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Abstract

We propose a novel robust Model Predictive Control (MPC) scheme for nonlinear multi-input multi-output
systems of relative degree one with stable internal dynamics. The proposed algorithm is a combination of
funnel MPC, i.e., MPC with a particular stage cost, and the model-free adaptive funnel controller. The new
robust funnel MPC scheme guarantees output tracking of reference signals within prescribed performance
bounds – even in the presence of unknown disturbances and a structural model-plant mismatch. We show
initial and recursive feasibility of the proposed control scheme without imposing terminal conditions or any
requirements on the prediction horizon. Moreover, we allow for model updates at runtime. To this end,
we propose a proper initialization strategy, which ensures that recursive feasibility is preserved. Finally, we
validate the performance of the proposed robust MPC scheme by simulations.

Key words: model predictive control, funnel control, nonlinear systems, reference tracking, robustness, model-plant mismatch,
prescribed performance
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1 Introduction
Model Predictive Control (MPC) is a well-established control technique for linear and nonlinear systems due
to its ability to handle multi-input multi-output systems under control and state constraints, see, e.g., the
textbooks [22, 38]. Given a model of the system, the idea is to predict the future system behavior on a finite-
time horizon and, based on the predictions, solve a respective Optimal Control Problem (OCP). Then, the
first portion of the computed optimal control (function) is applied before this process is repeated ad infinitum.
Although MPC is nowadays widely used and has seen various applications, see, e.g. [36], there are two main
obstacles: On the one hand, a sufficiently accurate model is required. On the other hand, initial and recursive
feasibility have to be ensured. The latter corresponds to solvability of the OCP at the successor time instant
provided solvability of the OCP at the current time instant. This is a non-trivial task and usually requires
either some controllability properties like, e.g., cost controllability [17,41,45], in combination with a sufficiently
long prediction horizon, see e.g. [14] and [19] for discrete and continuous-time systems, or the construction
of suitable terminal conditions, see e.g. [16, 38]. Especially in the presence of time-varying state or output
constraints, this task becomes even more challenging as, e.g., the extensions [1, 29] to time-varying reference
signals have shown. When considering output tracking with MPC, previous works mostly focus on ensuring
asymptotic stability of the tracking error, see, again, e.g. [1,29]. To this end, terminal sets around the reference
signal and corresponding costs are introduced, resulting in so-called terminal conditions. In [28] tracking is
achieved while avoiding such terminal constraints by assuming a suitable adaptation of cost controllability and
a sufficiently long prediction horizon.

To robustly achieve output tracking, tube-based MPC schemes construct tubes around the reference signal,
which always contain the actual system output to ensure reference tracking in the presence of disturbances or
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uncertainties. For linear systems see e.g. [34], and for nonlinear systems see [20, 30, 37] and [33], where in the
latter the tubes and the open-loop reference trajectory are simultaneously optimized depending on its proximity
to the tube boundary. These tubes, however, usually cannot be arbitrarily chosen since they have to encompass
the uncertainties of the system. To guarantee that the system output evolves within these tubes, terminal
conditions are added to the optimization problem. The tracking of a reference signal within constant bounds
is studied in [18] for linear systems. Hereby, so-called robust control invariant sets are calculated in order to
ensure that performance, input, and state constraints are met. The calculation of these robust control invariant
sets, however, requires a significant computational effort and, even more important, the termination in finite
time of the algorithm proposed in [18] cannot be ensured. In [46], the aforementioned approach was extended to
systems with external disturbances. Another approach to achieve output tracking with prescribed boundaries
on the tracking error is barrier-function-based MPC, cf. [21,35,44]. Here, the cost function involves a term (the
barrier function) which diverges, if the tracking error approaches the boundary of a given set. However, this
approach relies on imposing terminal constraints as well as terminal costs to ensure recursive feasibility. The
recently developed funnel MPC algorithm [6, 9] utilizes a particular stage cost, similar to barrier-functions, to
achieve output tracking with prescribed performance. The latter means that the tracking error evolves within
(possibly time-varying) boundaries prescribed by the designer. Given a model to be controlled, it has been
rigorously proven that this novel MPC scheme is initially and recursively feasible, without imposing terminal
conditions or requirements on the prediction horizon. However, this comes at the cost of not allowing for a-priori
given state or input constraints. It is still an open question, how the advantages of this controller design can
be maintained while incorporating such constraints.

The stage cost of funnel MPC is inspired by funnel control, a high-gain adaptive feedback control law, first
proposed in [23]. The funnel controller is inherently robust and allows for reference tracking with prescribed
performance of the tracking error for a fairly large class of systems, see also [8] for a comprehensive literature
overview. The idea in funnel control is that the gain is adapted based on the current distance between the
error and the boundary, where the gain diverges, if the error approaches the boundary. The boundary for the
tracking error is often chosen to be a function decaying in time, which is reminiscent of a funnel. A key feature
of funnel control is that no knowledge about the underlying system is used in the controller. Only structural
properties of the system class such as relative degree, stable internal dynamics, and a high-gain property are
assumed. The absence of model knowledge comes at the cost that, although the input is proved to be bounded,
its exact maximal value is unknown. A relative of funnel control is prescribed performance control [2,3]. Using a
similar controller design, the tracking problem within prescribed performance boundaries is solved for a different
system class. Since both approaches, funnel control and prescribed performance control, do not use a model of
the system, the controllers cannot “plan ahead”. This often results in high control values and a rapidly changing
control signal with peaks. Moreover, when implemented on real applications, both controllers require a high
sampling rate to stay feasible, which may result in demanding hardware requirements.

Numerical simulations show that funnel MPC exhibits a considerably better controller performance than
pure funnel control [6,9]. While the results in [6] are developed for systems with relative degree one, extensions
to arbitrary relative degree based on different stage cost functions are discussed in [4, 5]. In the context of a
simulation study, learning of unknown system parameters in order to apply funnel MPC was discussed in [9].
Beyond this, research into funnel MPC, so far, assumes the system to be precisely known and does not account for
a structural model-plant mismatch or disturbances. However, every model, no matter how good, deviates from
the actual system and disturbances are omnipresent. Furthermore, utilizing a highly detailed model is oftentimes
not even desired. Instead, one wants to use a simplified and lower-dimensional model or approximation of
the system (e.g. a discretized model for a system of partial differential equations) to reduce complexity and
computational effort, see e.g. [39]. To account for external disturbances and model-plant mismatches and
thereby robustify the controller, we propose robust funnel MPC. This controller consists of two components:
an MPC algorithm and funnel control as an additional feedback loop. First, funnel MPC computes a control
signal making use of the prediction capability of the underlying model. Then, the feedback controller (slightly)
adapts the control signal using instantaneous measurement data whenever necessary to reject disturbances or
to compensate a model-plant mismatch. Therefore, the combined controller guarantees satisfaction of arbitrary
output constraints. Moreover, the proposed controller allows to update the model’s state with measurement
data via a proper initialization strategy, and thereby provide data-based initial values for the optimal control
problem.

The remainder of this article is organized as follows. In Section 2 we define the class of systems to be controlled,
and introduce the control objective. Moreover, we discuss the components of the combined controller. In
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Section 3 we present the detailed controller structure, the class of models used in the model predictive controller,
and the main result in Theorem 3.10. We illustrate the proposed controller with a numerical example in
Section 4. Section 5 contains a brief conclusion of the article, and some research questions to be addressed in
future work. Most of the proofs are presented in the appendix Section 6.

Nomenclature: In the following let N denote the natural numbers, N0 = N ∪ {0}, and R≥0 = [0,∞). By
∥x∥ =

√
⟨x, x⟩ we denote the Euclidean norm of x ∈ Rn. GLn(R) is the group of invertible Rn×n matrices.

For some interval I ⊆ R and k ∈ N, L∞(I,Rn)
(
L∞
loc(I,R

n)
)

is the Lebesgue space of measurable, (locally)
essentially bounded functions f : I → Rn with norm ∥f∥∞ = ess supt∈I ∥f(t)∥. W k,∞(I,Rn) is the Sobolev
space of all functions f : I → Rn with k-th order weak derivative f (k) and f, f (1), . . . , f (k) ∈ L∞(I,Rn). For
some V ⊆ Rm we denote by Ck(V,Rn) the set of k-times continuously differentiable functions f : V → Rn, and
for brevity C(V,Rn) := C0(V,Rn). Furthermore, R(I,Rn) is the space of all regulated functions f : I → Rn,
i.e., the left and right limits f(t−) and f(t+) exist for all interior points t ∈ I and f(a−) and f(b+) exist
whenever a = inf I ∈ I or b = sup I ∈ I. For an interval I and a function f : I → Rn, the restriction of f to I
is denoted by f |I .

2 Problem formulation
Before we establish the problem formulation and the control objective, we emphasize the following terminology
used throughout the entire article. The term system refers to the actual plant to be controlled, i.e., the real
system for which we do not assume availability of equations governing the dynamics. The term model refers to
differential equations given by the control engineer. These model equations are used in the MPC algorithm to
compute predictions.

