformation) corresponds
to a linear (n−mr)-dimensional system with input y and
output z, given by

η̇(t) = Qη(t) + Py(t), z(t) = Sη(t), (2.4)

and referred to as the internal dynamics.

y(r) =

r∑
k=1

Rky
(k−1) + z + Γu

d
dt

· · · dr−1

dtr−1

η̇ = Qη + Py

z = Sη

y

y

yz

u

ẏ. . .y(r−1)

internal dynamics (2.4)

Figure 3: Byrnes-Isidori form

In summary, given a linear system (A,B,C) of relative
degree r ≥ 1, we refer to its equivalent representation (2.2)
as its (essentially unique) Byrnes-Isidori form. The signal
flow for a system in Byrnes-Isidori form (2.2) is depicted
in Fig. 3.

2.1.3. Zero dynamics

Next, for the linear system (2.1), we address the following
question: if the initial data and input are such that the
output vanishes identically, what is the nature of the resid-
ual internal dynamic behaviour? With this in mind, we
proceed to define the zero dynamics ZD(A,B,C) of (2.1).
Recall that U := Lloc∞(R≥0,Rm) and, for notational con-
venience, we write X := ACloc(R≥0,Rn). Then

ZD(A,B,C) :=

{
(x, u) ∈ X × U

∣∣∣∣ ẋ(t) = Ax(t) +Bu(t)
a.e., Cx(·) = 0

}
.

Equivalently, the zero dynamics may be viewed as the so-
lution space of the differential-algebraic system

d

dt

[
I 0
0 0

](
x(t)
u(t)

)
=

[
A B
C 0

](
x(t)
u(t)

)
and so

ZD(A,B,C) = kerX×U

[
A− d

dtI B
C 0

]
.

The zero dynamics ZD(A,B,C) are said to be

� bounded, if (x, u) ∈ L∞(R≥0,Rn×Rm) for all (x, u) ∈
ZD(A,B,C);

� asymptotically stable, if for all (x, u) ∈ ZD(A,B,C)
we have x(t) → 0 as t→ ∞ and ess supτ≥t∥u(τ)∥ →
0 as t→ ∞.

Assume that system (2.1) has relative degree r ∈ N.
Let (Q,P, S) be the essentially unique representation of
the internal dynamics. If (x, u) ∈ ZD(A,B,C), then, in
view of the Byrnes-Isidori form (2.2), we may infer that
Crx(·) = 0, η(·) = V x(·) satisfes η̇(·) = Qη(·), u(·) =
−Γ−1Sη(·) = −Γ−1CArx(·), and

ZD(A,B,C)

=

(x,−Γ−1CArx)

∣∣∣∣∣∣
ẋ(t) = (I −BΓ−1CAr−1)Ax(t),

x(0) ∈
r−1⋂
k=0

kerCAk

 .
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From the Byrnes-Isidori form, we may also infer that

det

[
A− sI B
C 0

]
= det(Γ) det(Q− sI) ∈ R[s].

Some immediate consequences of these inferences are
recorded in the following.

Proposition 2.3 (Relative degree and zero dynam-
ics). Assume that system (2.1) has relative degree r ∈ N.
Let Q (unique up to similarity) be the internal loop ma-
trix as in (2.4). Then the zero dynamics ZD(A,B,C) are
bounded if, and only if, for all λ ∈ σ(Q) we have Reλ ≤ 0
and, if Reλ = 0, then λ is semisimple. Moreover, the
following statements are equivalent:

• the zero dynamics ZD(A,B,C) are asymptotically sta-
ble;

• σ(Q)⊂C<0;

• ∀λ ∈ C≥0 : det

[
A− λI B
C 0

]
̸= 0.

We now introduce a second structural assumption.

(SA2) The zero dynamics ZD(A,B,C) are asymptoti-
cally stable.

2.1.4. High-gain stabilizability

A further structural property exhibited by linear systems
of the form (2.1) – in the relative degree one case with
asymptotically stable zero dynamics – is high-gain stabi-
lizability by output feedback. In particular, if all eigen-
values of CB have positive real part and the zero dynam-
ics ZD(A,B,C) are asymptotically stable, then there ex-
ists k∗ > 0 such that, for each fixed k ≥ k∗, the out-
put feedback u(t) = −ky(t), renders the closed-loop sys-
tem ẋ(t) = (A − kBC)x(t) asymptotically stable, i.e.,
σ(A − kBC) ⊆ C<0. This is the multivariable counter-
part of the high-gain property for the scalar prototype of
Section 1.1.1 and is – in different words – the content of
the following lemma (see, [78, Lem. 2.2.7]).

Lemma 2.4 (High-Gain Lemma). Consider a sys-
tem (2.1) which satisfies (SA2) and assume that σ(CB) ⊂
C>0. Then there exists k∗ > 0 such that, for each fixed
k ≥ k∗, we have

σ(A− kBC) ⊂ C<0 .

Whilst Lemma 2.4 does not play an explicit role in the
ensuing exposition of funnel control, it implicitly under-
pins much of the underlying intuition and early develop-
ment of the funnel methodology.

2.1.5. Class Lm,r of linear systems amenable to funnel
control

We summarize and close the above discussion with the fol-
lowing description of a class of linear systems of form (2.1)
which are amenable to control by funnel techniques in
the sense that he controllers developed in later sections
are applicable. This class comprises systems (A,B,C)
of form (2.1) with known relative degree r (assump-
tion (SA1)), with asymptotically stable zero dynamics (as-
sumption (SA2)), and which satisfies our third structural

assumption (a higher-dimensional counterpart of assump-
tion (1.14)):

(SA3) ∀ v ∈ Rm : v⊤Γv = 0 ⇐⇒ v = 0.

Assumption (SA3) means that Γ is sign-definite and,
stated otherwise, it is equivalent to the requirement that
either Γ+Γ⊤ ≻ 0 or −(Γ+Γ⊤) ≻ 0 (but which of these two
possible polarities holds is not known to the controller). In
particular, we define the system class

Lm,r :=
{
(A,B,C)
∈Rn×n×Rn×m×Rm×n

∣∣∣∣n∈N, (SA1), (SA2),
and (SA3) hold

}
.

(2.5)

2.2. Nonlinear functional differential systems

The notions of relative degree, control direction, and zero
dynamics – introduced in the context of finite-dimensional
linear ODE systems – when suitably generalized underpin
requisite structural assumptionsfor successful application
of funnel control to more diverse classes of systems.

For the sake of motivation, consider again a linear sys-
tem (2.1) with relative degree r ∈ N in Byrnes-Isidori
form (2.2). With its internal dynamics (2.4) we may asso-
ciate a linear operator

L : y(·) 7→
(
t 7→

∫ t

0

SeQ(t−τ)Py(τ) dτ

)
. (2.6)

With initial data η(0) = η0 := V x0 and d(·) := SeQ·η0,
the output z(·) of (2.4) is given by

z(t) = d(t) + L(y)(t).

Introducing the (linear) operator

T : C(R≥0,Rrm) → L∞
loc(R≥0,Rm),

ζ = (ζ1, . . . , ζr) 7→

(
t 7→

r∑
k=1

Rkζk(t) + L(ζ1)(t)

)
,
(2.7)

it follows from (2.2) that (2.1) is equivalent to the func-
tional differential system

y(r)(t) = d(t) +T(y, . . . , y(r−1))(t) + Γu(t)

y(0) = Cx0, . . . , y(r−1)(0) = CAr−1x0.

}
(2.8)

Albeit a functional differential form, the advantage
of (2.8) is that it is an rth-order functional differential
equation in the variable y(·) only. This representation is
the key to extending the results to more general situations,
in particular to nonlinear and infinite-dimensional systems
with the structure depicted in Fig. 4, with appropriate hy-
potheses (to be elucidated in due course) on the causal
operator T and the nonlinear function f .

2.2.1. Benign operators

Next, we make precise what we mean by a “causal oper-
ator with benign properties”. Two fundamental require-
ments are causality and bounded-input, bounded-output
behaviour of the operator. Causality we impose with-
out further comment (other than to say that, throughout,
we assume that the underlying systems are nonanticipa-
tive). Bounded-input, bounded-output behaviour may be
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causal operator
z = T(y, . . . , yr−1)

with benign properties

y(r) = f
(
d, z, u

)
d
dt

dr−1

dtr−1
· · ·

y
u

d z

y

ẏ

y(r−1)

...

Figure 4: Structure of nonlinear functional differential systems

regarded as a counterpart of the assumption of asymptoti-
cally stable zero dynamics (SA3). Linearity of the operator
is not required. Instead, we impose only a local Lipschitz
condition which plays a role in ensuring well-posedness of
the underlying system under feedback control. In partic-
ular, we introduce the following class of operators.

Definition 2.5 (Operator class Tn,qh ). For n, q ∈ N
and h ≥ 0 the set Tn,qh denotes the class of operators
T : C([−h,∞),Rn) → L∞

loc(R≥0,Rq) with the following
properties.

(TP1) Causality: T is causal, that is, for all ζ, θ ∈
C([−h,∞),Rn) and all t ≥ 0,

ζ|[−h,t] = θ|[−h,t] =⇒ T(ζ)|[0,t] = T(θ)|[0,t].

(TP2) Local Lipschitz property: for each t ≥ 0 and
all ξ ∈ C([−h, t],Rn), there exist positive con-
stants c0, δ, τ > 0 such that, for all ζ1, ζ2 ∈
C([−h,∞),Rn) with ζi|[−h,t] = ξ and ∥ζi(s) −
ξ(t)∥ < δ for all s ∈ [t, t + τ ] and i = 1, 2, we
have

ess sups∈[t,t+τ ] ∥T(ζ1)(s)−T(ζ2)(s)∥
≤ c0 sups∈[t,t+τ ] ∥ζ1(s)− ζ2(s)∥.

(TP3) Bounded-input bounded-output (BIBO) property:
for each c1 > 0, there exists c2 > 0 such that, for
all ζ ∈ C([−h,∞),Rn),

supt∈[−h,∞) ∥ζ(t)∥ < c1

=⇒ ess supt≥0 ∥T(ζ)(t)∥ < c2.

This formulation embraces nonlinear delay elements and
hysteretic effects, as we shall briefly illustrate.

Nonlinear delay elements. For i = 0, . . . , k, let Ψi : R×
Rm → Rq be measurable in its first argument and locally
Lipschitz in its second argument, uniformly with respect
to its first argument. Precisely, for each ξ ∈ Rm, Ψi(·, ξ)
is measurable, and for every compact C ⊂ Rm, there ex-
ists c > 0 such that for a.a. t ∈ R we have

∀ ξ1, ξ2 ∈ C : ∥Ψi(t, ξ1)−Ψi(t, ξ2)∥ ≤ c∥ξ1 − ξ2∥.

Let hi > 0, i = 0, . . . , k, and set h := maxi hi. For y ∈
C([−h,∞),Rm) and t ≥ 0 let

T(y)(t) :=

∫ 0

−h0

Ψ0(s, y(t+ s)) ds+

k∑
i=1

Ψi(t, y(t− hi)).

The operator T, so defined (which models distributed and

point delays), is of class Tm,qh ; for details, see [131].

Hysteresis. A large class of nonlinear operators T :
C(R≥0,R) → C(R≥0,R), which includes many physically-
motivated hysteretic effects, is defined in [110]. These op-
erators are contained in the class T1,1

0 of the present paper.
Specific examples include relay hysteresis, backlash hys-
teresis, elastic-plastic hysteresis, and Preisach operators.
For further details, see [86].

2.2.2. Admissible nonlinearities

Next, and with reference to Figure 4, we proceed to make
precise the admissible nonlinearities f .

Definition 2.6 (Class of nonlinearities Np,q,m). For
p, q,m ∈ N the set Np,q,m denotes the class of functions
f ∈ C(Rp × Rq × Rm,Rm) with the following property.

(NP1) There exists v∗ ∈ (0, 1) such that, for every com-
pact Kp ⊂ Rp and compact Kq ⊂ Rq the contin-
uous function χ : R → R defined by

s 7→min

{
⟨v, f(δ, z,−sv)⟩

∣∣∣∣ (δ, z) ∈ Kp ×Kq,
v ∈ Rm, v∗ ≤ ∥v∥ ≤ 1

}
is such that sups∈R χ(s) = ∞.

Property (NP1) may appear somewhat arcane. It be-
comes more transparent when interpreted in a linear con-
text wherein the following holds [27].

Proposition 2.7. Let L1 ∈ Rm×p, L2 ∈ Rm×q and Γ ∈
Rm×m. Then the linear map f : Rp × Rq × Rm →
Rm, (δ, z, v) 7→ L1δ + L2z + Γv, satisfies:

f has property (NP1) ⇐⇒ Γ is sign-definite.

Thus, (NP1) may be regarded as a nonlinear generalization
of (SA3). If a function f satisfies (NP1), then, for each
pair of compact sets Kp ⊂ Rp and Kq ⊂ Rq, there exists
σ ∈ {−1,+1} such that

χ(σs) → ∞ as s→ ∞.

If σ ∈ {−1,+1} is such that the above holds for all sets Kp

and Kq, then we refer to σ as the control direction (a nat-
ural analogue of the term introduced in the context of the
prototype linear system (1.3).

2.2.3. Class Nm,r of functional differential systems
amenable to funnel control

We summarize the above discussion with the following
characterization of a class of nonlinear functional differ-
ential systems which will be shown to be amenable to con-
trol by funnel techniques. The system representative of
this class, parametrized by m, r ∈ N, takes the form

y(r)(t) = f
(
d(t),T(y, ẏ, . . . , y(r−1))(t), u(t)

)
, (2.9)

with initial data

y|[−h,0] = y0 ∈ Cr−1([−h, 0],Rm), if h > 0,(
y(0), · · · , y(r−1)(0)

)
=
(
y01 , · · · , y0r

)
∈ Rrm, if h = 0,

}
(2.10)

where h ≥ 0 quantifies the “memory” in the system and,
for some p, q ∈ N, f ∈ Np,q,m, T ∈ Trm,qh , and d ∈
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L∞(R≥0,Rp). The representative system may be iden-
tified with a triple (d, f,T) and so we write

Nm,r :=

{
(d, f,T)

∣∣∣∣ d ∈ L∞(R≥0,Rp), f ∈ Np,q,m,
T ∈ Trm,qh , p, q ∈ N, h ≥ 0

}
.

We show that the class of linear systems Lm,r, as de-
fined in (2.5), is indeed contained in the class Nm,r for
any m, r ∈ N, for which we recall that (2.1) is equivalent
to (2.8).

Lemma 2.8. Let (A,B,C) ∈ Lm,r for some m, r ∈ N,
with associated Byrnes-Isidori form (2.2). Let the op-
erator T be as in (2.7). Define f : Rm × Rm × Rm →
Rm, (δ, z, u) 7→ δ + z + Γu. Let η0 ∈ Rn−mr be arbitrary
and define d(·) := SeQ ·η0. Then (d, f,T) ∈ Nm,r.

Proof. Clearly, d is bounded by (SA2) and Proposition 2.3.
We show that T ∈ Trm,m0 . It is easy to see that the
operator T satisfies properties (TP1) and (TP2) of the
class Trm,m0 . The BIBO property (TP3) is closely related
to property (SA2) of the system (A,B,C). First observe
that the transfer function C(sI − A)−1B ∈ R(s)m×m of
(A,B,C) is invertible over R(s) by (2.3), since Γ is in-
vertible. It is then shown in [27, Sec. 2.12] that T satis-
fies (TP3).

Finally, to conclude that f ∈ Nm,m,m, it suffices to
note that, by (SA3) and Proposition 2.7, (NP1) holds.

2.2.4. Input nonlinearities

In addition to accommodating the issue of (unknown) con-
trol direction, the generic formulation (2.9) with associated
property (NP1) encompasses a wide variety of input non-
linearities. Consideration of a scalar system of the form

ẏ(t) = f1(y(t)) + f2(y(t)) β(u(t)) (2.11)

with f1 ∈ C(R,R), f2 ∈ C(R,R\{0}) and β ∈ C(R,R), will
serve to illustrate this variety. The assumption that f2 is a
non-zero-valued continuous function ensures a well-defined
control direction (unknown to the controller). Without
loss of generality, we may assume that f2 ∈ C(R,R>0);
if f2 is negative-valued, then, in (2.11), simply replace f2
by −f2 and β by −β. We impose the following conditions
on β ∈ C(R,R):

β is surjective, with |β(τ)| → ∞ as |τ | → ∞, (2.12)

which is equivalent to requiring that one of the following
conditions hold:

lim
τ→±∞

β(τ) = ±∞ or lim
τ→±∞

β(τ) = ∓∞.

Under these conditions, it is shown in [27, Sec. 2.3] that
system (2.11) has property (NP1).

2.2.5. Dead-zone input

An important example of a nonlinearity β = D with prop-
erties (2.12) is a so-called dead-zone input of the form

D : R → R, v 7→ D(v) =

 Dr(v), v ≥ br,
0, bl < v < br,

Dl(v), v ≤ bl

with unknown deadband parameters bl < 0 < br and un-
known functions Dl, Dr ∈ C(R,R) which satisfy, for un-
known σ ∈ {−1, 1},

Dl(bl) = Dr(br) = 0

and lim
s→∞

σDr(s) = ∞, lim
s→−∞

σDl(s) = −∞.

Note that the above assumptions allow for a much larger
class of functions Dl, Dr compared to e.g. [118], where as-
sumptions on their derivatives are used. In particular, in
the present context, Dl and Dr need not be differentiable
or monotone.

2.2.6. A special subclass of Nm,r

For later use in the context of funnel control with non-
derivative feedback, we introduce a subclass of Nm,r. The
systems to be studied are affine in the control and are
represented by functional differential equations, with Rm-
valued input u and output y, of the form

y(r)(t) = f̂(d(t), T̂(y, ẏ, . . . , y(r−1))(t)) + Γu(t),

where Γ ∈ Glm(R), f̂ ∈ C(Rp × Rq̂,Rm) and T̂ ∈ Trm,q̂h ,
q̂ > rm. We impose additional structural assumptions
as follows. First, it is assumed that T̂ is of the (highly
structured) form given by

T̂(ζ1, . . . , ζr) =
(
ζ1, . . . , ζr,T(ζ1, . . . , ζr)

)
where T ∈ Trm,qh (q = q̂ − rm) satisfies

(TP3’) for all c1 > 0 there exists c2 > 0 such that for
all

ζ1, . . . , ζr ∈ C([−h,∞),Rm) :

sup
t∈[−h,∞)

∥ζ1(t)∥ ≤ c1 =⇒ sup
t∈[0,∞)

∥T(ζ1, . . . , ζr)(t)∥ ≤ c2.

Secondly, the function f̂ ∈ C(Rp × Rmr × Rq,Rm) is as-
sumed to take the form

f̂(d, ζ, η) = f̂(d, ζ1, . . . , ζr, η) =

r∑
i=1

Riζi + f(d, η),

where f ∈ C(Rp × Rq,Rm) and Ri ∈ Rm×m, i = 1, . . . , r.
Thirdly, Γ is assumed to be sign definite: |⟨v,Γv⟩| > 0 for
all v ̸= 0. In summary, with r ≥ 2, the generic system to
be investigated is

y(r)(t) =

r∑
i=1

Riy
(i−1)(t)

+ f
(
d(t),T(y, ẏ, . . . , y(r−1))(t)

)
+ Γu(t), (2.13)

with initial data

y|[−h,0] = y0 ∈ Cr−1([−h, 0],Rm), if h > 0,

(y(0), ẏ(0), . . . , yr−1(0)) = (y01 , y
0
2 , . . . , y

0
r−1), if h = 0,

}
(2.14)

where Γ ∈ Glm(R) is sign definite, Ri ∈ Rm×m, i =
1, . . . , r, f ∈ C(Rp ×Rq,Rm), T ∈ Trm,qh such that (TP3’)
holds, and the disturbance d is essentially bounded.
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Remark 2.9. The assumption that the generic system
is affine in the control can be weakened. Assume instead
that the input enters via a function g ∈ C(Rm,Rm) and
posit the existence of a sign-definite Γ ∈ Glm(R) such that
v 7→ g(v) − Γv is bounded (which, for example, permits
dead zone effects), then, for any input u(·) (of class L∞

loc),
the function du : t 7→ g(u(t))−Γu(t) is essentially bounded
and so the system with input operator g is subsumed by
the form (2.13) on replacing f by the C(Rp+m×Rq,Rm)-
function

(
(d1, d2), η

)
7→ f(d1, η) + d2.

