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Abstract— We propose model predictive funnel con-
trol, a novel model predictive control (MPC) scheme
building upon recent results in funnel control. The lat-
ter is a high-gain feedback methodology that achieves
evolution of the measured output within predefined
error margins. The proposed method dynamically
optimizes a parameter-dependent error boundary in
a receding-horizon manner, thereby combining pre-
scribed error guarantees from funnel control with the
predictive advantages of MPC. This approach promises
faster optimization times due to a reduced number of
decision variables, whose number does not depend on
the horizon length, as well as improved robustness due
to a continuous feedback law to deal with the inter-
sampling behavior. In this paper, we focus on proving
stability by leveraging results from MPC stability
theory with terminal equality constraints. Moreover,
we rigorously show initial and recursive feasibility.

Keywords: Adaptive control, Funnel control, Nonlinear
output feedback, Predictive control for nonlinear systems,
Prescribed transient behavior

I. Introduction

We address the problem of stabilizing a nonlinear
dynamical control system subject to time-varying output
constraints defined by user-specific performance bounds
(funnel boundaries). To achieve this, we propose a novel
bi-level control framework that synergies funnel control
and model predictive control (MPC). The architecture
comprises:

• A lower-level fixed funnel control law ensuring con-
straint satisfaction.

• An upper-level MPC-based optimizer tuning the
funnel control parameters (see Figure 1).

* T. Berger, D. Dennstädt, L. Lanza and K. Worthmann gratefully
acknowledge funding by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project-ID 471539468. This
work was developed within the European project INTEREST. The
project has received funding from the European Union’s Horizon
Europe Research and Innovation funding programme under GA No.
101160594. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting authority can
be held responsible for them.

1Fraunhofer Institute for Industrial Mathematics (ITWM), 67663
Kaiserslautern, Germany, jens.goebel@itwm.fraunhofer.de

2Technische Universität Ilmenau, Optimization-based Control
Group, Institute of Mathematics, 98693 Ilmenau, Germany,
{lukas.lanza, karl.worthmann}@tu-ilmenau.de

3Universität Paderborn, Institut für Math-
ematik, Warburger Str. 100, 33098 Pader-
born, Germany, thomas.berger@math.upb.de,
dario.dennstaedt@uni-paderborn.de

4Rheinland-Pfälzische Technische Universität Kaiserslautern-
Landau, 67663 Kaiserslautern, Germany, tdamm@rptu.de

Funnel control is a model-free controller that achieves
output reference tracking, first described in [1]. It has
since garnered significant attention in academic research,
see, e.g. [2], [3] and references therein. A related concept
is the so-called prescribed performance control (PPC)
methodology, first proposed in [4] and further developed
in, e.g., [5], [6]. Recently, in [7], PPC has been connected
to control barrier functions [8] to find optimization-
based reactive feedback laws. Both concepts (funnel
control and PPC) are high-gain adaptive feedback control
methodologies, where the gain grows towards infinity as
the tracking error approaches a predefined error boundary.
This means, near the error boundary an inward pointing
condition is active, i.e., the error is being pushed back
from the boundary. Thus, under structural assumptions
on the system, such as a globally well-defined relative
degree and a high-gain property, it can be shown that the
tracking error evolves within the boundaries. While early
results in funnel control rely on the diameter of the funnel
being bounded away from zero, in [9] asymptotic tracking
is achieved for systems with relative degree one. These
results have been extended to systems with arbitrary
relative degree in [3]. In the current paper, we will use
the results presented in [10], where it was proven that it
is possible to achieve exact tracking in prescribed finite
time with funnel control.

MPC is a well-established and versatile control meth-
odology that has been widely applied both in research and
industry since the 1980s [11]. Unlike the model-free funnel
control, MPC relies on a model of the controlled process. It
optimizes the predicted system behavior over a discretized
input signal according to a pre-defined cost function.
While powerful, the computational complexity of solving
this optimization problem within strict sampling time
constraints grows with the horizon length, posing a
significant difficulty in real-time applications [12], [13].
Beyond that, the open-loop application of the control
signal between optimization steps limits its robustness
against disturbances. One approach to ensure constraint
satisfaction under external disturbances or even under
model mismatch is tube-based MPC [14], [15]. These
methods construct tubes that encompass the uncertainties
of the system and always contain the actual system
trajectory. However, these tubes are not free of choice.