2.1 System class
We consider nonlinear multi-input multi-output control systems

ẏ(t) = F (d(t),T(y)(t), u(t)), y|[−σ,0] = y0 ∈ C([−σ, 0],Rm), (1)

with input u ∈ L∞
loc(R≥0,R

m) and output y(t) ∈ Rm at time t ≥ 0. Note that u and y have the same
dimension m ∈ N. The system consists of the unknown nonlinear function F ∈ C(Rp×Rq×Rm,Rm), unknown
nonlinear operator T : C([−σ,∞),Rm) → L∞

loc(R≥0,R
q), and may incorporate bounded disturbances d ∈

L∞(R≥0,R
p). Then, the constant σ ≥ 0 quantifies the initial “memory” of the system and y0 ∈ C([−σ, 0],Rm)

is the initial history. The system class under consideration is characterised in detail in the following definition.

Definition 2.1 (System class Nm). A system (1) belongs to the system class Nm, written (d, F,T) ∈ Nm, if,
for some p, q ∈ N and σ ≥ 0, the following holds:

(i) d ∈ L∞(R≥0,R
p),

(ii) T : C([−σ,∞),Rm) → L∞
loc(R≥0,R

q) has the following properties:

• Causality: ∀ y1, y2 ∈ C([−σ,∞),Rm) ∀ t ≥ 0:

y1|[−σ,t] = y2|[−σ,t] =⇒ T(y1)|[0,t] = T(y2)|[0,t].

• Local Lipschitz: ∀ t ≥ 0 ∀ y ∈ C([−σ, t];Rm) ∃∆, δ, c > 0 ∀ y1, y2 ∈ C([−σ,∞);Rm) with
y1|[−σ,t] = y, y2|[−σ,t] = y and ∥y1(s)− y(t)∥ < δ, ∥y2(s)− y(t)∥ < δ for all s ∈ [t, t+∆]:

ess sup
s∈[t,t+∆]

∥T(y1)(s)−T(y2)(s)∥ ≤ c sup
s∈[t,t+∆]

∥y1(s)− y2(s)∥ .

• Bounded-input, bounded-output (BIBO): ∀ c0 > 0 ∃ c1 > 0 ∀ y ∈ C([−σ,∞),Rm):

sup
t∈[−σ,∞)

∥y(t)∥ ≤ c0 =⇒ sup
t∈[0,∞)

∥T(y)(t)∥ ≤ c1.
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(iii) F ∈ C(Rp×Rq ×Rm,Rm) has the perturbation high-gain property, i.e. for every compact set Km ⊂ Rm
there exists ν ∈ (0, 1) such that for every compact sets Kp ⊂ Rp, Kq ⊂ Rq the function

χ : R→ R, s 7→ min {⟨v, F (δ, z,∆− sv)⟩ |δ ∈ Kp,∆ ∈ Km, z ∈ Kq, v ∈ Rm, ν ≤ ∥v∥ ≤ 1}

satisfies sups∈R χ(s) = ∞.

The properties of the system class Nm as in Definition 2.1 guarantee that, for a control input u ∈
L∞
loc(R≥0,R

m), the system (1) has a solution in the sense of Carathéodory, meaning a function y : [−σ, ω) → Rm,
ω > 0, with y|[−σ,0] = y0 such that y|[0,ω) is absolutely continuous and satisfies the functional differential equa-
tion (1) for almost all t ∈ [0, ω). A solution y is said to be maximal, if it has no right extension that is also
a solution. We briefly discuss an example of a system, belonging to the class introduced above. In particular,
this provides a simple candidate for an operator T and illustrates the perturbation high-gain property.

Example 2.2. We consider a linear multi-input, multi-output system with bounded matched disturbances δ
(i.e. the disturbances act on the input channels only) of the form

ẋ(t) = Ax(t) +B(u(t) + δ(t)), x(0) = x0

y(t) = Cx(t),

with A ∈ Rn×n and C,B⊤ ∈ Rm×n, such that CB is positive definite and the zero dynamics are asymptotically
stable (i.e., the system is minimum phase), that is [26,27]

∀λ ∈ C with Reλ ≥ 0 : det

[
λI −A B
C 0

]
̸= 0. (2)

By [24, Lem. 3.5], there exists an invertible U ∈ Rn×n such that with (y⊤, η⊤)⊤ = Ux the above system can be
transformed into

ẏ(t) = Ry(t) + Sη(t) + Γ(u(t) + δ(t)),

η̇(t) = Qη(t) + Py(t),

where R ∈ Rm×m, S, P⊤ ∈ Rm×(n−m), Q ∈ R(n−m)×(n−m), Γ = CB. Furthermore, the minimum phase
property (2) implies that Reλ < 0 for all eigenvalues λ ∈ C of Q (the matrix Q is called Hurwitz in this case).
Defining the linear integral operator

L : y(·) 7→
(
t 7→

∫ t

0

eQ(t−s)Py(s)ds
)
,

and setting d(t) := SeQt[0, In−m]Ux0, t ≥ 0, the system can be further rewritten as

ẏ(t) = d(t) + T(y)(t) + Γ(u(t) + δ(t)) =: F (d(t),T(y)(t), u(t) + δ(t)),

where T : y(·) 7→ (t 7→ Ry(t) + SL(y)(t)). A short calculation verifies that this operator satisfies the conditions
in (ii) of Definition 2.1. In particular, the BIBO property is satisfied since Q is Hurwitz, and it is hence
a consequence of the minimum phase property. Moreover, the function F has the perturbation high-gain
property (iii) if, and only if, the matrix Γ is sign-definite, that is v⊤Γv ̸= 0 for all v ∈ Rm \{0}, cf. [8, Rem. 1.3,
and Sec. 2.1.3]. This means that every bounded matched input disturbance δ can be compensated.

Example 2.2 shows that minimum phase linear systems with relative degree one and sign-definite CB are
contained in the system class introduced in Definition 2.1. Furthermore, the system class encompasses nonlinear
control affine systems ẏ(t) = f(d(t),T(y)(t)) + g(T(y)(t))u(t), where f ∈ C(Rp × Rq,Rm), d and T exhibit
the properties as in Definition 2.1 and g is sign-definite in the sense that v⊤g(x)v ̸= 0 for all x ∈ Rq and all
v ∈ Rm \{0}. We emphasize that physical effects such as backlash or relay hysteresis, and nonlinear time delays
can be modelled by the operator T, cf. [8, 12, 23]. Moreover, the operator T in (1) can even be the solution
operator of an infinite dimensional dynamical system, e.g. a partial differential equation. The latter was studied
in [13], where a moving water tank was subject to funnel control, and the water in the tank was modelled by
the linearized Saint-Venant equations.
While the first property of the operator (causality) introduced in definition 2.1 (ii) is quite intuitive, the second
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(locally Lipschitz) is of a more technical nature. It is required to derive existence and uniqueness of solutions.
This condition generalizes the assumption of local Lipschitz continuity of vector fields in standard state-space
systems. The third property (BIBO) can be motivated from a practical point of view. Essentially, it is a
stability condition on the “internal dynamics” of the system. The latter are represented by η in Example 2.2
and, since Q is Hurwitz, η is bounded for any bounded y; hence, the η-dynamics (internal dynamics) exhibit
a bounded-input, bounded-state property. As shown in Example 2.2, this property is closely related to the
BIBO property of the operator T. The perturbation high-gain property introduced in Definition 2.1 (iii) is a
modification of the so-called high-gain property, see e.g. [8, Def. 1.2], and, at first glance, a stronger assumption.
The high-gain property is essential in high-gain adaptive control and, roughly speaking, guarantees that, if a
large enough input is applied, the system reacts sufficiently fast. For linear systems, as in Example 2.2, having
the high-gain property implies that the system can be stabilized via high-gain output feedback, cf. [8, Rem. 1.3].
In order to account for possible bounded perturbations of the input, we require the modified property (iii). It
is an open problem whether the perturbation high-gain property and the high-gain property are equivalent.
However, in virtue of Example 2.2 it is clear that control affine systems (linear and nonlinear) with high-gain
property satisfy both properties.

2.2 Control objective
As a surrogate for the unknown system (1), we consider a control-affine model of the form

ẋ(t) = f(x(t)) + g(x(t))u(t), x(t0) = x0,

yM(t) = h(x(t)),
(3)

at time t0 ∈ R≥0, with x0 ∈ Rn, and known functions f ∈ C1(Rn,Rn), g ∈ C1(Rn,Rn×m), and h ∈ C2(Rn,Rm).
Note that, in many situations, systems of the form (3) can be written in the form (1). Since the right-hand
side of (3) is locally Lipschitz in x, there exists a unique maximal solution of (3) for any u ∈ L∞

loc(R≥0,R
m),

cf. [43, § 10 Thm. XX]. This maximal solution is denoted by x(·; t0, x0, u). Contrary to the actual system (1),
the model (3) lays out its states x in an explicit way. The model is used to make predictions about the future
system output and, based on them, to compute optimal control signals. The discrepancies between the model
predictions yM(t) and the actual system output y(t) is described by the model-plant mismatch

eS(t) := y(t)− yM(t).

