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Abstract

This paper studies linear time-invariant descriptor systems, which are not necessarily regular. We intro-
duce the notion of partial detectability and characterize this concept by means of a simple rank criterion
involving the system coefficient matrices. Some particular cases of this characterization are discussed in
detail. Furthermore, we show that partial detectability is equivalent to the existence of a generalized func-
tional estimator. Furthermore, it is necessary for the existence of a generalized functional observer, but not
sufficient. We identify a condition which, together with partial detectability, gives sufficiency.
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1. Introduction

We consider linear time-invariant (LTI) descriptor systems of the form

Eẋ(t) = Ax(t) +Bu(t), (1a)

y(t) = Cx(t) +Du(t), (1b)

z(t) = Kx(t), (1c)

where E, A ∈ Rm×n, B ∈ Rm×k, C ∈ Rp×n, D ∈ Rp×k, and K ∈ Rr×n are known matrices. Systems of
type (1) are also called singular systems or systems described by differential-algebraic equations (DAEs).
The first order matrix polynomial (λE −A), in the indeterminate λ, is called matrix pencil for (1). System
(1) is called regular if m = n and det(λE−A) is not the zero polynomial in λ. In the present paper, we do not
assume that the system is regular; in fact, no assumptions on the matrix pencil (λE−A) are made, and the
system may be under- and/or over-determined. Descriptor systems occur naturally when dynamical systems
are subject to algebraic constraints; for further motivation, we refer the readers to [1–6] and the references
therein. Another situation that necessitates modeling with rectangular descriptor systems is encountered10

in observer design for standard state space systems with unknown inputs [7]. The augmentation of state
variables with unknown inputs results in systems of the form (1).

We call x : R → Rn the semistate of the system (1), because unlike state space systems, x(t) does
not satisfy the semigroup property and cannot be arbitrarily initialized [8]. However, x(t) contains the full
information about all intrinsic properties of the system at time t. The functions u : R → Rk and y : R → Rp

are called the input and the output of system (1), respectively, and they are obtained by measurements,
e.g., via sensors. The functional vector z(t) ∈ Rr contains those variables which cannot be measured, and
estimators or observers are required to estimate them, cf. Definitions 3 and 4. If K is not the identity
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matrix, such an observer (estimator) is called a functional (or partial state) observer (estimator); otherwise,
we call it a full state observer (estimator). The tuple (x, u, y, z) : R → Rn × Rk × Rp × Rr is said to be a20

solution of (1), if it belongs to the set

B := {(x, u, y, z)∈L 1
loc(R;Rn+k+p+r) | Ex ∈ ACloc(R;Rm) and (x, u, y, z) satisfies (1) for almost all t ∈ R},

where L 1
loc is the set of measurable and locally Lebesgue integrable functions and ACloc represents the set of

locally absolutely continuous functions. Descriptor systems based on the behavior B have been studied in
detail e.g. in [9]. Exploiting the behavior B, various observability and detectability concepts for descriptor
systems (1) are studied in [10]. Moreover, existence conditions for full state and functional observers of
descriptor systems have been investigated in [11–19], see also the references therein. Throughout the article,
we assume that the behavior B is nonempty, which amounts to the existence of an admissible pair for (1),
consisting of an admissible initial condition and input function, see also [11].

The major contribution of the current study is twofold. First, we prove that the system (1) is partially
detectable if, and only if, a simple rank condition involving the system coefficient matrices holds. This result30

first requires to establish a precise definition of partial detectability for (1) based on the behavior B. Roughly
speaking, detectability means that the inputs and outputs determine the state variables asymptotically. From
this point of view, the partial detectability of (1) is related to the asymptotic determination of z(t) from the
knowledge of u(t) and y(t). In a particular case of the characterization of partial detectability, we deduce that
the existing algebraic characterization of partial detectability of state space systems in [20, Thm. 1] may give
an erroneous result. The second major contribution is to show that partial detectability is equivalent to the
existence of a generalized functional estimator. Moreover, we show that partial detectability is necessary
for the existence of generalized functional observers, but not sufficient. Finally, we derive an additional
condition, which, together with partial detectability, allows for the construction of a generalized functional
observer. For this, we provide a step-by-step algorithm. Our approach is purely algebraic and based on40

simple matrix theory.
The paper is organized as follows. Section 2 collects some preliminary results used in the sequel of the

article. In Section 3, the concept of partial detectability of system (1) is introduced along with algebraic
test conditions and their equivalence is shown. Section 4 discusses some particular cases of the proposed
results and emphasizes a significant modification to the existing theory of partial detectability for state
space systems. In Section 5, we show that partial detectability is equivalent to the existence of a generalized
functional estimator for system (1) and identify a condition, together with which it is also equivalent to
the existence of a generalized functional observer. Section 6 considers a numerical example to illustrate the
design algorithm. Finally, Section 7 concludes the article.

