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Abstract
Recently, robust funnel Model Predictive Control (MPC) was introduced, which consists of model-based
funnel MPC and model-free funnel control for its robustification w.r.t. model-plant mismatches, bounded
disturbances, and uncertainties. It achieves output-reference tracking within prescribed bounds on the
tracking error for a class of unknown nonlinear systems. We extend robust funnel MPC by a machine learning
component to adapt the underlying model to the system data and hence to improve the contribution of
MPC. Since robust funnel MPC is inherently robust and the evolution of the tracking error in the prescribed
performance funnel is guaranteed, the additional learning component is able to perform the learning task
online – even without an initial model or offline training.
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1 INTRODUCTION

Model Predictive Control (MPC) is a well-established control technique for constrained linear as well as for nonlinear multi-
input multi-output systems. Using a model of the system to be controlled, the idea is to iteratively solve Optimal Control
Problems (OCPs) based on predictions about the system behavior on a finite-time horizon, see e.g. the textbook1, and the
references therein. MPC is nowadays widely used in various applications, see e.g.2 and the references therein.

Since MPC heavily relies on the availability and accuracy of the underlying model of the actual system, some research
effort has been made to compensate for model-plant mismatches and external disturbances. One research branch focuses on the
MPC algorithm itself and its robustification, see e.g.3,4,5,6,7, and the references therein, respectively. For instance, in5 a robust
MPC framework was developed for nonlinear discrete-time systems. The uncertainties and disturbances are compensated by
introducing tightening tubes around the input and output constraints to ensure robust satisfaction of the constraints. A similar
tube-based technique was used in7. In3 it was shown that combining funnel MPC, which achieves reference tracking with
guaranteed error performance, cf.8, with an additional robust feedback controller leads to a control scheme, which achieves a
tracking objective even in case of a severe model-plant mismatch.

A different research branch focuses on the idea to achieve robust constraint satisfaction of the actual system via adaption of
the underlying model, see e.g.9,10,11 and the references therein. For instance, in10 the notion of persistently exciting data, cf.12,13,
is exploited to update the model and show initial and recursive feasibility of the resulting MPC scheme. In14,15 combining MPC
with Gaussian process-based learning schemes was proposed to achieve predictive control with stability guarantees. In15 a
NARX model was incorporated in the learning scheme. The proposed controller in14 is formulated to address satisfaction of
chance constraints, and its functioning is demonstrated with an autonomous racing vehicle. A similar approach was used in16 to
perform safe learning-based control in robotics. The issue of malfunctioning of the machine learning scheme is considered in17,
where the underlying neural network is forced to stay close to a predefined nominal model, and hence the MPC scheme safely
achieves the control objective. Predictive safety filters are a MPC variant which is also closely related to tube-based approaches
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and allows the application of learning-based control techniques while guaranteeing compliance with constraints. The core idea is
that the predictive safety filter verifies a control input signal proposed by a learning algorithm against a model. If the proposed
control signal is deemed safe it is applied to the system, otherwise it is modified as little as necessary to guarantee constraint
satisfaction, see e.g.18,19,20. A comprehensive overview of the application of various safe learning methods in MPC can be found
in21 and the references therein.

A particular control task, which is considered in the present article, is output-reference tracking with prescribed performance.
To achieve this objective, funnel MPC was introduced in22 and further developed in8,23,24. Funnel MPC incorporates a particular
choice of the stage cost inspired by funnel control. The latter is a model-free adaptive high-gain feedback controller, see e.g.25

and the references therein. By penalizing the distance of the tracking error to the prescribed error boundary via a “funnel-like”
stage cost, the funnel MPC scheme achieves output tracking for systems with global strict relative degree one and bounded-
input bounded-state stable internal dynamics, where the input and output are of the same dimension. Within this framework it
was shown that the tracking objective is achieved and funnel MPC is initially and recursively feasible, without incorporating
state constraints, terminal conditions, or the requirement of a sufficiently long prediction horizon. Although not proven yet
mathematically, numerical results indicate that this control algorithm can successfully be applied to systems with higher relative
degree, cf.8,22, as well as Section 5.2 in the present article. Extensions to arbitrary relative degree based on different stage cost
functions are discussed in23,24 and initial and recursive feasibility is proved.

Many MPC schemes assume access to the full state of the system to be controlled, however this is not satisfied in general.
Therefore, in3 a distinction between the system to be controlled and the model to be used in the MPC algorithm is made, and
only access to the model’s state and to output measurements (but no state measurements) of the real system is used to initialize
the model. In the present article we make use of that distinction, too, see Section 3. A different approach is pursed in26,27 with
uncertain/disturbed linear discrete-time systems under consideration, where the state is estimated using a Luenberger observer.
Combining the observer structure with a tube-based MPC scheme, robust constraint satisfaction and feasibility of the control
algorithm were shown.

Along the lines of the second research branch discussed above, namely to update the model using measurement data from
the system, we build on the results of3, where a two component controller was used, consisting of funnel MPC in combination
with a model-free funnel control feedback loop. We extend this approach by introducing a general online learning framework in
order to continually improve the model utilizing the past system data, meaning system output, past model-based predictions, and
applied control signals, both from the model-based and the model-free controller component. This not only allows to learn and
fine-tune parameters of an already detailed model, but it is even possible to learn an unknown system without an initially given
model. Continually improving the model and thereby the prediction capability required in MPC, the predictive funnel MPC
control signal achieves the control objective for the unknown plant.

The present article is organized as follows. In Section 2 we provide the problem formulation. The control objective, as well as
the controller components are introduced. In Section 3 we formally introduce the system class and the model class under study.
Anticipating the later considerations, we highlight that the actual system to be controlled, and the model of that system can
be quite different. E.g., it is possible to have a nonlinear system and a linear surrogate model on which the MPC algorithm
operates. Section 4 contains the main result of the article. We introduce the combined three-component controller, establish the
corresponding control Algorithm 1, and formulate the main result Theorem 1, which yields initial and recursive feasibility of the
proposed control algorithm. Furthermore, we present a particular learning scheme, and rigorously prove its feasibility. In the last
Section 5 we illustrate the control Algorithm 1 with two numerical simulations.