The objective is to design a combination of a model predictive control scheme with a feedback controller (based
on the measurement y(t)) which, if applied to system (1), allows for reference tracking of a given trajectory
yref ∈W 1,∞(R≥0,R

m) within predefined boundaries. To be precise, the tracking error t 7→ e(t) := y(t)− yref(t)
shall evolve within the prescribed performance funnel

Fψ := { (t, e) ∈ R≥0 ×Rm | ∥e∥ < ψ(t) } ,

see Figure 1.

t

•

inf
t≥0

ψ(t)

(0, e(0)) ψ(t)

Figure 1: Error evolution in a funnel Fψ with boundary ψ.

The funnel Fψ is determined by the choice of ψ belonging to the following set of bounded functions with
bounded weak derivative

G =

{
ψ ∈W 1,∞(R≥0,R)

∣∣∣∣ inf
t≥0

ψ(t) > 0

}
.
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The specific application usually dictates the constraints on the tracking error and thus indicates suitable choices
for ψ. Note that signals evolving in Fψ are not forced to asymptotically converge to 0. To achieve that the
tracking error e remains within Fψ, it is necessary that the output y(t) of the system (1) at time t ≥ 0 is an
element of the set

Dt := { y ∈ Rm | ∥y − yref(t)∥ < ψ(t) } .

2.3 Funnel MPC and funnel control
To solve the problem of tracking a reference signal yref ∈ W 1,∞(R≥0,R

m) within pre-defined funnel bound-
aries ψ ∈ G for the model (3) with MPC, funnel MPC was proposed in [6]. Assuming system and model to be
identical, perfectly known, and of form (3), the stage cost ℓ : R≥0 ×Rn ×Rm → R ∪ {∞} defined by

ℓ(t, x, u) =


∥h(x)− yref(t)∥2

ψ(t)2 − ∥h(x)− yref(t)∥2
+ λu ∥u∥2 , ∥h(x)− yref(t)∥ < ψ(t)

∞, else,

(4)

with design parameter λu ∈ R≥0 was proposed. To further ensure a bounded control signal with a maximal
pre-defined control value M > 0, the constraint ∥u∥∞ ≤ M has been added as an additional constraint to
the OCP. Using this stage cost, given a sufficiently large M > 0, and assuming certain structural properties
which we will introduce in detail in Section 3.1, it was shown that the following funnel MPC Algorithm 2.3
is initially and recursively feasible and applying this control scheme to a model of the form (3) guarantees
∥yM(t)− yref(t)∥ < ψ(t) for all t ∈ [0,∞), provided that ∥yM(0)− yref(0)∥ < ψ(0) holds, see [6, Thm. 2.10].

Algorithm 2.3 (Funnel MPC).
Given: Model (3), reference signal yref ∈W 1,∞(R≥0,R

m), funnel function ψ ∈ G, control bound M > 0, initial
state x0 such that h(x0) ∈ D0, and stage cost function ℓ as in (4).
Set time shift δ > 0, prediction horizon T ≥ δ, define the time sequence (tk)k∈N0 by tk := kδ and set the
current index k = 0.
Steps:

(a) Obtain a measurement of the state x of (3) at time tk and set x̂ := x(tk).

(b) Compute a solution u⋆ ∈ L∞([tk, tk + T ],Rm) of

minimize
u∈L∞([tk,tk+T ],Rm),

∥u∥∞≤M

∫ tk+T

tk

ℓ(t, x(t; tk, x̂, u), u(t)) dt.

(c) Apply the time-varying control

µ : [tk, tk+1)×Rn → Rm, µ(t, x̂) = u⋆(t)

to the model (3). Increment k by 1 and go to Step (a).

Remark 2.4. The cost function (4) used in the funnel MPC Algorithm 2.3 is inspired by the funnel controller.
For systems (1) with (d, F,T) ∈ Nm as in Definition 2.1 and given reference trajectory yref ∈W 1,∞(R≥0,R

m)
it was shown in [8, Thm. 1.9] that the tracking error e(t) := y(t)−yref(t) always evolves within the performance
funnel Fψ by applying the control signal

u(t) = (N ◦ α)(∥e(t)/ψ(t)∥2)e(t)/ψ(t), (5)

where N ∈ C(R≥0,R) is a surjection and α ∈ C([0, 1), [1,∞)) is a bijection. A simple (and often used) feasible
choice is α(s) = 1/(1− s) and N(s) = s sin(s).
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Model-based controller component Model-free controller component

System

Funnel controller ++FMPC

yyref

Model

uFMPC

yM y

+

−

eS = y − yMuFC

u = uFMPC + uFC

Figure 2: Structure of the robust funnel MPC scheme

3 Robust funnel MPC
We present in detail the idea of how to combine funnel MPC Algorithm 2.3, see also [6, 9], with results on
the model-free funnel controller to achieve the control objective in the presence of a mismatch between the
system (1) and the model (3). The idea is depicted in Figure 2. The left block with red background contains
the model (3), the funnel MPC Algorithm 2.3 and a given reference trajectory yref . We emphasize that the
model is given by the designer and hence it is known. Funnel MPC achieves, for given ψ ∈ G, that the model’s
output yM tracks the reference with predefined accuracy, i.e., ∥eM(t)∥ = ∥yM(t) − yref(t)∥ < ψ(t) for all t ≥ 0,
while the control input uFMPC minimizes the stage cost (4), cf. [6].

The right block contains the system to be controlled, and a funnel control feedback loop. Given a reference
signal ρ ∈ W 1,∞(R≥0,R

m) and a funnel function φ ∈ G, funnel control (5) achieves that the system’s output
y tracks the reference with predefined accuracy, i.e., ∥y(t)− ρ(t)∥ < φ(t) for all t ≥ 0, cf. [8, 10, 23]. Note that
this control scheme is model free. In other words, the control (5) can be successfully applied to any system of
the form (1) satisfying some structural properties without knowledge of the system’s parameters. Merely the
initial error is required to be within the funnel boundaries.

The advantage of funnel MPC is that the control input uFMPC is optimal in the sense of minimizing a given
cost function. The advantage of funnel control is that it does not require the knowledge of a model and is
hence inherently robust. We admit that by combining both control strategies we loose both: the combination
is neither model-free, nor is the control signal optimal. The main idea is to robustify the funnel MPC scheme
w.r.t. uncertainties and disturbances, which is indeed guaranteed by the funnel controller component. However,
the funnel controller should remain inactive as long as the prediction yM by the model of the system output y
is sufficiently accurate. It should only be active when the system is, according to the model, in a critical state,
meaning that the predicted error eM is close to the funnel boundary ψ. In this case the funnel controller achieves
that system and model behave similarly. Therefore, φ = ψ − ∥eM∥ is chosen as funnel function for the funnel
controller. This approach ensures that the funnel controller only compensates disturbances when necessary and
hence the combined control signal u = uFMPC + uFC deviates from the optimal control uFMPC as slightly as
possible.

Let us give a more precise description of the controller structure depicted in Figure 2: On the left hand side
(red box), funnel MPC computes the control signal uFMPC(t), t ∈ [tk, tk + δ), and the corresponding output
is yM(t), t ∈ [tk, tk + δ), which is handed over to the funnel controller on the right side of Figure 2 (blue box)
and serves as a reference signal for system (1). Via the application of the funnel control uFC the system’s
output y follows the model’s output yM with pre-defined accuracy, i.e., ∥eS(t)∥ = ∥y(t)− yM(t)∥ < φ(t), where
φ = ψ−∥eM∥ as mentioned above. The control signal u = uFMPC+uFC is applied to the system, which has the
following consequence: If the model and the system coincide and are initialized equally, then the application
of the control uFMPC has the same effect on both dynamics, and so the system’s output y equals the model’s
output yM, i.e., ∥y(t)− yref(t)∥ = ∥yM(t)− yref(t)∥ < ψ(t). Invoking (5), this in particular means uFC = 0. If,
however, the model does not match the system, then eS(t) ̸= 0 and uFC(t) ̸= 0. Roughly speaking, the more
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model and system differ, the more the funnel controller has to compensate; and the better the model matches
the system, the more the control uFMPC can contribute to the tracking task.

Since uFMPC is a (piecewise) optimal control calculated using the model (3), the aim is to keep uFC as small
as possible while achieving the tracking objective. When the OCP is solved in funnel MPC at time instance tk,
it is necessary to update the initial value x(tk) of the model (3), if there is a mismatch between y(tk) and
yM(tk). One has to find a proper initialization for the model, meaning, based on the information of y(tk), it
is necessary to find a starting configuration of the model such that its output yM(tk) is close to the system’s
output y(tk) in order to calculate a control signal uFMPC for the next time interval [tk, tk+1], which contributes
to the tracking task. Otherwise, due to deviation between system and model, it might be possible, that the
control signal uFMPC is unsuitable and needs to be compensated by uFC.