We use the following notations: The set of natural numbers is denoted by N, and N0 := N ∪ {0}. 050

and I stand for appropriate dimensional zero and identity matrices, respectively. For more clarity, the
identity matrix of size n × n is sometimes denoted by In. The set of complex numbers is denoted by C,
C̄+ := {λ ∈ C | Re(λ) ≥ 0}, and C− := {λ ∈ C | Re(λ) < 0}. The symbols A⊤ and kerA denote
the transpose and null space of a matrix A ∈ Rm×n, respectively. In a block partitioned matrix, all
missing blocks are zero matrices of appropriate dimensions. The set σ(M) denotes the spectrum of a matrix
M ∈ Rn×n. The set AM := {Ax |x ∈ M } is the image of a subspace M ⊆ Rn under A ∈ Rm×n and
A−1M := {x ∈ Rn |Ax ∈ M } represents the pre-image of M ⊆ Rm under A ∈ Rm×n.

2. Preliminaries

In this section, we first recall some preliminary results from matrix theory and the theory of descriptor
systems. These are fundamental to the development of the main results in this paper.60

Lemma 1. [21, Quasi-Kronecker Form (QKF)] For every matrix pencil (λE−A) with E, A ∈ Rm×n there
exist nonsingular matrices P ∈ Rm×m and Q ∈ Rn×n such that
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P (λE −A)Q =


λEϵ −Aϵ

λIf − Jf
λJσ − Iσ

λEη −Aη

 (2)

where

1. Eϵ, Aϵ ∈ Rmϵ×nϵ , mϵ < nϵ, and rankEϵ = rank(λEϵ −Aϵ) = mϵ for all λ ∈ C.
2. Jf ∈ Rnf×nf .

3. Jσ ∈ Rnσ×nσ is nilpotent.

4. Eη, Aη ∈ Rmη×nη , mη > nη, and rankEη = rank(λEη −Aη) = nη for all λ ∈ C.

The proof of the following lemma is evident and hence omitted.

Lemma 2. For any matrices X and Y of compatible dimensions, rank

[
X
Y

]
= rankX if, and only if,

kerX ⊆ kerY .70

Lemma 3. [16] Let X ∈ Rm1×r1 , S ∈ Rm1×r2 , and Y ∈ Rm2×r2 . If X has full row rank and/or Y has full
column rank, then

rank

[
X S
0 Y

]
= rankX + rankY.

We conclude this section by recalling the concept of a complex Wong sequence corresponding to (1a)
from [14].

Definition 1. For a given system (1a) with E, A ∈ Rm×n and λ ∈ C the Wong sequence
{
Wi

[E,A],λ

}∞

i=0
is

a sequence of complex subspaces, defined by

W0
[E,A],λ := {0}, Wi+1

[E,A],λ := (A− λE)−1(EWi
[E,A],λ) ⊆ Cn, W∗

[E,A],λ :=
⋃
i∈N

Wi
[E,A],λ.

3. Partial detectability

The main aim of this section is to derive a simple rank condition for partial detectability of (1) in terms
of the system coefficient matrices. First, we define the concept of partial detectability of (1) in terms of
the behavior B, which is a natural extension of the detectability of (1a)–(1b). Throughout the paper, the
notation “x(t) → 0 as t → ∞” means “ lim

t→∞
ess sup[t,∞) ||x(t)|| = 0”.

Definition 2. The descriptor system (1) is said to be partially detectable, if for all (x1, u, y, z1), (x2, u, y, z2) ∈80

B we have that z1(t)− z2(t) → 0 as t → ∞.

By linearity of the behavior B it is clear that (1) is partially detectable if, and only if, for all (x, 0, 0, z) ∈
B we have that z(t) → 0 as t → ∞. Therefore, partial detectability is independent of the matrices B and D.

Remark 1. In (1), if K = In, the above definition reduces to the detectability of (1a)–(1b), see [10–12, 16].
Note that detectability is called “behavioral detectability” in [10].