Our integrated method, termed model predictive funnel
control (MPFC), merges MPC and funnel control by
optimizing a parameter-dependent funnel shape using an
MPC-like strategy. At each MPFC step, the funnel shape
parameters are optimized over the current prediction
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ŷi = y(ti)
Algorithm 4

u(t)

y(t)

(c∗
i , T

∗
i )

Fig. 1: Feedback control for unknown real system with optimal
funnel function parameters. The model is initialized with system
data y(ti). Then, Algorithm 4 provides parameters (c∗

i , T ∗
i ) to the

funnel controller (4). The latter is applied continuously to the
system.

horizon for the funnel-controlled closed-loop system. This
approach significantly reduces the number of optimization
variables compared to classical MPC, where the decision
vector comprises the entire discretized input trajectory
and grows with the horizon length. Moreover, MPFC
provides a stabilizing closed-loop control law even between
two recalculation steps, thereby enhancing its robustness
relative to traditional MPC, where the computed control
is applied in an open-loop fashion until the algorithm’s
next iteration. Since the actual control of the system is
given by a funnel control law, the prescribed performance
is maintained even if the model used in the optimization
step does not fully match the real system.

To prove the stability of MPFC, we utilize the well-
known concept of equilibrium endpoint constraints from
classical MPC stability theory, as covered e.g. in [16,
Sec. 5.2]. This type of stability proof relies on MPC
predictions reaching the system’s equilibrium by the
end of the prediction horizon ensured by additional
constraints. This enables a cost-neutral extension of the
horizon, which is exploited to prove the boundedness of
the closed-loop costs. In case of the presented version
of MPFC, the results from [10] ensure reaching the
equilibrium during the prediction horizon quite naturally,
without additional constraints.

While prior work has explored combinations of funnel
control and MPC under the name funnel MPC in a series
of papers, see [17], [18] and the references therein, our
approach differs fundamentally in both methodology and
scope. Existing funnel MPC implementations retain the
classical funnel control paradigm of a static, user-defined
funnel shape and instead optimize only the applied control
values. This penalizes proximity of the system output to
the given boundaries via rising costs but does not adapt
the funnel geometry itself. Other MPC approaches that
consider prescribing output constraints usually focus on
discrete-time systems instead [19].

The funnel shape considered in this work, as well
as in [10], differs from classical funnel control in that
it reaches zero in prescribed finite time T > 0. Due
to this ‘singularity’ in T , the closed-loop ODE defined
by (7) requires infinitely small step sizes in the numerical
solution. The results developed in this brief paper prove
the feasibility of the proposed control algorithm from

a theoretical perspective. Relaxing the choice of the
performance funnel to more general functions such as
in [3] and facilitating the numerical implementation is
topic of near future research.

Nomenclature. For x, y ∈ Rn, we use x⊤y =: ⟨x, y⟩,
and ∥x∥ =

√
⟨x, x⟩. For V ⊆ Rm, we denote by

Ck(V ;Rn) the set of k-times continuously differentiable
functions f : V → Rn. For an interval I ⊆ R and
k ∈ N, L∞(I;Rn) is the Lebesgue space of measurable,
essentially bounded functions f : I → Rn with norm
∥f∥∞ = esssupt∈I∥f(t)∥.

II. System class and control objective
We introduce the system class under consideration and

formulate the control objective precisely. Consider a non-
linear multi-input multi-output control system

ẏ(t) = f(y(t), u(t)), y(0) = ŷ0 ∈ Rm, (1)

where y(t) ∈ Rm denotes the output, and u(t) ∈ Rm

denotes the input of the system at time t ≥ 0, respectively.
Note that the dimension of the input and output coincide.
The function f ∈ C(Rm × Rm;Rm) is assumed to satisfy
the following high-gain property:

Definition 1 (High-gain property [3, Def. 1.2]): For
m ∈ N, a function f ∈ C(Rm × Rm;Rm) satisfies the
high-gain property, if there exists ν ∈ (0, 1) such that, for
every compact K ⊂ Rm, the continuous function

χ : R→ R,
s 7→ min {⟨v, f(z,−sv)⟩|z ∈ K, v ∈ Rm, ν ≤ ∥v∥ ≤ 1}

satisfies sups∈R χ(s) =∞.