The remainder of this section is organized as follows. In Section 3.1 we introduce the class of models to
be used in the robust funnel MPC Algorithm 3.8. Then in Section 3.2 we discuss in detail the controller’s
structure. To prove recursive feasibility of the proposed MPC algorithm, we introduce a proper initialization
strategy in Definition 3.6. In order to avoid that the funnel feedback controller unnecessarily compensates small
model-plant mismatches, we introduce an activation function. With the introductory work at hand, we finally
establish the main result in Section 3.3.

3.1 Model class
We stress that the model (3) itself is, in its essence, a controller design parameter – the better the model, the
better the controller performance. But we will be able to show that even with a very poor model the robust
funnel MPC Algorithm 3.8 achieves the control objective. Since in the later analysis we utilize the so-called
Byrnes-Isidori form, we make the following assumptions about the model (3) throughout this work.

Assumption 3.1. The model (3) has global relative degree r = 1, i.e., the high-gain matrix Γ(x) := (h′g)(x) is
invertible for all x ∈ Rn, where h′ denotes the Jacobian of h. Additionally, h−1(0) is diffeomorphic to Rn−m and
the mapping x 7→ G(x) := im g(x) is involutive, i.e., for all smooth vector fields Vi : Rn → Rn with Vi(x) ∈ G(x),
i ∈ {1, 2}, we have that the Lie bracket [V1, V2](x) = V ′

1(x)V2(x)−V ′
2(x)V1(x) satisfies [V1, V2](x) ∈ G(x) for all

x ∈ Rn.

If the model fulfills Assumption 3.1, then, by [15, Cor. 5.7] there exists a diffeomorphism Φ : Rn → Rn such
that the coordinate transformation (yM(t), η(t)) = Φ(x(t)) puts the model (3) into Byrnes-Isidori form

ẏM(t) = p (yM(t), η(t)) + Γ
(
Φ−1 (yM(t), η(t))

)
u(t), (yM(0), η(0)) = (y0M, η

0) = Φ(x0), (6a)
η̇(t) = q (yM(t), η(t)) , (6b)

where p ∈ C1(Rm × Rn−m,Rm) and q ∈ C1(Rm × Rn−m,Rn−m). Here, equation (6b) describes the so-called
internal dynamics.

Remark 3.2. For specific applications, if possible, the model should be chosen such that it is already in
Byrnes-Isidori form (6). The reason is that finding the diffeomorphism Φ : Rn → Rn is a hard task in general,
cf. [27]. In [32] an approach is presented to compute Φ algorithmically. In the simple but relevant case of linear
output h(x) = Hx, H ∈ Rm×n, and constant input distribution g(x) = G ∈ Rn×m such that HG is invertible,
the assumptions of [15, Cor. 5.7] are satisfied and following the derivations in [32], the transformation can be
written as (

y
η

)
= Φ(x) =

[
H

V †(In −G(HG)−1H)

]
x, V ∈ Rn×(n−m) with imV = kerH, (7)

where V † ∈ R(n−m)×n denotes the pseudoinverse of V . In this particular case the inverse transformation is
given by x = Φ−1(y, η) = G(HG)−1y + V η. Then equations (6) read

ẏM(t) = Hf
(
G(HG)−1yM(t) + V η(t)

)
+HGu(t),

η̇(t) = V †(In −G(HG)−1H)f(G(HG)−1yM(t) + V η(t)).

With the assumption made above, we may now introduce the class of models to be considered.

Definition 3.3 (Model class Mm). A model (3) belongs to the model class Mm, written (f, g, h) ∈ Mm, if
it satisfies Assumption 3.1 and the internal dynamics (6b) satisfy the following bounded-input, bounded-state
(BIBS) condition:

∀ c0 > 0 ∃ c1 > 0 ∀ η0 ∈ Rn−m ∀ ζ ∈ L∞(R≥0,R
m) :

∥∥η0∥∥ + ∥ζ∥∞ ≤ c0 =⇒
∥∥η(·; 0, η0, ζ)∥∥∞ ≤ c1, (8)
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where η(·; 0, η0, ζ) : R≥0 → Rn−m denotes the unique global solution of (6b) when yM is substituted by ζ.

Note that the BIBS assumption (8) ensures that the maximal solution η(·; 0, η0, ζ) can in fact be extended
to a global solution. Since in many applications the usage of a linear model is reasonable, we emphasize that
linear systems of the form

ẋ(t) = Ax(t) +Bu(t),

yM(t) = Cx(t),

with A ∈ Rn×n and C,B⊤ ∈ Rm×n belong to Mm, provided that CB is invertible and (2) is satisfied; this
follows from Example 2.2.

Remark 3.4. Although there are many systems belonging to both the model class Mm and the system
class Nm, neither the set of admissible models Mm is a subset of all considered systems Nm nor the opposite
is true. Every system (d, F,T) ∈ Nm which involves a time delay, e.g. T(y)(t) = y(t − σ) with σ > 0, cannot
belong to Mm. On the other hand, for an example of a model belonging to Mm but not to Nm consider
(f, g, h) ∈ Mm with high-gain matrix Γ = h′g =

[−1 0
0 1

]
, which is invertible but not sign-definite. At first

glance, it might seem advantageous to also require the high-gain matrix of a model to be sign-definite, in order
to ensure a closer approximation of the real system. However, if the model is automatically generated by means
of a learning algorithm using system data, see e.g. [31], this requirement might unnecessarily restrict the set of
admissible models and limit the capabilities of the used learning process.

3.2 Controller structure
Before we establish the main result, we informally introduce some aspects of the robust funnel MPC algorithm.

Proper initialization strategy. While the model (3) lays out its system states in an explicit way, the
internal states of the system (1) are unknown. Moreover, only the measurement of the system output y is
available. However, the measurement of the current state of the model in Step (a) of Algorithm 2.3 (funnel
MPC) is essential for its functioning. When applying the control resulting from MPC to system (1), it is
therefore necessary to initialize the current model state x̂ based on the measured system output ŷ and the
previous prediction of the model state xpre = x(tk+1; tk, x̂k, uFMPC) in a more sophisticated way. There are two
reasonable possibilities to initialize x̂. One option is to choose the model output such that it coincides with the
system output, i.e.,

h(x̂) = ŷ. (9)

However, since we cannot measure the internal state of the system, there are two ways to treat the internal
dynamics (6b) of the model. Either, we set x̂ such that we do not manipulate the internal dynamics, i.e.,

[0, In−m] Φ(x̂) = [0, In−m] Φ(xpre),

or we “reset” the internal dynamics of the model, i.e., for a fixed a-priori defined bound ξ ∈ R≥0 for the internal
dynamics, we initialize x̂ such that

∥[0, In−m]Φ(x̂)∥ ≤ ξ.

Using the diffeomorphism Φ and the Byrnes-Isidori form (6), it is in fact always possible to find a model state
which satisfies one of these properties and which coincides with the system output as in (9), as the following
lemma shows.

Lemma 3.5. Let a model (f, g, h) ∈ Mm as in Definition 3.3 be given and let Φ be the diffeomorphism from
Assumption 3.1. For ξ ∈ R≥0, xpre ∈ Rn, and ŷ ∈ Rm the set

Ω̃ξ(x
pre, ŷ) :=

{
x ∈ Rn

∣∣∣∣ h(x) = ŷ,
[0, In−m] Φ(x) = [0, In−m] Φ(xpre) or ∥[0, In−m]Φ(x)∥ ≤ ξ

}
(10)

is non-empty.

Proof. Let z := Φ−1(ŷ, 0n−m). Then, recalling [Im, 0]Φ(·) = h(·), we have h(z) = ŷ. Further, ∥[0, In−m]Φ(z)∥ =∥∥[0, In−m]Φ(Φ−1(ŷ, 0n−m))
∥∥ = 0 ≤ ξ. Thus, z is an element of Ω̃ξ(xpre, ŷ).
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Without choosing the model output such that it coincides with the system output, i.e. without fulfilling
(9), another option to initialize the model is to allow for a (temporary) open-loop operation of Algorithm 2.3,
meaning that we allow initializing the current model state x̂ with the previous prediction xpre. This allows to
initialize the model without computing the diffeomorphism Φ and the Byrnes-Isidori form (6) (if it was not
possible to choose a model in this form). The following definition formalizes these possibilities.

Definition 3.6. Let a model (f, g, h) ∈ Mm as in Definition 3.3 be given and let Φ be the diffeomorphism from
Assumption 3.1. Let ξ ∈ R≥0, xpre ∈ Rn, and ŷ ∈ Rm. Using (10) define the set

Ωξ(x
pre, ŷ) := Ω̃ξ(x

pre, ŷ) ∪ {xpre} .

We call x̂ ∈ Ωξ(x
pre, ŷ) a proper initialization and a function κξ : R

n ×Rm → Rn with κξ(x, y) ∈ Ωξ(x, y) for
all (x, y) ∈ Rn ×Rm a proper initialization strategy.