Nomenclature: Bη := {x ∈ Rn| ∥x∥ ≤ η} is the closed ball with radius η > 0 around the origin in Rn. Gln(R) is the group of
invertible Rn×n matrices. For an interval I ⊆ R, L∞(I,Rn) is the Lebesgue space of measurable, essentially bounded functions
f : I → Rn with norm ∥f∥∞ = ess supt∈I ∥f (t)∥, and Wk,∞(I,Rn) is the Sobolev space of all functions f : I → Rn with k-th order
weak derivative f (k) and f , f (1), . . . , f (k) ∈ L∞(I,Rn); and f |J denotes the restriction of a function f : I → Rn to the interval J ⊆ I.

2 PROBLEM FORMULATION

The overall task is output-reference tracking within prescribed bounds on the tracking error. To this end, we apply a model
predictive controller to achieve a superior controller performance while maintaining input and output constraints. However, since
model-plant mismatches are unavoidable, we safeguard the MPC controller by an additional component, i.e., the model-free
funnel controller, to guarantee satisfaction of the output-tracking criterion. The third component, besides MPC and funnel
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control, is a learning one, which repeatedly updates the model to reduce the model-plant mismatch and, thus, improves the
overall controller performance. A major challenge is to ensure proper functioning of the interplay of these three components,
which requires a consistency condition (see Section 3) for the model updates – the key novelty of our approach in comparison to
the recently proposed robust funnel MPC (which combines the first two components) in3.

The control objective is output reference tracking within prescribed transient error bounds. This means that, for an unknown
control system of the form

ż(t) = F(z(t), d(t)) + G(z(t), d(t))u(t), y(t) = H(z(t)), (1)

where z(t) ∈ RZ , bounded disturbance d ∈ L∞(R≥0,RD), and y(t) ∈ Rm for Z, D, m ∈ N, we seek an input u(t) ∈ Rm such that
the output y tracks a given reference signal yref. Specific properties of the system parameters F, G, H are introduced in Section 3.
Moreover, this tracking task is asked to be satisfied with a given precision, i.e. the tracking error e(t) := y(t) – yref(t) should
evolve within (possibly time-varying) boundaries given by a so-called funnel function ψ, prescribed by the user. To be precise,
the tracking error shall evolve within the funnel

Fψ :=
{

(t, e) ∈ R≥0 ×Rm
∣∣ ∥e∥ < ψ(t)

}
,

which is determined by the choice of ψ belonging to the set

G =
{
ψ ∈ W1,∞(R≥0,R)

∣∣ inft≥0 ψ(t) > 0
}

.

Note that by ψ ∈ G the tracking error is not forced to converge asymptotically to zero. For a function yref ∈ W1,∞(R≥0,Rm) we
denote the set of all functions which evolve in the performance funnel defined by ψ ∈ G around yref by

Y(yref,ψ) :=
{

y ∈ C(R≥0,Rm)
∣∣ ∀ t ≥ 0 : ∥y(t) – yref(t)∥ < ψ(t)

}
.

Robust funnel MPC. To solve the described problem for the unknown system (1), robust funnel MPC was proposed in3. This
control scheme consists of two components, one model-based and one model-free, see Figure 1. The model-based funnel MPC
component (red box in Figure 1) uses a model of the form

ẋ(t) = f (x(t)) + g(x(t))u(t), yM(t) = h(x(t)) (2)

where x(t) ∈ Rn and yM(t), u(t) ∈ Rm, as an approximation of the system (1). Specific properties of the model parameters f , g, h
are introduced in Section 3. At time instances tk ∈ δN0 with δ > 0, the current output yM(tk) of the model (2) is measured and
predictions of the future model behavior are computed over the next time interval of length T = Nδ > 0, N ∈ N. Using the
time-varying stage cost ℓ : R≥0 ×Rm ×Rm → R≥0 ∪ {∞} where ℓ(t, yM, u) is defined by

ℓ(t, yM, u) =


∥yM – yref(t)∥2

ψ(t)2 – ∥yM – yref(t)∥2 + λu ∥u∥2 , ∥yM – yref(t)∥ ≠ ψ(t)

∞, else,

(3)

with design parameter λu ≥ 0, a control signal uFMPC ∈ L∞([tk, tk +T],Rm) is computed as a solution of an optimization problem.
Additionally, the corresponding predicted output yM(·; tk, xk, uFMPC) = h(x(·; tk, xk, uFMPC)) ∈ L∞([tk, tk + T],Rm) is calculated.
Here x(·; tk, xk, u) denotes the unique solution of (2) with initial condition x(tk) = xk, which is well-defined for appropriate f , g, h
(the model is specified in Definition 2) on the interval [tk, tk + T] for appropriate control input u.

The model-free funnel control component (blue box in Figure 1) computes an instantaneous control signal uFC based on the
deviation between the output y of system (1) and the funnel MPC-based predicted yM. The sum u(t) = uFMPC(t) + uFC(t) is then
applied to the actual system (1) at time instant t. The signal uFC from the funnel controller is used to compensate for occurring
disturbances, uncertainties in the model (2) and unmodelled dynamics. It is solely determined by the instantaneous values of
the system output y, the funnel function ψ, and the prediction yM. Therefore, the model-free component cannot plan ahead.
This may result in large control values and a rapidly changing control signal if the actual output significantly deviates from
its predicted counterpart, where the term significant is to be understood in comparison to the current funnel size. Numerical
simulations in8,22 show that funnel MPC exhibits a considerably better controller performance than pure funnel control. In order
to reduce the control effort of the funnel controller, a continuous activation function β is incorporated and has the following
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F I G U R E 1 Design of the proposed three-component controller. The grey box (containing the red (funnel MPC) and the blue
(funnel control) structures) represents the two-component controller robust funnel MPC proposed in3. The green box represents
the learning component, which receives the four signals: system output y, model output yM, funnel MPC control signal uFMPC,
and funnel control signal uFC.

effect: whenever the deviation between predicted yM and plant output y is acceptable (designer’s choice), only uFMPC is applied.
A reasonable and simple choice for β is a ReLU-like map, which is zero below a given threshold and linear above.

Learning the model is the third component of the overall task addressed in the present article. Since funnel MPC exhibits better
controller performance, and robust funnel MPC is able to compensate for model-plant mismatches, it is desirable to improve the
model so that, preferably, the control uFMPC is sufficient to achieve the tracking task with prescribed performance for the unknown
system while satisfying the input constraints – in other words, it is desirable that the funnel controller is inactive most of the
time. In Definition 2 we identify and establish properties of the learning component such that learning and updating the model
preserves the structure necessary for robust funnel MPC3. The particular robustness w.r.t. model-plant mismatches of robust
funnel MPC even allows to start with “no model”, e.g., only an integrator chain, and then learn the remaining drift-dynamics.
This is considered in a numerical simulation in Section 5.