Intuitively, the high-gain property states that the
system reacts fast, if the input is large. It is therefore a
core ingredient when aiming for tracking with prescribed
performance via reactive (non-predictive) feedback. Using
the high-gain property, we define the class of systems
under consideration in this paper.

Definition 2 (System class S): A system (1) belongs
to the system class S, if f satisfies the high-gain property
(Definition 1) and f(0, 0) = 0.

We aim to design a prediction-based feedback controller
to stabilize system (1), i.e., y(t) → 0. Moreover, the
output should evolve within prescribed margins, i.e.,

∀ t ≥ 0 : ∥y(t)∥ ≤ ψ(t) (2)

for some positive function ψ given by the control engineer.
This predefined performance funnel can be chosen as
ψ ∈ C1(R≥0;R), with ψ(t) > 0 for all t ≥ 0, or as
ψ(·) ≡ ∞ if no restrictions are posed on the transient
behavior of the system.

In the this paper, we say a (locally) absolutely
continuous function y : [0, ω) → Rm, ω ∈ (0,∞],
with y(0) = y0 ∈ Rm is a solution (in the sense
of Carathéodory) to (1), if y satisfies (1) for almost
all t ∈ [0, ω). A solution y is maximal, if it has no right
extension that is also a solution; and global, if ω =∞.



III. Control Methodology
We introduce the control methodology to achieve the

control objective (2) for systems in S by combining model-
free funnel control with model-based optimization. To this
end, we first recall the specific version of funnel control
at play, before proposing model predictive funnel control.

A. Exact Funnel Control
To utilize well established arguments from MPC sta-

bility analysis (continuation with zero costs), we aim
to ensure y(T ) = 0 for some T < H, where H > 0 is
the prediction horizon. To this end, we employ results
from [10], where a feedback controller has been proposed,
which achieves exact tracking in predefined finite time.
We briefly recap the controller design [10]. For c, T > 0,
define the funnel boundary by

φ(t; c, T ) := c(T − t), t ∈ [0, T ). (3)

Choose a continuous bijection αc : [0, 1)→ [2c,∞), and a
continuous surjection N : R≥0 → R. Feasible choices are,
e.g., αc(s) = 2c/(1 − s) and N(s) = s cos (s). Typically,
the control direction is known (±). In this case, the choice
of N simplifies to N(s) = ±s, cf. [3, Rem. 1.8] With
these functions and parameters, we recall [10, Thm. 3.1],
adapted to the current setting.

Lemma 3 ( [10], Thm. 3.1): For φ given in (3), con-
sider a system (1) contained in S with ∥ŷ0∥ < φ(0) = cT .
Then, the application of the feedback law

u(t) = (N ◦ αc)(∥y(t)∥2/φ(t)2) y(t)
φ(t) (4)

to system (1) yields a closed-loop initial value prob-
lem which has an absolutely continuous maximal solu-
tion y : [0, T ) → Rm. Moreover, the solution satisfies
∥y(t)∥ < φ(t) for all t ∈ [0, T ), limt→T ∥y(t)∥ = 0, and
u ∈ L∞([0, T ];Rm).

Note that, [10, Thm. 3.1] states u ∈ L∞([0, T );Rm)
but the control can be extended to the closed interval.
We will uses this fact in the analysis of the proposed
algorithm.

B. Model Predictive Funnel Control
We now present model predictive funnel control, which

combines the funnel control scheme depicted in the
previous section with model-based predictions to optim-
ize a parameter-dependent funnel shape on a receding
horizon. For symmetric positive semi-definite matrices
Q,R ∈ Rm×m, define the stage costs by

ℓ : Rm × Rm → R≥0, (y, u) 7→ ⟨y,Qy⟩+ ⟨u,Ru⟩. (5)

In addition, choose an optimality tolerance εopt > 0, a
step size h > 0, and horizon length H := nh for fixed
n ∈ N≥2 and define the resampling times ti = ih, i ∈ N0.