2.3. Differential-algebraic systems

In the last decades the interest in control design for sys-
tems described by differential-algebraic equations (DAEs)
steadily increased. In the simplest case, those equations
are combinations of differential equations with algebraic
constraints, restricting the dynamics to certain subspaces
or submanifolds of the state space. However, in general
the constraints are not obvious and may also impose re-
strictions on the possible choices of input functions or, at
the other extreme, completely free variables are possible
which may occur in the output. Therefore, a thorough
analysis of DAEs is necessary and we refer to the text-
books [41, 99, 100], to name but a few.

2.3.1. Linear differential-algebraic systems

Here, we focus on linear differential-algebraic system given
by the equations

d
dtEx(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(2.15)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n; we write
[E,A,B,C] ∈ Σn,m. We allow for singular E. In the
extreme case of E = 0, (2.15) consists only of algebraic
equations.

Solutions – we define in due course what a solution is –
exhibit quite different features compared to linear ODE
systems (2.1). Consider the linear DAE system (in Σ2,1)

d

dt

[
0 0
1 0

](
x1(t)
x2(t)

)
=

[
1 0
0 1

](
x1(t)
x2(t)

)
+

[
−1
0

]
u(t),

y(t) =
[
0 1

](x1(t)
x2(t)

)
,

(2.16)
which can be reformulated as y(t) = u̇(t). Therefore, this
system does not have a free input, the latter must be differ-
entiable; the state is not determined by u but the deriva-
tive of u determines x2.

Moreover, it is necessary to re-visit the concept of rel-
ative degree given in Definition 2.1: for system (2.16), a
relative degree in the sense of Definition 2.1 does not ex-
ist. First, we may observe that it is possible to extend the
definition of a transfer functions to DAE systems (2.15),
where the so-called matrix pencil sE−A ∈ R[s]n×n is reg-
ular, i.e., det(sE −A) ∈ R[s] \ {0}. In this case, sE −A is
invertible over the quotient field R(s) and we may define
the transfer function by

G(s) := C(sE −A)−1B ∈ R(s)m×m.

For single-input, single-output systems (as discussed in
Section 2.1.1), the relative degree equals the difference

between the degrees of the denominator and numerator
polynomials in the transfer function G(s) = p(s)/q(s). For
system (2.16), the transfer function can be computed as

G(s) =
[
0 1

] [−1 0
s −1

] [
−1
0

]
= s,

thus p(s) = s and q(s) = 1 which yields a relative degree
r = deg q(s) − deg p(s) = −1. In fact, for differential-
algebraic systems a negative relative degree is quite com-
mon, which means that the underlying system contains a
chain of differentiators (instead of integrators as for ordi-
nary differential equations with positive relative degree).
For general differential-algebraic systems, it is possible to
extend the notion of relative degree to r ∈ Z. Then again,
this enables us to derive a decomposition of the system
which exposes the underlying chains of integrators and dif-
ferentiators as well as the zero dynamics; this generalizes
the Byrnes-Isidori form, see Remark 2.10 below.

In the current linear context, the appropriate solu-
tion concept for differential-algebraic equations is that
of the behavioural approach, introduced by Jan C
Willems [149] (see also [121, 150]), wherein the behaviour
of [E,A,B,C]∈ Σn,m is defined as

B[E,A,B,C]

:=

(x, u, y)
∈L1

loc(R≥0,Rn×Rm×Rm)

∣∣∣∣∣∣
Ex ∈ ACloc(R≥0,Rn),
(2.15) holds for
a.a. t≥0

.
The zero dynamics ZD(E,A,B,C) of (2.15) are defined,
similar to linear ODE systems, as those elements (x, u, y)
ofB[E,A,B,C] for which the output y is (almost everywhere)
zero:

ZD(E,A,B,C)

:=
{
(x, u)∈L1

loc(R≥0,Rn×Rm)
∣∣ (x, u, 0)∈B[E,A,B,C]

}
.

Analogous to the ODE case, the zero dynamics are said to
be bounded, if (x, u) ∈ L∞(R≥0,Rn × Rm) for all (x, u) ∈
ZD(E,A,B,C) and are said to be asymptotically stable,
if ess supτ≥t∥(x(τ), u(τ))∥ → 0 as t → ∞ for all (x, u) ∈
ZD(E,A,B,C). It is shown in [10, Lem. 3.11] that the
zero dynamics ZD(E,A,B,C) are asymptotically stable
if, and only if,

∀λ ∈ C≥0 : det

[
A− λE B
C 0

]
̸= 0.

Another crucial system property, in particular for control
purposes, is that every smooth function R≥0 → Rm can be
generated as the output of the system for some appropriate
input. This leads to the notion of right invertibility (which
has been introduced and analyzed for ODE systems e.g.
in [129, 135], see also the textbook [145, Sec. 8.2]); we call
[E,A,B,C] ∈ Σn,m right invertible, if

∀ y ∈ C∞(R≥0,Rm) ∃ (x, u) ∈ L1
loc(R,Rn × Rm) :

(x, u, y) ∈ B[E,A,B,C].

For a right-invertible system [E,A,B,C] ∈ Σn,m with
asymptotically stable zero dynamics, a distillation of re-
sults from [9] (in particular, Lemma 4.2.5, Theorem 4.2.7,
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Proposition 4.2.12 & Remark 4.3.10 therein; see also [10,
Section 3]) establishes that (2.15) is equivalent to

x2(t) =

ν−1∑
k=0

NkE11x
(k+1)
1 (t),

0 = A21x1(t)− E21ẋ1(t)− E22ẋ2(t)

+A23x3(t) + u(t),

ẋ3(t) = Qx3(t) +A31x1(t),

y(t) = x1(t),


(2.17)

where x1(t) ∈ Rm, x2(t) ∈ Rn2 , x3(t) ∈ Rn3 with n2 = νm
and n3 = n−(ν+1)m, N ∈ Rn2×n2 is nilpotent with index
of nilpotency ν, and all other matrices are of conforming
size. Moreover, Q ∈ Rn3×n3 is Hurwitz, that is, σ(Q) ⊂
C<0.

Remark 2.10. The form (2.17) is a generalization of the
Byrnes-Isidori form (2.2) of linear systems (A,B,C). More
precisely, assume that E in (2.15) is invertible (without
loss of generality, we may assume that E = I) and so, in
Byrnes-Isidori form, the system (of relative degree r) is
given by (2.2). Setting n2 = (r − 1)m and writing

N =


0 0 · · · 0 0
Im 0 · · · 0 0
0 Im · · · 0 0
...

...
. . .

...
...

0 0 · · · Im 0

 , E11 =


Im
0
0
...
0

 ,

(each being vacuous if r = 1 and, for r > 1, N is nilpotent
with index ν = r − 1), we have

ν−1∑
k=0

NkE11x1
(k+1)(t) =

 ẏ(t)
...

y(r−1)(t)


and so the first of relations (2.17) is simply a re-affirmation
of the first set of r − 1 equations in (2.2). The second set
of equations (2.2) can be re-written as

0 = Γ−1

(
R1y(t) +R2ẏ(t) +

r∑
k=3

Rky
(k−1)(t)

− y(r)(t) + Sη(t)

)
+ u(t)

which, on setting A21 = Γ−1R1, E21 = −Γ−1R2, E22 =
−Γ−1[R3, . . . , Rr,−Im] and A23 = Γ−1S, coincides with
the second of equations (2.17). Finally, on setting A31 =
P , the third of equations (2.2) and (2.17) coincide. In
summary, we have shown that, in the case of invertible E,
the form (2.17) of system (2.15) is equivalent to its Byrnes-
Isidori form (2.2).

Returning to the general case of right-invertible sys-
tems [E,A,B,C] ∈ Σn,m with asymptotically stable zero
dynamics, and adopting the “Byrnes-Isidori” form (2.17),
we see that, by nilpotency of N , (sN − In2

)−1 =

−
∑ν−1
k=0N

ksk. Define

−A21 + sE21 +

ν−1∑
k=0

E22N
kE11s

k+2

−A23(sIn3
−Q)−1A31 =: H(s) ∈ R(s)m×m

and observe that (cf. also [10, Rem. A.4]), if sE −
A is regular with invertible transfer function G(s) =
C(sE − A)−1B, then G(s)−1 = H(s). We define
the degree of a vector of rational functions h(s) =(
p1(s)/q1(s), . . . , pm(s)/qm(s)

)⊤ ∈ R(s)m by

deg h(s) := max
i=1,...,m

(
deg pi(s)− deg qi(s)

)
.

Let hi(s), i = 1, . . . ,m, denote the columns of H(s)
and write ri := max{deg hi(s), 0}, i = 1, . . . ,m: right-
multiplication of H(s) by a permutation matrix P ∈
Rm×m (corresponding to a re-ordering of the components
of the system output, if necessary) ensures that, without
loss of generality, we may assume the ordering r1 ≥ · · · ≥
rm (≥ 0). Observe that the following are well defined:

lims→∞ s−rihi(s) =: ĥi ∈ Rm, i = 1, . . . ,m. Write

ΓH := lim
s→∞

H(s)diag
(
s−r1 , . . . , s−rm

)
=
[
ĥ1, . . . , ĥm

]
∈ Rm×m (2.18)

Let ℓ ∈ {1, . . . ,m} be such that, for all i ∈ {1, . . . ,m},
ri = 0 implies i > ℓ. Define

Γℓ :=
[
ĥ1, . . . , ĥℓ

]
∈ Rm×ℓ. (2.19)

As introduced in [31], the m-tuple (r1, . . . , rm) is said
to be the truncated vector relative degree of [E,A,B,C],
if rk Γℓ = ℓ.

Remark 2.11. At first glance, it might seem more natural
to call the m-tuple (r1, . . . , rm) the vector relative degree
and to call the ℓ-tuple (r1, . . . , rℓ) the truncated vector
relative degree. However, a concept of “vector relative de-
gree” already exists for DAE systems (see Def. 2.7 in [31])
which differs from (r1, . . . , rm) insofar as it may also con-
tain negative entries: the terminology “truncated” refers
to the extant notion of vector relative degree with its neg-
ative terms excised.

Although the situation of arbitrary truncated vector
relative degree is extensively explored in [31], for pur-
poses of exposition we restrict ourselves here to the case
of truncated strict relative degree, that is, we assume that
there exists r ∈ N such that r1 = . . . = rℓ = r and
rℓ+1 = . . . = rm = 0; this relative degree is denoted by
the pair (r, ℓ). Observe that, if rk Γℓ = ℓ, then (invoking a
suitable re-ordering of the components of the system input
if necessary), we may assume, without loss of generality,
that Γℓ takes the form

Γℓ =

[
Γ̂

Γ̃

]
with Γ̂ ∈ Glℓ(R). (2.20)

Remark 2.12. The concept of truncated strict relative
degree generalizes the concept of relative degree for linear
systems (A,B,C) introduced in Definition 2.1. To see this,
let E = I in (2.15) and assume that (A,B,C) has relative
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degree r ∈ N, i.e., (SA1) holds. Then Γ = CAr−1B ∈
Rm×m is invertible and for F (s) := srG(s) ∈ R(s)m×m

we have that F (s) = Γ + G̃(s), where G̃(s) is strictly
proper, i.e., lims→∞ G̃(s) = 0 and so the degree of each
of its elements is not greater than −1: deg G̃(s)ij ≤ −1,
i, j = 1, . . . ,m. We show that F (s) is invertible over
R(s). Let ρ(s) = (ρ1(s), . . . , ρm(s))⊤ ∈ R(s)m be such
that F (s)ρ(s) = 0. Let J := { j ∈ {1, . . . ,m} | ρj ̸= 0 }
and so ρj(s) = pj(s)/qj(s), pj(s) ̸= 0, for all j ∈ J .
Seeking a contradiction, suppose that J ̸= ∅. Since
ρ(s) = −Γ−1G̃(s)ρ(s) and deg G̃(s)ij ≤ −1, we have

deg ρi(s)=deg
∑
j∈J

(
−Γ−1G̃(s)

)
ij
ρj(s)≤−1+max

j∈J
deg ρj(s)

for all i ∈ J , and so, for some j ∈ J , we arrive at the
contradiction

deg pj(s)− deg qj(s) ≤ −1 + deg pj(s)− deg qj(s).

Therefore, ρ(s) = 0 and so F (s)−1 ∈ R(s)m×m. It follows
that G(s) is invertible and so, recalling (2.3),

H(s) = G(s)−1

= −Γ−1

(
r∑
i=1

Ris
i−1 − srI + S(sI −Q)−1P

)
.

Clearly, each column hi(s) = H(s)ei has degree
deg hi(s) = r for i = 1, . . . ,m and so q = m. Moreover, Γℓ
is invertible:

Γℓ = lim
s→∞

s−rH(s) = Γ−1.

Therefore, [I, A,B,C] has truncated strict relative de-
gree (r,m).

Returning to the general context of differential-
algebraic systems of form (2.15), we posit the following
structural assumptions:

(DA1) [E,A,B,C] is right-invertible and has asymptot-
ically stable zero dynamics,

(DA2) [E,A,B,C] has a truncated strict relative degree
(r, ℓ) which is known to the controller,

(DA3) Γ̂ is sign-definite.

We now introduce a class of DAEs, which will be shown
to be amenable to funnel control,

LDm,r,ℓ :=

{
[E,A,B,C] ∈ Σn,m

∣∣∣∣ n ∈ N, (DA1), (DA2),
and (DA3) hold

}
.

Remark 2.13. If [In, A,B,C] ∈ Σn,m, then it is readily
verified that Assumptions (DA1), (DA2), (DA3) all hold
if, and only if, Assumptions (SA1), (SA2), (SA3) all hold.
Therefore,{

(A,B,C)
∣∣∣ [In, A,B,C] ∈ LDm,r,ℓ

}
= Lm,r,

where the latter is defined in (2.5).

As shown in [31, Sec. 2.3], a system [E,A,B,C] ∈
LDm,r,ℓ is equivalent to

y
(r)
I (t) =

r∑
k=1

Rk,1y
(k−1)
I (t) + P1yII(t) + S1x3(t)

+ Γ̂uI(t),

0 =

r∑
k=1

Rk,2y
(k−1)
I (t) + P2yII(t) + S2x3(t)

+ Γ̃uI(t) + uII(t),

ẋ3(t) = Qx3(t) +A31y(t),

(2.21)

where
yI = (y1, . . . , yℓ) ∈ Rℓ, yII = (yℓ+1, . . . , ym) ∈ Rm−ℓ,
uI = (u1, . . . , uℓ) ∈ Rℓ, uII = (uℓ+1, . . . , um) ∈ Rm−ℓ.

2.3.2. Nonlinear differential-algebraic systems

Similar to the extension of the Byrnes-Isidori form (2.2) to
the nonlinear functional differential systems (2.9), the rep-
resentation (2.21) of linear DAE systems can be extended
to incorporate a class of nonlinear DAE systems, cf. [26,
31]. For motivation, consider [E,A,B,C] ∈ LDm,r,q and
assume that its representation is in form (2.21). Analogous
to (2.4), we introduce the linear operator

L : C(R≥0,Rm) → C(R≥0,Rm),

y 7→
(
t 7→

∫ t

0

eQ(t−τ)A31y(τ) dτ

)
.

Define operators

T1 : C(R≥0,Rℓ × · · · × Rℓ × Rm−ℓ) → C(R≥0,Rm),

(ζ1, . . . , ζr, θ)

7→

(
t 7→

r∑
k=1

Rk,1ζk(t) + S1L(ζ1, θ)(t) + P1θ(t)

)
,

T2 : C(R≥0,Rm) → C(R≥0,Rm−ℓ), y 7→
(
t 7→ S2L(y)(t)

)
and set d(·) := eQ·x3(0), d1(·) := S1d(·) and d2(·) :=
S2d(·). We may now identify (2.21) with the functional
differential-algebraic system

y
(r)
I (t) = d1(t) +T1

(
yI , . . . , y

(r−1)
I , yII

)
(t) + Γ̂uI(t),

0 =

r∑
k=1

Rk,2y
(k−1)
I (t)+P2yII(t)+d2(t)+T2(yI , yII)(t)

+ Γ̃uI(t) + uII(t).
(2.22)

Next, we extend this prototype to encompass nonlinear
functional differential-algebraic equations (with memory
quantified by h ≥ 0) of the form

y
(r)
I (t) = f1

(
d1(t),T1(yI , . . . , y

(r−1)
I , yII)(t), uI(t)

)
,

0 = f2
(
yI(t), . . . , y

(r−1)
I (t)

)
+ f3

(
yII(t)

)
+ f4

(
d2(t),T2(yI , yII)(t)

)
+ f5(t)uI(t) + f6(t)uII(t)

(2.23)
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with initial data

yI |[−h,0] = y0I ∈ Cr−1([−h, 0],Rℓ),
yII |[−h,0] = y0II ∈ C([−h, 0],Rm−ℓ), if h > 0,(
yI(0), · · · , y(r−1)

I (0), yII(0)
)

=
(
y0I,1, · · · , y0I,r, y0II

)
∈ Rm+(r−1)ℓ, if h = 0.

 (2.24)

We proceed to make precise the admissible operators and
functions in the above extended formulation. We first de-
fine a subclass of the operator class of Definition 2.5.

Definition 2.14 (Operator class Tn,qh,DAE). For h ≥ 0,

n, q ∈ N, the set Tn,qh,DAE denotes the subclass of operators

T : C([−h,∞),Rn) → C1(R≥0,Rq) such that T ∈ Tn,qh
and, in addition, there exist g ∈ C(Rn × Rq,Rq) and T̃ ∈
Tn,qh such that

∀ ζ ∈ C([−h,∞),Rn) ∀ t ≥ 0 : d
dt (Tζ)(t) = g

(
ζ(t), T̃(ζ)(t)

)
.

We note that the additional assumption of the
class Tn,qh,DAE formulated above essentially requires that T
is the solution operator of a functional differential equation
with input ζ.

Remark 2.15. Recall that the operator T2 in (2.22) takes
the form T2 : y 7→ S2L(y). If σ(Q) ⊆ C−, then it is easy
to see that T2 ∈ Tm,q0 . Furthermore,

d
dtT2(y)(t) = S2A31y(t) + T̃(y)(t),

where T̃ : y 7→ S2QL(y), and so T2 ∈ Tm,m−q
0,DAE .

Now, for m, r ∈ N and ℓ ∈ {0, . . . ,m}, the representa-
tive nonlinear DAE system (2.23) may be identified with
the tuple (d1, d2, f1, . . . , f6,T1,T2) on which we impose
the following assumptions: for some β > 0 and ℓ, p ∈ N,

d1, d2 ∈ L∞(R≥0,Rp), f1 ∈ Np,q,ℓ,
f2 ∈ C1(Rrℓ,Rm−ℓ), f3 ∈ C1(Rm−ℓ,Rm−ℓ),
f4 ∈ C1(Rp+q,Rm−ℓ), f5 ∈ (C1 ∩ L∞)(R≥0,R(m−ℓ)×ℓ),
f6 ∈ (C1 ∩ L∞)(R≥0,R),
∀ t ≥ 0 : |f6(t)| ≥ β, T1 ∈ T(r−1)ℓ+m,q

h , T2 ∈ Tm,qh,DAE


(2.25)

where Np,q,ℓ is as in Definition 2.6. Thus, we are
led to consideration of the following nonlinear functional
differential-algebraic system class, parametrized by m, r ∈
N and ℓ ∈ {0, . . . ,m}:

NDm,r,ℓ :=

{
(d1, d2, f1,
. . . , f6,T1,T2)

∣∣∣∣ (2.25) holds for some,
h ≥ 0, β > 0, q, p ∈ N

}
.