3 SYSTEM CLASS AND MODEL CLASS

In this section we formally introduce the class of systems to be controlled as well as the class of models to be used in the MPC
part. We consider nonlinear multi-input multi-output systems. Since in our later analysis we mainly refer to the results of3,8,
where the system is considered in so-called Byrnes-Isidori normal form, we assume that the system (1) can be transformed (by a
transformation which does not need to be known) into input-output normal form

ẏ(t) = P(y(t), ζ(t), d(t)) + Γ(y(t), ζ(t), d(t))u(t), y(0) = y0, (4a)

ζ̇(t) = Q(y(t), ζ(t), d(t)), ζ(0) = ζ0, (4b)
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with control input u : R≥0 → Rm, a bounded internal or external disturbance d : R≥0 → Ra, and output y : R≥0 → Rm. The
system dynamics are governed by unknown nonlinear functions P ∈ C(Rm ×Rκ ×Ra,Rm) and Γ ∈ C(Rm ×Rκ ×Ra,Rm×m),
where the latter is the so-called high-gain matrix. The last equation in (4) with Q ∈ C1(Rm ×Rκ×Ra,Rq) describes the internal
dynamics, i.e. the dynamics within the system, which cannot be directly measured at the output, with dimension κ := Z – m ∈ N
(Z is the state dimension in (1)). Referring to system (4) above, we formally introduce the class of systems under consideration
in the present article.

Definition 1. For a given funnel function ψ ∈ G and reference yref ∈ W1,∞(R≥0,Rm) , we say that the system (4) belongs to the
system class N , written (P,Γ, Q, d) ∈ N , if d ∈ L∞(R≥0,Ra), the symmetric part of the high gain matrix Γ is positive definite,
i.e. Γ(·) + Γ(·)⊤ > 0, and the internal dynamics satisfy the following bounded-input bounded-state property

∀ c0 > 0 ∃ c1 > 0 ∀ ζ0 ∈ Rκ ∀ d ∈ L∞(R≥0,Ra)∀ y ∈ Y(yref,ψ) : ∥ζ0∥ + ∥y∥∞ + ∥d∥∞ ≤ c0 ⇒ ∥ζ(·; 0, ζ0, y, d)∥∞ ≤ c1,

where ζ(·; 0, ζ0, y, d) : R≥0 → Rκ denotes the unique global solution of (4b).

We remark that the globality of the solution ζ is ensured by the imposed conditions. Note that it is also possible to allow for
a negative definite matrix Γ + Γ⊤. Then we may simply change the sign in the control (9) defined below. The last condition,
namely bounded-input bounded-state stability of the internal dynamics, is a common condition for control systems, cf.28,29,30.
In our particular case this ensures that the internal states, which cannot be measured directly, are bounded if the output of the
system evolves within a funnel around the reference signal and the disturbance is bounded. For linear systems the function
Q(·) consists of three matrices Qζ ∈ Rκ×κ, Qy ∈ Rκ×m and Qd ∈ Rκ×a (ζ̇ = Qζζ + Qyy + Qdd), and the system satisfies the
bounded-input bounded-state property, if the matrix Qζ is Hurwitz (all eigenvalues have negative real part). Such systems are
called minimum phase, cf.31,32.

For the unknown system (4) we consider a surrogate model

ẏM(t) = p(yM(t), η(t)) + γ(yM(t), η(t))u(t), yM(0) = y0
M, (5a)

η̇(t) = q(yM(t), η(t)), η(0) = η0, (5b)

where properties of the functions p, γ and q are specified in Definition 2. Equation (5b) describes the internal dynamics. Referring
to (5), we introduce the class of feasible models. This class is parameterized by the value ū, which ensures that for each member
of the class the tracking task can be performed successfully by robust funnel MPC for a given reference signal and funnel
boundary with the same upper bound ū for the maximal control value.

Definition 2. Let ū > 0. For given ψ ∈ G and yref ∈ W1,∞(R≥0,Rm) a model (5) is said to belong to the model class Mū,
written (p, γ, q, η0) ∈ Mū, if there exist ν ∈ N0 and η̄ ≥ 0 such that the vector η0 ∈ Rν and the functions p ∈ C1(Rm ×Rν ,Rm),
γ ∈ C1(Rm ×Rν ,Rm×m), and q ∈ C1(Rm ×Rν ,Rν) satisfy the following conditions:

(M.1) γ(ρ, η) ∈ Glm(R) for all (ρ, η) ∈ Rm ×Rν , that is (5) has global strict relative degree one,
(M.2) the solutions of the internal dynamics (5b) are bounded by η̄, that is

∀ η0 ∈ Rν ∀ yM ∈ Y(yref,ψ) :
∥∥η(·; 0, η0, yM)

∥∥
∞ ≤ η̄,

where η(·; 0, η0, yM) : R≥0 → Rν denotes the global solution of (5b),
(M.3) for the a-priori fixed maximal control input value ū the model parameters, reference signal and funnel function satisfy the

estimate

Gmax

(
Pmax + ∥ψ̇∥∞ + ∥ẏref∥∞

)
≤ ū,
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where

Gmax = max
(ρ,η)∈Ψ×Bη̄

∥∥γ(ρ, η)–1
∥∥ ,

Pmax = max
(ρ,η)∈Ψ×Bη̄

∥p(ρ, η)∥ ,

Ψ =
⋃

t∈R≥0

{ρ ∈ Rm| ∥ρ – yref(t)∥ ≤ ψ(t)}.

Note that, although present in (5), the initial value y0
M is not part of the tuple (p, γ, q, η0) ∈ Mū. The reason is that initializing

the model output yM(tk) with the measured system output y(tk) at time instances tk is part of Algorithm 1.
Condition (M.2) seems quite technical at first glace. It’s intention is to ensure the following. If the internal state is bounded at

every beginning of the MPC cycle, and the model output evolves within the funnel boundaries around the reference signal, then
the internal dynamics evolve within an a-priori-fixed compact set. This condition is used in the feasibility proof of the funnel
MPC algorithm, cf.8, Lem. 4.8, Prop. 4.9, and also for the robust funnel MPC algorithm, cf.3, Prop. 5.1, Thm. 3.13. Condition (M.3) ensures
that the a-priori prescribed maximal control effort ū is sufficient to keep the tracking error within the funnel boundaries. Since ū
is fixed in advance, the models determined by the learning component must be amenable to the achievement of the tracking
objective under control constraints ∥u∥∞ ≤ ū.