As in Section III-A, define the funnel boundary by (3)
and choose a surjection N ∈ C(R≥0;R) and a bijection
αc ∈ C([0, 1); [2c,∞)), depending on the parameter c.
These functions define the funnel feedback law (4) up to
a specific funnel shape parameterization, which is defined

by a choice from the following set: For t ≥ 0, ŷ ∈ Rm,
and an outer funnel function ψ, define the feasible set by

FH(t, ŷ) :=
{

(c, T ) ∈ R>0 × (0, H]
∣∣ ∥ŷ∥ < φ(0; c, T ),

∀ τ ∈ [0, T ) : φ(τ ; c, T ) ≤ ψ(t+ τ)
}
. (6)

Consider a system (1) of class S. For (c, T ) ∈ FH(t, ŷ),
denote the cost function by

JH(ŷ, c, T ) :=
∫ H

0
ℓ(y(τ), u(τ)) dτ + c (7a)

s.t. ẏ(τ) = f(y(τ), u(τ)), y(0) = ŷ, (7b)

and u(τ) =

(N ◦αc)
(∥∥∥ y(τ)

φ(τ ;c,T )

∥∥∥2
)

y(τ)
φ(τ ;c,T ) , τ <T

0, else.
(7c)

Define the optimal value function as
VH(t, ŷ) := inf(c,T )∈FH (t,ŷ) JH(ŷ, c, T ). For T ≤ 0
and any c > 0, set JH(ŷ, c, T ) := 0. With this, we may
now define the control algorithm.

Algorithm 4 (Model Predictive Funnel Control):
Input: A system (1) of class S, outer funnel boundary

ψ ∈ C1(R≥0;R) with ψ(t) > 0 for all t ≥ 0, or
ψ ≡ ∞, stage cost ℓ as in (5), εopt > 0, h > 0,
H := nh for n ∈ N≥2, surjection N ∈ C(R≥0;R),
bijections αc ∈ C([0, 1); [2c,∞)) for c > 0.

i← 0
loop

At time ti, measure the output y(ti) of system (1)
and set ŷi = y(ti) ∈ Rm.
if i = 0 then

Find (c∗
0, T

∗
0 ) ∈ FH(0, ŷ0) such that

JH(ŷ0, c
∗
0, T

∗
0 ) ≤ VH(0, ŷ0) + εopt

else
Find (c∗

i , T
∗
i ) ∈ FH(ti, ŷi) such that

JH(ŷi, c
∗
i , T

∗
i ) ≤ min

{
JH(ŷi, c

∗
i−1, T

∗
i−1 − h),

VH(ti, ŷi) + εopt
}

(8)
On the interval [ti, ti + h) apply (7c) with αc∗

i
and

φ(t− ti; c∗
i , T

∗
i ) to system (1)

i← i+ 1

IV. Main Results
We present the two main results. In Theorem 5, we

prove that Algorithm 4 is initially and recursively feasible
for all initial values ŷ0 with ∥ŷ0∥ < ψ(0). Utilizing
well-known results of stability via equilibrium terminal
constraints, cf. [16, Sec. 5.2], Theorem 8 shows that the
closed-loop application of the algorithm is stabilizing.

Theorem 5: Let ψ ∈ C1(R≥0;R>0) with ψ(t) > 0
for all t ≥ 0, or ψ = ∞, be given. Let y(0) in (1)
such that ∥y(0)∥ < ψ(0). Then, Algorithm 4 is initially
feasible, i.e., there exist (c∗

0, T
∗
0 ) ∈ FH(0, y(0)) such

that JH(y(0), c∗
0, T

∗
0 ) ≤ VH(0, y(0)) + εopt. Moreover, Al-

gorithm 4 is recursively feasible, meaning the solvability of
the optimization problem in (8) at time ti, i ∈ N0 implies
its solvability at the next time step ti+1. Additionally,



every maximal solution yi : [ti, ti+1]→ Rm of the initial
value problem (1) with initial value yi(ti) = yi−1(ti) on
the interval [ti, ti+1] stays inside the funnel boundaries,
meaning, for all i ∈ N and t ∈ [ti, ti+1], we have

∥yi(t)∥ ≤ max {0, φ(t− ti; c∗
i , T

∗
i )} ≤ ψ(t). (9)

Proof: Step 1: Note the following observation.
Given (t̂, ŷ) ∈ R≥0 × Rm with ∥ŷ∥ < ψ(t̂), then
F(t̂, ŷ) ̸= ∅. To see this, consider the following two
cases. If ψ ≡ ∞, then