The aim of the remainder of this section is to derive a rank criterion for partial detectability of (1).
Additionally to the new rank criterion, we include a characterization of partial detectability in terms of the
Wong sequences, which was already implicitly contained in [14].
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Let l ∈ N, λ ∈ C and introduce the following notations:

E =

[
E
0

]
, A =

[
A
C

]
, Gl,[E,A],λ =


λE − A

E λE − A
. . .

. . .

E λE − A
E λE − A



l block columns

,

and Gl,[E,A,K],λ =



λE − A
E λE − A

. . .
. . .

E λE − A
E λE − A

K



l block columns

.

We are now ready to state the first main result of this paper.90

Theorem 1. For a given system (1) the following statements are equivalent:

(a) The system (1) is partially detectable.

(b) The following condition holds:

∀λ ∈ C̄+ : rankGn,[E,A],λ = rankGn,[E,A,K],λ. (3)

(c) ∀λ ∈ C̄+ : W∗
[E,A],λ ⊆ kerK.

Proof. (a) ⇔ (c): This follows from [14, Lem. A.4].
(b) ⇒ (c): Fix λ ∈ C̄+. In view of Lemma 2, condition (b) is equivalent to

kerGn,[E,A],λ ⊆ ker
[
0 0 . . . 0 K

]n block columns

. (4)

Now let x ∈ W∗
[E,A],λ and observe that, since the Wong sequence

{
Wi

[E,A],λ

}∞

i=0
terminates after finitely

many steps, and in each step before termination the dimension of the associated space increases by at least
one, it is clear that Wn

[E,A],λ = W∗
[E,A],λ. Thus x ∈ Wn

[E,A],λ and there exist x1, . . . , xn ∈ Cn such that x = xn

and100

(λE − A)x1 = 0, Ex1 + (λE − A)x2 = 0, . . . , Exn−1 + (λE − A)xn = 0. (5)

Therefore, (x⊤
1 , . . . , x

⊤
n )

⊤ ∈ kerGn,[E,A],λ and by (4) this gives x = xn ∈ kerK.
(c) ⇒ (b): Fix λ ∈ C̄+ and let x ∈ kerGn,[E,A],λ. We show that x ∈ ker[0, . . . , 0,K], which proves (4)

and hence also (b). Write x = (x⊤
1 , . . . , x

⊤
n )

⊤ with x1, . . . , xn ∈ Cn, then (5) holds.
Therefore, xi ∈ Wi

[E,A],λ for i = 1, . . . , n and sinceW∗
[E,A],λ = Wn

[E,A],λ it follows from (c) that xn ∈ kerK.
This completes the proof.

In the following lemma, we derive a characterization for partial detectability in terms of the QKF of the
matrix pencil (λE − A). Later, this will be used in Section 5 to design a generalized functional estimator.

Lemma 4. Consider a system (1) and let the matrix pencil (λE−A) have QKF (2) such that K is partitioned
accordingly, i.e.,

KQ =
[
Kϵ Kf Kσ Kη

]
.

Then (1) is partially detectable if, and only if,110
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(a) Kϵ = 0 and

(b) ∀λ ∈ C̄+ : ker(λIf − Jf )
n ⊆ kerKf .

Moreover, if Jf =

[
Jf1

Jf2

]
and Kf =

[
Kf1 Kf2

]
such that σ(Jf1) ⊆ C̄+ and σ(Jf2) ⊆ C−, then (b) is

equivalent to Kf1 = 0.

Proof. Without loss of generality, assume that (λE − A) is in QKF (2) and

K =
[
Kϵ Kf Kσ Kη

]
.

Then, as shown in [14, Eq. (A.4)], we have that

W∗
[E,A],λ = Cnϵ × ker(λIf − Jf )

n × {0}nσ × {0}nη .

By condition (c) in Theorem 1 it follows that partial detectability is equivalent to

Cnϵ ⊆ kerKϵ and ker(λIf − Jf )
n ⊆ kerKf

for all λ ∈ C̄+, which is equivalent to (a) and (b).

If Jf =

[
Jf1

Jf2

]
and Kf =

[
Kf1 Kf2

]
, where σ(Jf1) ⊆ C̄+ and σ(Jf2) ⊆ C−, then (b) is equivalent

to120

∀λ ∈ C̄+ : ker

[
(λI−Jf1)

n

(λI−Jf2)
n

]
⊆ ker

[
Kf1 Kf2

]
.