We emphasize that, for xpre ∈ Rn and ŷ ∈ Rm, there always exists a proper initialization, not only because
of xpre ∈ Ωξ(x

pre, ŷ), but also according to Lemma 3.5.

Funnel boundary and activation function. In Algorithm 3.8 (robust funnel MPC) we choose the funnel
function for the funnel controller very specifically. Namely, we use φ = ψ − ∥eM∥, where eM = yM − yref . This
choice reflects the following idea: If the error eM is small, then the funnel boundary φ is approximately given
by the MPC funnel boundary ψ. If, however, the error eM is close to ψ, then φ becomes tight, such that the
system’s output is forced to be very close to the model’s output. This means, whenever the tracking is critical,
the system is forced to behave very similar to the model such that even in critical situations it is reasonable to
use model predictive control. The choice of φ ensures that the tracking error evolves within the funnel ψ, i.e.,
we have

∀ t ≥ 0 : ∥y(t)− yref(t)∥ < ψ(t).

Besides the particular choice of φ we will utilize an activation function, i.e. a continuous function β : [0, 1] →
[0, β+], β+ > 0, in order to activate or deactivate the funnel control signal uFC, depending on the magnitude of
the error eM. Compared to the funnel controller without activation function, the incorporation of the activation
function β(·) in the control law (14) results in a scaling of the gain (N ◦ α)(·). However, since adaption of the
gain is not affected by β(·), the resulting control uFC is as large as required. Using an activation function in
the funnel control law is justified by the following result.

Proposition 3.7. Consider a system (1) with (d, F,T) ∈ Nm as in Definition 2.1. Let y0 ∈ C([−σ, 0],Rm),
σ ≥ 0, D ∈ L∞(R≥0,R

m), β ∈ C([0, 1], [0, β+]) be an activation function with β+ > 0, ρ ∈ W 1,∞(R≥0,R
m)

and φ ∈ G be given such that ∥y0(0)− ρ(0)∥ < φ(0). Then the application of

u(t) = β(∥e(t)/φ(t)∥)(N ◦ α)(∥e(t)/φ(t)∥2)e(t)/φ(t), e(t) := y(t)− ρ(t),

to the system
ẏ(t) = F

(
d(t),T(y)(t), D(t) + u(t)

)
, y|[−σ,0] = y0,

yields a closed-loop initial value problem, which has a solution, every solution can be maximally extended, and
every maximal solution y : [0, ω) → Rm has the following properties

(i) the solution is global, i.e., ω = ∞,

(ii) all signals are bounded, in particular, u, ẏ ∈ L∞(R≥0,R
m) and y ∈ L∞([−σ,∞),Rm),

(iii) the tracking error evolves within prescribed error bounds, i.e.,

∀ t ≥ 0 : ∥y(t)− ρ(t)∥ < φ(t).

The proof is relegated to Section 6.
Since very small deviations between y(t) and yM(t) can be neglected, we use the term β(∥eS(t)/φ(t)∥), where

eS = y − yM, which can be set to zero when eS is small. A reasonable and simple choice would be

β(s) =

{
0, s ≤ Scrit,

s− Scrit, s ≥ Scrit,
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for Scrit ∈ (0, 1). In this particular case we may set β+ = 1 − Scrit. In the context of machine learning,
in particular, artificial neural networks, this type of functions is known as rectified linear unit (ReLU). Note
that β defined above satisfies β(Scrit) = 0, whereby it is a continuous function and thus the funnel controller
contributes continuously to the overall control signal.
Robust funnel MPC algorithm. With the definitions and concepts introduced so far at hand, we are in the
position to establish the robust funnel MPC algorithm.

Algorithm 3.8 (Robust funnel MPC).
Given:

• instantaneous measurements of the output y(t) of system (1), reference signal yref ∈ W 1,∞(R≥0,R
m),

funnel function ψ ∈ G,

• model (3) with (f, g, h) ∈ Mm as in Definition 3.3 and diffeomorphism Φ as in Assumption 3.1, stage cost
function ℓ as in (4), ξ ∈ R≥0, a proper initialization strategy κξ : Rn × Rm → Rn as in Definition 3.6,
bound M > 0 for the MPC control signal, and the initial value x0 of the model’s state such that

x0 ∈ X0 :=

{
x ∈ Rn

∣∣∣∣ ∥y(0)− h(x)∥ < ψ(0)− ∥h(x)− yref(0)∥ ,
∥[0, In−m]Φ(x)∥ ≤ ξ

}
, (11)

• a surjectionN ∈ C(R≥0,R), a bijection α ∈ C([0, 1), [1,∞)), and an activation function β ∈ C([0, 1], [0, β+])
with β+ > 0.

Set time shift δ > 0, prediction horizon T ≥ δ, and index k := 0.
Define the time sequence (tk)k∈N0

by tk := kδ and the first element of the sequence of predicted
states (xprek )k∈N0 by xpre0 := x0.
Steps:

(a) Obtain a measurement y(tk) =: ŷk of the system output y at time tk, and choose a proper initialization
x̂k = κξ(x

pre
k , ŷk) ∈ Ωξ(x

pre
k , ŷk) for the model.

(b) Compute a solution uFMPC ∈ L∞([tk, tk + T ],Rm) of the optimization problem

minimize
u∈L∞([tk,tk+T ],Rm),

∥u∥∞≤M

∫ tk+T

tk

ℓ(t, x(t; tk, x̂k, u), u(t)) dt. (12)

(c) Predict the output yM of the model (3) on the interval [tk, tk+1]

yM(t) = h(x(t; tk, x̂k, uFMPC)),

and define the adaptive funnel φ : [tk, tk+1] → R>0 by

φ(t) := ψ(t)− ∥eM(t)∥ with eM(t) = yM(t)− yref(t). (13)

(d) Define the funnel control law as in (5) with yM and funnel function φ as in (13) by

uFC(t) := β(∥eS(t)/φ(t)∥)(N ◦ α)(∥eS(t)/φ(t)∥2)eS(t)/φ(t) with eS(t) = y(t)− yM(t). (14)

(e) Apply the feedback law
µ : [tk, tk+1) → Rm, µ(t) = uFMPC(t) + uFC(t) (15)

to system (1). Set the predicted state xprek+1 = x(tk+1; tk, x̂k, uFMPC), then increment k by 1 and go to
Step (a).

Since x̂k is chosen via the the proper initialization strategy κξ(x
pre
k , ŷk) at every time instant tk for k ∈ N0,

in general x̂k ̸= xprek , see Lemma 3.5. In particular, it is possible that x̂0 ̸= x0.
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Remark 3.9. Algorithm 3.8 combines the funnel MPC Algorithm 2.3 proposed in [6] with the model-free funnel
control law from [8] by introducing the steps (c) and (d). Using the model output yM as a reference signal for
the funnel controller allows the combined controller to benefit from the predictions made by the funnel MPC
component, even if the system is in a safety critical state, and ensures that the control signal uFMPC does not act
as a disturbance for the funnel controller. In combination with the design of the funnel function φ, which also
depends on the predictions from the MPC component, this combined controller guarantees that the tracking
error evolves within the prescribed performance funnel ψ, see Theorem 3.10 below. The main mathematical
difficulty lies in ensuring that the funnel MPC algorithm remains feasible, if the model is initialized with
measurements of the system output via the initialization strategy κξ, and in adapting the results from [8] to the
current setting. The findings in [8] cannot be directly applied, since the reference signal for the funnel controller
is assumed to be a-priori given and to be continuous; both assumptions are not met in Algorithm 3.8.

3.3 Main result
In the following main result we show that the robust funnel MPC Algorithm 3.8 is initially and recursively
feasible and achieves tracking of a given reference signal with prescribed behavior.

Theorem 3.10. Consider a system (1) with (d, F,T) ∈ Nm as in Definition 2.1 and choose a model (3) with
(f, g, h) ∈ Mm as in Definition 3.3. Let ψ ∈ G and yref ∈ W 1,∞(R≥0,R

m) be given. Let y0 ∈ C([−σ, 0],Rm)
with σ ≥ 0 be an initial history function for system (1) with y0(0) ∈ D0. Then, for any ξ ≥ 0, the set X0

in (11) is non-empty and there exists M > 0 such that the robust funnel MPC Algorithm 3.8 with δ > 0 and
T ≥ δ is initially and recursively feasible for every x0 ∈ X0, i.e.,

• at every time instance tk := kδ for k ∈ N0 the OCP (12) has a solution u∗k ∈ L∞([tk, tk + T ],Rm), and

• the closed-loop system consisting of the system (1) and the feedback law (15) has a global solution y :
[−σ,∞) → Rm.

Each global solution y satisfies that

(i) all signals are bounded, in particular, u ∈ L∞(R≥0,R
m) and y ∈ L∞([−σ,∞),Rm),

(ii) the tracking error between the system’s output and the reference evolves within prescribed boundaries, i.e.,

∀ t ≥ 0 : ∥y(t)− yref(t)∥ < ψ(t).