(
∥ŷ∥+1

H , H
)
∈ F(t̂, ŷ). Otherwise,

invoking ψ ∈ C1(R≥0;R) with ψ(t) > 0 for all t ≥ 0, we
get that the candidates

T̂ := min
{

ψ(t̂) + ∥ŷ∥
2∥ψ̇|[t̂,t̂+H]∥∞

, H

}
, ĉ := ψ(t̂) + ∥ŷ∥

2T̂

fulfill (ĉ, T̂ ) ∈ FH(t̂, ŷ) ̸= ∅ by checking the set predicates.
T̂ ∈ (0, H] and ĉ > 0 follow directly. Furthermore,

∥ŷ∥ < φ(0; ĉ, T̂ ) = ĉT̂ = 1
2 (ψ(t̂) + ∥ŷ∥) < ψ(t̂),

where we used ∥ŷ∥ < ψ(t̂) and, since for τ ∈ [0, T̂ ) we
have d

dτ φ(τ ; ĉ, T̂ ) = −ĉ ≤ −∥ψ̇|[t̂,t̂+H]∥∞, we get that

φ(τ ; ĉ, T̂ ) = φ(0; ĉ, T̂ ) +
∫ τ

0
d
dsφ(s; ĉ, T̂ ) ds

< ψ(t̂) +
∫ t̂+τ

t̂
ψ̇(s) ds = ψ(t̂+ τ).

Step 2: Given (ti, ŷi) ∈ R≥0 × Rm with ∥ŷi∥ < ψ(ti) for
i ∈ N0, we show VH(ti, ŷi) ∈ R. According to Step 1,
there exist c, T ∈ R such that φ(t − ti; c, T ) < ψ(t) for
all t ∈ [ti, ti +T ]. Thus, ∥ŷi∥ < φ(0; c, T ). Then, Lemma 3
yields an input signal ui ∈ L∞([ti, ti + T ];Rm) such that,
for (c, T ) ∈ FH(ti, ŷi), the initial value problem (1) with
initial value y(ti) = ŷi has a solution ỹi : [ti, ti +T ]→ Rm

with limt→T ∥ỹi(ti + t)∥ = 0 and

∀ t ∈ [ti, ti + T ) : ∥ỹi(t)∥ < φ(t− ti; c, T ) ≤ ψ(t), (10)

where cT <∞. On [ti +T, ti +H], the solution ỹi can be
continued with u = 0. Since f(0, 0) = 0 by assumption, we
get ỹi|[ti+T,ti+H] ≡ 0. Then, ỹi, ui ∈ L∞([ti, ti +H];Rm)
implies that JH(ŷi, c, T ) in (7) is finite. Thus, VH(ti, ŷi)
is finite.
Step 3: We show initial and recursive feasibility of
Algorithm 4.
Step 3.1: According to Step 2, VH(0, y(0)) is finite.
Thus, there exist (c∗

0, T
∗
0 ) ∈ FH(0, y(0)) such that

JH(y(0), c∗
0, T

∗
0 ) ≤ VH(0, y(0))+εopt. This is, Algorithm 4

is initially feasible.
Step 3.2 We show recursive feasibility. For i ∈ N0 let
yi : [ti, ti+1] → Rm be the solution of the initial value
problem (1) with initial value yi(ti) = yi−1(ti) and
control ui. Further, let (c∗

i , T
∗
i ) ∈ FH(ti, yi−1(ti))

be the associated funnel parameters. Define
ŷi+1 := yi(ti+1). We have to show that there exist
(c∗

i+1, T
∗
i+1) ∈ FH(ti+1, ŷi+1) satisfying (8) for index

i+ 1. According to Step 2, we know VH(ti+1, ŷi+1) ∈ R.
If VH(ti+1, ŷi+1) + εopt ≤ JH(ŷi+1, c

∗
i , T

∗
i − h), then

the assertion follows as in Step 3.1. Otherwise,

note that yi = ỹi|[ti,ti+1] from Step 2 where
ỹi : [ti, ti + T ∗

i ] → Rm is a solution of the initial
value problem (1) with initial value ŷi = yi−1(ti). As
discussed in Step 2, ỹi can be extended by zero on
the entire interval [ti, ti+1 + H]. As ŷi+1 = ỹi(ti+1),
(c∗

i+1, T
∗
i+1) := (c∗

i , T
∗
i − h) ∈ FH(ti+1, ŷi+1) satisfies (8).