Recalling the equivalent representations (2.21) and (2.22)
of any linear system [E,A,B,C] ∈ LDm,r,ℓ, we have
the inclusion LDm,r,q ⊂ NDm,r,ℓ. We also remark that,
if ℓ = m, then yII and the second of relations (2.23) are
vacuous, in which case (2.9) and (2.23) are equivalent and
so Nm,r ≡ NDm,r,m.

2.4. Systems described by partial differential equations

Early intimations on funnel control for infinite-dimensional
systems modelled by partial differential equations (PDEs)
may be found in Ilchmann, Ryan, and Sangwin (2002) [87].
However, in a general infinite-dimensional context, many
open questions and challenges remain. We briefly describe

some recent findings in the following three subsections,
which we preface with some basic facts pertaining to linear
infinite-dimensional systems in the abstract form

ż(t) = Az(t) +Bζ(t), z(0) = z0 ∈ D(A), η(t) = Cz(t),
(2.26)

where A is the generator of a strongly continuous semi-
group of bounded linear operators on a real Hilbert
space H. In what follows, for brevity, technicalities are
suppressed: the reader is referred to the succinctly-written
treatise [147] for full details; the survey article [146] is
likewise recommended. Recall that a semigroup (T (t))t≥0

on H is a parameterized family of operators in L(H,H)
satisfying T (0) = I and T (t + s) = T (t)T (s), for all
s, t ≥ 0, where I denotes the identity operator. The semi-
group is said to be strongly continuous if, for all z ∈ H,
∥T (t)z − z∥ → 0 as t→ 0. The growth bound of the semi-
group is

ωT := inf

{
ω ∈ R

∣∣∣∣ sup
t≥0

∥e−ωtT (t)∥ <∞
}

and, for any ω > ωT , there exists a constant cω such that

∀ t ≥ 0 : ∥T (t)∥ ≤ cωe
ωt.

The semigroup is exponentially stable, if ωT < 0.
We assume that the (densely defined) operator A has

non-empty resolvent set ϱ(A). Introduce the (Hilbert)
spaces H1 and H−1, where H1 = D(A) equipped with the
graph norm and H−1 is the completion of H with respect
to the norm given by ∥z∥−1 = ∥(βI − A)−1z∥, where β is
any element of ϱ(A). ThenH1 ⊂ H ⊂ H−1 with dense and
continuous injections. As a map H1 → H, A is bounded,
that is, A ∈ L(H1, H), and has a unique extension A−1 ∈
L(H,H−1). Furthermore, the semigroup (T (t))t≥0 on H
extends uniquely to a semigroup (T−1(t))t≥0 with genera-
tor A−1.

We are now in a position to formulate assumptions on
the triple (A,B,C), specifically tailored to our context of
funnel control. First, we assume that ζ and η are, respec-
tively, Rℓ-valued and Rq-valued functions. Secondly, we
assume that (A,B,C) is a regular well-posed system, that
is:

(i) A is the generator of a strongly continuous semigroup
(T (t))t≥0.

(ii) B is an admissible control operator (in the termi-
nology coined by Curtain and Weiss [50]); that is,
B ∈ L(Rℓ, H−1) and

Φt : ζ 7→
∫ t

0

T−1(t− τ)Bζ(τ) dτ

is in L
(
L2([0, t],Rℓ), H

)
for all t ≥ 0.

(iii) C is an admissible observation operator; that is, C ∈
L(H1,Rq) and, for all t ≥ 0,

Ψt : z 7→ CT (·)z is in L
(
(H1, ∥·∥H),L2([0, t],Rq)

)
.

(iv) For some ω ∈ R, there exists an analytic function
G : C>ω → Rq×ℓ (referred to as a transfer function)
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which satisfies

∀ s ∈ C>ω : G′(s) = −C(sI −A)−2B (2.27)

and limRe s→∞ G(s) exists.

The subtlety of assumption (ii) is that Φt generates a H-
valued function, even though the function Bζ(·) takes its
values in an the larger space H−1; loosely speaking, the
“smoothing” effect of the semigroup saves the day. For
ζ ∈ L2

loc(R≥0,Rℓ), the mild solution of the initialised dif-
ferential equation in (2.26) is given by

z(t) = T (t)z0 +Φt(ζ|[0,t]), t ≥ 0.

2.4.1. Infinite dimensional internal dynamics

Consider again system (2.26) and assume that (A,B,C)
is regular well-posed. With this system, for every z0 ∈ H1

we may associate a map

T : C(R≥0,Rℓ) → L∞
loc(R≥0,Rq),

ζ 7→ η =
(
t 7→

(
CT (t)z0 + CΦt(ζ|[0,t])

))
for which, as shown in [34], properties (TP1) and (TP2) of
Definition 2.5 hold. If, in addition, (A,B,C) is bounded-
input bounded-output stable, i.e., the inverse Laplace
transform of each of the components of the transfer func-
tion G is a real-valued measure with bounded total vari-
ation, then property (TP3) also holds and so T ∈ Tℓ,q0 ;
note that exponential stability of the semigroup (T (t))t≥0

is sufficient for this property to hold. If f ∈ Np,q,m (recall
Definition 2.6), d ∈ L∞(R≥0,Rp) and setting ℓ = rm, we
may conclude that (d, f,T) ∈ Nm,r. Note that the class of
operators T considered in [34] is considerably larger and
also allows for certain nonlinear output operators associ-
ated with the differential equation in (2.26).

The application of funnel control to a particular mem-
ber of the above described system class was considered
in [35]: the control of the horizontal movement of a water
tank. The problem is modelled via the linearized Saint-
Venant equations and subject to sloshing effects. It is
shown that the overall system belongs to the above sys-
tem class and hence tracking with prescribed transient be-
haviour can be achieved. We will return to this example
in Section 5.3.

2.4.2. Linear infinite-dimensional systems with integer-
valued relative degree

The following class of single-input, single-output, linear,
infinite-dimensional systems (A, b, c), coming from partial
differential equations and of the general form (2.26), were
considered by Ilchmann, Selig, and Trunk (2016) [90]:

ẋ(t) = Ax(t)+bu(t), x(0) = x0 ∈ D(A), y(t) = ⟨x(t), c⟩ ,
(2.28)

where

(A1) A : D(A) → H is the generator of a strongly-
continuous semigroup (T (t))t≥0 of bounded linear
operators on a real Hilbert space H with inner
product ⟨., .⟩,

and b, c ∈ H with, for some r ∈ N,

(A2) b ∈ D(Ar) and c ∈ D
(
(A∗)r

)
,

(A3) ⟨Ar−1b, c⟩ ̸= 0 and ⟨Ajb, c⟩ = 0 for all j =
0, 1, . . . , r − 2.

For finite-dimensional systems (in which case, H ≃ Rn for
some n ∈ N) assumptions (A1) and (A2) are superfluous,
and assumption (A3) is the relative degree r property from
Definition 2.1. For infinite-dimensional systems, assump-
tion (A1) is ubiquitous in systems theory, see e.g. [51] and
has already been discussed above; assumption (A2) is very
restrictive from a practical point of view (for example, if Ω
is the spatial domain of an underlying PDE, then con-
trol/observation on the domain boundary and pointwise
control/observation concentrated at points in the interior
of Ω are both excluded). For ω > ωT (the growth bound of
the semigroup), the function s 7→ G(s) := ⟨c, (sI−A)−1b⟩
is a transfer function on Cω (recall that it is unique up to
a constant). Assumptions (A2) and (A3) imply, by [116,
Lem. 2.9], that that the transfer function of the system
satisfies

lim
s→∞, s∈R

srG(s) ̸= 0 and lim
s→∞, s∈R

sr−1G(s) = 0. (2.29)

It follows a fortiori that, under assumptions (A1)-(A3),
system (A, b, c) is regular well-posed. In [90], it is shown
that the class of such systems allows for a Byrnes-Isidori
form similar to that discussed in Section 2.1.2 for finite-
dimensional systems. The only difference is that the
internal dynamics are described by a subsystem of the
form (2.4), where Q is the generator of a strongly contin-
uous semigroup in a Hilbert space HQ and S : HQ → R,
P : R → HQ are bounded linear operators. In particu-
lar, systems (2.4) with these properties are subclasses of
the regular well-posed infinite-dimensional systems (2.26)
as discussed above. Therefore, assuming that Q gener-
ates an exponentially stable and strongly continuous semi-
group, the comments in Section 2.4.1 apply to conclude
that (2.28) belongs to the class N 1,r.

In particular, systems (2.28) cover the heat equation
with Neumann boundary conditions modelled by

∂tx(ξ, t) = ∂2ξx(ξ, t) + u(t), (ξ, t) ∈ [0, 1]× R>0,

x(ξ, 0) = x0(ξ), ξ ∈ [0, 1],
∂ξx(0, t) = 0 = ∂ξx(1, t),

y(t) =
∫ 1

0
cos2(πξ)x(ξ, t) dξ, t > 0,

(2.30)

where x(ξ, t) represents the temperature at position ξ and
time t. The initial temperature profile is x0(·), and u(t)
denotes the heat input at time t. SettingH = L2([0, 1],R),
defining b, c ∈ H by b(ξ) = 1, c(ξ) = cos2 ξ, and with

A : D(A) → H, f 7→ f ′′

withD(A) := {f ∈ W1,2([0, 1],R)| f ′(0) = 0 = f ′(1)},

this example can be written as (2.28) satisfying (A1)–(A3).
As already mentioned, a limitation of the above system

classes is that boundedness of the control and observation
operators in (2.28) is assumed and hence boundary control
action is excluded. Moreover, if one introduces Dirichlet
boundary conditions instead of Neumann conditions, then
neither does it satisfy (A1)–(A3), nor does it have a rela-
tive degree, nor does the Byrnes-Isidori form exist.
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2.4.3. Infinite-dimensional systems without well-defined
relative degree

Whilst the discussion in the previous subsection seems
quite general, not every linear, infinite-dimensional sys-
tem has a well-defined (integer-valued) relative degree: in
which case, results as in [30, 34, 87, 90] are inapplicable.
Instead, feasibility of funnel control has to be investigated
on an ad hoc basis; thus, in this subsection, we directly re-
fer to the respective results, although funnel control for the
other system classes is discussed in Section 3. As an ini-
tial contribution in this regard, Reis and Selig (2015) [128]
considered a boundary controlled heat equation with Neu-
mann boundary control and a Dirichlet-like boundary ob-
servation,

∂tx(ξ, t) = ∆ξx(ξ, t), (ξ, t) ∈ Ω× R>0,
u(t) = ∂νx(ξ, t), (ξ, t) ∈ ∂Ω× R>0,
x(ξ, 0) = x0(ξ), ξ ∈ Ω,
y(t) =

∫
∂Ω
x(ξ, t) dσξ, (ξ, t) ∈ ∂Ω× R>0,

 (2.31)

where Ω ⊆ Rd denotes a bounded domain with uniformly
C2-boundary ∂Ω. This example is considerably different
from the finite dimensional case and from (2.30). Although
it can be formulated as an infinite-dimensional linear sys-
tem of the form (2.28), the operators b and c are now
unbounded; b maps to the space D(A∗)′ ⊇ H = L2(Ω,R)
and c is defined on a proper subset of H. Therefore, a
Byrnes-Isidori form cannot be expected, and the prod-
uct cb, which indicates the relative degree, does not exist.

Nevertheless, feasibility of funnel control is shown
in [128, Thm. 4.2]. The proof is based on modal approxi-
mation of the input-output map by finite-dimensional lin-
ear systems with asymptotically stable zero dynamics and
relative degree one. It is shown that funnel control is fea-
sible for these truncated systems and that the sequence
of solutions to the closed-loop truncated systems contains
a convergent subsequence. The limit of this subsequence
will solve a nonlinear Volterra equation that represents the
input-output behaviour of the heat equation system (2.31)
under funnel control (1.21). This solution results in a well-
defined input signal u ∈ L2

loc(R>0,R). Inserting this sig-
nal into the heat equation (2.31) yields a solution to the
funnel controlled heat equation in the sense of well-posed
linear systems. It is then shown that this solution x solves
the partial differential equation formed by (2.31), (1.21) in
a stronger sense and that it has additional regularity and
boundedness properties.

Essentially, it is also possible to reformulate (2.31) as
a regular well-posed system of the form (2.26) with the
help of Section 5.2 in Staffans [139]. However, this would
require a high level of technicalities and it is easier to ana-
lyze the system in the boundary control formulation (2.31).
As an extension of those results, Puche, Reis and Schwen-
ninger (2021) [124] consider a fairly general class of bound-
ary control systems of the form

ẋ(t) = Ax(t), x(0) = x0, u(t) = Bx(t), y(t) = Cx(t),
(2.32)

where A, B, C are linear operators and the Rm-valued
functions u and y are interpreted as the input and the
measured output y, resp., whereas x is called the state
of the system. Typically, A is a differential operator on
a Hilbert space H and B, C are boundary control and

observation operators, resp. The system class is specified
by the following assumptions:

(i) The system is (generalized) impedance passive, that
is,

∃α ∈ R ∀x ∈ D(A) :

Re ⟨Ax, x⟩H ≤ Re (Bx)⊤(Cx) + α∥x∥2H .

(ii) There exists β ≥ α, such that the operator A|kerC
(i.e., the restriction of A to kerC ⊂ D(A)) satisfies
ran(A|kerC − βI) = H.

(iii) The operator

[
B
C

]
: D(A) → Rm × Rm is onto.

Under these assumptions, the zero dynamics of sys-
tem (2.32) are described by a strongly continuous semi-
group, which is generated by the restriction of A to the ker-
nel of C. Furthermore, it follows from the Lumer–Phillips-
Theorem that the semigroup is exponentially stable, if α <
0. This property resembles that of asymptotic stability of
the zero dynamics in the finite dimensional case.

Feasibility of funnel control can be shown for the
class (2.32), under assumptions (i)–(iii) with α < 0, by
invoking m-dissipative operators and a “clever” change of
coordinates. This class encompasses hyperbolic bound-
ary control systems in one spatial variable (e.g., the lossy
transmission line), hyperbolic systems in several spatial
variables (e.g., the wave equation in two spatial dimen-
sions), and parabolic systems with Neumann boundary
control (e.g., the heat equation). Further classes of bound-
ary controlled port-Hamiltonian systems are discussed in
the recent works [120, 127], which are amenable to funnel
control in the case of co-located input-output structures
(i.e., actuators and sensors are placed at the same position)
and finite dimensional input and output spaces – but this
has not been proved yet. Specific examples which belong
to this class are Maxwell’s equations, Oseen’s equations
(linearized incompressible flow), and advection-diffusion
equations.

Furthermore, in the context of infinite-dimensional sys-
tems which do not have a well-defined relative degree, fea-
sibility of funnel control has also been investigated for the
FitzHugh-Nagumo monodomain model (which represents
defibrillation processes of the human heart) [17] and the
Fokker-Planck equation for a multidimensional Ornstein-
Uhlenbeck process [13].

2.5. An overview of the system classes and their relations

Lm,r (Sec. 2.1.5) Nm,r (Sec. 2.2.3)⊂

⊂⊂

NDm,r,ℓ (Sec. 2.3.2)⊂LDm,r,ℓ (Sec. 2.3.1)

⊃ Systems from Sec. 2.2.6,
and Sec. 2.4.1–2.4.2

PDEs from Sec. 2.4.3

Figure 5: The system classes and how they are related.

17



3. Funnel control

Before discussing the different variants of funnel controllers
(see also Fig. 6), we like to emphasize that essentially there
is only one funnel controller, its structure depending on
the relative degree r of the considered system class. Those
system classes, as discussed in the previous section, can
also contain differential-algebraic systems or PDE systems
or both (as e.g. the class NDm,r,ℓ). The specific shape
of the controller can be adjusted by the choice of cer-
tain controller parameters. For DAE systems, the fun-
nel controller is combined with a relative-degree-one con-
troller component for the algebraic part. Once the con-
troller is fixed, it works for every member of the con-
sidered system class; in particular, a fixed controller may
work for finite-dimensional ODE systems and for infinite-
dimensional PDE systems, without further adjustments.

3.1. The relative-degree-one case

3.1.1. Systems of class Nm,1

Here, as an expository precursor to a result for systems
of arbitrary (but known) relative degree (found in Sec-
tion 3.2), we focus attention on relative-degree-one of
class Nm,1, described by systems

ẏ(t) = f
(
d(t),T(y)(t), u(t)

)
,

with

{
y|[−h,0] = y0 ∈ C([−h, 0],Rm), if h > 0,

y(0) = y0 ∈ Rm, if h = 0,

(3.1)

and (d, f,T) ∈ Nm,1. Choose (as control design parame-
ters) φ ∈ Φ, a surjection N ∈ C(R≥0,R), and a bijection
α ∈ C1([0, 1), [1,∞)). For example, N : s 7→ s sin s and
α : s 7→ 1/(1− s) suffice. Let yref ∈ W1,∞(R≥0,Rm). The
funnel control is given (formally) as

u(t) = (N ◦ α)
(
∥w(t)∥2

)
w(t), w(t) = φ(t)(y(t)− yref(t)).

(3.2)
We like to note that the above controller is a more general
version of (1.21), which is recovered by the choice α(s) =
1/(1 − s) and N(s) = −s. Although the latter is not
a surjection from R≥0 to R, its choice is valid in cases
discussed in Remark 3.6.

Theorem 3.1. Consider system (3.1) with (d, f,T) ∈
Nm,1, m ∈ N. Choose φ ∈ Φ, a surjection N ∈
C(R≥0,R), and a bijection α ∈ C1([0, 1), [1,∞)). Let
yref ∈ W1,∞(R≥0,Rm) be arbitrary and assume that

φ(0)∥y(0)− yref(0)∥ < 1. (3.3)

Then the funnel control (3.2) applied to (3.1) yields an
initial-value problem which has a solution (in the sense of
Carathéodory), every solution can be maximally extended
and every maximal solution y : [−h, ω) → Rm has the
properties:

(i) ω = ∞ (global existence);

(ii) u ∈ L∞(R≥0,Rm), y ∈ W1,∞([−h,∞),Rm);

(iii) the tracking error e : R≥0 → Rm, t 7→ y(t) − yref(t)
evolves strictly inside the funnel Fφ in the sense that
there exists ε ∈ (0, 1) such that φ(t)∥e(t)∥ ≤ ε for all
t ≥ 0.

This result is a special case of a more general result in
Theorem 3.4 below.

3.1.2. Systems of class NDm,1,ℓ

Funnel control has been shown for a couple of subclasses of
systems (2.15) in [9], see also [25, 24, 10]. The general case
has been considered recently in [31]. Although a slightly
different approach (with a stronger assumption on f1) has
been considered in [31], in view of [27] it is straightforward
to extend the results to the following framework.