Since σ(Jf2) ⊆ C− we have ker(λI − Jf2)
n = {0}, so the above condition is equivalent to

∀λ ∈ C̄+ : ker(λI − Jf1)
n ⊆ kerKf1 .

Since σ(Jf1) ⊆ C̄+, this condition is in turn equivalent to

Cnf1 =
⋃

λ∈C̄+

ker(λI − Jf1)
n ⊆ kerKf1 ,

where nf1 is the dimension of the square matrix Jf1 , thus Kf1 = 0.

The following remarks are warranted on Theorem 1 and Lemma 4.

Remark 2. It is apparent from the proof of Theorem 1 that, if W∗
[E,A],λ = Ws

[E,A],λ for some s ∈ N, then
the number n in statement (b) of Theorem 1 can be replaced by s. Here, we use n because s is not known
in advance and our main aim is to provide a condition directly in terms of the known data, i.e., the system
coefficient matrices. Moreover, to verify the partial detectability of (1), it is sufficient to check condition
(3) in Theorem 1 only for those finite eigenvalues of the matrix pencil (λE − A) which belong to C̄+. For
the computation of finite eigenvalues, it is recommended to use the QKF (2).130

Remark 3. Any solution x(t) of (1a) is uniquely determined if, and only if, the ϵ-blocks in the QKF (2) of
(λE −A) are not present, see [22, Cor. 2.4]. So, z(t) in (1) is uniquely determined if, and only if, Kϵ = 0.
Thus, Lemma 4 reveals that partial detectability of system (1) implies that z(t) in (1) is always uniquely
determined, even if x(t) is not unique.

4. Particular cases

In this section, we discuss some particular cases of Theorem 1.
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4.1. Detectability of descriptor system (1a)–(1b)

This case corresponds to K = In in (1). By substituting K = In in statement (c) in Theorem 1, it
reduces to W∗

[E,A],λ = {0}, which means that, for each i ∈ N and λ ∈ C̄+ we have Wi
[E,A],λ = {0}. For i = 1

we obtain that, for all λ ∈ C̄+, ker(λE − A) = {0}, i.e.,140

∀λ ∈ C̄+ : rank

[
λE −A

C

]
= n, (6)

which is the standard characterization of detectability of (1a)–(1b). In addition, when E = In, this becomes
the classical characterization of detectability for standard state space systems.

4.2. Partial detectability of state space systems

If E = In in (1), then Definition 2 provides the notion of partial detectability of standard state space
systems. Moreover, the algebraic criterion (3) reduces to the condition

∀λ ∈ C̄+ : rank

(λI −A)n

On
[λI−A,C]

K

 = rank

[
(λI −A)n

On
[λI−A,C]

]
(7)

where On
[λI−A,C] :=


C(λI −A)n−1

...
C(λI −A)

C

. To prove (7), first consider G2,[E,A],λ and substitute E =

[
I
0

]
and

A =

[
A
C

]
, thus obtaining

G2,[E,A],λ =


λI −A 0
−C 0
I λI −A
0 −C

 . (8)

Then, by multiplying the matrix on the right hand side of (8) with U =


In −(λI −A)

I C
In

I

 from the

left, and then applying Lemma 3 with X = In, we obtain

rankG2,[E,A],λ = n+ rank

 (λI −A)2

C(λI −A)
C

 .

By a similar calculation, it follows that150

rankG2,[E,A,K],λ = n+ rank


(λI −A)2

C(λI −A)
C
K

 .

With this argument applied to Gn,[E,A],λ and Gn,[E,A,K],λ for n > 2, it can be shown that (3) reduces to (7).
In the articles [20, 23, 24], it has been reported (see e.g. [20, Thm. 1]) that a state space system is

partially detectable (note that the notion is called “functional detectability” in these works) if, and only if,

∀λ ∈ C̄+ : rank

λI −A
C
K

 = rank

[
λI −A

C

]
. (9)
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However, this condition is obviously not equivalent to (7) and is incorrect in general. In the aforementioned
works, it has been implicitly used that all eigenvalues of the matrix A with nonnegative real part are
semisimple (i.e., their algebraic and geometric multiplicities coincide), but this assumption was not stated
explicitly. In fact, if all eigenvalues of A having nonnegative real part are semisimple, then it is not hard
to show that (7) reduces to (9). As an explicit counterexample for condition (9), consider the state space
system ẋ(t) = Ax(t), y(t) = Cx(t), z(t) = Kx(t), with

A =

1 0 0
0 1 1
0 0 1

 , C =
[
1 0 0

]
, and K =

[
1 0 1

]
.