Step 4: As a direct consequence of (10) in Step 2, every
solution yi satisfies (9). This completes the proof.

Next, we prove boundedness of the closed-loop costs.
Lemma 6: Let the assumptions of Theorem 5 be ful-

filled. Then, the input signals ui(·) and the output signals
yi(·) resulting from Algorithm 4 fulfill

Jcl
∞(H, y0(0)) :=

∞∑
i=0

∫ ti+1

ti

ℓ(yi(t), ui(t))dt

≤ VH(0, y0(0)) + εopt <∞.
Proof: Continuing the considerations of the proof of

Theorem 5, it follows that for all t̂ ≥ 0 and ŷ ∈ Rm we
have FH−h(t̂, ŷ) ⊆ FH(t̂, ŷ). Moreover, the horizon can
be extended with zero cost:

∀ (c, T ) ∈ FH−h(t̂, ŷ) : JH−h(ŷ, c, T ) = JH(ŷ, c, T ).

Therefore, VH−h(t̂, ŷ) ≥ VH(t̂, ŷ). We calculate, for i ∈ N:

JH(yi(ti), c∗
i , T

∗
i )

=
∫ ti+H

ti
ℓ(yi(t), ui(t)) dt+ c∗

i (11)

=
∫ ti+1

ti
ℓ(yi(t), ui(t)) dt+

∫ ti+H

ti+1
ℓ(yi(t), ui(t)) dt+ c∗

i

(7)=
∫ ti+1

ti
ℓ(yi(t), ui(t)) dt+ JH−h(yi+1(ti+1), c∗

i , T
∗
i − h)

=
∫ ti+1

ti
ℓ(yi(t), ui(t)) dt+ JH(yi+1(ti+1), c∗

i , T
∗
i − h)

(8)
≥

∫ ti+1
ti

ℓ(yi(t), ui(t)) dt+ JH(yi+1(ti+1), c∗
i+1, T

∗
i+1).

If T ∗
i − h ≤ 0, then yi and ui are already zero on the

interval [ti+1, ti+H]. Thus, the second summand vanishes
in this case. Rearranging gives∫ ti+1

ti

ℓ(yi(t), ui(t))dt

≤ JH(yi(ti), c∗
i , T

∗
i )− JH(yi+1(ti+1), c∗

i+1, T
∗
i+1).

As this inequality holds for all i ∈ N0, summing up to
K ∈ N gives

K∑
i=0

∫ ti+1

ti

ℓ(yi(t), ui(t))dt

≤ JH(y0(0), c∗
0, T

∗
0 )− JH(yK+1(tK+1), c∗

K+1, T
∗
K+1)

≤ JH(y0(0), c∗
0, T

∗
0 ) ≤ VH(0, y0(0)) + εopt.

Since the costs are nonnegative, the left-hand-side is
monotonically increasing and bounded for K → ∞. It
hence converges.
We prove boundedness of the optimized parameters.

Corollary 7: Let the assumptions of Theorem 5 be
fulfilled. Then, the set {c∗

i | i ∈ N0} ⊂ R resulting from
Algorithm 4 is bounded.



Proof: Observe that for all i ∈ N we have
c∗

i ≤ JH(yi(ti), c∗
i , T

∗
i ) ≤ JH(yi−1(ti−1), c∗

i−1, T
∗
i−1) ac-

cording to (7) and (11). Thus, c∗
i ≤ JH(y0(0), c∗

0, T
∗
0 ) for

all i ∈ N.
Next, we show that the boundedness of the closed-loop

costs implies convergence of the closed-loop solution, if Q
is positive definite. We thereby show that Algorithm 4
fulfills the control objective (2) in Section II. In the
context of Algorithm 4, define the closed-loop solution as

ycl(t) :=
∑∞

i=1 χ[ti,ti+1)(t) yi(t),
ucl(t) :=

∑∞
i=1 χ[ti,ti+1)(t)ui(t),

where χ[ti,ti+1) is the indicator function on [ti, ti+1).
Theorem 8: Let the assumptions of Theorem 5 be

fulfilled. In addition, assume Q to be positive definite.
Then, Algorithm 4 asymptotically stabilizes system (1),
i.e. it holds limt→∞ ycl(t) = 0.