Again, choose φI ∈ Φ, a surjection N ∈ C(R≥0,R),
and a bijection α ∈ C1([0, 1), [1,∞)). Let yref ∈
W1,∞(R≥0,Rm) with yref = (yref,I , yref,II), where yref,I =
(yref,1, . . . , yref,ℓ) and yref,II = (yref,ℓ+1, . . . , yref,m). The
first component of the funnel control is given (formally) as

uI(t) = (N ◦ α)
(
∥w(t)∥2

)
w(t),

w(t) = φI(t)(yI(t)− yref,I(t)).
(3.4)

Next, we define the second control component uII . Since Γ
as in (2.18) plays the role of the inverse of the high-
frequency gain matrix, cf. [9, Rem. 5.3.9 (iv)], but is not
assumed invertible, the non-invertible part induces alge-
braic constraints in the control law. In order to guar-
antee feasibility of funnel control, these constraints need
to be resolved, which is possible when the initial gain is
chosen large enough, see also [9, Rem. 5.2.1]. Choosing
φII ∈ Φ ∩ W1,∞(R≥0,R), this leads to a modification of
the funnel controller (3.2) of the form

uII(t) = −k̂ α
(
∥v(t)∥2

)
v(t),

v(t) = φII(t)(yII(t)− yref,II(t)),
(3.5)

where the initial gain k̂ > 0 is required to satisfy

k̂ >
1

β
ess supt≥0∥f3(t)∥, (3.6)

β being the lower bound for |f6| from the definition
ofNDm,1,ℓ. In the case of systems in the subclass LDm,1,ℓ,
with representative (2.22), the latter condition reduces

to k̂ > ∥P2∥.

Remark 3.2. Since the second equation in (2.23) is an
algebraic equation we need to guarantee that it is initially
satisfied for a solution to exist. In essence, this is the
issue of consistency or well-posedness of the closed-loop
system. Since T2 ∈ Tm,qh,DAE is causal it “localizes”, in

a natural way, to an operator T̂2 : C([−h, ω] → Rm) →
C1([0, ω] → Rq), cf. [85, Rem. 2.2]. With some abuse of
notation, we will henceforth not distinguish between T2

and its “localization” T̂2. Then, in the case of relative de-
gree r = 1, an initial condition y0 = (y0I , y

0
II) as in (2.24)

(for h > 0) is called consistent for the closed-loop sys-
tem (2.23), (3.4), (3.5), if

f2
(
y0I (0)

)
+ f3(y

0
II(0)) + f4

(
d2(0),T2(y

0)(0)
)

+ f5(0)uI(0) + f6(0)uII(0) = 0, (3.7)

where uI(0), uII(0) are defined by (3.4) and (3.5), respec-
tively. If h = 0, then the initial values are adjusted ac-
cordingly as in (2.24).
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Relative degree one (Sec. 3.1):

u(t) = (N ◦ α)
(
∥w(t)∥2

)
w(t),

w(t) = φ(t)e(t)

(works for systems from Nm,1)

Relative degree r (Sec. 3.2):

u(t) = (N ◦ α)
(
∥w(t)∥2

)
w(t),

w(t) = ρr
(
φ(t)e(t)

)
(works for systems from Nm,r)

Controller for DAEs (Secs. 3.1–3.2):

u(t) =

(
uI(t)

k̂ uII(t)

)
(works for systems from NDm,r,ℓ)

+Funnel pre-compensator (Sec. 3.3.3)

Funnel control with
non-derivative feedback

(works for the system
class from Sec. 2.2.6)

Saturated funnel
controller (Sec. 4.1)

ψ̇(t) = −αψ(t) + β + ψ(t)κ(v(t))∥e(t)∥ ,

κ(v(t)) = ∥v(t)− satû(v(t))∥

Input-constrained funnel controller (Sec. 4.3)
(works for modified system classes)

extension

e = eI
φ = φI
u = uI

e = eII
φ = φII
u = uII

satû(u)

v = u
φ

φ = 1
ψ

satû(u)

Figure 6: Variants of the funnel controller.

Regarding (2.23) as a model of some real-world dynamical
process, it is reasonable to assume consistency in the ab-
sence of feedback – otherwise, the integrity of the model
is suspect. In the context of DAEs, and invoking the be-
havioural approach [121, 150], a clear distinction between
inputs, states, and outputs is often not possible during
the modeling procedure. The interpretation of variables
should be done after the analysis of the model reveals
the free variables, which “can be viewed as unexplained
by the model and imposed on the system by the environ-
ment” [121]. In this way the physical meaning of the sys-
tem variables is respected. In the presence of feedback, the
input variables uI , uII should be part of any consistency
condition, as they are constituents of the model.

Feasibility of the controller (3.4), (3.5) for DAE sys-
tems (d1, d2, f1, . . . , f6,T1,T2) ∈ NDm,1,ℓ is shown in [31,
Thm. 4.3] for α(s) = 1/(1− s); the extension to general α
is straightforward.

Theorem 3.3. Consider system (2.23) with
(d1, . . . , d4, f1, . . . , f5,T1,T2) ∈ NDm,1,ℓ, m ∈ N,
ℓ ∈ {0, . . . ,m}. Choose φI ∈ Φ, φII ∈ Φ∩W1,∞(R≥0,R),
a surjection N ∈ C(R≥0,R), a bijection α ∈
C1([0, 1), [1,∞)), and k̂ > 0 such that (3.6) holds.
Let yref ∈ W1,∞(R≥0,Rm) be arbitrary and assume that
the initial data is consistent, in the sense that (3.7) holds,
and

φI(0)∥yI(0)− yref,I(0)∥ < 1

and φII(0)∥yII(0)− yref,II(0)∥ < 1. (3.8)

Then the funnel control (3.4), (3.5) applied to (2.23) with
r = 1 yields an initial-value problem which has a solution
(in the sense of Carathéodory), every solution can be max-
imally extended and every maximal solution y : [−h, ω) →
Rm has the properties:

(i) ω = ∞ (global existence);

(ii) u ∈ L∞(R≥0,Rm), y ∈ W1,∞([−h,∞),Rm), k ∈
L∞(R≥0,R);

(iii) the tracking errors eI(t) = yI(t) − yref,I(t) and
eII(t) = yII(t) − yref,II(t) evolve strictly inside the
funnels FφI

and FφII
, resp., in the sense that there

exist ε ∈ (0, 1) such that

∀ t ≥ 0 : φI(t)∥eI(t)∥ ≤ ε and φII(t)∥eII(t)∥ ≤ ε.

This result is a consequence of [31, Thm. 4.3] with
straightforward modifications accounting for the controller
part (3.4), which follows from Theorem 3.1.

3.2. The higher-relative-degree case: derivative feedback

Approaches to funnel control of systems of relative degree
greater than one separate into two categories according to
the information available for feedback to the controller.
Throughout, it is (reasonably) assumed that the instanta-
neous values of the system output and reference signal are
available. However, in cases of relative degree greater than
one, the derivatives of the output and reference signals play
a role. In applications, such derivatives may or may not be
available for feedback: we distinguish these two scenarios
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via the terminology derivative and non-derivative feedback,
respectively; the latter is discussed in Section 3.3.

In the context of the first scenario, it might
be argued that the control problem is reducible
to that of the relative-degree-one case. For ex-
ample, consider the relative-degree-two system

ÿ(t) = f(d(t), y(t), ẏ(t), u(t), y(0) = y0, ẏ(0) = v0,
and assume that the output derivative ẏ is avail-
able for feedback. Introducing the surrogate output
z(t) = y(t) + ẏ(t), the system may be expressed as

ẏ(t) = −y(t) + z(t),

ż(t) = −y(t) + z(t) + f(d(t), y(t), ẏ(t), u(t))

which, on defining T0 : C(R≥0,Rm) → C(R≥0,Rm) by

T0(z)(t) :=
∫ t
0
e−(t−s)z(s)ds and writing d0 : t 7→ e−ty0,

takes the form

ż(t) = f̃(d̃(t), T̃(z)(t), u(t)), z(0) = z0 = y0 + v0,

d̃(·) = (d(·), d0(·)), T̃ : z 7→ (z,T0(z))

with f̃ : (δ, w, v) =
(
(δ1, δ2), (w1, w2), v

)
7→ −(w2 + d2) +

w1 + f(δ1, w2 + d2, w1 − w2 − d2, v). This is a system
of relative degree one amenable to funnel control through
application of Theorem 3.1. However, this simple observa-
tion is somewhat misleading. Application of Theorem 3.1
ensures prescribed transient and asymptotic behaviour of
the surrogate output z(·) but the true objective of causing
that the actual output y(·) to evolve in a prescribed funnel
is not guaranteed. Attainment of the true objective using
derivative feedback is the subject of Theorem 3.4 below.

3.2.1. Functional differential and nonlinear differential-
algebraic systems

We present a recent result on funnel control for the
class Nm,r, which generalizes an earlier contribution
from [30], see Section 3.2.2. It also sheds some new light on
systems with unknown control directions, which remains
an active research area, see e.g. [48, 109, 108, 61, 156,
158, 159]. We stress that several of the classes discussed
in those papers (albeit with some restrictions if necessary)
are contained in the class of nonlinear systems (2.9). What
the aforementioned approaches also have in common is a
level of complexity greater than that of the funnel con-
troller that we describe below.

Information available for feedback. Throughout, it is as-
sumed that the instantaneous value of the output y(t)
and its first r − 1 derivatives ẏ(t), . . . , y(r−1)(t) are avail-
able for feedback. Admissible reference signals are func-
tions yref ∈ Wr,∞(R≥0,Rm). The instantaneous reference
value yref(t) is assumed to be accessible to the controller
and, if r ≥ 2, then, for some r̂ ∈ {1, . . . , r}, the derivatives
ẏref(t), . . . , y

(r̂−1)
ref (t) (a vacuous list if r̂ = 1) are also ac-

cessible for feedback. In summary, for some r̂ ∈ {1, . . . , r},
the following instantaneous vector is available for feedback
purposes:

e(t) =
(
e(0)(t), . . . , e(r̂−1)(t), y(r̂)(t), . . . , y(r−1)(t)

)
∈Rrm,

e(t) := y(t)− yref(t),
(3.9)

with the convention that e(0) ≡ e and e(t) =(
e(0)(t), . . . , e(r−1)(t)

)
if r̂ = r.

Feedback strategy. As before, primary ingredients in the
feedback construction, are the funnel control design pa-
rameters:

φ ∈ Φ, bounded if r̂ < r,
N ∈ C(R≥0,R), a surjection,

α ∈ C1([0, 1), [1,∞)), a bijection.

 (3.10)

These functions are open to choice. For notational conve-
nience, define

B := { w ∈ Rm | ∥w∥ < 1 }
and γ : B → Rm, w 7→ α(∥w∥2)w. (3.11)

Next, we introduce continuous maps ρk : Dk → B, k =
1, . . . , r, recursively as follows:

D1 :=B, ρ1 : D1 → B, η1 7→ η1,

Dk :=
{
(η1, . . . , ηk)∈Rkm

∣∣∣∣(η1, . . . , ηk−1) ∈ Dk−1,
ηk+γ(ρk−1(η1, . . . , ηk−1))∈B

}
,

ρk : Dk→B, (η1, . . . , ηk) 7→ ηk + γ(ρk−1(t, η1, . . . , ηk−1)).
(3.12)

Note that each of the sets Dk is non-empty and open.
With e and ρr defined by (3.9) and (3.12), the funnel con-
troller is given by

u(t) =
(
N ◦ α

)
(∥w(t)∥2)w(t), w(t) = ρr

(
φ(t)e(t)

)
,

(3.13)
which, in the relative degree one case r = 1, corresponds
to (3.2).

The efficacy of funnel control for systems (2.9) belong-
ing to the class Nm,r was established in [27]: we restate
this result here.

Theorem 3.4. Consider system (2.9) with (d, f,T) ∈
Nm,r, m, r ∈ N, and initial data as in (2.10). Choose
the triple (α,N,φ) of funnel control design parameters as
in (3.10) and let yref ∈ Wr,∞(R≥0,Rm) be arbitrary. As-
sume that, for some r̂ ∈ {1, . . . , r}, the instantaneous vec-
tor e(t), given by (3.9), is available for feedback and the
following holds:

φ(0)e(0) ∈ Dr, (3.14)

(trivially satisfied if φ(0) = 0). Then the funnel con-
trol (3.13) applied to (2.9) yields an initial-value problem
which has a solution (in the sense of Carathéodory), ev-
ery solution can be maximally extended and every maximal
solution y : [−h, ω) → Rm has the properties:

(i) ω = ∞ (global existence);

(ii) u ∈ L∞(R≥0,Rm), y ∈ Wr,∞([−h,∞),Rm);

(iii) the tracking error e : R≥0 → Rm as in (3.9) evolves
strictly inside the funnel Fφ in the sense that there
exists ε ∈ (0, 1) such that φ(t)∥e(t)∥ ≤ ε for all t ≥ 0.

(iv) If r̂ > 1 and φ is unbounded, then e(k)(t) → 0 as
t→ ∞, k = 0, . . . , r̂ − 1.

Remark 3.5. The above result presents a possible
anomaly: performance of funnel control might seem to
contradict the internal model principle which asserts that
“a regulator is structurally stable only if the controller [. . . ]
incorporates [. . . ] a suitably reduplicated model of the
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dynamic structure of the exogenous signals which the reg-
ulator is required to process” [154, p. 210]. However, as
discussed in [27], this potential anomaly may be resolved.
The internal model principle applies in the context of ex-
act asymptotic tracking of reference signals. In the case
of a bounded funnel function φ, only approximate tracking,
with non-zero prescribed asymptotic accuracy, is assured
and so the anomaly evaporates. But what of the case
of an unbounded funnel function φ, which is permissible
whenever r̂ = r? In this case, exact asymptotic track-
ing is achieved. Returning to the control-theoretic ori-
gins of the internal model principle, summarised in [154,
p. 210] as “every good regulator must incorporate a model
of the outside world”, we regard the term “good regu-
lator” as most pertinent. A good regulator should ex-
hibit robustness with respect to sufficiently small distur-
bances/noise/modelling inaccuracies. However, the case of
unbounded φ inevitably contains (easily constructed) ex-
amples of L2 disturbances of positive, but arbitrarily small
norm, that cause the controlled process to violate the re-
quirement of strict evolution within the funnel. Whilst of
theoretical interest, the case of unbounded φ is of limited
practical utility.

Remark 3.6. Note that a “switching function” N is used
in the controller (3.13) to encompass the case of unknown
control direction. If the control direction is known, then
a simpler design can be used. More precisely, if, for fixed
σ ∈ {−1,+1} known to the controller, the function χ :
R → R in (NP1) is such that χ(σs) → ∞ as s → ∞ for
all compact Kp ⊂ Rp and compact Kq ⊂ Rq, then, setting
N : s 7→ σs, the assertions of Theorem 3.4 remain valid.

Remark 3.7. Other versions of the funnel controller, that
are not encompassed by the design (3.13) can be found in
the literature, see e.g. [30, 87]. These modifications do
not change the qualitative behaviour of the controller and
will not be discussed here in detail. Depending on the
application, one of the modifications might be preferred
over the controller (3.13).

For DAE systems (2.23) the controller (3.13) needs
to be adjusted appropriately, that is for yref,I ∈
Wr,∞(R≥0,Rm) we define the signal

eI(t)=
(
e
(0)
I (t), . . . , e

(r̂−1)
I , y

(r̂)
I (t), . . . , y

(r−1)
I (t)

)
∈Rrq,

eI(t)=yI(t)− yref,I(t),

and for φI ∈ Φ we set

uI(t) =
(
N ◦ α

)
(∥w(t)∥2)w(t), w(t) = ρr

(
φI(t)eI(t)

)
,

(3.15)
which is combined with the controller (3.5) for the alge-
braic part that stays unchanged. Furthermore, we extend
the notion of consistent initial values from (3.7) to arbi-
trary relative degree, i.e., to the condition

f2

(
y0I (0), . . . ,

(
y0I
)(r−1)

(0)
)
+ f3(y

0
II(0))

+ f4
(
d2(0),T2(y

0
I , y

0
II)
)
+ f5(0)uI(0)+ f6(0)uII(0) = 0.

(3.16)

Funnel control for DAE systems with arbitrary rela-
tive degree has been discussed in [9, 24], but for system

classes smaller than (2.23). The result given below is a
consequence of [31, Thm. 4.3], with slight modification. In
fact, it is a straightforward combination of Theorems 3.4
and 3.3, since the controller (3.5) of the algebraic part does
not change.

Theorem 3.8. Consider the DAE system (2.23) with

(d1, . . . , d4, f1, . . . , f5,T1,T2) ∈ NDm,r,ℓ,

m, r ∈ N, ℓ ∈ {0, . . . ,m}.

Choose a triple (α,N,φI) of funnel control design param-

eters as in (3.10), φII ∈ Φ ∩ W1,∞(R≥0,R) and k̂ > 0
such that (3.6) holds. Let yref be such that yref,I ∈
Wr,∞(R≥0,Rℓ) and yref,II ∈ W1,∞(R≥0,Rm−ℓ), assume
that the initial data is consistent, in the sense that (3.16)
holds, and

φI(0)eI(0)∈Dr (as in (3.12) with m = ℓ)

and φII(0)∥yII(0)− yref,II(0)∥<1. (3.17)

Then the funnel control (3.15), (3.5) applied to (2.23)
with r = 1 yields an initial-value problem which has a
solution (in the sense of Carathéodory), every solution
can be maximally extended and every maximal solution
y : [−h, ω) → Rm has the properties:

(i) ω = ∞ (global existence);

(ii) u ∈ L∞(R≥0,Rm), y ∈ Wr,∞([−h,∞),Rm), k ∈
L∞(R≥0,R);

(iii) the tracking errors eI(t) = yI(t) − yref,I(t) and
eII(t) = yII(t) − yref,II(t) evolve strictly inside the
funnels FφI

and FφII
, resp., in the sense that there

exists ε ∈ (0, 1) such that φI(t)∥eI(t)∥ ≤ ε and
φII(t)∥eII(t)∥ ≤ ε for all t ≥ 0.

3.2.2. Antecedent approaches

A relative degree two funnel controller. In the case of
single-input, single-output, nonlinear systems with rela-
tive degree two and asymptotically stable zero dynamics,
a funnel controller has been proposed by Hackl, Hopfe,
Ilchmann, Mueller, Trenn (2013) [70] (see also the modifi-
cation in [62]). The aim in the control design was to avoid
the backstepping procedure from [88] (see Section 3.3.2) by
using a linear combination of the output and its derivative
instead.

The systems which are considered in [70] are of the
form (2.9) with m = 1, r = 2, g = 0 and f(δ, η, u) =
f1(δ, η) + f2(δ, η)u for suitable functions f1 and f2. It
is assumed that f2(δ, η) > 0 everywhere. The work [70]
introduces a funnel controller which feeds back the error e
and its derivative. Compared to Theorem 3.4, it is possible
to directly prescribe the evolution of the error derivative.
The controller reads

u(t) = −k20(t)e(t)− k1(t)ė(t),

k0(t) =
φ0(t)

1−φ0(t)|e(t)| , k1(t) =
φ1(t)

1−φ1(t)|ė(t)| .
(3.18)

The funnel functions φ0 for the error and φ1 for the deriva-
tive of the error have to satisfy (φ0, φ1) ∈ Φ2; the latter
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class is defined by

Φ2 :=

{
(φ0, φ1) ∈ Φ× Φ

∣∣∣∣∃ δ > 0 for a.a. t > 0 :
(1/φ1)(t) +

d
dt (1/φ0)(t) ≥ δ

}
,

where Φ is as in (1.2). The motivation for the defini-
tion of Φ2 is that the derivative funnel Fφ1

must be large
enough to allow the error to follow the funnel boundaries;
for more details see [70]. Feasibility of the control (3.18)
is shown in [70, Thm. 3.1].

As shown in [62, 63], see also [68, Sec. 9.4.4], the equa-
tion for u(t) in the controller (3.18) can be modified such
that

u(t) = −k0(t)2e(t)− k0(t)k1(t)ė(t) (3.19)

and feasibility of the control is still guaranteed; in [62, 63]
this is shown for a certain class of linear systems, but the
extension to nonlinear systems (2.9) as discussed above is
straightforward.

The modification (3.19) is advantageous compared
to (3.18), since the latter yields a badly damped closed-
loop system response and may lead to admissibility prob-
lems in applications since speed measurement is usu-
ally very noisy. The controller (3.18) (and its modifica-
tion (3.19)) is simple and its practicability has been veri-
fied experimentally. Its advantage is that the performance
of both e and ė may be prescribed. However, there is no
straightforward extension to systems with relative degree
larger than two.