There is some difference between the two classes N and Mū. Under certain technical assumptions, cf.33, Cor. 5.7, system (4) as
well as model (5) may be obtained via a transformation from a state-space representation (1) or (2), respectively. To avoid these
technicalities, we restrict ourselves to the input-output representations (4) and (5). The system class N encompasses systems
with bounded external or internal disturbances d ∈ L∞(R≥0,Ra), while no such disturbances are allowed in the model class Mū.
The high-gain matrix Γ of the system is required to have a positive definite symmetric part; in contrast, the high-gain matrix γ in
the model is only required to be invertible.

Remark 1. The dimension κ of the internal dynamics of system (4) is unknown but fixed. In contrast, the dimension ν ∈ N0 of
the model’s internal dynamics can be considered as a parameter in the learning step. This means, in order to improve the model
such that it “explains” the system measurements, the dimension of the internal state can be varied. Note that ν = 0 (no internal
dynamics) is explicitly allowed for the model.

Remark 2. One way to verify satisfaction of (M.2) is to apply34, Thm. 4.3, which states the following. If there exists V ∈
C1(Rν ,R≥0) such that V(η) → ∞ as ∥η∥ → ∞, and for q ∈ C(Rν × Rm,Rν) we have V ′(η) · q(η, ρ) ≤ 0 for all ρ ∈ Rm

with ∥ρ∥ ≤ ∥ψ∥∞ + ∥yref∥∞ and all η ∈ Rν with ∥η∥ > α for a predefined α > 0. Then ∥η(t; 0, η0, yM)∥∞ ≤ max{∥η0∥,α}
for all t ≥ 0, η0 ∈ Rν and all yM ∈ Y(yref,ψ). Hence, fixing V(·) and α > 0 in advance can be used to restrict choices of q(·)
satisfying (M.2). We will make use of this fact later in Sections 4.2 and 4.3, where we discuss a particular learning scheme.

4 LEARNING-BASED ROBUST FUNNEL MPC

In this section we develop the control algorithm and present our main result. First, we establish the control methodology to
achieve the control objective introduced in Section 2. For the sake of completeness and readability, we recall the robust funnel
MPC algorithm proposed in3, Alg. 3.7, adapted to our framework. Before, we define an abstract learning scheme L, which is
incorporated in the algorithm. The idea of the learning component is to use measurement data from the model output yM, the
system output y, the funnel MPC signal uFMPC and the funnel control signal uFC to improve the model used for computation
of uFMPC in every MPC sampling interval (cf. Figure 1), under the condition that the updated model is still a member of the
model class Mū given in Definition 2.

For example, let (yM, y, uFMPC, uFC)|Ik
0

be given data collected up to t = tk over the interval Ik
0 := [0, tk]. This data is then used

to choose (p, γ, q, η0) ∈ Mū, i.e.,
L
(
(yM, y, uFMPC, uFC)|Ik

0

)
= (p, γ, q, η0) ∈ Mū.

The function L receives the data, which are available up to the time instant t ∈ R≥0, and maps it to suitable model functions
(p, γ, q, η0) ∈ Mū. Note that L does not necessarily use all available data, see the discussion in Section 4.3. Since all four signal
types, the outputs y and yM and the control signals uFMPC and uFC, are bounded, the space of data is L∞; moreover, all of these
four signals have the same dimension m ∈ N. This motivates the following definition.
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Definition 3. For ū > 0, we call a function L :
⋃

t≥0 L∞([0, t],Rm)4 → Mū a feasible learning scheme for robust funnel MPC
with respect to the model class Mū, in short notation Mū-feasible.

4.1 Control algorithm and main result

Now, we summarize the reasoning so far in the following algorithm, which achieves the control objective formulated in Section 2.
It is a modification of3, Alg. 3.7. Here, the proper re-initialization of the model at every time step done in3 is substituted by the
learning component L. Concerning notation, for an input u ∈ L∞([tk, tk + T],Rm), we denote by yM(·; tk, y0

k , η0
k , u) the first

component of the unique maximal solution of (5) under the initial condition (yM(tk), η(tk)) = (y0
k , η0

k ) ∈ Rm+ν .

Algorithm 1 (Learning-based robust funnel MPC).
Input: instantaneous measurements of the output y(t) of system (4), reference signal yref ∈ W1,∞(R≥0,Rm), funnel function
ψ ∈ G, an initial model (p0, γ0, q0, η0

0) ∈ Mū, and an Mū-feasible learning scheme L.
Initialisation: Set time shift δ > 0, prediction horizon T ≥ δ, and index k := 0. Define the time sequence (tk)k∈N0 by tk := kδ.
Steps:

(a) Initialize the model (5) given by (pk, γk, qk, η0
k ) ∈ Mū with the data (yM(tk), η(tk)) = (y(tk), η0

k ).
(b) FUNNEL MPC

For ℓ as in (3) compute a solution uFMPC of the optimal control problem

minimize
u∈L∞(Ik ,Rm),

∥u∥∞≤ū

∫
Ik
ℓ(t, yM(t; tk, y(tk), η0

k , u), u(t)) dt, (6)

over the interval Ik := [tk, tk + T]. Predict the output yM(t) = yM(t; tk, y(tk), η0
k , uFMPC) of the model (5) on the interval [tk, tk+1]

and define the adaptive funnel φ : [tk, tk+1] → R>0 by

φ(t) := ψ(t) – ∥yM(t) – yref(t)∥. (7)

(c) FUNNEL CONTROL
Define the funnel control law with yM|[tk ,tk+1] and funnel φ as in (7) by

uFC(t, y(t)) := –β
(
∥y(t) – yM(t)∥

φ(t)

)
φ(t)(y(t) – yM(t))

φ(t)2 – ∥y(t) – yM(t)∥2 , (8)

for t ∈ [tk, tk+1), where the activation function β ∈ C([0, 1], [0,β+]) with β+ > 0 is such that β(1) = β+. Apply the feedback
control µ : [tk, tk+1) ×Rm → Rm to system (4), given by

µ(t, y(t)) = uFMPC(t) + uFC(t, y(t)). (9)

(d) CONTINUAL LEARNING
Increment k by 1, find a feasible model for the next sampling interval

L
(
(yM, y, uFMPC, uFC)|Ik

0

)
= (pk, γk, qk, η0

k )

with Ik
0 := [0, tk]. Then go to Step (a).