The proof is relegated to Section 6.

Remark 3.11. With Theorem 3.10 at hand we comment on the difference between the proposed control scheme
and a straightforward combination of a MPC scheme with a feedback control law.

(i) The combination of feedforward control with feedback control, i.e., the two degree of freedom controller
design [40], is a popular approach. The specific combination of funnel control with feedforward control
methods was investigated in [7, 11]. In a similar fashion it is possible to combine a MPC scheme, in
particular, a funnel MPC scheme, with an additional feedback controller. This possibility (i.e., no feedback
between funnel MPC and the actual system) is realized in the robust funnel MPC Algorithm 3.8 by
allowing that the initialization at the beginning of a MPC cycle consists only of the previous prediction xprek

of the current model state such that x̂k := xprek , which is a special instance of proper initialization. In
this case, the funnel MPC control signal uFMPC can be computed offline using the given model. Then it
is applied to the system as an open-loop control and the additional feedback control compensates errors,
which occur due to deviations between the model and the system. This situation is illustrated as the
second scenario in the simulation in Section 4, cf. Figure 4.

(ii) The alternative to the open-loop operation of Algorithm 3.8 is a feedback induced by the utilization
of measurements of the system output ŷk := y(tk). Then, initializing the model properly with x̂k ∈
Ωξ(x

pre
k , ŷk) ensures recursive feasibility of the MPC scheme on the one hand, and on the other hand, the

state x̂k is chosen such that the model’s output h(x̂k) equals the system’s output ŷk, i.e., h(x̂k) = ŷk.
With this re-initialization at the beginning of the MPC cycle, the influence of the control signal uFMPC

to the system is taken into account, and moreover, since the error between the model’s and the system’s
output is zero, the optimal control signal may have a better effect on the system’s tracking behavior. This
situation is illustrated in the third scenario in the simulation in Section 4, cf. Figure 5.
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Remark 3.12. If the model (6) and the system (1) coincide up to an additive bounded disturbance, then we
may derive an explicit bound for the overall control input u = uFMPC + uFC a-priori. Consider a model (6) and
let the system be given by

ẏ(t) = p(y(t), ηS(t)) + Γ(Φ−1(y(t), ηS(t)))u(t) + d(t), y(0) = y0,

η̇S(t) = q(y(t), ηS(t)), ηS(0) = η0S,

where d ∈ L∞(R≥0,R
m) and the high-gain matrix satisfies Γ(x) + Γ(x)⊤ > 0 for all x ∈ Rn. In this case the

surjection in the funnel controller can be replaced with the function N(s) = −s, whereby the funnel control
law simplifies to uFC(·) = −β(∥w(·)∥)α(∥w(·)∥2)w(·), w := (y − yM)/φ, cf. [8, Rem. 1.8]. Let ε ∈ (0, 1) be the
smallest number such that

β(ε)α(ε2)ε2 =
∥ψ̇∥∞ + 3max(y,η)∈K ∥p(y, η)∥+ 3max(y,η)∈K ∥Γ(Φ−1(y, η))∥M + ∥d∥∞

λΓ
,

where λΓ > 0 is the smallest eigenvalue of Γ(·) + Γ(·)⊤ on Φ−1(K), and the compact set K is given in the
proof of Proposition 6.1. Then, invoking the same arguments as in Step three in the proof of Theorem 3.10, the
overall control satisfies

∥u∥∞ ≤M + β(ε)α(ε2).

Note that although the bound on the control u is explicitly given, this bound involves some non-trivial computa-
tions such as deriving the compact set K in Proposition 6.1 explicitly and computing the maximal values of the
system parameters on this compact set. Moreover, the bound is conservative in the sense that in applications
the maximal input will typically be much smaller.

4 Simulation
We illustrate the application of the proposed control strategy Algorithm 3.8 by a numerical simulation. To this
end, we consider a continuous chemical reactor and concentrate on the control goal to steer the reactor’s tem-
perature to a certain given value yref(t) within boundaries given by a function ψ(t). The reactor’s temperature
should follow a given heating profile specified as

yref(t) =

{
yref,start +

yref,final−yref,start
tfinal

t, t ∈ [0, tfinal),

yref,final, t ≥ tfinal.

Note that this heating profile has a kink at t = tfinal. Starting at yref,start = 270K, the reactor is heated up to
yref,final = 337.1K within the prescribed time [0, tfinal], here we choose tfinal = 2. During the heating phase, the
tolerated temperature deviation from the heating profile decreases from ±24K to ±4.4K (time-varying output
constraints). After reaching the desired level, the temperature in the reactor is kept constant with deviation of
no more than ±4.4K after four minutes after beginning of the heating process. In the reactor the first order and
exothermic reaction Substance-1 → Substance-2 takes place. Such a reactor can be modeled by the following
system of equations, cf. [42]

ẏ(t) = bp(x1(t), x2(t), y(t))− qy(t) + u(t),

ẋ1(t) = c1p(x1(t), x2(t), y(t)) + d(xin1 − x1(t)),

ẋ2(t) = c2p(x1(t), x2(t), y(t)) + d(xin2 − x2(t)),

(16)

where x1 is the concentration of the reactant Substance-1, x2 the concentration of the product Substance-2
and y describes the reactor temperature; u is the feed temperature/coolant control input. The value xini is the
(positive) concentration of Substance-i (i = 1, 2) in the feed flow. Further, the constant b > 0 describes the
exothermicity of the reaction, d > 0 is associated with the dilution rate and q > 0 is a constant consisting
of the combination of the dilution rate and the heat transfer rate. Further, c1, c2 ∈ R are the stoichiometric
coefficients and p : R≥0×R≥0×R≥0 → R≥0 is the reaction heat; here the latter involves the Arrhenius function
and is assumed to be given as

p(x1, x2, y) = k0e
− k1

y x1,
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where k0, k1 are positive parameters. As a model for this nonlinear reaction process we consider a linearization
of system (16), obtained by linearizing the Arrhenius function around the desired final temperature ȳ = 337.1K
and x1 = 1

2x
in
1 . This results in

plin(x1, x2, y) = k0e
− k1

ȳ x1 +
k0k1e

− k1
ȳ

ȳ2
xin1
2

(y − ȳ).

We set a1 := k0k1e
− k1

ȳ

ȳ2
xin
1

2 , a2 := k0e
− k1

ȳ and define the expressions

A =

ba1 − q ba2 0
c1a1 c1a2 − d 0
c2a1 c2a2 −d

 ∈ R3×3, D =

 −ba1ȳ
−c1a1ȳ + dxin1,M
−c2a1ȳ + dxin2,M

 ∈ R3.

Then, with x := (yM, x1,M, x2,M)⊤ ∈ R3 the model is given by

ẋ(t) = Ax(t) +BuFMPC(t) +D,

yM(t) = Cx(t),

where C = B⊤ = [1, 0, 0] ∈ R1×3. We run the simulation on an interval of [0, 4] minutes, and choose according
to [25, 42] the following values for the parameters: c1 = −1 = −c2, k0 = e25, k1 = 8700, d = 1.1, q = 1.25,
xin1 = 1, xin2 = 0 and b = 209.2 and initial values [y(0), x1(0), x2(0)] = [yM(0), xM,1(0), xM,2(0)] = [270, 0.02, 0.9].
The funnel function is given by ψ(t) := 20e−2t + 4. We simulate the following scenarios:

• Case 1: Funnel MPC without robustification, i.e., uFMCP is computed via Algorithm 2.3 and applied to
the system without an additional funnel control loop; this is shown in Figure 3.

• Case 2: Robust funnel MPC with trivial proper re-initialization, i.e., x̂k = xprek in Step (a) of Algo-
rithm 3.8; this is depicted in Figure 4.

• Case 3: Robust funnel MPC with proper initialization according to the system’s output, i.e., x̂k ∈
Ωξ(x

pre
k , ŷk) such that h(x̂k) = ŷk in Step (a) of Algorithm 3.8; this is shown in Figure 5.