It is easy to verify that (9) is satisfied for λ = 1 and hence for all λ ∈ C̄+. On the other hand, for160

λ = 1 condition (7) is not satisfied. And indeed, the system is not partially detectable: for initial data

x(0) =
[
x0
1 x0

2 x0
3

]⊤
the solution is given by

x(t) = exp(At)x(0) =

exp(t) 0 0
0 exp(t) t exp(t)
0 0 exp(t)

x0
1

x0
2

x0
3

 ,

y(t) = x1(t) = x0
1 exp(t),

z(t) = x1(t) + x3(t) = (x0
1 + x0

3) exp(t).

Thus, for x0
1 = 0 and x0

3 ̸= 0, we have y = 0, but z(t) ↛ 0 as t → ∞.

4.3. Partial observability of state space systems
Again consider E = In in (1) and assume that condition (7) holds true for all λ ∈ C, i.e.,⋃

λ∈C
ker

[
(λI −A)n

On
[λI−A,C]

]
⊆ kerK. (10)

We show that this condition is equivalent to partial observability of state space systems as considered in [25].
In view of

⋃
λ∈C ker(λI −A)n = Cn, (10) is equivalent to⋃

λ∈C
kerOn

[λI−A,C] ⊆ kerK.

We show that the left hand side of the inclusion is equal to kerOn
[A,C]. If v ∈ kerOn

[A,C], then

Cv = 0, CAv = 0, . . . , CAn−1v = 0.

Then, for arbitrary λ ∈ C,

Cv = 0, C(λI −A)v = 0, . . . , C(λI −A)n−1v = 0, i.e., kerOn
[A,C] ⊆

⋃
λ∈C

kerOn
[λI−A,C].

On the other hand, v ∈
⋃

λ∈C kerOn
[λI−A,C] implies, for some λ ∈ C,170

Cv = 0, C(λI −A)v = 0, . . . , C(λI −A)n−1v = 0, i.e., Cv = 0, CAv = 0, . . . , CAn−1v = 0.

Thus, ⋃
λ∈C

kerOn
[λI−A,C] = kerOn

[A,C].

Hence, condition (10) is equivalent to

kerOn
[A,C] ⊆ kerK, i.e., rank

[
On

[A,C]

K

]
= rankOn

[A,C],

which coincides with the algebraic characterization of partial observability of state space systems given
in [25, Eq. (8)].
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5. Observer design

In this section, we propose an observer (estimator) of the following form to estimate the functional vector
z(t) in (1):

ẇ(t) = Nw(t) +H

[
u(t)
y(t)

]
, (11a)

ẑ(t) = Rw(t) +

h−1∑
i=0

Mi

[
u(i)(t)
y(i)(t)

]
, (11b)

where l, h ∈ N0, N ∈ Rl×l, H ∈ Rl×(k+p), R ∈ Rr×l, Mi ∈ Rr×(k+p), i = 0, . . . , h− 1. A system of the form
(11) is called a generalized functional observer (estimator), because it includes derivatives of the input and
output variables. The integers l and h denote the order and index of the observer (estimator), respectively.180

To the best of our knowledge, generalized observers were first proposed by Hou and Müller [11] to estimate
the full state of linear descriptor systems.

We exploit the behavior B to give a precise definition of generalized functional observers (estimators) for
(1), similar to [14, Def. 3.2]. We like to note that the notion of functional observers for state space systems
goes back to the seminal work [26] by Luenberger.

Definition 3. System (11) is said to be a generalized functional estimator for (1), if for every (x, u, y, z) ∈ B
there exist w ∈ ACloc(R;Rl) and ẑ ∈ L 1

loc(R;Rr) such that (w, u, y, ẑ) satisfy (11) for almost all t ∈ R, and
for all w, ẑ with this property we have

ẑ(t)− z(t) → 0 for t → ∞.

Definition 4. System (11) is said to be a generalized functional observer for (1), if

(a) (11) is a generalized functional estimator for (1), and

(b) for any (x, u, y, z) ∈ B, there exist w ∈ ACloc(R;Rl) and ẑ ∈ L 1
loc(R;Rr) such that (w, u, y, ẑ) satisfy

(11) with ẑ(0) = z(0), we have ẑ(t) = z(t) for almost all t > 0.