Now we are in the position to formulate the main result of the present article, which extends3, Thm. 3.13 by the learning
component.

Theorem 1. Consider a system (4) with (P,Γ, Q, d) ∈ N and initial values y0 ∈ Rm and ζ0 ∈ Rκ. For given ū > 0, choose an
initial model (5) with (p0, γ0, q0, η0

0) ∈ Mū. Let a reference signal yref ∈ W1,∞(R≥0,Rm) and a funnel function ψ ∈ G be given
such that ∥y0 – yref(0)∥ < ψ(0). Further, let L be an Mū-feasible learning scheme. Then, the learning-based robust funnel MPC
Algorithm 1 with δ > 0 and T ≥ δ is initially and recursively feasible, i.e., at every time instance tk := kδ for k ∈ N0 the OCP (6)
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has a solution u∗k ∈ L∞([tk, tk + T],Rm), and the closed-loop system consisting of system (4) and the feedback (9) has a global
solution (y, ζ) : [0,∞) → Rm ×Rκ. In particular, each global solution (y, ζ) satisfies:

(i) all signals are bounded, in particular, we have uFMPC, uFC, y ∈ L∞(R≥0,Rm),
(ii) the tracking error y – yref evolves within prescribed boundaries, i.e.,

∀ t ≥ 0 : ∥y(t) – yref(t)∥ < ψ(t).

Proof. To begin with, we show initial feasibility of Algorithm 1. By construction of Mū, and since ∥y0 – yref(0)∥ < ψ(0),
invoking8, Prop. 4.8 there exists a control u ∈ L∞([0, T],Rm) with ∥u∥∞ ≤ ū such that ∥yM(t; 0, y0, η0

0 , u) – yref(t)∥ < ψ(t)
for all t ∈ [0, T]. Then8, Thm. 4.5 yields that the OCP (6) has a solution. Moreover, φ(t) = ψ(t) – ∥yM(t) – yref(t)∥ > 0 for
all t ∈ [0, δ] ⊂ [0, T]. Therefore, the closed-loop system (4), (8) has a solution on [0, δ] according to35, Thm. 7. Then the
result3, Thm. 3.13 is applicable and yields the existence of a solution of the closed-loop system (4) and (9) on [0, δ], where the
initialization strategy in3 is substituted by the initial choice of the model in Algorithm 1. Recursive feasibility can then be
obtained as follows. We aim to apply3, Prop. 5.1, which yields that the OCP in (6) has a solution for all k ∈ N, if yref and ψ
are defined globally, and the bound ū > 0 is sufficiently large for the actual model. The first two conditions are satisfied
since yref ∈ W1,∞(R≥0,Rm) and ψ ∈ G, and the last since the learning scheme is chosen to be Mū-feasible.

Next we have to take care about the possible induced discontinuities in the function φ in (7). These discontinuities, however,
occur in both cases either by re-initialization as in3, or due to the learning step in Algorithm 1. Therefore, the existence of a global
solution of the closed loop system (4) and (9) follows with the same reasoning as in3, Thm. 3.13. Namely, ∥y(tk) – yref(tk)∥ < φ(tk)
is satisfied for each k ∈ N by the previous argument. Then,35, Thm. 7 yields the existence of a solution of the closed-loop
system (4), (8) on [tk, tk + δ] for all k ∈ N. This also yields assertion (i). Assertion (ii) follows by the estimation ∥y(t) – yref(t)∥ =
∥y(t) – yM(t) + (yM(t) – yref(t))∥ < ψ(t) – ∥yM(t) – yref(t)∥ + ∥yM(t) – yref(t)∥ = ψ(t) for all t ≥ 0.

4.2 Learning scheme

In this section we derive sufficient conditions on the parameters of models to be learned, which then guarantee that a respective
model is contained in Mū for a fixed ū. Later, we invoke these conditions to discuss the Mū-feasibility of various learning
programs. Since in many applications a linear model may serve as a good prediction model, we derive sufficient conditions on
the parameters of linear systems

ẏM(t) = RyM(t) + Sη(t) + D1 + γu(t), yM(0) = y0
M,

η̇(t) = Qη(t) + PyM(t) + D2, η(0) = η0.
(10)

In the following, we denote by λ+
Q < 0 the largest eigenvalue of a symmetric negative definite matrix Q = Q⊤ < 0. For a

given reference signal yref ∈ W1,∞(R≥0,Rm) and funnel boundary ψ ∈ G let ρ̄ := maxρ∈Ψ ∥ρ∥ for the set Ψ defined in (M.3).
Furthermore, for given numbers η̄, ū, r̄, s̄, γ̄, p̄ ≥ 0 we define the following set of matrices, where we do not indicate the
dependence on the parameters. Let

K̄ := Rm×m ×Rm×ν × Glm(R) ×Rm ×Rν×ν ×Rν×m ×Rν ×Rν ,

and define
K :=

{
(R, S, γ, D1, Q, P, D2, η0) ∈ K̄

∣∣ (12)
}

, (11)
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where

∥R∥ ≤ r̄, (12a)

∥S∥ ≤ s̄, (12b)

∥γ–1∥ ≤ γ̄, (12c)

r̄ρ̄ + sη̄ + ∥D1∥ ≤ ū
γ̄

– ∥ψ̇∥∞ – ∥ẏref∥∞, (12d)

λ+
Q ≤ –

p̄ρ̄ + ∥D2∥
η̄

, (12e)

∥P∥ ≤ p̄, (12f)

∥η0∥ ≤ η̄. (12g)

For (R, S, γ, D1, Q, P, D2, η0) ∈ K̄ we define the functions

pR,S,D1 : Rm ×Rν → Rm, (y, η) 7→ Ry + Sη + D1,

qQ,P,D2 : Rm ×Rν → Rν , (y, η) 7→ Py + Qη + D2.
(13)

Then, we may derive the following statement.