Non-backstepping feedback for higher relative degree. A
funnel controller for systems with arbitrary relative de-
gree r ∈ N was introduced by Berger, Hoang, and Reis
(2018) [30] for systems of the form (2.9) with g = 0 and
f(δ, η, u) = f1(δ, η) + f2(δ, η)u for suitable functions f1
and f2 such that f2(δ, η)+ f2(δ, η)

⊤ ≻ 0 everywhere. This
controller, which does not involve any backstepping pro-
cedure, is an output error feedback of the form u(t) =
F (t, e(t), ė(t), . . . , e(r−1)(t)), where e(t) = y(t) − yref(t)
evolves within the performance funnel Fφ which is deter-
mined by a function φ belonging to

Φr :=

φ ∈ Cr(R≥0,R)

∣∣∣∣∣∣
φ, φ̇, . . . , φ(r) are bounded,
φ(τ) > 0 for all τ > 0,
and lim infτ→∞ φ(τ) > 0

 .

(3.20)
The controller is of the form

e1(t) = e(t) = y(t)− yref(t),

e2(t) = ė1(t) + k1(t) e1(t),

...

er−1(t) = ėr−2(t) + kr−2(t) er−2(t),

ki(t) =
1

1− φi(t)2∥ei(t)∥2
, i = 0, . . . , r − 1,

u(t) = −kr−1(t) er−1(t),

(3.21)

where the reference signal and funnel functions satisfy:

yref ∈ Wr,∞(R≥0,Rm),

φ0 ∈ Φr, φ1 ∈ Φr−1, . . . , φr−1 ∈ Φ1. (3.22)

We stress that ė0, . . . , ėr−2 in (3.21) merely serve as short-
hand notations and may be resolved in terms of e(i), ki and
φi, i = 0, . . . , r − 1, where e(i) is assumed to be available
to the controller. Therefore, the control law may be re-
formulated accordingly; in the following we determine the
funnel controllers explicitly for the cases r = 1 and r = 2.

r = 1: The control law (3.21) reduces to the “classical”
funnel controller (1.21).

r = 2: We obtain the controller

u(t) = −k1(t)(ė(t) + k0(t)e(t)),

k0(t) =
1

1− φ2
0(t)∥e(t)∥2

,

k1(t) =
1

1− φ2
1(t)∥ė(t) + k0(t)e(t)∥2

.

We stress that this controller is different from both
the relative degree two funnel controller (3.18) and
its modification (3.19).

Feasibility of the control (3.21) is shown in [30,
Thm. 3.1]. We emphasize that, compared to the bang-
bang funnel controller (which is another antecedent ap-
proach discussed in detail in Section 4.2) and the relative
degree two funnel controller (3.18), the funnel functions
φ0, . . . , φr−1 in the controller (3.21) do not have to sat-
isfy any compatibility condition. However, the control de-
sign (3.21) involves successive derivatives of the auxiliary
error variables ei, which exhibit an increasing complexity
for higher relative degree, which is also illustrated by the
explicit control law for the cases r = 2 and r = 3 presented
above. The simple funnel control design (3.13) helps to re-
solve these issues.

3.2.3. Prescribed performance control

An alternative approach to funnel control has been devel-
oped by Bechlioulis and Rovithakis (2008) [3], which is
called prescribed performance control. In the first contri-
butions, feedback linearizable systems [3], strict feedback
systems [4] and general multi-input, multi-output systems
which are affine in the control [5] have been considered. An
extension to systems with dead-zone input and time-delays
is presented by Na (2013) in [118] and further explored by
Theodorakopoulos and Rovithakis (2015) in [140]. Using
so called performance functions, which are special funnel
boundaries, and a transformation that incorporates these
performance functions, the original controlled system is
transformed into a new one for which boundedness of the
states, via the prescribed performance control input, can
be proved. Therefore, the tracking error evolves in the
funnel defined by the performance functions.

However, strictly speaking the controllers presented
in [3, 4, 5] are no funnel controllers since they are not
of high-gain type. They have in common that neural net-
works are used to approximate the unknown nonlinearities
of the system, which contrasts the classical funnel control
methodology where parameter estimators are not used.
Problems of the approximation may be that disturbances
or small errors in the approximation cause the tracking
error to leave the performance funnel. Although a cer-
tain level of robustness is ensured, the controllers are not
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inherently robust since they are not of high-gain type. Fur-
thermore, the controllers are prone to common challenges
for approximation-based control schemes, both with the
design and implementation, in particular the selection of
the size of the neural network and the number of network
parameters as well as the high order of the dynamics of the
resulting controller because of the neural weight adaptive
laws. Moreover, some parameters of the neural network
must be chosen large enough, but it is not known a priori
how large and suitable values must be identified by several
simulations.

These drawbacks have been resolved by Bechlioulis
and Rovithakis (2011) [6], where the neural networks are
avoided in the control design for single-input, single-output
strict feedback systems. However, the controller is dy-
namic and incorporates r differential equations, where r is
the relative degree of the system; this is due to the com-
pensation of possibly unknown control directions and the
controller is static in case of known directions. The dy-
namic component can be viewed as a filter, and it is needed
in addition to the derivatives of the output. Finally, this
filter is avoided in Bechlioulis and Rovithakis (2014) [7]
and the complexity of the controller is further reduced;
also, a feature of this controller is that no derivatives of
the reference signal are needed. The class of systems con-
sidered in [7] are so called pure feedback systems, which
are of the form

ẋk(t) = fk
(
x1(t), . . . , xk+1(t)

)
, k = 1, . . . , r − 1,

ẋr(t) = fr
(
d(t), x1(t), . . . , xr(t), η(t), u(t)

)
,

η̇(t) = g
(
d(t), x1(t), . . . , xr(t), η(t)

)
,

y(t) = x1(t)

(3.23)

and initial data(
x1(0), · · · , xr(0), η(0)

)
= (x01, · · · , x0r, η0

)
∈ Rm × · · · × Rm × Rq. (3.24)

The considerations in [7] are restricted to the case of no
disturbances (d = 0) and trivial internal dynamics (q = 0);
further, the partial derivatives ∂fi

∂xi+1
and ∂fr

∂u are assumed

to be uniformly positive definite. We stress that in this
system class no internal dynamics and no uncertainties
or disturbances are allowed; the influence of the latter is
discussed in [141]. Compared to [7], in the system class
considered in [6] internal dynamics of a certain hierarchical
structure are allowed; these dynamics are called “dynamics
uncertainty” there.

The prescribed performance controller for the above de-
scribed system class as introduced in [7] is of the following
form: First, a performance function ρ is chosen, which is
usually of the form

ρ(t) = (ρ0 − ρ∞)e−ℓt + ρ∞, t ≥ 0,

where ρ0 > ρ∞ > 0, ℓ > 0. Clearly, φ(t) := ρ(t)−1

defines a finite performance funnel with φ ∈ Φ for Φ
as in (1.2). For i = 1, . . . , r choose performance func-

tions ρi(t) = φi(t)
−1 and constants ki > 0 and let

Tf : (−1, 1)m → Rm, (s1, . . . , sm)

7→
(
ln

(
1 + s1
1− s1

)
, . . . , ln

(
1 + sm
1− sm

))
;

other choices for Tf are possible (as long as it is continu-
ously differentiable and bijective), but the above function
is the standard choice in the literature. The prescribed
performance controller is then given by

a1(t) = −k1Tf
(
φ1(t)

(
x1(t)− yref(t)

))
,

a2(t) = −k2Tf
(
φ2(t)

(
x2(t)− a1(t)

))
,

...

ar(t) = −krTf
(
φr(t)

(
xr(t)− ar−1(t)

))
,

u(t) = ar(t),

(3.25)

where the performance functions must be such that for
all j = 1, . . . ,m and i = 2, . . . , r we have φ1(0)|x1,j(0) −
yref,j(0)| < 1 and φi(0)|xi,j(0)− ai−1,j(0)| < 1.

It is shown in [7, Thm. 2] that the controller (3.25)
applied to a system (3.23) satisfying the conditions men-
tioned above, leads to a closed-loop system which has a so-
lution and every maximal solution is global and bounded.
Furthermore, each component ei(t) = x1,i(t) − yref,i(t) of
the tracking error evolves in the performance funnel Fφ1

,
with φ1(t) = ρ1(t)

−1.
Although funnel control and prescribed performance

control achieve the same control objective and look similar
in their controller structure, the two system classes (2.9)
(amenable to funnel control) and (3.23) (amenable to pre-
scribed performance control) are different and a thorough
comparison of the two approaches is still missing.

3.3. Non-derivative feedback via two methodologies: filter-
ing and pre-compensation

Now we turn attention to the second scenario wherein
derivative information on the output and reference sig-
nal are not available to the controller, e.g. due to issues
of accuracy and sensitivity to “noise”. In this scenario, a
dynamic component (which we will label either a filter or
a pre-compensator1), operating on available system input
and output error data, is incorporated in the control de-
sign in order to generate a vector of “surrogate” variables ξ
which deputises for the (unavailable) output derivatives in
some appropriate sense, and which is used in a feedback
u(t) = U(t, e(t), ξ(t)) based only the available instanta-
neous information (t, e(t), ξ(t)). We illustrate the main
features by means of a simple example.

1We use these terms loosely: they are intended to indicate a ra-
tionale that seeks to compensate for the unavailability of output
derivatives through (dynamic) operations on available input and out-
put signals. The terms “filter” and “pre-compensator” are adopted
solely to distinguish the two distinct methodologies.
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u(t) = U(t, e(t), ξ(t))
System:

input u, output y,
output error e = y − yref

Dynamic control
component

surrogate

ξ(t)

(u(t), e(t))

e(t)

y(t)
u(t)

Figure 7: General structure.

3.3.1. Motivating example: the double integrator

For purposes of illustration, consider the simplest scalar
system of relative degree two:

ÿ(t) = g u(t), g > 0, (y(0), ẏ(0)) = (y0, v0) ∈ R2 (3.26)

and, for ease of exposition, assume that yref = 0. As-
sume furthermore that the funnel parameter φ is of class
Φ ∩ W1,∞(R≥0,R) with φ(0) = 0. As before, let α ∈
C1([0, 1), [1,∞)) be a bijection and define γ as in (3.11).
By Theorem 3.4 and Remark 3.6, we know that the feed-
back control

u(t) = −γ
(
φ(t)ẏ(t) + γ(φ(t)y(t))

)
ensures that the maximal solution (unique by standard ar-
guments) of (3.26) is global, bounded and y evolves in the
prescribed performance funnel Fφ. However, this result
assumes availability of the “velocity” ẏ(t) for feedback.
But what if the velocity is inaccessible? We highlight two
approaches which address this question.

I. Filtering. Augment the double integrator with a “fil-
ter” driven by u:

ξ̇(t) = −ξ(t) + u(t), ξ(0) = 0.

Solely for simplicity of exposition, we have adopted the
filter initial condition ξ(0) = 0. Introducing the variable
z(t) := ẏ(t) − y(t) − g ξ(t), the augmented system takes
the form

ẏ(t) = y(t) + z(t) + g ξ(t), y(0) = y0

ż(t) = −z(t)− y(t), z(0) = z0 := v0 − y0

ξ̇(t) = −ξ(t) + u(t), ξ(0) = 0.


(3.27)

Viewing the first two of the above equations as an inde-
pendent system – with input ξ, output y and initial data
(y(0), z(0)) = (y0, z0) – we have(

ẏ(t)
ż(t)

)
= A

(
y(t)
z(t)

)
+ b ξ(t), y(t) = c

(
y(t)
z(t)

)
,

A :=

[
1 1

−1 −1

]
, b :=

(
g
0

)
, c :=

[
1 0

]
.

Observe that Γ = cb = g ̸= 0 and

∀λ ∈ C≥0 : det

[
A− λI b

c 0

]
= (1 + λ)g ̸= 0.

Thus, this (independently viewed) system is of relative
degree r = 1 has asymptotically stable zero dynam-

ics ZD(A, b, c) and satisfies (SA1)–(SA3). Therefore,
(A, b, c) ∈ L1,1. In this illustrative context, the operator T
given by (2.7) has the form

T : C(R≥0,R) → C(R≥0,R), y 7→ y − L(y),

L : y 7→
(
t 7→

∫ t
0
e−(t−s)y(s)ds

)
.

Defining d0 ∈ L∞(R≥0,R) by d0(t) := e−tz0 writing
f : (δ, ζ, v) 7→ δ + ζ + gv, we have

ẏ(t) = f(d0(t), (Ty)(t), ξ(t)), y(0) = y0. (3.28)

By Lemma 2.8, (d0, f,T) ∈ N 1,1 and so (in view of by
Theorem 3.1, Remark 3.6, and setting γ : v 7→ −α(v2)v
with the special choice α(s) = 1/(1 − s)) the strat-
egy ξ(t) := γ

(
φ(t)y(t)

)
ensures that the global solution

of (3.28) is bounded and y evolves in the performance
funnel Fφ. However, this observation is predicated on the
premise that ξ is a variable open to choice. But this is not
the case: ξ must lie in the solution set of the filter

S := { ξ ∈ AC(R≥0,R) | ξ = L(u), u ∈ L∞
loc(R≥0,R)} .

Writing θ : t 7→ (Lu)(t) − γ
(
φ(t)y(t)

)
and d : t 7→ d0(t) +

gθ(t), system (3.28) may be expressed as

ẏ(t) = f(d(t), (Ty)(t), γ(φ(t)y(t))), y(0) = y0. (3.29)

Therefore, if u ∈ L∞
loc(R≥0,R) can be chosen such that θ

(and so, d) is bounded, then (d, f,T) ∈ N 1,1 and, again
invoking Theorem 3.4 and Remark 3.6, it follows that ev-
ery maximal solution is bounded (and so has domain R≥0)
and y evolves in the performance funnel Fφ. Consequently,
the issue to be addressed is the design of a feedback strat-
egy, based only on the available instantaneous information
triple (t, y(t), ξ(t)), which ensures boundedness of θ. This
is precisely the issue resolved in the general setting of [88]
and summarized in Theorem 3.9 below, which, when ap-
plied to the current illustrative “double-integrator” set-
ting, establishes the strategy

u(t) = γ2
(
k(t), φ(t)y(t), ξ(t)

)
, k(t) = α

(
φ2(t)y2(t)

)
where

γ2 : [1,∞)× (−1, 1)× R → R,

(κ, η, ζ) 7→ −κη − (η2 + κ2)
(
κ2(1 + |ζ|)

)2(
ζ − γ1(κ, η)

)
,

achieves the performance objective. In the context of Fig-
ure 7, the surrogate ξ(t) is simply the filter state ξ(t).

II. Pre-compensation. Augment the double integrator
with a “pre-compensator” driven by the input u and out-
put y:

ξ̇1(t) = ξ2(t) + (q1 + p1k(t))(y(t)− ξ1(t)),

ξ̇2(t) = g̃ u(t) + (q2 + p2k(t))(y(t)− ξ1(t)),

(ξ1(0), ξ2(0)) = (0, 0),

k(t) =
1

1−
(
φ1(t)(y(t)− ξ1(t))

)2


(3.30)

with g̃, qi, pi > 0 (design parameters open to choice)
and φ1 := 2φ. Analogous to the filtering case, solely
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for simplicity of exposition, we have adopted the pre-
compensator initial condition (ξ1(0), ξ2(0)) = (0, 0). The
above structure resembles a high-gain observer [54, 97]
with time-varying gain function, however they serve a dif-
ferent purpose. In contrast to high-gain observer theory,
the variable ξ2 is not used to approximate the derivative ẏ
of the output. Instead, ξ1 serves as a “surrogate output”
which is close to the true output y in the sense that the
difference y(·) − ξ1(·) evolves within a prescribed perfor-
mance funnel. The derivative ξ̇1 of the surrogate output is
known and so is available for control purposes. Viewed as
a system with input u and output ξ1 (with ξ̇1 also available
for feedback), we seek to apply the funnel controller (3.13)
in the context of the pre-compensated double integrator
given by the conjunction of (3.26) and (3.30).

To ensure feasibility of the above approach, we need to
show that the augmented system (3.26)-(3.30) satisfies the
assumptions of Theorem 3.4. To this end, we first proceed
to show that the augmented system may be expressed in
the form (2.9). For simplicity of exposition only, choose
g̃ = q1 = q2 = p1 = 1 (leaving the design parameter p2 > 0
to be determined). Introducing the variables z1 := y −
ξ1, z2 := ẏ − gξ2, we arrive at a representation of the
augmented system with input u and output ξ1:

ξ̈1(t) = (1 + p2k(t))z1(t) +
d
dt

(
(1 + k(t))z1(t)

)
+ u(t),

ż1(t) = z2(t)− g(1 + k(t))z1(t) + (g − 1) ξ̇1(t),

ż2(t) = −g(1 + p2k(t))z1(t), k(t) = 1
1−(φ1(t)z1(t))2

,

(ξ1(0), ξ̇1(0), z1(0), z2(0)) = (0, (1 + p2)y
0, y0, v0),


(3.31)

Temporarily replacing ξ̇1 by arbitrary ζ ∈ C(R≥0,R), con-
sider the second and third subsystems of (3.31) as an
initial-value problem with input ζ and underlying domain
D := {(t, θ) = (t, θ1, θ2) ∈ R≥0 × R2| φ1(t)|θ1| < 1}.

ż(t) = Qz(t)−
(

g z1(t)
1−(φ1(t)z1(t))2

)
p+ (1− g)

(
1
1

)
z1(t)

+(g − 1)

(
1
0

)
ζ(t),

z(t) =

(
z1(t)
z2(t)

)
, z(0) = z0 =

(
z01
z02

)
,

Q =

[
−1 1
−1 0

]
, p =

(
1
p2

)


(3.32)

By the standard theory of differential equations this initial-
value problem has, for all (z0, ζ) ∈ R2 × C(R≥0,R),
a unique maximal solution z : [0, ω) → R2 and graph(z) ⊂
D: we write z(·) = ϱ(·, z0, ζ). Moreover, noting that Q
is Hurwitz, a straightforward, if tedious, calculation es-
tablishes that ω = ∞ (and so |φ1(t)z1(t)| < 1 for all
t ≥ 0). Therefore, we may define the following causal
operator (more precisely, the generic member of a fam-
ily {Tz0 | z0 ∈ R2} of operators parameterized by z0: for
notational simplicity we suppress the dependence on z0)

T : C(R≥0,R) → L∞
loc(R≥0,R4), ζ 7→ (z, k, ζ),

z(·) = ϱ(·, z0, ζ) = (z1(·), z2(·)),
k : t 7→ 1/(1− (φ1(t)z1(t))

2).


(3.33)

Defining f ∈ C(R2 × R4 × R,R) by

f : (d, η, u) =
(
(d1, d2), (η1, . . . , η4), u

)
7→ (1 + p2η3)η1 + 2η23d1η

2
1

(
d2η1+

d1(η2 − g(1 + η3)η1 + (g − 1)η4)
)

+ (1 + η3)(η2 − g(1 + η3)η1 + (g − 1)η4) + u,

it is readily verified that (3.31) may be expressed in the
form of the functional differential equation

ξ̈1(t) = f(d(t),T(ξ̇1)(t), u(t)), d(t) = (φ1(t), φ̇1(t)),

(ξ(0), ξ̇(0)) =
(
0, 43y

0
)
,

where T is the operator, associated with the initial data
z0 = (y0, v0), given by (3.33). Moreover, both ξ1(t) and
its derivative ξ̇1(t) are available for feedback. If it can be
shown that the triple (d, f,T) is of class N 1,2 (and so is
amenable to funnel control), then, applying Theorem 3.4
in this context and adopting the performance funnel Fφ1

with φ1 := 2φ (recall that Fφ is the performance funnel
stipulated ab initio for the double integrator plant), the
control

u(t) = −γ
(
φ1(t)ξ̇1(t) + γ(φ1(t)ξ1(t))

)
ensures that, for some ε1 ∈ (0, 1), φ1(t)|ξ1(t)| ≤ ε1
for all t ≥ 0. We also know that φ1(t)|y(t) − ξ1(t)| =
φ1|z1(t)| < 1 for all t ≥ 0, and so, setting ε := 1

2 (1 + ε1),
we have

φ(t)|y(t)| = 1
2φ1|y(t)|

≤ 1
2 (φ1(t)|y(t)− ξ1(t)|+ φ1(t)|ξ1(t)|) < ε < 1.