As activation function we take the ReLU-like map

β(s) =

{
0, s ≤ Scrit,

s− Scrit, s ≥ Scrit,

where we choose Scrit = 0.5, i.e., the funnel controller becomes active, if the error y − yM exceeds 50% of the
maximal distance to its funnel boundary. In this example, we restrict the MPC control signal to ∥uFMPC∥∞ ≤
600. The input constraint is indicated by a dotted line in Figures 3 to 5. Further, we choose the design
parameters λu = 10−4, prediction horizon T = 0.75, and time shift δ = 0.05. In the following figures, the
control signal generated via funnel MPC is labeled with the subscript FMCP (uFMPC); the signal generated
by the additional funnel controller is labeled with the subscript FC (uFC). Figure 3 shows the application of
the control signal computed with funnel MPC Algorithm 2.3 in Case 1 to the system without an additional
funnel control feedback loop. The error eM(t) = yM(t) − yref(t) between the model’s output yM(t) and the
reference yref(t) evolves within the funnel boundaries ψ(t). However, the control signal computed with funnel
MPC using the linear model is not sufficient to achieve that the tracking error e(t) = y(t) − yref(t) evolves
within the funnel boundaries ψ(t). Obviously, the deviation is induced during the initial phase. After about
two minutes, the linearized model is a good approximation of the system. In this region, the control uFMPC has
a similar effect on both dynamics; however, the error y(t)−yref(t) already evolves outside the funnel boundaries
ψ(t). Figure 4 shows the application of the control signal computed with robust funnel MPC Algorithm 3.8
in Case 2, i.e., besides the funnel MPC control signal the additional funnel controller is applied in order to
guarantee that the error y(t) − yref(t) evolves within the boundaries ψ(t). Since the model and the system do
not coincide, the system evolves differently and hence the funnel controller has to compensate the model-plant
mismatch. Figure 5 shows the application of Algorithm 3.8 in Case 3. Besides the additional application of the
funnel controller, the model’s state is updated with h(x̂k) = ŷk at the beginning of every MPC cycle. Note that
in Figure 5 the funnel controller is inactive most of the time, i.e., the applied control signal can be viewed to
be close to optimal with respect to the cost function (4), since it is computed via the OCP (12).
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Figure 3: Application of the control computed by robust funnel MPC without additional funnel control feedback
loop.
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Figure 4: Application of the control computed by robust funnel MPC with additional funnel control feedback
loop, without re-initialization.
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Figure 5: Application of the control computed by robust funnel MPC with additional funnel control feedback
loop and with re-initialization.
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5 Conclusion and Outlook
We proposed a two-component controller to achieve output reference tracking with prescribed accuracy for
unknown nonlinear systems. One component is an MPC scheme, which uses a particular stage cost to guarantee
reference tracking within prescribed error margins of the underlying model. The MPC controller is safeguarded
by the adaptive funnel controller, which compensates the error when necessary. We rigorously proved initial and
recursive feasibility of the combined Algorithm 3.8. A key feature of the proposed two-component controller
is the possibility to update the model’s state based on measured system data during runtime. This feature is
realized via the newly introduced proper initialization strategy κ. It allows to initialize the model in the optimal
control problem based on system data such that the resulting control is more likely to affect the real plant in
the intended way.

Future research will focus on extracting criteria to find explicit and beneficial proper initialization strategies
to take advantage of available measurement data. Moreover, we aim to exploit system data to improve the
underlying model. In the recent work [31] first steps in this direction were initiated.

6 Appendix
Before we present the main proof, we establish some auxiliary results. In Section 6.1 we show the existence of
a solution of the OPC (12). In Section 6.2 we state some results concerning the application and combination
of the funnel controller with the MPC scheme. Finally in Section 6.3 we provide a proof of the main result
Theorem 3.10.

6.1 Existence of an optimal control
The first proposition concerns the existence of a solution of the OCP (12).

Proposition 6.1. Consider the model (3) with (f, g, h) ∈ Mm as in Definition 3.3. Let δ > 0, ξ ≥ 0,
ψ ∈ G, yref ∈ W 1,∞(R≥0,R

m) and a proper initialization strategy κξ : Rn × Rm → Rn be given.
Let the sequence (tk)k∈N0

be defined by tk = kδ and (ŷk)k∈N0
be an arbitrary sequence with ŷk ∈ Dtk

for all k ∈ N0. Then there exists M > 0, independent of δ, such that for all T ≥ δ and all xpre0 ∈
{ x ∈ Rn | h(x) ∈ Dt0 , ∥[0, In−m]Φ(x)∥ ≤ ξ } the OCP

minimize
u∈L∞([tk,tk+T ],Rm),

∥u∥∞≤M

∫ tk+T

tk

ℓ(t, x(t; tk, κξ(x
pre
k , ŷk), u), u(t)) dt (17)

has a solution u⋆k ∈ L∞([tk, tk + T ],Rm) for all k ∈ N0, where (xprek )k∈N0
is defined by

xprek+1 := x(tk+1; tk, κξ(x
pre
k , ŷk), u

⋆
k).

Moreover, the piecewise continuous function

yM : R≥0 → Rm, t 7→
∑
k∈N0

h(x(t; tk, κξ(x
pre
k , ŷk), u

⋆
k))|[tk,tk+1)

satisfies yM (t) ∈ Dt for all t ≥ 0 and there exists λ̄ > 0 such that ess supt≥0 ∥ẏM (t)∥ ≤ λ̄. The bound λ̄ is
independent of (ŷk)k∈N0

, δ, xpre0 and κξ.

Proof. Step one. We introduce some notation. We denote by Yζ̂(I) the set of all functions ζ ∈ R(I,Rm) which
start at ζ̂ ∈ Rm and ζ − yref evolves within the funnel given by ψ on an interval I ⊆ R≥0 of the form I = [a, b]
with b ∈ (a,∞) or I = [a, b) with b = ∞:

Yζ̂(I) :=
{
ζ ∈ R(I,Rm)

∣∣∣ ζ(inf I) = ζ̂, ∀ t ∈ I : ζ(t) ∈ Dt
}
.

Recall that for k ∈ N0, η̂ ∈ Rn−m and ζ ∈ R([tk,∞),Rm), η(·; tk, η̂, ζ) : [tk,∞) → Rn−m denotes the global
solution of the initial value problem (6b), η(tk) = η̂, where yM is substituted by ζ. Define for k ∈ N0 and t ≥ tk
the set

N t
tk

:=
{
η(t; tk, η̂, ζ)

∣∣∣ (ζ̂, η̂) ∈ Dtk ×Bξ, ζ ∈ Yζ̂([tk,∞))
}
,
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where Bξ := { z ∈ Rn−m | ∥z∥ ≤ ξ }. Finally, define the set

U(tk, x̂) :=
{
u ∈ L∞([tk, tk + T ],Rm)

∣∣∣∣ ∥u∥∞ ≤M,
∀ t ∈ [tk, tk + T ] : h(x(t; tk, x̂, u)) ∈ Dt

}
of all L∞–controls u bounded by M > 0 which, if applied to the model (3), guarantee that the error eM =
yM − yref evolves within the funnel Fψ on the interval [tk, tk+1].
Step two. For arbitrary k ∈ N0, we make three observations:

(i) Since κξ is a proper initialization strategy and ŷk ∈ Dtk for all k ∈ N0, the following holds:

xprek ∈ Φ−1

(
Dtk ×

k⋃
i=0

N tk
ti

)
=⇒ κξ(x

pre
k , ŷk) ∈ Φ−1

(
Dtk ×

k⋃
i=0

N tk
ti

)
.

(ii) If, for x̂ ∈ Φ−1
(
Dtk ×

⋃k
i=0N

tk
ti

)
, the set U(tk, x̂) is non-empty and an element u ∈ U(tk, x̂) is applied to

the model (3), then

x(tk+1; tk, x̂, u) ∈ Φ−1

(
Dtk+1

×
k+1⋃
i=0

N
tk+1

ti

)
.

(iii) If, for x̂ ∈ Rn, the set U(tk, x̂) is non-empty, then the OCP

minimize
u∈L∞([tk,tk+T ],Rm),

∥u∥∞≤M

∫ tk+T

tk

ℓ(t, x(t; tk, x̂), u(t)) dt

has a solution u⋆k ∈ U(tk, x̂) according to [6, Thm. 4.6].

For (i) observe that [Im, 0]Φ(x) = h(x) for all x ∈ Rn. To see (ii), let x̂ ∈ Φ−1
(
Dtk ×

⋃k
i=0N

tk
ti

)
be such that

U(tk, x̂) is non-empty. If u ∈ U(tk, x̂) is applied to the model (3), then h(x(t; tk, x̂, u)) ∈ Dt for all t ∈ [tk, tk+T ],
in particular h(x(tk+1; tk, x̂, u)) ∈ Dtk+1

. Furthermore, there exists i ≤ k such that [0, In−m]Φ(x̂) ∈ N tk
ti and

hence there exist (ζ̂, η̂) ∈ Dti ×Bξ and ζ ∈ Yζ̂([ti,∞)) with [0, In−m]Φ(x̂) = η(tk; ti, η̂, ζ). Define ζ̃ : [ti,∞) →
Rm by

ζ̃(t) :=

{
h(x(t; tk, x̂, u)), t ∈ [tk, tk+1]

ζ(t), t ∈ [ti, tk) ∪ (tk+1,∞).

Then, ζ̃ ∈ Yζ̂([ti,∞)) and η(tk+1; ti, η̂, ζ̃) ∈ N
tk+1

ti . Thus,

Φ(x(tk+1; tk, x̂, u)) =

(
h(x(tk+1; tk, x̂, u))

[0, In−m]Φ(x(tk+1; tk, x̂, u))

)
=

(
h(x(tk+1; tk, x̂, u))

η(tk+1; ti, η̂, ζ̃)

)
∈ Dtk+1

×N
tk+1

ti .