Proposition 1. Let yref ∈ W1,∞(R≥0,Rm) and ψ ∈ G be given and ρ̄ := maxρ∈Ψ ∥ρ∥. Moreover, let parameters η̄, ū, r̄, s̄, γ̄, p̄ ≥
0 be given. Then the set K defined in (11) satisfies the implication

(R, S, γ, D1, Q, P, D2, η0) ∈ K =⇒ (pR,S,D1 , γ, qQ,P,D2 , η0) ∈ Mū,

where pR,S,D1 and qQ,P,D2 are given in (13).

Proof. The proof consists of three parts, with one part devoted to each condition (M.1) – (M.3) in Definition 2, respectively.
Step one (M.1). The choice γ ∈ Glm(R) trivially satisfies condition (M.1).
Step two (M.2). We show for the given parameter η̄ ≥ 0, that for any tuple of parameters contained in K, the solution of (10)
satisfies ∥η(t; 0, η0, yM)∥ ≤ η̄ for all t ≥ 0 and all yM ∈ Y(yref,ψ). Note that any such yM satisfies ∥yM∥∞ ≤ ρ̄. In virtue of
Remark 2 we calculate for t ≥ 0 that

d
dt

1
2∥η(t; 0, η0, yM)∥2 = η(t; 0, η0, yM)⊤

(
Qη(t; 0, η0, yM) + PyM(t) + D2

)
≤ ∥η(t; 0, η0, yM)∥

(
λ+

Q∥η(t; 0, η0, yM)∥ + p̄ρ̄ + ∥D2∥
)

,

which by λ+
Q < 0 is non-positive for ∥η(t; η0, yM)∥ ≥ (p̄ρ̄ + ∥D2∥)/|λ+

Q|. Therefore,34, Thm. 4.3 yields

∀ t ≥ 0 : ∥η(t; 0, η0, yM)∥ ≤ max{(p̄ρ̄ + ∥D2∥)/|λ+
Q|, ∥η0∥}.

By assumption (12) we have ∥η0∥ ≤ η̄ and |λ+
Q| ≥ (p̄ρ̄ + ∥D2∥)/η̄, hence it follows ∥η(t; 0, η0, yM)∥ ≤ η̄ for all t ≥ 0.

Step three (M.3). We may estimate

Gmax =
∥∥γ–1

∥∥ ≤ γ̄,

Pmax = max
(ρ,η)∈Ψ×Bη̄

∥pR,S,D1 (ρ, η)∥ ≤ r̄ρ̄ + s̄η̄ + ∥D1∥,

and hence
Gmax

(
Pmax + ∥ψ̇∥∞ + ∥ẏref∥∞

)
≤ γ̄

(
r̄ρ̄ + s̄η̄ + ∥D1∥ + ∥ψ̇∥∞ + ∥ẏref∥∞

) (12d)
≤ ū.

This completes the proof.
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4.3 A particular learning scheme

With the set of parameters K, the functions pR,S,D1 , qQ,P,D2 defined in (13), and Proposition 1, we may define a learning scheme L
mapping from

⋃
t≥0 L∞([0, t],Rm)4 to the subset{

(pR,S,D1 , γ, qQ,P,D2 , η0)
∣∣ (R, S, γ, D1, Q, P, D2, η0) ∈ K

}
of Mū, defined by

L : ((yM, y, uFMPC, uFC)|[0,t]) 7→ (pR,S,D1 , γ, qQ,P,D2 , η0)

for some t ≥ 0, where (pR,S,D1 , γ, qQ,P,D2 , η0) is determined by the solution of an optimization problem involving discrete
measurements of the system data y and the applied control signals uFMPC and uFC at time instances iτ with τ > 0, i ∈ N and
iτ ≤ t of the form

minimize
(R,S,γ,D1,Q,P,D2,η0)∈K

J((y, z)|[0,t])

s.t. z(0) = z0and for all i ≤ t/τ :

z(iτ ) = χ(τ ; z((i – 1)τ ), (uFMPC + uFC)((i – 1)τ )),

(14)

where J(·) is a suitable cost function, z = (ỹM, η) denotes the states of the linear model (10), and the expression χ(·; z((i –
1)τ ), (uFMPC + uFC)((i – 1)τ )) denotes its solution under the initial condition χ(0) = z((i – 1)τ ) and with constant control u(·) ≡
(uFMPC + uFC)((i – 1)τ ). In the following we discuss some possible choices for the cost function J(·).

(i) J((y, z)|[0,t]) :=
∑⌊t/τ⌋

i=0 ξi∥ỹM(iτ ) – y(iτ )∥2 with weights ξi ≥ 0. The idea is to find a model in the set K which minimizes
the weighted squared measured output errors. The weights ξi reflect the relative importance of the measurements y(iτ ). In
certain cases it might be beneficial to weight data points that are far in the past lower than current data points. By choosing
ξi > 0 for all i > 0 all measured past data is taken into account. With increasing runtime of the algorithm, this results in a
growing complexity of the optimization problem, computation time, and required memory space for the measurements.
Therefore, this is not suitable in practice. Thus, it is beneficial to use a moving horizon estimation approach and only
take the last N measurements into account and set ξi = 0 for i < ⌊t/τ⌋ – N. In application, one has to find a good balance
between considering many data points (large N), thus having a probably more accurate model, and low computation time
and memory requirements (small N).

(ii) If the computation of the solution of the optimization problem has to be done very quickly, it is also possible to only
consider the last measurement y(⌊t/τ⌋τ ). Thus, one might choose the cost function J((y, z)|[0,t]) := ∥ỹM(⌊t/τ⌋τ ) – y(⌊t/τ⌋τ )∥2.
The idea is to find a model, which best explains the last MPC period in terms of output error, i.e., a model on the prediction
interval [tk, tk+1], so that with τ = δ the error ∥ỹM(tk+1) – y(tk+1)∥ at the end of the interval is minimal.

(iii) In addition, it is worth considering to include regularization terms for the model parameters in the cost function. For the
parameters Ki = (Ri, Si, γi, D1,i, Qi, Pi, D2,iη

0
i ) ∈ K one could either penalize the weighted distance of Ki to an a priori

known tuple of parameters K⋆ = (R⋆, S⋆, γ⋆, D⋆, Q⋆, P⋆, D⋆2 , η0⋆) and thus allow only small adaptions of the a priori known
model or penalize the change of parameters Ki such that the model does only change slightly between two learning steps.
This results in a cost function of the form J((y, z)|[0,t]) :=

∑⌊t/τ⌋
i=0

(
ξi∥ỹM(iτ ) – y(iτ )∥2 +

∑8
j=1 kj

i∥(Kj
i – K̃j)∥

)
, where K̃ = K⋆

or K̃ = Ki–1 and with weights ξi, kj
i ≥ 0. Here the expressions Kj

i, K̃
j
i with j = 1, . . . , 8 refer to the jth entry of the tuple Ki,

K̃i, respectively; for instance, K2
i = Si.