Therefore, the performance objective is achieved by the
dynamic component

ξ̇1(t) = ξ2(t) + (1 + k(t))(y(t)− ξ1(t)),

ξ̇2(t) = u(t) + (1 + 1
3k(t))(y(t)− ξ1(t)),

k(t) =
1

1− φ1(t)2(y(t)− ξ1(t))2
,

(ξ1(0), ξ2(0) = (0, 0),

in conjunction with the feedback

u(t) = −γ
(
φ1(t)

(
ξ2(t) + (1 + k(t))(y(t)− ξ1(t))

)
+ γ(φ1(t)ξ1(t))

)
which requires only the available instantaneous informa-
tion quadruple (t, y(t), ξ1(t), ξ2(t)). In the context of
Fig. 7, we have ξ(·) = (ξ1(·), ξ2(·)).

What remains at issue is the question: does the
triple (d, f,T) belong to the class N 1,2? This question
is answered in the affirmative if it can be shown that the
operator T is of class T1,4

0 . This is essentially the issue
resolved in the general setting of [101] and summarized in
Theorem 3.12 below.

3.3.2. Funnel control with filtering

Having highlighted their main ingredients via the simplest
of relative-degree-two systems, we now describe the above
two methodologies in the broad context of systems (2.13)–
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(2.14). First, we consider funnel control with filtering.
Let N ∈ Cr(R≥0,R) be surjective (for example, N : κ 7→
κ sinκ suffices) and let α : [0, 1) → [1,∞) be a r-times
continuously differentiable bijection such that α′ = a ◦ α
for some function a : [1,∞) → R≥0 (for example, α : s 7→
(1 − s)−β , β > 0, suffices). Again, let B denote the open
unit ball centred at 0 in Rm. Define

γ : B → Rm, v 7→ (N ◦ α)
(
∥v∥2

)
v,

γ1 : [1,∞)× B → Rm , (κ, v) 7→ N(κ)v,

and projections

πi : R(r−1)m → Rim, ξ = (ξ1, . . . , ξr−1) 7→ (ξ1, . . . , ξi)

for i = 1, . . . , r − 1. Fix µ > 0 (a design parameter) and
define γi : [1,∞)×B×R(i−1)m → Rm, i = 2, . . . , r, by the
recursion

γi(κ, v, πi−1ξ) := γi−1(κ, v, πi−2ξ)

−
(
a(κ)(1 + ∥πi−1ξ∥)∥(Dγi−1)(κ, v, πi−2ξ)∥

)2
× (µ2−iξi−1 − γi−1(κ, v, πi−2ξ)) (3.34)

wherein D denotes the differentiation operator, Dγi−1 be-
ing the Jacobian of γi−1 with

∥Dγi−1(·, ·, ·)∥2 = ∥∂1γi−1(·, ·, ·)∥2

+ ∥∂2γi−1(·, ·, ·)∥2 + ∥∂3γi−1(·, ·, ·)∥2,

where ∂j denotes differentiation with respect to the j-th
argument. We adopt the convention (κ, v, π0ξ) ≡ (κ, v), in
other words, the symbol π0 is vacuous. In particular, we
record that ∥Dγ1(κ, v, π0ξ)∥2 = N ′(κ)2∥v∥2 +N(κ)2.

Augment the system (2.13) by a linear input “filter” of
the form

ξ̇i(t) = −µξi(t) + ξi+1(t), i = 1, . . . , r − 2,

ξ̇r−1(t) = −µξr−1(t) + u(t),
(3.35)

with ξi(t) ∈ Rm and arbitrary initial data ξi(0) = ξ0i ∈
Rm, i = 1, . . . , r − 1. The augmented system takes the
form(

ẏ(t)

ξ̇(t)

)
=

[
A 0
0 F

](
y(t)
ξ(t)

)
+

[
B
0

]
Γ−1f(d(t),T(y)(t))

+

[
B
G

]
u(t), (3.36)

with output

(
Cy(t)
ξ(t)

)
, where

C=
[
I, 0, · · · , 0

]
, y(t)=


y(t)
ẏ(t)
...

y(r−1)(t)

 , ξ(t)=


ξ1(t)
ξ2(t)
...

ξr−1(t)

 ,

A =


0 I · · · 0
...

...
. . .

...
0 0 · · · I
R1 R2 · · · Rr

 , B =


0
...
0
Γ

 ,

F =


−µI I · · · 0
...

...
. . .

...
0 0 · · · I
0 0 · · · −µI

 , and G =


0
...
0
I

 .
Let yref ∈ Wr,∞(R≥0,Rm) be arbitrary and write e(·) =
y(·)− yref(·). We introduce the control

u(t) = γr(k(t), φ(t)e(t), ξ(t)), k(t) = α
(
φ2(t)∥e(t)∥2

)
,

(3.37)
which will ensure attainment of the performance objectives
of boundedness of all signals and evolution of the tracking
error in the performance funnel.

Note that, if we set r = 1 in (3.37), then

u(t) = γ1(k(t), φ(t)e(t))

= γ(φ(t)e(t)) = (N ◦ α)(φ(t)2∥e(t)∥2)φ(t)e(t)

and so, as is to be expected, we recover the (non-dynamic)
controller (3.2). In the case of relative degree r = 2 and
µ = 1, we have the dynamic controller

ξ̇(t) = −ξ(t) + u(t),

u(t) = γ(φ(t)e(t))−
(
a(k(t)) (1 + ∥ξ(t)∥)

)2
·
((
N ′(k(t))φ(t)∥e(t)∥

)2
+N(k(t))2

)(
ξ(t)−γ(φ(t)e(t))

)
,

with k(t) := α(φ2(t)∥e(t)∥2).
In the general case r ≥ 2, the efficacy of the con-

trol (3.37) was established in [88]. We restate this result
here, tailored to the present framework.

Theorem 3.9. Consider the initial-value problem (2.13)–
(2.14). Choose (α,N,φ) such that φ ∈ Φ, N ∈ Cr(R≥0,R)
is surjective, and α ∈ Cr([0, 1), [1,∞)) is bijective with
α′ = a ◦ α for some function a : [1,∞) → R≥0. Let yref ∈
Wr,∞(R≥0,Rm) be such that φ(0)∥y(0)−yref(0)∥ < 1 (triv-
ially satisfied if φ(0) = 0). Then the control (3.37) applied
to the augmented system (3.36), with initial data given
by (2.14) and the initial condition ξ(s) = ξ0 ∈ R(r−1)m

for all s ∈ [−h, 0], yields an initial-value problem which
has a solution (in the sense of Carathéodory), every solu-
tion can be maximally extended and every maximal solu-
tion (y, ξ) : [−h, ω) → Rrm × R(r−1)m has the properties:

(i) ω = ∞ (global existence);

(ii) u ∈ L∞(R≥0,Rm), ξ ∈ L∞(R≥0,R(r−1)m), y ∈
Wr,∞([−h,∞),Rm) where y = Cy;

(iii) the tracking error e = y − yref : R≥0 → Rm evolves
in the funnel Fφ and there exists ε ∈ (0, 1) such that
φ(t)∥e(t)∥ ≤ ε for all t ≥ 0.

Remark 3.10. The recursive procedure in (3.34) – gen-
erating the feedback function γr in the control (3.37) –
is a form of backward induction structurally reminiscent
of the “back-stepping” procedure developed in the 1990s
by Kotokovic and others [98, 112] in a different context of
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feedback stabilization of nonlinear systems. Such proce-
dures risk falling victim to the “curse of dimensionality”,
a phrase coined by Bellman [8, Preface] in the development
of Dynamic Programming, and indeed (3.34) is not exempt
from this risk. The “curse” refers to adverse features that
arise with increasing dimension. In the present setting,
dimension equates to relative degree r. For example, set
α : s 7→ (1−s)−1 and consider the case wherein Γ is known
to be positive definite (and so N : κ 7→ −κ may be chosen).
As before, write k(·) = α(φ2(·)∥e(·)∥2), which, if r = 1, en-
ters as a simple multiplier or gain in the feedback control,
viz. u(t) = −k(t)φ(t)e(t). However, for r ≥ 2, the recur-
sive procedure in (3.34) generates multipliers (embedded
in the feedback control) of the form k(t)p, the exponent p of
which may become impractically large even for moderately
low values of r. Funnel control with pre-compensation (de-
tailed below) seeks to circumvent this drawback, but not
without paying a cost: as shall be seen, the dynamic order
of the pre-compensator is r(r − 1), whereas the dynamic
order of the filter is r − 1.

3.3.3. Funnel control with pre-compensation

In this section we describe a recent approach to funnel con-
trol with non-derivative feedback which avoids the back-
stepping procedure. A straightforward idea to do this
was the use of a high-gain observer; see the classical
works [54, 97, 132, 142] and the survey [96]. One advan-
tage of high-gain observers is that they can be used to
estimate the system states without knowing the exact pa-
rameters (in contrast to observer synthesis, see e.g. [47, 53]
and the references therein); only some structural assump-
tions, such as a known relative degree, are necessary. Fur-
thermore, they are robust with respect to input noise. The
drawback is that in most cases it is not known a priori how
large the high-gain parameter k in the observer must be
chosen and appropriate values must be identified by offline
simulations. If k is chosen unnecessarily large, the sensi-
tivity to measurement noise increases dramatically. High-
gain observers with time-varying gain functions k(·) and
corresponding adaptation laws are proposed in [44, 134].
However, they are not able to influence the transient be-
haviour of the observation error.

The combination of the adaptive high-gain observer
from [44] with a λ-tracker has been successfully developed
by Bullinger and Allgöwer (2005) [43]. In the recent paper
by Chowdhury and Khalil (2019) [49] the funnel controller
from [87] is combined with a high-gain observer (for a sim-
ilar result on prescribed performance control, discussed in
Section 3.2.3, see [52]). For single-input, single-output sys-
tems with higher relative degree a virtual (weighted) out-
put is defined such that the system has relative degree one
with respect to this virtual output. Then funnel control
is feasible and it is shown that (ignoring the additional
use of a high-gain observer) for sufficiently small weight-
ing parameter in the virtual output, the original tracking
error evolves in a prescribed performance funnel. However,
tuning of the weighting parameter has to be done a pos-
teriori and hence depends on the system parameters and
the chosen reference trajectory. Therefore, this approach
is not model-free like standard funnel control approaches
and the controller is not robust, since small perturbations
of the reference signal may cause the tracking error to leave
the performance funnel.

Berger and Reis (2018) [39] presented a controller which
uses only dynamic output feedback (and no derivatives of
the output), avoids the backstepping procedure, and guar-
antees evolution of the tracking error within a prescribed
performance funnel for the class of linear systems with
relative degree two. This controller is based on the com-
bination of the relative degree two funnel controller (3.18)
with a funnel pre-compensator (3.30). The funnel pre-
compensator for systems with arbitrary degree was devel-
oped in [40]. Combinations of the funnel pre-compensator
with the funnel controller (3.21) are discussed in [33] with
applications to underactuated multibody systems. The
general funnel pre-compensator, with Rrm-valued state
(ξ1(·), · · · , ξr(·)), is defined as follows:

ξ̇i(t) = ξi+1(t) +
(
qi + pik(t)

)
(y(t)− ξ1(t)),

i = 1, . . . , r − 1,

ξ̇r−1(t) = ξr(t) +
(
qr−1 + pr−1k(t)

)
(y(t)− ξ1(t)),

ξ̇r(t) =
(
qr + prk(t)

)
(y(t)− ξ1(t)) + Γ̃u(t),

(ξ1(0), . . . , ξr(0)) = (ξ01 , . . . , ξ
0
r ) ∈ Rm × · · · × Rm,

k(t) =
1

1− φ(t)2∥y(t)− ξ1(t)∥2
,

(3.38)

with design parameters pi > 0, qi > 0, Γ̃ ∈ Glm(R) and
funnel function φ ∈ Φ. We write

p =

p1...
pr

 and q =

q1...
qr

 .

The adaptation scheme for k(t) in (3.38) is non-dynamic
and non-monotone, and it guarantees prescribed transient
behaviour of the difference y(·)−ξ1(·), which we refer to as
the compensator error. Another advantage of the funnel
pre-compensator (3.38) is that no higher powers of the
gain function k are involved in (3.38) (cf. the discussion
in Remark 3.10). Moreover, the pre-compensator obviates
the need for estimates of the underlying model as required
in the context of high-gain observers, see [1, 95].

In contrast to other approaches, the signals u and y
given to the funnel pre-compensator (3.38) are not neces-
sarily the input and output corresponding to some system
or plant. We only assume that they are signals belonging
to the following set parameterized by r ∈ N:

Pr :=

(u, y)∈L∞
loc(R≥0,Rm)

×Wr,∞
loc (R≥0,Rm)

∣∣∣∣∣∣
y(r−1) ∈ L∞(R≥0,Rm),
y(r)−Γu∈L∞(R≥0,Rm),
Γ ∈ Glm(R)


The vector q = (q1, . . . , qr)

⊤ is chosen such that the matrix

Q =


−q1 1 . . . 0
...

...
. . .

...
−qr−1 0 . . . 1
−qr 0 . . . 0

 ∈ Rr×r (3.39)

(with characteristic polynomial sr + qrs
r−1 + · · · + q1) is
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Hurwitz, i.e., σ(Q) ⊂ C<0. Let R = R⊤ ≻ 0 and

P =

[
P1 P2

P⊤
2 P4

]
, P1∈R, P2∈R1×(r−1), P4∈R(r−1)×(r−1)

be such that

Q⊤P + PQ+R = 0, P = P⊤ ≻ 0. (3.40)

The vector p is uniquely determined by q and R via the
following construction:

p =

p1...
pr

 := P−1


P1 − P2P

−1
4 P⊤

2

0
...
0

 =

(
1

−P−1
4 P⊤

2

)
.

(3.41)
The pre-compensator (3.38) is a nonlinear and time-

varying system, yet it is simple in its structure and its
dimension depends only on the “relative degree” r given
by Pr. The set Pr of signals (u, y) ensures error evolution
within the funnel. For a schematic of the construction of
the funnel pre-compensator (3.38) see also Fig. 8.

It is shown in [40] that for signals (u, y) ∈ Pr with
r ≥ 2, the funnel pre-compensator (3.38) has a unique
maximal solution (ξ1, . . . , ξr): moreover, the (absolutely
continuous) solution is bounded (and so has interval of
existence R≥0) and

∃ ε > 0 ∀ t > 0 : ∥y(t)− ξ1(t)∥ < φ(t)−1 − ε.

Thus, with each admissible quadruple (p,q, Γ̃, φ),
we may associate a funnel pre-compensator operator
FP(p,q, Γ̃, φ) : Pr → L∞(R≥0,Rm), (u, y) 7→ ξ1 (or, more
precisely, a family of such operators parameterized by the
initial data: for notational simplicity, we suppress the de-
pendency on this arbitrary data.)

While the funnel pre-compensator is able to achieve
prescribed transient behaviour of the compensator error
e1 = y − ξ1, we like to stress that no transient behaviour
can be prescribed for the errors ei = y(i−1) − ξi for i =
2, . . . , r − 1 and er = Γ̃Γ−1y(r−1) − ξr, since ẏ, . . . , y

(r−1)

are not known. Therefore, the variables ξ2, . . . , ξr from
the funnel pre-compensator cannot be viewed as estimates
for the derivatives ẏ, . . . , y(r−1). The following construc-
tion seeks to circumvent this shortfall. Choose admissible
(pi,qi, Γ̃, φi) with Γ̃ ∈ Glm(R) and pi,qi ∈ Rr, φi ∈ Φr
(defined as in (3.20)), i = 1, . . . , r−1. Consider the cascade
of (r − 1) funnel pre-compensators

FPr−1 ◦ FPr−2 ◦ . . . ◦ FP1 : Pr → L∞(R≥0,Rm),

(u, y) 7→ ξr−1,1 =: z,

where FPi := FP(pi,qi, Γ̃, φi), with implicitly-associated
initial data ξ0i := (ξ0i,1, . . . , ξ

0
i,r) ∈ Rm × · · · × Rm. Thus,

for (u, y) ∈ Pr and notationally identifying ξ0,1 with y,
the Rrm-valued function ξi := (ξi,1, . . . , ξi,r), where ξi,1 =
FPi(u, ξi−1,1) and i = 1, . . . , r − 1, is given by

ξ̇i(t) = Ãξi(t) +
((
qi + ki(t)p

i
)
⊗ Im

)(
ξi−1,1(t)− ξi,1(t)

)
+B̃u(t),

ξi(0) = ξ0i ,

ki(t) =
1

1− φi(t)2∥ξi−1,1(t)− ξi,1(t)∥2
,

(3.42)
where ⊗ is the Kronecker product, with

Ã :=


0 Im 0 · · · 0
0 0 Im · · · 0
...

...
. . .

...
0 0 0 · · · Im
0 0 0 · · · 0

 , B̃ :=


0
0
...
0

Γ̃

 ,

and the cascade output is given by z(t) = ξr−1,1(t). The
situation is illustrated in Fig. 9. The dynamic order of the
cascade is r(r − 1).

It is shown in [40] that for signals (u, y) ∈ Pr with r ≥ 2
such that y, ẏ, . . . , y(r−1) are bounded, the funnel pre-
compensator cascade (3.42) has bounded (absolutely con-
tinuous) solutions ξi = (ξi,1, . . . , ξi,r) with bounded gain
functions ki, i = 1, . . . , r − 1, and

∀ i ∈ {1, . . . , r − 1} ∃ εi > 0 ∀ t > 0 :

∥ξi−1,1(t)− ξi,1(t)∥ < φi(t)
−1 − εi,

where ξ0,1 ≡ y. Furthermore,

∀ t > 0 : ∥y(t)− z(t))∥ <
r−1∑
i=1

(
φi(t)

−1 − εi
)
. (3.43)

Remark 3.11. The output z of the pre-compensator
cascade is (r − 1)-times continuously differentiable with
explicitly-computable (in terms of available signals)
derivatives. In particular, recursively defining func-
tions Ξi, i = 1, . . . , r − 1, by

Ξ1(t) :=
(
qr−1
1 + pr−1

1 kr−1(t)
)(
ξr−2,1(t)− ξr−1,1(t)

)
,

Ξi(t) :=
(
qr−1
i + pr−1

i kr−1(t)
)(
ξr−2,1(t)− ξr−1,1(t)

)
+ Ξ′

i−1(t),

we have

z(i)(t) = ξr−1,i+1(t) + Ξi(t), i = 1, . . . r − 1.

The essence of the pre-compensation approach to funnel
control is to feedback the known variables z, ż, . . . , z(r−1)

as surrogates for the output variable y and its unknown
derivatives ẏ, . . . , y(r−1). Detailed characterizations of the
surrogate variables and their dependencies on available sig-
nals are contained in [40].

Application to systems with stable internal dynamics. We
may now turn to the application of the funnel pre-
compensator cascade in the control of system (2.13)–
(2.14). In particular, the input-output pair (u, y), asso-
ciated with the latter system, is used to drive the cascade,
generating the variable z. The resulting augmented sys-
tem, viewed with input u and output z, is amenable to
funnel control as in the context of Theorem 3.4. The out-
put z satisfies the relation (3.43), and its derivatives (up to
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Choose q =

( q1
...
qr

)
such that

Q =

 −q1 1
...