Notably, any system (11) can be written as a regular descriptor system in the form190

Eoẋo(t) = Aoxo(t) +Bo

[
u(t)
y(t)

]
, (12a)

ẑ(t) = Coxo(t), (12b)

where xo :=

[
w
w1

]
, Eo :=

[
I

E1

]
, E1 is a nilpotent matrix with nilpotency index h, Ao :=

[
N

I

]
,

Bo :=

[
H
H1

]
, and Co :=

[
R R1

]
such that R1E

i
1H1 = −Mi for 0 ≤ i ≤ h − 1. Clearly, upon substituting

w1(t) = −
∑h−1

i=0 Ei
1H1

[
u(i)(t)
y(i)(t)

]
from (12a) in (12b), (12) reduces to (11). Since the matrix pencil (λEo−Ao)

is regular, this shows that the class of observers (estimators) (11) is a special subclass of the observer
(estimator) systems considered in [14], where the notion “partial state observer (estimator)” is used and the
observers (estimator) are constructed as descriptor systems using a system copy. Thus, remarkably, system
(11) constitutes a regular descriptor system where the algebraic constraints have been resolved, and results
from fixing the dimension of the innovations in the observer class in [14].

Now, we establish a relation between partial detectability and the existence of a generalized functional
estimator for (1).200

Theorem 2. There exists a generalized functional estimator of the form (11) for a given system (1) if, and
only if, (1) is partially detectable.
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Proof. (⇒): Let (x, 0, 0,Kx) ∈ B be arbitrary. Then w = 0 and ẑ = 0 satisfy (11) with u = 0 and y = 0,
thus we have (since (11) is a generalized functional estimator)

z(t)− ẑ(t) = Kx(t) → 0 for t → ∞. (13)

Therefore, since in particular E ẋ(t) = Ax(t), it follows from (13) and [14, Lem. A.4] that condition (c) in
Theorem 1 is satisfied and hence (1) is partially detectable.

(⇐): Assume that the system (1) is partially detectable. First, utilizing Lemma 1, we compute nonsin-
gular matrices P1 and Q1 such that the matrix pencil P1(λE − A)Q1 is in QKF (2). Then, we compute a
non-singular matrix U1 such that

U−1
1 JfU1 =

[
Jf1

Jf2

]
, (14)

where σ(Jf1) ⊆ C̄+ and σ(Jf2) ⊆ C−. The existence of such U1 is guaranteed by the Jordan canonical form210

of Jf . Further, we find (e.g. using the SVD or QR factorization) a non-singular matrix U2 such that

U2(λEη −Aη) =

[
λInη

−Aη1

−Aη2

]
.

Finally, we define

P :=


I

U−1
1

I
U2

P1, Q := Q1


I

U1

I
I

 , P

[
B 0
D −Ip

]
=


Bϵ

Bf1

Bf2

Bσ

Bη1

Bη2

 , x = Q


xϵ

xf1

xf2

xσ

xη

 ,

and KQ =
[
Kϵ Kf1 Kf2 Kσ Kη

]
.

Since system (1) is partially detectable, it follows from Lemma 4 that Kϵ = 0 and Kf1 = 0. Thus, in the new
coordinates, the problem of generalized functional estimator design for system (1) reduces to the problem
of generalized functional estimator design for

Jσẋσ(t) = xσ(t) +Bσū(t), (15a)[
ẋf2(t)
ẋη(t)

]
=

[
Jf2

Aη1

] [
xf2(t)
xη(t)

]
+

[
Bf2

Bη1

]
ū(t), (15b)

0 = Aη2
xη(t) +Bη2

ū(t), (15c)

z(t) = Kσxσ(t) +
[
Kf2 Kη

] [xf2(t)
xη(t)

]
, (15d)

where ū =

[
u
y

]
. Since rank

[
λInη −Aη1

−Aη2

]
= nη for all λ ∈ C by Lemma 1, there exists L ∈ Rnη×(mη−nη)

such that σ(Aη1
− LAη2

) ⊆ C−. Define the following system:

ẇ(t) = Nw(t) +

[
Bf2

Bη1
− LBη2

]
ū(t), (16a)