5 NUMERICAL SIMULATION

In this section we provide two numerical simulations to illustrate Algorithm 1. In the first example, we simulate the tracking task
for a system of relative degree one, which is contained in the system class N , and the corresponding surrogate model belongs
to Mū, for a given ū. The second example goes beyond the system class N , it is a system of relative degree two. We show that,
although no theoretical results on its functioning are available yet, Algorithm 1 is successful in this case.
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5.1 Relative degree one.

To illustrate the application of Algorithm 1, we consider a model of an exothermic chemical reaction which was also used in8 to
study funnel MPC and in3 to study robust funnel MPC. The dynamics for one reactant ζ1, a product ζ2, and reactor temperature y
is described by a system (4) where m = 1, κ = 2, a = 0, Γ = 1, P(y, ζ) = b1α(y, ζ) – b2y and Q(y, ζ) =

[ c1 0
0 c2

]
α(y, ζ) + d(ζ in – ζ),

with the Arrhenius law α : R>0 ×R2
≥0 → R≥0 given by α(y, ζ) := k0e–k1/yζ1, and parameters k0, k1, b1, d, b2 > 0, c1 < 0, c2 ∈ R,

ζ in ∈ R2
≥0. The control objective is to steer the reactor’s temperature y to a desired constant value yref ≡ ȳ within prescribed

funnel boundaries ψ ∈ G, i.e., ∥y(t) – ȳ∥ < ψ(t) for all t ≥ 0. For the funnel MPC component of Algorithm 1 we consider linear
models of the form (10) with R, D1 ∈ R, S, D⊤

2 , P⊤ ∈ R1×2, and Q ∈ R2×2. We assume γ = 1 and as initial model we choose
R = D1 = 0 ∈ R, S = D⊤

2 = P⊤ = 0 ∈ R1×2, Q = 0 ∈ R2×2, and η0 = (0.02, 0.9). To improve this model over time, we adapt the
matrices over a compact set K as in (11) at every fifth time step tk by minimizing the plant-model mismatch based on the data of
the last system output y(tk–1), i.e., we solve the optimization problem

minimize
(R,S,1,D1,Q,P,D2,ζ(0))∈K

∥yM(tk) – y(tk)∥2

s.t.d
dt

(
yM(t)
η(t)

)
=
[

R S
P Q

](
yM(t)
η(t)

)
+
[

1
0

]
u(t) +

[
D1

D2

]
(

yM(tk–1)
η(tk–1)

)
=
(

y(tk–1)
ζ(0)

)
,

where u(t) = uFMPC(tk–1) + uFC(tk–1) which was applied to the model at the last time step tk–1 and ζ(0) = (ζ1(0), ζ2(0)) is the vector
of initial concentrations of the substances ζ1 and ζ2.

For the simulation we choose the funnel function ψ(t) = 100e–2t + 1.5. As in3,8, the initial data is (y0, ζ1(0), ζ2(0)) :=
(270, 0.02, 0.9), the reference signal is yref ≡ 337.1, and the parameters are c1 = –1, c2 = 1, k0 = e25, k1 = 8700, d = 1.1,
b1 = 209.2, b2 = 1.25, ζ in

1 = 1, ζ in
2 = 0. In this example we restrict the funnel MPC control to ∥uFMPC∥∞ ≤ ū := 735,

choose λu = 10–4, prediction horizon T = 1, and time shift δ = 0.1. In accordance with Proposition 1, we choose for the set K as
in (11) the parameters as r̄ = 1.3, s̄ = 1.4, η̄ = 0.91, ρ̄ = 408.6, γ̄ = 1, p̄ = 1/400, ∥D1∥ ≤ ū

γ̄ – ∥ψ̇∥∞ – ∥ẏref∥∞ – r̄ρ̄ – s̄η̄ = 2.546,
and ∥D2∥ ≤ 3 so that (12) is satisfied. Thus, the learning scheme is Mū–feasible. Due to discretisation, only step functions with
a constant step length of 0.1 were considered to solve the OCP (6). The activation function of the funnel controller is constant
β ≡ 10. Figure 2 shows the control signals and the system and model output errors, respectively. It is evident that both yM – yref
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F I G U R E 2 Application of learning based robust funnel MPC to the exothermic chemical reactor system

.

and y – yref remain within the predefined funnel boundaries ψ. Before the first learning step (t ∈ [0, 0.5)) the tracking error y – yref

and the predicted error yM – yref diverge due to the poor quality of the initial model. However, since the tracking error is not close
to the funnel boundary, the funnel controller remains inactive in the beginning and only reacts when the tracking error is close
to the boundary. After the first learning step, the general direction of the predicted tracking error is consistent with the actual
tracking error. The funnel controller still has to compensate for the model inaccuracies in order to guarantee that the tracking
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error remains within the boundaries, but with a significantly smaller contribution to the control signal. After each learning step,
the model output jumps to the system output due to the newly updated model. The control signal uFC is zero after each learning
step since the system and model output coincide, and it becomes larger afterwards to compensate for the model inaccuracy.
After t = 1.5 the system output is close to the desired constant reference signal. Thenceforth, the linear model is adequate to
predict the system behavior and the control signal computed by funnel MPC is sufficient to achieve the tracking objective. The
funnel controller only has to slightly compensate for model errors. We note that this example merely serves to illustrate that
robust funnel MPC can be combined with Mū–feasible learning techniques. We do not claim that the learning algorithm used is
superior to other methods.