. . .
−qr−1 1
−qr 0

 is Hurwitz

Choose R = R⊤ ≻ 0 and solve

Q⊤P + PQ+R = 0, P ≻ 0;

Let P =
[
P1 P2

P⊤
2 P4

]
, P1 ∈ R and set

p =

( p1
...
pr

)
=

(
1

−P−1
4 P⊤

2

)
Choose φ ∈ Φ

t

φ(t)−1

Funnel
pre-compensator

(3.38)

Choose Γ̃ ∈ Rm×m

qi

φ

pi
Γ̃

Figure 8: Construction of the funnel pre-compensator (3.38) depending on its design parameters; taken from [40].

(u, y) ∈ Pr FP1 FP2

FPr−1
u

y ξ1,1 ξ2,1 ξr−2,1

z = ξr−1,1

Figure 9: Cascade of funnel pre-compensators (3.42) applied to sig-
nals (u, y) ∈ Pr; taken from [40].

order r−1) are known explicitly as shown in Remark 3.11.
Thus, the funnel controller (3.13) may be applied in order
to achieve the tracking objective of prescribed transient
behaviour (of the primal system output y) in the absence
of knowledge of the derivatives y(i), i = 1, . . . , r − 1, cf.
Fig. 7.

Since the funnel controller (3.13) requires a bounded-
input, bounded-output property of the internal dynamics
of the system (cf. Theorem 3.4; we speak of “stable in-
ternal dynamics” for brevity) we need to ensure that this
property is preserved under interconnection with the fun-
nel pre-compensator cascade. This can be achieved for the
generic system (2.13)–(2.14), as shown in [40] for relative
degree two or three and, for arbitrary relative degree, in
the recent work [101]. In essence, what needs to be es-
tablished is that the augmented system (the conjunction
of (2.13) and (3.42) with input u and output z := ξr−1,1)
can be equivalently written as

z(r)(t) = F
(
d̃(t), T̃(z, ż, . . . , z(r−1))(t)

)
+ Γ̃u(t), (3.44)

with initial data

z|[−h,0] = z0 ∈ Cr−1([−h, 0],Rm), if h > 0,

(z(0), ż(0), . . . , zr−1(0)) = (z01 , z
0
2 , . . . , z

0
r−1), if h = 0,

}
(3.45)

for some d̃ ∈ L∞(R≥0,Rr), F ∈ C(Rr × Rq̃,Rm) and an

operator T̃ ∈ Trm,q̃h . The initial data is determined by
the initial data on the primal system in conjunction with
the initial data on the pre-compensator cascade, the latter
being open to choice and the former being such that y(0)
is known. The following result is taken from [101].

Theorem 3.12. Consider a system (2.13)–(2.14) and as-
sume that Γ = Γ⊤ ≻ 0. Further consider the cascade of
funnel pre-compensators FPr−1◦. . .◦FP1 defined by (3.42)
with φ1 ∈ Φr and φ2 = . . . = φr−1 := ρφ1 for some ρ > 1.

Choose pre-compensator initial data such that

φ1(0) ∥y0(0)− ξ01,1∥ < 1, ρφ(0) ∥ξ0i−1,1 − ξ0i,1∥ < 1

for i = 2, . . . , r − 1.2 Furthermore, let p and q be such
that (3.39), (3.40), (3.41) hold and set (pi,qi) = (p,q),

i = 1, . . . , r − 1. Moreover, assume that Γ̃i = Γ̃ ∈ Rm×m,
i = 1, . . . , r − 1, such that Γ̃ = Γ̃⊤ ≻ 0 and ΓΓ̃−1 =(
ΓΓ̃−1

)⊤ ≻ 0. Finally, assume that, r ≥ 3, then

∥Im − ΓΓ̃−1∥ < min

{
ρ− 1

r − 2
,

ρ

4ρ2(ρ+ 1)r−2 − 1

}
. (3.46)

Then the conjunction of (2.13) and (3.42) can be equiva-
lently written in the form of a system (3.44) with input u,
output z := ξr−1,1 and initial data (3.45). Moreover, for
any u ∈ L∞

loc(R≥0,Rm) it holds that

∃ ε ∈ (0, 1) ∀ t > 0 : ρ1φ1(t)∥y(t)− z(t)∥ ≤ ε,

where ρ1 := ρ/(ρ+ r − 2).

By virtue of the above result, the funnel con-
troller (3.13) may be applied to the conjunction of (2.13)
and (3.42) with input u and output z := ξr−1,1, i.e., to
system (3.44). For the case of relative degree r = 2 the
resulting controller structure was already discussed in Sec-
tion 3.3.1. In the following we consider the general case.
The additional combination of this controller structure (for
the cases r = 2 and r = 3) with an open-loop control strat-
egy is discussed in [33] with some applications to underac-
tuated multibody systems.

Corollary 3.13. Consider system (2.13)–(2.14) with the
notation and assumptions of Theorem 3.12 in force.
Choose a triple (α,N,φ) of funnel control design param-
eters as in (3.10) and let yref ∈ Wr,∞(R≥0,Rm) be ar-
bitrary. Assume that, for some r̂ ∈ {1, . . . , r}, the in-

stantaneous values yref(t), . . . , y
(r̂−1)
ref (t) are known and so,

setting e(0)(t) ≡ e(t) := z(t)− yref(t), the vector

e(t) = (e(0)(t), . . . , e(r̂−1)(t), z(r̂)(t), . . . , z(r−1)(t))

(that is, (3.9) with y(t) replaced by z(t)) is available for
feedback. Choose pre-compensator initial data such that

2For example, ξ0i,1 = y0(0), i = 1, . . . , r − 1 suffices.

29



φ(0)e(0) ∈ Dr. Then the funnel control

u(t) =
(
N ◦ α

)
(∥w(t)∥2)w(t), w(t) = ρr

(
2φ(t)e(t)

)
(corresponding to (3.13) with φ replaced by 2φ) applied to
the augmented system (3.44) yields an initial-value prob-
lem which has a solution (in the sense of Carathéodory),
every solution can be maximally extended and every max-
imal solution z : [−h, ω) → Rm has the properties:

(i) ω = ∞ (global existence);

(ii) u ∈ L∞(R≥0,Rm), z ∈ Wr,∞([−h,∞),Rm);

(iii) there exists ε1 ∈ (0, 1) such that 2φ(t)∥z(t) −
yref(t)∥ ≤ ε1 for all t ≥ 0.

Moreover, setting φ1 := 2ρ−1(ρ + r − 2)φ in the pre-
compensator, then, by Theorem 3.12, there exists ε2 ∈
(0, 1) such that

2φ(t)∥y(t)− z(t)∥ ≤ ε2, for all t ≥ 0.

Writing ε := 1
2 (ε1 + ε2), gives

(iv) φ(t)∥y(t)− yref(t)∥ ≤ ε for all t ≥ 0,

and so the performance objective is achieved.

Remark 3.14. The funnel pre-compensator successfully
circumvents “the curse of dimensionality” associated with
the filtering approach (as discussed in Remark 3.10). How-
ever, the adage “there ain’t no such thing as a free lunch”
applies3: circumvention of the curse via pre-compensation
comes with a price. First, the system matrix Γ in (2.13)
is required to be symmetric and positive definite (only
sign definiteness is required for filtering). More restric-
tive is assumption (3.46) in Theorem 3.12 which essen-

tially means that the controller matrix Γ̃ in the funnel
pre-compensators needs to be “sufficiently close” to the
(unknown) system matrix Γ. How close is specified by the
bound on the right-hand side, which becomes tighter as
the relative degree r increases. For example, for r = 3
and r = 5, maximizing this bound with respect to the
choice of design parameter ρ > 1 gives

∥Im − ΓΓ̃−1∥ <

{
0.117, if r = 3

0.027, if r = 5.

This indicates that Γ must be known to a high degree
of accuracy. For more comments on the role of assump-
tion (3.46) see [101, Rem. 3.10].

4. Input constraints

Up to this point, all exposition and discussion of funnel
control has been predicated on an implicit assumption that
the input variables are unconstrained in magnitude. From
a practical point of view, this may be deemed unrealis-
tic. In most physically-based applications, control inputs

3In an optimization context, Wolpert and Macready [152, 153]
paraphrase their concept of a no-free-lunch theorem as “any two
algorithms are equivalent when their performance is averaged across
all possible problems”.

are subject to constraints. Can funnel control accommo-
date such constraints? Given that the idea underlying the
methodology is that inputs can take remedial control ac-
tion of sufficiently large magnitude so as to avoid con-
tact with the funnel boundary, it is clear that some addi-
tional feasibility conditions are mandatory if the inputs are
constrained. Not unexpectedly, such feasibility conditions
translate into restrictions on the initial data, disturbances
and reference signals associated with the process to be
controlled, and on the underlying performance funnel.

4.1. Funnel control with saturation

If the vector of control inputs is restricted to take its values
in the closed ball Bmû = {w ∈ Rm | ∥w∥ ≤ û} for some û >
0, then it is natural to accommodate this input constraint
by adopting the saturation function:

satû : Rm → Bmû , v 7→
{
û ∥v∥−1v, ∥v∥ > û
v, otherwise.

(4.1)

For the purpose of motivation, consider again the scalar
linear prototype (1.3) with cb > 0, but now with input val-
ues constrained to the interval [−û, û]. The unconstrained
funnel controller (1.21) is replaced by the saturated strat-
egy

u(t) = −satû(k(t)e(t)), k(t) = φ(t)
(
1− (φ(t)e(t))2

)−1
.

(4.2)
We compare the unconstrained closed-loop sys-
tem (1.3), (1.21), i.e.,

ė(t) =
(
a− cb k(t)

)
e(t) + ayref(t)− ẏref(t),

e(0) = cx0 − yref(0)
(4.3)

with the constrained closed-loop system (1.3), (4.2), i.e.,

ė(t) = ae(t)− cb satû(k(t)e(t)) + ayref(t)− ẏref(t),

e(0) = cx0 − yref(0).
(4.4)

In either case, the initial data condition φ(0)|e(0)| < 1
(trivially satisfied if φ(0) = 0) is clearly necessary for at-
tainment of the funnel control objective. However, whilst
this condition is also sufficient in the unconstrained case,
it fails to be so in the constrained case. Feasibility of
the tracking objective in the presence of input saturation
inevitably involves an interplay between the plant data
(a, b, c, x0), the reference signal yref , the function φ ∈ Φ
and the saturation level û. For instance, if a > 0, then it
is readily verified that a|cx0|/(cb) ≤ û is a necessary con-
dition for feasibility; furthermore, the saturation level û
should also, loosely speaking, be commensurate with the
W1,∞ norm of the reference signal yref . To illustrate the
interplay between û and the funnel function φ, consider
the case wherein a = 0, yref(·) = 0 and φ is such that its
reciprocal ψ = 1/φ is a monotonically decreasing, glob-
ally Lipschitz function with Lipschitz constant Λ. Assume
feasibility of the tracking objective. Then,

Λt ≤ ψ(0)− ψ(t) < ψ(0)− y(t)

= ψ(0)− y(0)−
∫ t

0

ẏ(s) ds < cb û
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for all t ≥ 0, and so cb û ≥ Λ is a necessary condition for
feasibility. This case serves to illustrate that the satura-
tion level must be large enough so that the control can
accommodate local “steepness” of the funnel boundary.

For multi-input, multi-output linear systems (2.1)
of relative degree one, with CB + (CB)⊤ ≻ 0 and
asymptotically stable zero dynamics, the efficacy of the
funnel control (4.2) is established in Hopfe, Ilchmann,
Ryan (2010) [75, Thm. 4.1], assuming that a feasibility
inequality holds. The latter means that û must be suffi-
ciently large in terms of the system data, the initial data,
φ, yref , ẏref , and φ̇. This inequality is a conservative
bound, but it ensures feasibility of funnel control. For
the case of componentwise saturation constraints, which
requires a componentwise funnel control strategy, see [75,
Thm. 4.3].

In the highly specialized context of the scalar sys-
tem (1.3), the result of [75, Thm. 4.1] translates into the
following: if

φ(0)|cx0 − yref(0)| < 1 and

cb û ≥ |a|
(
∥ψ∥∞ + ∥yref∥∞

)
+ ∥ẏref∥∞ + ∥ψ̇∥∞, (4.5)

then the simple control strategy (4.2) ensures attainment
of the tracking objective (and, moreover, the gain func-
tion k is bounded). Furthermore, if the first inequality
in (4.5) is replaced by φ(0)|cx0 − yref(0)| < û(1 + û)−1,
then input saturation does not occur and so the control
strategy coincides with (1.21).

A generalization of the above to single-input, single-
output nonlinear systems is presented in Hopfe, Ilchmann,
Ryan (2010) [76]. For single-input, single-output systems
of relative degree two, a variant of funnel control with
(scalar) input saturation is given in Hackl, Hopfe, Ilch-
mann, Mueller, Trenn (2013) [70, Thm. 3.3]. A treatment
of a class of nonlinear systems arising in chemical reactor
models is contained in Ilchmann and Trenn (2004) [91].

4.2. Bang-bang funnel control

To treat constrained scalar-input systems with arbitrary
(but known) relative degree, a bang-bang funnel control
strategy has also been developed. This approach avoids
the backstepping procedure (cf. Section 3.3.2) and uses
derivative feedback, similar to the funnel control methods
discussed in Section 3.2. However, the scalar control input
switches only between two values and is hence able to re-
spect input constraints. As is to be expected, the approach
requires satisfaction of feasibility assumptions.

The bang-bang funnel controller was first introduced
by Liberzon and Trenn (2010) [105] for nonlinear systems
with relative degree r ≤ 2 and later generalized to arbi-
trary relative degree in [106]. The case of time delays is
discussed in [107] for relative degree two systems. The sys-
tems considered in [106] are n-dimensional, time-invariant,
control-affine, disturbance-free, and are expressible in the
form

y(r)(t) = f(y(t), ẏ(t), . . . , y(r−1)(t), η(t))

+ g(y(t), ẏ(t), . . . , y(r−1)(t), η(t))u(t),

η̇(t) = h(y(t), ẏ(t), . . . , y(r−1)(t), η(t)),

where f , g, h are locally Lipschitz and g is positive val-
ued. Temporarily regarding the second of the above sub-
systems as an independent (n−r)-dimensional system with
Rr-valued input v, that is, the system η̇ = h(v, η) with as-
sociated flow ϱ, it is assumed that this system has the
bounded-input,bounded-state property and so, with initial
data η(0) = η0 and continuous input v ∈ C(R≥0,Rr), the
unique solution η(·) = ϱ(·, η0, v) is globally defined. Intro-
ducing the operator (more precisely, a family of operators
parameterized by η0, but again we suppress this depen-
dency)

T : C(R≥0,Rr) → L∞
loc(R≥0,Rn−r), v 7→

(
v(·), ϱ(·, η0, v)

)
,

the generic system takes the form

y(r)(t) = f(T(y, ẏ, . . . , y(r−1))(t))

+ g(T(y, ẏ, . . . , y(r−1))(t))u(t) (4.6)

which, in the absence of input constraints, is a system of
class N 1,r amenable to funnel control. In the presence
of constraints, the bang-bang funnel controller switches
between two values and the control law is given by

u(t) =

{
U−, if q(t) = true,

U+, if q(t) = false,
(4.7)

where U− < U+ and q : R≥0 → {true, false} is the switch-
ing signal determined by the switching logic S depending
on the error signal. The situation is illustrated in Fig. 10,
wherein φ0, . . . , φr−1 are functions defining individual per-
formance funnels for the tracking error and its first (r−1)
derivatives. We refer to [106] for a precise description of

System (4.6) y

switching
logic

+ −yref

φ0, . . . , φr−1U+U−

e, ė, ..., e(r−1)q

u

Figure 10: Closed-loop system consisting of the bang-bang funnel
controller applied to system (4.6); taken from [106].

the switching logic S : (e, ė, . . . , e(r−1)) 7→ q. Subject
to inevitable feasibility conditions, the closed-loop system
has a global solution. Moreover, the switching signal q
has locally finitely many switches (and so “chattering” be-
haviour does not occur) and the tracking error e and its
derivatives ė, . . . , e(r−1) evolve within their respective per-
formance funnels.

4.3. Funnel control under arbitrary input constraints

In the above described approaches, the saturation level û
must be sufficiently large in order to ensure feasibility of
funnel control under input saturation. The reason for
this is the inflexibility of the output constraints, given by
the performance funnel for the tracking error. In the re-
cent work [15] a different viewpoint is taken. There, the
input constraints are considered to be hard constraints,
being imposed by the physical limitations of the system.
On the other hand, the output constraints are considered
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to be soft constraints, which can be weakened whenever
this is inevitable in order to meet the input constraints.
To achieve this, a modified control design was proposed,
where the funnel boundary (determined by the recipro-
cal ψ(·) = 1/φ(·)) is no longer prescribed for all t ≥ 0,
but it is dynamically generated and becomes part of the
controller design. The generating mechanism for ψ is such
that the funnel has a prescribed shape (chosen a priori by
the designer) whenever the saturation is not active, that is,
when u(t) = −k(t)e(t) in the context of (4.4). When the
saturation is active, the funnel is dynamically “widened”
with the aim of de-activating saturation. On achieving this
aim, the funnel is adjusted to recover its designed shape
exponentially fast.

The idea to readjust the funnel boundary when the
input saturation becomes active was already formulated
in [71] for relative degree one systems, however the satura-
tion level must still be sufficiently large. The same control
design as in [15] was independently developed in [143] for
relative degree one systems in the context of prescribed
performance control. Higher relative degree systems with
input amplitude and rate constraints are considered in the
recent work [144]. Again, both works [143, 144] still re-
quire sufficiently large saturation levels.

To illustrate the idea of [15], consider the case of
the scalar system (1.3) with cb > 0. Then the input-
constrained funnel controller is given by

e(t) = y(t)− yref(t), k(t) =

(
1− ∥e(t)∥2

ψ(t)2

)−1

ψ̇(t) = −αψ(t) + β + ψ(t)
κ(v(t))

∥e(t)∥
, ψ(0) = ψ0

κ(v(t)) = ∥v(t)− satû(v(t))∥,
v(t) = −k(t)e(t), u(t) = satû(v(t))

(4.8)

with the controller design parameters α > 0, β > 0,
ψ0 > β/α. The controller essentially consists of a
standard funnel strategy appended by the dynamics for
the funnel boundary. The idea is that, if the satura-
tion is not active and hence κ(v(t)) = 0 on an inter-
val [t0, t1], then the funnel boundary is of the form ψ(t) =
ψ(t0)e

−α(t−t0) + β
α

(
1− e−α(t−t0)

)
; if the saturation is ac-

tive and hence κ(v(t)) > 0, then the funnel boundary is
widened according to the dynamics of the controller in or-
der to guarantee the input constraints. After a period of
saturation, the boundary reverts to its prescribed shape
exponentially fast.

More generally, in [15] the case of nonlinear functional
differential equations of relative degree r ∈ N, satisfy-
ing a sector bound property is considered. Additionally,
the high-gain property is not needed and for the internal
dynamics only a “local” bounded-input bounded-output
property is required. The controller (4.8) for the case
of r > 1 again consists of a version of the relative de-
gree r funnel controller, appended by the dynamics for the
funnel boundaries, where the widening effect due to an ac-
tive saturation propagates from the r-th funnel boundary
to the first through the dynamic equations.

5. Applications

Funnel control has proved a useful tool in various applica-
tions in several fields of engineering. Straightforward ap-
plications can be found in mechanical engineering, robotics
and mechatronics, but also in voltage and current con-
trol of electrical circuits or synchronous machines tracking
problems are frequently encountered for which funnel con-
trol proved to be an appropriate choice. Moreover, funnel
control has permeated areas in which its application is less
obvious, such as control of chemical reactor processes, ar-
tificial ventilation units and therapy.