ẑ(t) = Rw(t)−
h−1∑
i=0

KσJ
i
σBσū

(i)(t), (16b)

where N =

[
Jf2 0
0 Aη1 − LAη2

]
and R =

[
Kf2 Kη

]
. For any (x, u, y, z) ∈ B we have that (xσ, xf2 , xη, ū, z)

is a solution of (15). Clearly, ū must be sufficiently smooth by (15a) and hence for all (x, u, y, z) ∈ B

9



there exists a solution (w, ū, ẑ) of (16). For any such solution, we define e(t) = z(t) − ẑ(t) and e1(t) =220 [
xf2(t)
xη(t)

]
− w(t), then using (15c) we obtain

ė1(t) = Ne1(t)+

 0
L
(
Aη2

xη(t)+Bη2
ū(t)︸ ︷︷ ︸

=0

)= Ne1(t), (17a)

e(t) = Re1(t). (17b)

Since σ(N) ⊆ C− by construction, e(t) → 0 for t → ∞. Therefore, ẑ(t) → z(t) for t → ∞.

Remark 4. The estimator design procedure can actually be turned into a numerically stable algorithm by

• using the staircase form from [27] instead of the QKF,

• using the GUPTRI form from [28] for the decomposition of the stable and unstable eigenvalues of the
matrix Jf in (14),

and some other small but straightforward modifications. However, the presentation of this algorithm is quite
technical and we leave the details to the reader.

Now we turn to the question of existence of generalized functional observers. We like to note that a
necessary and sufficient condition for the existence of generalized functional observers in a more general230

form (which are descriptor systems again) was derived in [14, Thm. 3.5]. Since we consider a smaller class of
admissible observers here, the conditions from [14] are not sufficient for the existence of an observer anymore.
Likewise, although partial detectability is necessary, it is not sufficient for the existence of generalized
functional observers. In the following result, which is a direct consequence of the error dynamics (17) and
[14, Lem. A.1], we derive a condition which together with partial detectability also yields the existence of a
generalized functional observer.

Corollary 1. Consider a system (1) which is partially detectable and consider an observer candidate of the
form (16) with gain matrix L ∈ Rnη×(mη−nη) such that σ(Aη1 − LAη2) ⊆ C−. Then

rankR = rankOl
[N,R] (18)

if, and only if, (16) is a generalized functional observer for (1), where N =

[
Jf2 0
0 Aη1

− LAη2

]
, R =[

Kf2 Kη

]
, and l = nf2 + nη.240

Remark 5. Denote by Σ1 the class of descriptor systems (1) which are partially detectable, by Σ2 the class
for which there exists a generalized functional observer of the form (11), and by Σ3 the class for which there
exists a gain matrix L with σ(N) ⊆ C− and which satisfies (18). By Corollary 1 the set Σ3 consists of
those descriptor systems for which (16) is a generalized functional observer. Furthermore, Theorem 2 and
Corollary 1 imply the following inclusion:

Σ1 ⊇ Σ2 ⊇ Σ3.

We show that each inclusion is strict. To see that Σ1 ̸= Σ2, consider a system (1) with the following
coefficient matrices:

E =

[
1 0
0 1

]
, A =

[
−1 0
0 −2

]
, B =

[
1
1

]
, C =

[
0 0

]
, D = 0, and K =

[
1 1

]
.

Then, invoking Theorem 1, it is easy to verify that this system is partially detectable and hence belongs to
Σ1. To see that no generalized functional observer exists for this system, consider an arbitrary observer
candidate of the form (11). Choose initial values x1(0) = 1, x2(0) = −1, w(0) = 0, and input function250

10



u ≡ 0. Invoking y(t) = 0 we find that ẇ(t) = Nw(t) with w(0) = 0, thus w(t) = 0 for all t ≥ 0. As a

consequence ẑ(t) = Rw(t)+
∑h−1

i=0 Miū
(i)(t) = 0 for all t ≥ 0, but z(t) = x1(t)+x2(t) = exp(−t)−exp(−2t).

Thus it holds ẑ(0) = z(0), but ẑ(t) ̸= z(t) for all t > 0. This proves that condition (b) in Definition 4 is not
satisfied and hence the system does not belong to Σ2.

To see that Σ2 ̸= Σ3, consider the following example for a system (1):

E =

[
1 0
0 1

]
, A =

[
0 0
1 0

]
, B =

[
1
1

]
, C =

[
0 1

]
, D = 1, K =

[
1 0

]
.