Proof: Seeking a contradiction, we assume

∃ ε > 0 ∀ t0 ≥ 0 ∃ t > t0 : ∥ycl(t)∥ > ε. (14)

Step 1 : We define some constants for later use. Let h > 0
be the equidistant step size h = ti+1 − ti. Further,
since Q is symmetric positive definite, there exists a
constant q > 0 such that yTQy ≥ q∥y∥2 for all y ∈ Rm.
For t ≥ 0, define the closed-loop funnel function as
φcl(t) :=

∑∞
i=1 χ[ti,ti+1)(t) φ(t− ti; c∗

i , T
∗
i ). For x ∈ R≥0,

define N̂(x) := maxξ∈[0,x] |N(ξ)|.
Step 2 : We show that, given the assumption (14), the
control input ucl is unbounded. According to Lemma 6,
Jcl

∞(H, y0(0)) <∞. This implies

∀ εc > 0 ∃ tεc
∈ R :

∫ ∞

tεc

ℓ(ycl(t), ucl(t)) dt < εc (15)

and, since Q is positive definite

∀ t ≥ 0 ∃ τε/3(t) > t : ∥ycl(τε/3(t))∥ < ε
3 . (16)

So, combining (14) – (16), for any given εc ∈ (0, qhε2

36 ),
we find tε > τε/3(tεc

) with ∥ycl(tε)∥ > ε. There exist

t1/3 := max{t ∈ R≥0 | ∥ycl(t)∥ = 1
3ε ∧ t < tε},

t2/3 := min{t ∈ R≥0 | ∥ycl(t)∥ = 2
3ε ∧ t > t1/3}

because ycl is continuous and tε > τε/3(tεc
). We estimate

εc ≥
∫ t2/3

t1/3

ℓ(ycl(t), ucl(t)) dt ≥
∫ t2/3

t1/3

ycl(t)TQycl(t) dt

≥
∫ t2/3

t1/3

q∥ycl(t)∥2 dt ≥ q
(ε

3

)2
(t2/3 − t1/3).

Since ycl is piecewise differentiable, the mean value
theorem yields the existence of tcrit ∈ [t1/3, t2/3] with

d
dt∥y

cl(tcrit)∥ ≥
2
3 ε− 1

3 ε

t2/3−t1/3
= ε

3(t2/3−t1/3) ≥
3ε3q

εc
−−−→
εc→0

∞.

Since f is continuous and ∥ycl(tcrit)∥ ≤ 2
3ε < ∞, this

implies

∥ucl(tcrit)∥ −−−→
εc→0

∞. (17)

Step 3 : We will lead statement (17) to a contradiction
by establishing a bound on ∥ucl(tcrit)∥. To this end, we
distinguish two cases.
Case 1: φcl(tcrit) > ε. Since ∥ycl(tcrit)∥ ≤ 2

3ε and
φcl(tcrit) > ε, we have ∥ycl(tcrit)∥

φcl(tcrit) < 2
3 . Then,

∥ucl(tcrit)∥ =
∥∥∥N (

α
(

∥ycl(tcrit)∥2

φcl(tcrit)2

))
ycl(tcrit)
φcl(tcrit)

∥∥∥
≤ N̂

(
α

( 4
9
)) 2

3 <∞

contradicting (17).
Case 2: φcl(tcrit) ≤ ε. In this case, a sim-
ilar chain of arguments can be performed. Define
t̂1/3 := min{t ∈ R≥0 | ∥ycl(t)∥ = 1

3ε ∧ t > tε}, and
t̂2/3 := max{t ∈ R≥0 | ∥ycl(t)∥ = 2

3ε ∧ t < t̂1/3}, where
t1/3 exists due to (16), and t2/3 due to the intermediate
value theorem. We estimate

εc ≥
∫ t̂1/3

t̂2/3
ℓ(ycl(t), ucl(t)) dt

≥
∫ t̂1/3

t̂2/3
ycl(t)TQycl(t) dt ≥ q

(
ε
3
)2 (t̂1/3 − t̂2/3).

The mean value theorem yields the existence of
t̂crit ∈ [t̂2/3, t̂1/3] with

d
dt∥y

cl(tcrit)∥ ≤
1
3 ε− 2

3 ε

t̂1/3−t̂2/3
= −ε

3(t̂1/3−t̂2/3) ≤
−ε3q

εc
−−−→
εc→0

−∞.