5.2 Second numerical example: higher relative degree.

In this section, we present some promising preliminary results on extending the learning-based robust funnel MPC Algorithm 1
to a larger system class. Numerical simulations in8 suggest that the funnel MPC algorithm is also applicable to systems of higher
relative degree, meaning systems of the form

y(r)(t) = P(y(t), ẏ(t), . . . , y(r–1)(t), ζ(t)) + Γ(y(t), ẏ(t), . . . , y(r–1)(t), ζ(t))u(t),

ζ̇(t) = Q(y(t), ẏ(t), . . . , y(r–1)(t), ζ(t)),

with r > 1. Restricting the class of admissible funnel functions, utilizing an adapted cost function, and incorporating so-
called feasibility constraints in the optimization problem, feasibility of funnel MPC for this system class was proved in23. It
is an open problem whether it is sufficient to utilize the far simpler optimization (6) with cost function (3) and without the
mentioned constraints. Accordingly, only the case of a relative degree one system was considered for robust funnel MPC in3. A
generalisation to systems with higher relative degree has yet to be found.

To illustrate that, nevertheless, the learning-based robust funnel MPC Algorithm 1 shows promising results for this lager
system class with fixed relative degree r > 1, we consider the example of a mass-on-car system from36 which was was also used
in8. The mass m2 is mounted on a car with mass m1 via a spring and damper system with spring constant k > 0 and damper
constant d > 0 and moves on a ramp which is inclined by the angle ϑ ∈ [0, π2 ). The car can be controlled via the force u acting
on it. The situation is depicted in Figure 3. The system can be described by the equations

F

y

a=const

s

F I G U R E 3 Mass-on-car system. The figure is based on the respective figures in 25, and 36.

[
m1 + m2 m2 cos(ϑ)

m2 cos(ϑ) m2

](
z̈(t)
s̈(t)

)
+
(

0
ks(t) + dṡ(t)

)
=
(

u(t)
0

)
. (15)

The horizontal position of the car is z(t) and the relative position of the mass on the ramp at time t is s(t) . The output y of the
system is

y(t) = z(t) + s(t) cos(ϑ),

the horizontal position of the mass on the ramp. For the system we chose the same parameters m1 = 4, m2 = 1, k = 2, d = 1,
ϑ = π/4, and initial values z(0) = s(0) = ż(0) = ṡ(0) = 0 as in8. Then, as shown there, the system has a relative degree of
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F I G U R E 4 Simulation of system (15) under learning-based robust funnel MPC Algorithm 1.

r = 2. The objective is tracking of the reference signal yref(t) = cos(t) such that the tracking error y(t) – yref(t) evolves within the
prescribed performance funnel given by the function ψ ∈ G with ψ(t) = 5e–2t + 0.2.

For the model-based component of the controller, we solve the optimal control problem (6) with stage cost (3). The prediction
horizon and time shift are selected as T = 0.6 and δ = 0.06, resp. We restrict the funnel MPC control to ∥uFMPC∥∞ ≤ 25 and
choose the parameter λu = 10–2 for the stage cost ℓ. Due to discretisation, only step functions with a constant step length of 0.06
were considered to solve the OCP (6). For the model-free component of the controller, we use the funnel controller for systems
with relative degree two from25 instead of (8). This component takes the form

w(t) =
ėM(t)
φ(t)

+ α
(

eM(t)2

φ(t)2

) eM(t)
φ(t)

,

uFC(t) = –α(w(t)2)w(t),

with eM(t) = yM(t) – y(t) and α(s) = 1
1–s for s ∈ [0, 1). The controller is applied to the system with a step size 0.6 · 10–5. Similar

to22, where this problem was studied in the context of model identification during runtime, for the learning component we
assume some knowledge about the structure of the system, but only limited information about the parameters and the initial
value. We assume to know ϑ ∈ (0, 2π], m1 ∈ [1, 6], m2 ∈ [0.5, 1.5], k ∈ [1, 3], d ∈ [0.5, 1.5] and z0 := (x(0), ẋ(0), s(0), ṡ(0)) ∈
[–2.5, 3.5] × [–2, 2] × [–2.75, 3.25] × [–2, 2]. As initial model all model parameters where chosen equal to 1 and the initial state
z0 = (0, 1, 0, 1). To learn the system parameters, we take measurements of the input-output data ((uFMPC + uFC)(iτ ), y(iτ )) for
τ = 0.006 and i ∈ N0 and at every time jT = 100jτ for j ∈ N we solve the optimization problem

minimize
ϑ,m1,m2,k,d,z0

100j∑
i=0

∥ỹM(iτ ) – y(iτ )∥2

s.t. z(0) = z0 and for all i = 1, . . . , 100j :

z(iτ ) = χ(τ ; z((i – 1)τ ), (uFMPC + uFC)((i – 1)τ )),

ỹM(iτ ) = [1, cos(ϑ), 0, 0] z(iτ ),

where z = (x, ẋ, s, ṡ) denotes the state of the mass on car system (15) and χ(·; z((i – 1)τ ), (uFMPC + uFC)((i – 1)τ )) denotes its
solution under the initial condition χ(0) = z((i – 1)τ ) and with constant control u(·) ≡ (uFMPC + uFC)((i – 1)τ ). Since only interval
[0, 4] is considered for the simulation, the entire history of input-output data is considered in the optimization problem instead of
a moving horizon approach as discussed in Section 4.3 (i).

All simulations are performed on the time interval [0, 4] with MATLAB and the toolkit CASADI and are depicted in Figure 4.
It is evident that the control scheme is feasible and achieves the control objective. Both errors yM – yref and y – yref evolve within
the funnel boundaries given by ψ. Overall, a similar behavior as in the first simulation (initial divergence, small funnel control
signals afterwards, jumps at each learning step, etc.) can be observed. We like to emphasize that already after the first learning
step, the quality of the model is apparently quite good such that the funnel controller only has to slightly compensate for model
errors and the control signal mainly consists of the control uFMPC generated by the model-based controller component.
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6 CONCLUSION

We extended the recently developed robust funnel MPC algorithm3 by a learning component in order to improve the model-based
control component by learning the model from system data. Based on the characterization of the model class and corresponding
feasible learning structures, we showed that the interplay between pure feedback control, model predictive control and learning
is consistent and successful; in particular, the control objective of output reference tracking with prescribed performance is
achieved. Future research will focus on several particular aspects of the presented approach. Questions to be answered are,
among other things, what it means to have a good learning scheme; which existing techniques (Willem’s fundamental lemma13,
Koopman framework37,38, Neural Networks, etc.) can be used to exploit the data; how can knowledge about the system be
incorporated into the learning scheme; to name but three aspects. Of special interest is the question of rigorously proving
Mū-feasibility for more sophisticated learning algorithms.
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