Then with P = I3 and Q = I2 the system is already in the form (15) given by

ẋη(t) =

[
0 0
1 0

]
xη(t) +

[
1 0
1 0

]
ū(t),

0 =
[
0 1

]
xη(t) +

[
1 −1

]
ū(t),

z(t) =
[
1 0

]
xη(t).

Resolving the equations we find that
z(t) = ẏ(t)− u̇(t)− u(t),

and hence, clearly, there exists a generalized functional observer of the form (11) for the system. However,
any observer of the form (16) with L = [ αβ ] reads

ẇ(t) =

[
0 −α
1 −β

]
w(t) +

[
1− α α
1− β β

]
ū(t),

ẑ(t) =
[
1 0

]
w(t)

Therefore, σ(N) ⊆ C− requires α ̸= 0, but then260

rank
[
1 0

]
= 1 ̸= 2 = rank

[
1 0
0 −α

]
,

so (18) is not satisfied.

Remark 6. In a couple of works, e.g. [18, 20, 29, 30], estimators as in Definition 3 are considered, yet
they are called “observer”; property (b) from Definition 4 is not considered. For more details on property
(b) in Definition 4, see Example 1 in [31].

6. Numerical illustration

In this section, we illustrate our theoretical findings and validate the proposed algorithm with a numerical
example. Consider system (1) with the coefficient matrices

E =


0 0 0 0 0
0 0 0 −1 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 0 1
0 0 0 0 0

 , A =


0 0 −1 0 0
2 0 0 1 0
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 −1
0 0 0 0 1

 , B =


−1
0
0
0
1
0

 ,

C =
[
0 0 1 0 0

]
, D = 0, and K =

[
−1 1 1 −1 1

]
.

This system is partially detectable by Theorem 1. Following the estimator design procedure in the proof of
Theorem 2, we obtain
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P =



0 0 −1 0 0 0 0
0 −1 1 0 0 0 0
0 0 0 −1 0 0 0

−0.5 0 0 0 0 0 0.5
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0.5 0 0 0 0 0 0.5


and Q =


−1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 0 0 0
0 0 0 0 1

 .

Furthermore, the reduced system (15) is of the form270 [
0 1
0 0

]
ẋσ(t) = xσ(t) +

[
0 0
0.5 −0.5

]
ū(t),[

ẋf2(t)
ẋη(t)

]
=

[
−1 0
0 −1

] [
xf2(t)
xη(t)

]
+

[
0 0
1 0

]
ū(t),

0 =

[
1
0

]
xη(t) +

[
0 0
0.5 0.5

]
ū(t),

z(t) =
[
−1 1

] [xf2(t)
xη(t)

]
+

[
1 1

]
xσ(t).

Since the matrix

[
Jf2 0
0 Aη1

]
is stable, by choosing L = 0 we find that condition (18) is satisfied and we

obtain a generalized functional observer of the form (11) given by

ẇ(t) =

[
−1 0
0 −1

]
w(t) +

[
0 0
1 0

]
ū(t),

ẑ(t) =
[
−1 1

]
w(t) +

[
0.5 −0.5

]
ū(t) +

[
0.5 −0.5

]
ū(1)(t).
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Figure 1: Time response of true and estimated z(t).
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Figure 2: Time response of observer error e(t).

Figure 1 and 2 show the responses of the true and estimated values of z(t) and the time response of the
estimation error, respectively. The simulation is realized in MATLAB R2020a and the reduced system (15)
and the observer (16) are solved by using the ode15s solver with relative tolerance 10−6. For the simulation,

we used the parameters

[
xf2(0)
xη(0)

]
=

[
1
2

]
, w(0) =

[
3
6

]
, and ū(t) =

[
sin(t)
− sin(t)

]
.

7. Conclusion

In the present paper, we established a precise mathematical definition and the algebraic characterization
of partial detectability for LTI descriptor systems. In addition to this, incorrect results for the algebraic
characterization of partial detectability of state space systems in the literature have been pointed out and280

corrected. It turned out that the proposed concept of partial detectability is equivalent to the existence of a
generalized functional estimator, and it is necessary for the existence of a generalized functional observer for
LTI descriptor systems. Together with a new rank condition, it is also sufficient and a step-by-step observer
(estimator) design procedure was presented. Future research will focus on closing the gap between the
system classes discussed in Remark 5 by additional conditions and finding a characterization of descriptor
systems for which a generalized functional observer exists.
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