Since f is continuous and ∥ycl(t̂crit)∥ ≤ 2
3ε < ∞, this

implies

∥ucl(t̂crit)∥ −−−→
εc→0

∞. (18)

Step 3.1 : We show φcl(t̂crit) > 3
4ε. Seeking a contra-

diction, assume φcl(t̂crit) ≤ 3
4ε. Since φcl(tcrit) ≤ ε and

φcl(tε) > ε, there must be a resampling time between tcrit
and tε, i.e., there exists i∗ ∈ N such that ti∗ ∈ [tcrit, tε).
W.l.o.g. T ∗

i > h (otherwise we have convergence, since
ycl(t) = 0 for t ≥ ti∗ + h). Since φcl(ti∗) > ε,

φcl(ti∗ + τ) > ε
(
1− τ

h

)
for τ ∈ [0, h).

This implies, if φcl(t̂crit) ≤ 3
4ε, then t̂crit − ti∗ > h

4 . But
∥ycl(t)∥ ≥ ε

3 for t ∈ [ti∗ , t̂crit] ⊆ [t1/3, t̂1/3]. This leads to

εc >

∫ ∞

ti∗

ℓ(ycl(t), ucl(t)) dt > q

∫ t̂crit

ti∗

∥ycl(t)∥2 dt

> q (t̂crit − ti∗)
(

ε
3
)2
> q h

4
(

ε
3
)2
> εc,

a contradiction. Therefore, ∥ycl(t̂crit)∥ ≤ 2
3ε and

φcl(t̂crit) > 3
4ε. It follows that

∥ucl(t̂crit)∥ =
∥∥∥N (

α
(

∥ycl(t̂crit)∥2

φcl(t̂crit)2

))
ycl(t̂crit)
φcl(t̂crit)

∥∥∥
≤ N̂

(
α

(
82

92

))
8
9 <∞,

which contradicts (18). This completes the proof.



V. Numerical Example
We illustrate Algorithm 4 considering the system

ẏ(t) =
(

y1(t)2 + y1(t)
y2(t)2 + y1(t)

)
− u(t), y(0) =

(
3

−3

)
. (19)

In the stage costs (5), we set Q = I2 and R = 0.2 · I2,
where I2 ∈ R2×2 denotes the identity matrix. As control
parameters, we choose N(s) = s (which is possible due to
known control direction [10, Rem. 2.5]) and αc(s) = 2c

1−s ,
and set ψ(t) = ∞ for no additional output constraints.
As described in [10, Sec. 4.1], because limt→T φ(t) = 0,
simulation is only possible on an interval [0, tmax] with
tmax < T . We choose tmax = T − 10−9/c to guarantee a
spatial accuracy of 10−9. The prediction horizon is chosen
as H = 5 and the step size as h = 0.25. This numerical ex-
periment was performed in Matlab R2024b, employing
ode45 as ODE solver (AbsTol = 10−9, RelTol = 10−6)
and fmincon as optimization algorithm (using default
parameterization). The closed-loop system output norm
∥ycl∥2, as well as the closed-loop funnel φcl is plotted in
Figure 2a. The provided input is shown in Figure 2b.

0 0.5 1 1.5 2
Time t

10-2

10-1

100

101

closed-loop output norm kycl(t)k2

closed-loop funnel 'cl(t)

(a) Output norm and funnel.

0 0.5 1 1.5 2

-20

-10

0

10

20
ucl

1 (t)
ucl

2 (t)

(b) Control input.

Fig. 2: Simulation of system (19) under the control generated
by Algorithm 4.

VI. Conclusion and Outlook
We presented model predictive funnel control, a novel

combination of funnel control and model predictive
control. It features a constant number of decision variables
in the optimization problem and yields a closed-loop feed-
back law, even on inter-sampling intervals. We rigorously
showed boundedness of the closed-loop costs, as well as
convergence of the solution. Future work will address
systems of higher relative degree and with internal dy-
namics, relaxing the choice of funnel boundary (φ(T ) ̸= 0),

considering input constraints in the control algorithm,
and performing reference tracking tasks, to name a few of
the upcoming topics. We will conduct numerical studies
to demonstrate preferable computational performance
compared to MPC in specific scenarios.
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