In the following subsections we consider the applica-
tions for relative degree one systems and systems with
higher relative degree separately. In each case we pro-
vide an overview of the available applications to the best
of our knowledge. Additionally, for illustration purposes
we pick one of the applications and discuss in detail that
it fits into the respective system class and hence funnel
control is feasible.

We note that applications for prescribed performance
control – the relative of funnel control discussed in Sub-
section 3.2.3 – can be found in the recent comprehensive
survey [42].

5.1. Relative degree one systems

The following applications are available for systems with
relative degree one:
application discussed in

speed control of industrial servo-
systems;

[64, 69, 89, 136]
and [68, Ch. 11]

speed control of wind turbine sys-
tems;

[65, 67] and [68,
Ch. 12]

current control of electric syn-
chronous machines;

[66] and [68,
Ch. 14]

voltage and current control of electri-
cal circuits;

[38]

power flow control in intermediate
DC bus of electrical drives;

[137]

temperature control of chemical re-
actor models;

[91]

control of peak inspiratory pressure
of artificial ventilation units;

[123]

oxygenation control during artificial
ventilation therapy;

[122]

adaptive cruise control with guaran-
teed safety;

[36, 37]

synchronization of multi-agent sys-
tems;

[104]

control of the containment of epi-
demics.

[14]

As an example we consider a discretized transmission
line [55] (described by a differential-algebraic equation)
and show that it is amenable to funnel control; this exam-
ple is taken from [38]. The discretized transmission line is
depicted in Fig. 11, where n is the number of spacial dis-
cretization points. Using modified nodal analysis (MNA),
see [74] and the survey [126], we may obtain a model of the
circuit which is described by a linear differential-algebraic
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Figure 11: Discretized transmission line; taken from [38].

equation of the form (2.15), where

sE −A =

sACCA⊤
C +ARGA⊤

R AL AV
−A⊤

L sL 0
−A⊤

V 0 0

 ,
B = C⊤ =

−AI 0
0 0
0 −InV

 ,
x = (η⊤, i⊤L , i

⊤
V )

⊤, u = (i⊤I , v
⊤
V )

⊤, y = (−v⊤I ,−i⊤V )⊤,

and

C ∈ RnC×nC ,G ∈ RnG×nG ,L ∈ RnL×nL ,

AC ∈ Rne×nC ,AR ∈ Rne×nG ,AL ∈ Rne×nL ,

AV ∈ Rne×nV ,AI ∈ Rne×nI ,

n = ne + nL + nV , m = nI + nV .


Here AC , AR, AL, AV and AI denote the element-related
incidence matrices, η(t) is the vector of node potentials,
iL(t), iV(t), iI(t) are the vectors of currents through in-
ductances, voltage and current sources, vV(t), vI(t) are the
voltages of voltage and current sources, and C, G and L are
the matrices expressing the constitutive relations of capac-
itances, resistances and inductances. In [38, Prop. 7.4], it
is shown that this system has asymptotically stable zero
dynamics and so Theorem 3.3 is applicable to conclude
feasibility of funnel control. For simulations of various
scenarios, we refer to [38].

5.2. Higher relative degree systems

The following applications are available for systems with
higher relative degree:

application discussed in

position control of industrial servo-
systems;

[62, 69, 70]
and [68, Ch. 11]

joint position control of rigid-link
revolute-joint robotic manipulators;

[72, 29, 30, 33]
and [68, Ch. 13]

position control for a robotic manip-
ulator with kinematic loop;

[22]

force control for a mass on car sys-
tem;

[30, 33]

permanent magnet synchronous mo-
tor service system;

[46]

oxygenation control in artificial ven-
tilation therapy .

[122]

As an example we consider a robotic manipulator
from [72], see also [68, Ch. 13] and [94, p. 77], as depicted
in Fig. 12. The robotic manipulator is planar, rigid, with
revolute joints and has two degrees of freedom.

The two joints are actuated by u1 and u2. We assume
that the links are massless, have lengths l1 and l2, and

u1

l1

m1u2

y1

l2

m2

y2

Figure 12: Planar rigid revolute joint robotic manipulator; taken
from [30].

point masses m1 and m2 are attached to their ends. The
two outputs are the joint angles y1 and y2 and the equa-
tions of motion are given by (see also [138, pp. 259])

M(y(t))ÿ(t) + C(y(t), ẏ(t))ẏ(t) +G(y(t)) = u(t) (5.1)

with initial value (y(0), ẏ(0)) = (0, 0), inertia matrix M :
R2 → R2×2,

M(y1, y2)

:=

[
m1l

2
1+m2(l

2
1+l

2
2+2l1l2 cos(y2)) m2(l

2
2+l1l2 cos(y2))

m2(l
2
2+l1l2 cos(y2)) m2l

2
2

]
centrifugal and Coriolis force matrix C : R2 ×R2 → R2×2,

C(y1, y2, v1, v2)

:=

[
−2m2l1l2 sin(y2)v1 −m2l1l2 sin(y2)v2
−m2l1l2 sin(y2)v1 0

]
,

and gravity vector G : R2 → R2,

G(y1, y2)

:= g

(
m1l1 cos(y1) +m2(l1 cos(y1) + l2 cos(y1 + y2))

m2l2 cos(y1 + y2),

)
where g is the acceleration of gravity. If we right- multi-
ply system (5.1) with M(y(t))−1, which is pointwise pos-
itive definite, we see that the resulting system belongs to
the class (2.9) with r = m = 2. Therefore, Theorem 3.4
yields that funnel control is feasible. For simulations of
various scenarios and corresponding figures we refer to the
works [27, 30].

5.3. Systems with partial differential equations

The following applications are available for systems
containing partial differential equations:

application discussed in

boundary control of heat propagation
problems;

[128]

control of a lossy transmission line; [124]

mean value control of molecular sys-
tems;

[32]

control of defibrillation processes for
the human heart;

[17]

force control for a moving water tank. [35]
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As an example we consider the moving water tank system
from [35], which is depicted in Fig. 13.

u(t)

y(t)

gh(t, ζ)

ζ0 1

v(t, ζ)

Figure 13: Horizontal movement of a water tank; taken from [35].

We neglect the wheels’ inertia and friction between the
wheels and the ground, and assume that there is an exter-
nal force acting on the water tank, denoted by u(t). The
measurement output is the horizontal position y(t) of the
water tank, and the mass of the empty tank is denoted
by m. The dynamics of the water can be described by the
Saint-Venant equations, cf. [133], as

∂th+ ∂ζ(hv) = 0, ∂tv + ∂ζ

(
v2

2
+ gh

)
+ hS

( v
h

)
= −ÿ

(5.2)
with boundary conditions v(t, 0) = v(t, 1) = 0 and friction
term S : R → R. Here h : R≥0 × [0, 1] → R denotes the
height profile and v : R≥0 × [0, 1] → R the (relative) hor-
izontal velocity profile, where the length of the container
is normalized to 1. As in [35] we use a linearized version
of these equations:

∂tz = Az + bÿ = −
[

0 h0∂ζ
g∂ζ 2µ

]
z +

(
0
−1

)
ÿ, (5.3)

with boundary conditions z2(t, 0) = z2(t, 1) = 0, b =
(0,−1)⊤ and friction coefficient µ = 1

2S
′(0) > 0. The

state space in which z(t) evolves is X = L2([0, 1];R2) and
A : D(A) ⊆ X → X,

D(A) =

{
(z1, z2) ∈ X

∣∣∣∣ z1, z2 ∈W 1,2([0, 1];R),
z2(0) = z2(1) = 0

}
.

(5.4)

By conservation of mass in (5.3),
∫ 1

0
z1(t, ζ)dζ = h0 for all

t ≥ 0. The model is completed by the momentum

p(t) := mẏ(t) +

∫ 1

0

z1(t, ζ)
(
z2(t, ζ) + ẏ(t)

)
ζ, t ≥ 0. (5.5)

Substituting the absolute velocity x2 = z2+ ẏ for z2, x1 =
z1 and using the balance law ṗ(t) = u(t) and (5.3) we
obtain the nonlinear model on the state space X:

∂tx = A(x+ bẏ) (5.6a)

mÿ(t) = g
2x1(t, ·)

2|10+2µ⟨x1(t), x2(t)⟩ − 2µh0ẏ(t) + u(t)
(5.6b)

where ⟨f, g⟩ =
∫ 1

0
f(s)g(s)ds. This system can be written

as

ÿ(t) = T(ẏ)(t) +
u(t)

m
, (5.7)

where the operator T is formally given by

T(η)(t) =
g

2m
x1(t, ·)2|10 +

2µ

m

(
⟨x1(t), x2(t)⟩ − h0η(t)

)
with x being the strong solution of

ẋ(t) = A
(
x(t) + bη(t)

)
, x(0) = x0.

It is then shown in [35] that T ∈ T2,1
0 and hence (5.7)

belongs to the class N 1,2, thus Theorem 3.4 yields that
funnel control is feasible. For simulations and correspond-
ing figures we refer to [35].

6. Future research and open problems

6.1. Model predictive control (MPC)

MPC is a well-established control technique which relies on
the iterative solution of optimal control problems (OCPs),
see the textbooks [60, 125]. Recently, [20, 18, 28] have
introduced funnel-like ideas to overcome some limitations
in MPC. The latter means that “artificial” assumptions are
imposed to find an initially feasible solution and to ensure
recursive feasibility of MPC (i.e., solvability of the OCP at
a particular time instant automatically implies solvability
of the OCP at the successor time instant). It was shown
that these assumptions are superfluous when “funnel-like”
stage costs are introduced so that the costs grow un-
bounded when the tracking error approaches the funnel
boundary. More precisely, in contrast to simply adding the
constraints on the tracking error to the OCP with stan-
dard quadratic stage costs, funnel MPC is initially and
recursively feasible, without imposing state constraints or
terminal conditions and independent of the length of the
prediction horizon. These results hold for a large class of
nonlinear multi-input multi-output systems with relative
degree one, very similar to the classNm,1, as shown in [20].
Utilizing so called feasibility constraints and extending the
stage costs by additional terms (similar to the gain func-
tions in (3.21)), applicability of funnel MPC to systems
with arbitrary relative degree was shown in [18]. However,
the parameters involved in the feasibility constraints are
very hard to determine and usually conservative estimates
must be used. But then again, initial and recursive feasi-
bility cannot be guaranteed. Furthermore, the stage cost
function used in [18] is rather complex and (together with
the feasibility constraints in the optimal control problem)
leads to an increased computational effort. These draw-
backs have been resolved in the recent work [19], where a
modified and simple stage cost is used and the feasibility
constraints are avoided. In [21] the combination of fun-
nel MPC with an additional funnel control feedback loop
was investigated, and it was shown that this leads to a
control scheme which achieves the tracking objective even
in case of severe model-plant mismatches. This resolves
another limitation of classical MPC: it requires a suffi-
ciently accurate model to predict the system behaviour
and compute the optimal control in each step. In the ap-
proach from [21], funnel MPC is safeguarded by the ad-
ditional funnel controller, to guarantee the evolution of
the tracking error within the funnel boundaries. Another
extension of this approach is presented in [102], where a
framework to improve the model by learning its parame-
ters from data is introduced, while it is still safeguarded
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by the funnel controller component. A limitation of the
approach is that the learning scheme must guarantee that
the “improved model” is again a member of the consid-
ered class of models, which, so far, is only clear for simple
learning algorithms restricted to linear models. Further-
more, the extension to arbitrary relative degree is an open
problem.

6.2. Partial differential equations

In the context of systems containing partial differential
equations, an important challenge is the treatment of sys-
tems with inputs and outputs which are not co-located,
that means the actuators and sensors are not placed at
the same position. Note that all boundary control systems
considered in Section 2.4.3, as e.g. the heat equation (2.31),
have co-located inputs and outputs. In the following we
describe two prototypical examples of systems in one spa-
tial variable which illustrate the more realistic situation
where the input and output are not co-located.

First, consider the wave equation

∂2t x(ξ, t) = c2 ∂2ξx(ξ, t), (ξ, t) ∈ [0, ℓ]× R>0,

u(t) = ∂ξx(0, t), y(t) = ∂ξx(ℓ, t), 0 = x(ℓ, t), t > 0.
(6.1)

This equation describes a vibrating string of length ℓ,
where the input and output consist of a scaled force at the
left and right hand side, resp. Furthermore, the boundary
condition 0 = x(ℓ, t) means that the right hand side of
the string is clamped. The application of an input causes
a wave which is travelling with speed c > 0 to the right
hand side, where it is reflected. Consequently, any input
action influences the output with a delay of τ = ℓ

c . A
standard funnel controller is not able to deal with this
behaviour, since a “bad choice” of the reference signal
and funnel boundary may potentially drive the tracking
error outside the performance funnel within the time in-
terval [0, τ ], without the control being able to counteract.

As a second model problem, consider the heat equation

∂tx(ξ, t) = k ∂2ξx(ξ, t), (ξ, t) ∈ [0, ℓ]× R>0,

u(t) = ∂ξx(0, t), y(t) = x(ℓ, t), 0 = ∂ξx(ℓ, t), t > 0
(6.2)

with k > 0, and boundary control formed by the tem-
perature flux at the left hand side. Then the output is
given by the temperature at the right hand side, and the
condition 0 = ∂

∂ξx(ℓ, t) describes a perfect isolation at
the right hand side. In contrast to the wave equation,
the problem of a delayed control action does not occur
here. However, the diffusive effect implies that the out-
put y : R>0 → R is infinitely smooth, regardless of a
possibly non-smooth u ∈ L∞(R>0). In a certain sense,
this corresponds to an infinite relative degree. Inspection
of the zero dynamics, that is, (6.2) under the additional
condition y = 0, results in an equation with Neumann
and Dirichlet boundary values at the same part of the
boundary, which is not well-posed. Also for this example,
standard funnel control is not feasible in general.

The above issues suggest – for completely different rea-
sons – that standard funnel control does not achieve the
objective of tracking with prescribed performance of the
tracking error for the systems (6.1) and (6.2). Suitable
modifications of the funnel controller and, probably, addi-
tional (smoothness, quantitative) assumptions on the fun-

nel boundary φ and the reference signal yref warrant fur-
ther investigation.

6.3. Other open problems

Systems with unstable zero dynamics. Recently, funnel
control for systems which do not have asymptotically sta-
ble zero dynamics has been investigated. First results on
funnel control for systems which are not minimum phase
are given in [11] for uncertain linear systems and in [29]
for a nonlinear robotic manipulator. Further research is
necessary to extend the results to general nonlinear sys-
tems.

Sampled-data funnel control. Recently, Lanza et al. [103]
have investigated funnel control for sampled-data systems
with zero-order hold, showing that for a sampling rate be-
low a certain threshold (depending on the system param-
eters, the reference signal and the funnel boundary) the
tracking error evolves within the prescribed performance
funnel – also between the sampling instances. This result
even covers the general class Nm,r of nonlinear systems
with arbitrary relative degree. Future research should fo-
cus on relaxing the estimates for the sampling rate thresh-
old (which are quite conservative) and funnel control meth-
ods for discrete time systems.

Funnel cruise control. Berger and Rauert [37] have devel-
oped a “funnel cruise controller” as a universal adaptive
cruise control mechanism for vehicle following which guar-
antees that a safety distance to the leader vehicle is never
violated. Based on this approach, a decentralized con-
troller which achieves string stability of vehicle platoons
has been introduced in the recent work [16]. Open prob-
lems are the treatment of acceleration constraints and the
investigation of synchronization behaviour.

Funnel control with internal models. There are contribu-
tions on funnel control in combination with internal mod-
els – i.e., models of the exogenous signals such as reference
signals or disturbances, cf. [155]. It is shown in [83] for
linear systems with relative degree one that this combina-
tion achieves asymptotic tracking. In [68, Ch. 7 & 10] it is
shown that this control is also efficient in the presence of
measurement noise: the tracking error does not “follow”
the noise and hence it does not get close to the funnel
boundary and, as a consequence, the gain function does
not attain unnecessary large values. In the end, the incor-
poration of internal models leads to an increased level of
robustness of the overall controller design and, from an ap-
plications point of view, implementation of funnel control
in real-world systems without internal models is challeng-
ing. First results for asymptotic tracking by funnel control
with internal models has been reported for linear systems
with arbitrary relative degree in [23]. However, the treat-
ment of measurement noise and nonlinear systems remain
open problems.

Robustness in the gap metric. Robustness of adaptive con-
trollers has been an issue since the 1980s, see e.g. [92, 130].
So-called universal adaptive controllers, including the fun-
nel controller, satisfy the desired control objective for a
whole class of systems. In this sense, these controllers
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are already robust. However, an issue still remains as to
whether the controller continues to maintain performance
if a system of the underlying class is subjected to perturba-
tions,for example to unmodelled dynamics, which take it
outside the class. One established tool to quantify robust-
ness is the gap metric, with which the distance between
two systems is measured as the “gap” separating their
corresponding graphs. Robustness in the gap metric of
the classical high-gain adaptive controller (1.5), (1.6) was
studied in French, Ilchmann, and Ryan (2006) [56]. In [81]
it is shown that the funnel controller (1.21) applied to a
linear system (2.1) is robust in the following sense: it may
be applied to a system not satisfying any of the classical
conditions of relative degree one, known sign of the high-
frequency gain and asymptotically stable zero dynamics
as long as the initial conditions and the disturbances are
“small” and the system is “close” (in terms of a “small”
gap) to a system satisfying the classical conditions. An ex-
tension of this result to systems with relative degree two is
derived in [70]. It is an open problem as to whether similar
gap metric results hold for funnel control for higher relative
degree nonlinear and/or differential-algebraic systems.

Fault tolerant funnel control. Berger [12] has recently de-
veloped a fault tolerant funnel control mechanism for non-
linearly perturbed linear systems. The method utilizes
the Byrnes-Isidori form for time-varying linear systems
from [80]. The extension to fully nonlinear systems is a
topic of future research.

Funnel control versus prescribed performance control. Pre-
scribed performance control (see Subsection 3.2.3) and
funnel control are closely related. A thorough comparison
of the complexity of the controllers and the assumptions
on the system class is still missing. This may lead to new
controllers with less complexity which work for a larger
class of systems.
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l’Automatique, l’Analyse de Systèmes et le Traitment du Sig-
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Birkhäuser, Basel (2014)

[127] Reis, T., Schaller, M.: Port-Hamiltonian formulation of Oseen
flows (2023). Submitted for publication. Preprint available on
arXiv: https://arxiv.org/abs/2305.09618

[128] Reis, T., Selig, T.: Funnel control for the boundary controlled
heat equation. SIAM J. Control Optim. 53(1), 547–574 (2015)

[129] Respondek, W.: Right and left invertibility of nonlinear control

38

https://arxiv.org/abs/2304.10910
https://arxiv.org/abs/2303.00523
https://arxiv.org/abs/2303.00523
https://arxiv.org/abs/2302.05168
https://arxiv.org/abs/2302.05168
https://arxiv.org/abs/2305.09618


systems. In: H.J. Sussmann (ed.) Nonlinear Controllability
and Optimal Control, pp. 133–177. Marcel Dekker, New York
(1990)

[130] Rohrs, C., Valavani, L., Athans, M., Stein, G.: Robustness
of continuous adaptive control algorithms in the presence of
unmodeled dynamics. IEEE Trans. Autom. Control 30, 881–
889 (1985)

[131] Ryan, E.P., Sangwin, C.J.: Controlled functional differential
equations and adaptive stabilization. Int. J. Control 74(1),
77–90 (2001)

[132] Saberi, A., Sannuti, P.: Observer design for loop transfer re-
covery and for uncertain dynamical systems. IEEE Trans. Au-
tom. Control 35(8), 878–897 (1990)

[133] de Saint-Venant, A.: Théorie du mouvement non perma-
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