Step three. Since ψ ∈W 1,∞(R≥0,R) and yref ∈W 1,∞(R≥0,R
m) are bounded, the set O :=

⋃
t≥0 Dt is bounded.

Thus, for all k ∈ N0 and all ζ̂ ∈ Dtk every function ζ ∈ Yζ̂([tk,∞)) is bounded. Since O × Bξ is bounded,
it follows from the BIBS condition (8) that the set N :=

⋃
k∈N0

⋃
t≥tk N

t
tk

is also bounded. Then the set
K := O ×N is compact and

∀T > 0 ∀ k ∈ N0 ∀ (ζ̂, η̂)∈Dtk ×
k⋃
i=0

N tk
ti ∀ ζ ∈ Yζ̂([tk, tk + T ]) ∀ t ∈ [tk, tk + T ] : (ζ(t), η(t; tk, η̂, ζ))∈K.

To see this, let T > 0, k ∈ N0, and (ζ̂, η̂) ∈ Dtk ×
⋃k
i=0N

tk
ti be arbitrarily given. Then, there exists i ≤ k with

η̂ ∈ N tk
ti . By definition of N tk

ti , there exist (ζ̂0, η̂0) ∈ Dti ×Bξ and ζ0 ∈ Yζ̂0([ti,∞)) such that η̂ = η(tk; ti, η̂0, ζ0).
Let ζ ∈ Yζ̂([tk, tk + T ]), then ζ(t) ∈ Dt ⊆ O for all t ∈ [tk, tk + T ]. Define ζ̃ : [ti,∞) → Rm by

ζ̃(t) :=

{
ζ(t), t ∈ [tk, tk + T ],

ζ0(t), t ∈ [ti, tk) ∪ (tk + T,∞).
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Then, ζ̃ ∈ Yζ̂0([ti,∞)) and for t ∈ [tk, tk + T ] we have

η(t; tk, η̂, ζ) = η(t; tk, η(tk; ti, η̂0, ζ0), ζ) = η(t; ti, η̂0, ζ̃) ∈ N t
tk

⊆ N.

Step four. A straightforward adaption of [6, Prop. 4.9], using the constructed compact set K, yields the existence
of M > 0 such that for all k ∈ N0 the set U(tk, x̂) is non-empty if x̂ ∈ Φ−1

(
Dtk ×

⋃k
i=0N

tk
ti

)
.

Step five. We show by induction that

∀ k ∈ N0 : xprek ∈ Φ−1

(
Dtk ×

k⋃
i=0

N tk
ti

)

and
∀ k ∈ N0 ∀ t ∈ [tk, tk+1] : h(x(t; tk, κξ(x

pre
k , ŷk), u

⋆
k)) ∈ Dt.

Since xpre0 ∈ { x ∈ Rn | h(x) ∈ Dt0 , ∥[0, In−m]Φ(x)∥ ≤ ξ } by assumption, xpre0 ∈ Φ−1
(
Dt0 ×N t0

t0

)
. Due to

observation (i) of Step two, κξ(x
pre
0 , ŷ0) ∈ Φ−1

(
Dt0 ×N t0

t0

)
. Thus, U(t0, κξ(xpre0 , ŷ0)) ̸= ∅ according to Step

four. The optimization problem (17) has a solution u⋆0 ∈ U(t0, κξ(xpre0 , ŷ0)) because of observation (iii) in Step
two. Due to the definition of U(t0, κξ(xpre0 , ŷ0)), this implies in particular h(x(t; t0, κξ(x

pre
0 , ŷ0), u

⋆
0)) ∈ Dt for all

t ∈ [t0, t1] and

xpre1 = x(t1; t0, κξ(x
pre
0 , ŷ0), u

⋆
0) ∈ Φ−1

(
Dt1 ×

1⋃
i=0

N t1
ti

)
according to observation (ii) in Step two.
If xprek ∈ Φ−1

(
Dtk ×

⋃k
i=0N

tk
ti

)
for k ∈ N, then κξ(x

pre
k , ŷk) ∈ Φ−1

(
Dtk ×

⋃k
i=0N

tk
ti

)
due to observation (i)

in Step two. Thus, U(tk, κξ(xprek , ŷk)) ̸= ∅ according to Step four. Because of observation (iii) in Step two,
the OCP (17) has a solution u⋆k ∈ U(tk, κξ(xprek , ŷk)). By definition of U(tk, κξ(xprek , ŷk)), this results in
h(x(t; tk, κξ(x

pre
k , ŷk), u

⋆
k)) ∈ Dt for all t ∈ [tk, tk+1] and

xprek+1 = x(tk+1; tk, κξ(x
pre
k , ŷk), u

⋆
k) ∈ Φ−1

(
Dtk+1

×
k+1⋃
i=0

N
tk+1

ti

)

according to observation (ii) in Step two.
Step six. It follows from Step five that yM(t) ∈ Dt for all t ∈ R≥0. Define yM,k := yM|[tk,tk+1] and
η̂k := [0, In−m]Φ(κξ(x

pre
k , ŷk)) for all k ∈ N0. Due to the definition of the compact set K and since

yM,k ∈ YyM,k(tk)([tk, tk+1]), we have (yM,k(t), η(t; tk, ηk, yM,k)) ∈ K for all t ∈ [tk, tk+1] and all k ∈ N0. The
functions yM,k and η(·; tk, ηk, yM,k) satisfy the differential equation (6) on the interval [tk, tk+1] for all k ∈ N,
thus

ess sup
t≥0

∥ẏM(t)∥ ≤ sup
k∈N0

ess sup
t∈[tk,tk+1]

∥ẏM,k(t)∥

= sup
k∈N0

ess sup
t∈[tk,tk+1]

∥∥p(yM,k(t), η(t; tk, η̂k, yM,k)) + Γ(Φ−1(yM,k(t), η(t; tk, η̂k, yM,k)))u
⋆
k(t)

∥∥
≤ sup
k∈N0

ess sup
t∈[tk,tk+1]

∥p(yM,k(t), η(t; tk, η̂k, yM,k))∥ +
∥∥Γ(Φ−1(yM,k(t), η(t; tk, η̂k, yM,k)))

∥∥∥u⋆k∥∞
≤ max

(y,η)∈K
∥p(y, η)∥ +M max

(y,η)∈K

∥∥Γ(Φ−1(y, η))
∥∥ =: λ̄.

The last inequality holds for all choices of (ŷk)k∈N0
, δ, xpre0 , and κξ, which completes the proof.

6.2 Auxiliary funnel control results
Before proving Proposition 3.7, concerning the application of funnel control, we state the following result.

Lemma 6.2. Let N ∈ C(R≥0,R) be a surjection, α ∈ C([0, 1), [1,∞)) be a bijection, and β ∈ C([0, 1], [0, β+])

be an activation function with β+ > 0. Then Ñ := (β ◦
√
α−1) ·N ∈ C(R≥0,R) is surjective.
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Proof. N ∈ C(R≥0,R) being a surjection is equivalent to lim sups→∞N(s) = ∞ and lim infs→∞N(s) = −∞.
Since lims→∞(β ◦

√
α−1)(s) = β+ > 0, we have

lim sup
s→∞

Ñ(s) = ∞ and lim inf
s→∞

Ñ(s) = −∞.

This implies that Ñ = (β ◦
√
α−1) ·N ∈ C(R≥0,R) is surjective as well.

Proof of Proposition 3.7. Using lemma 6.2 and the perturbation high-gain property from Definition 2.1 (iii)
it is a straightforward modification of the proof of [8, Thm. 1.9], using the perturbation high-gain property
instead of the high-gain property, similar as in Step four of the proof of Theorem 3.10.

6.3 Proof of the main result
Now we are in the position to present the proof of the main result Theorem 3.10.

Proof of Theorem 3.10. Let Φ be a diffeomorphism associated with the model (f, g, h) according to Assump-
tion 3.1.
Step one. We show that the set X0 of initial values for the model is non-empty. To this end, let
z := Φ−1(y0(0), 0n−m). Then, recalling [Im, 0]Φ(·) = h(·), we have h(z) = y0(0). Therefore, ∥h(z)− yref(0)∥ =∥∥y0(0)− yref(0)

∥∥ < ψ(0) because y0(0) ∈ D0. Further, ∥y(0)− h(z)∥ = 0 and ∥[0, In−m]Φ(z)∥ =∥∥[0, In−m]Φ(Φ−1(y0(0), 0n−m))
∥∥ = 0 ≤ ξ. Thus, z ∈ X0.

Step two. According to Proposition 6.1 there exists M > 0 such that, for every x̂0 ∈ X0 and every possible
sequence of measurements (ŷk)k∈N0

with ŷk ∈ Dtk for all k ∈ N0, the OCP (12) has a solution uk,FMPC for
every k ∈ N0 and initialization x̂k = κξ(x

pre
k , ŷk) of the model (3), where xprek+1 = x(tk+1; tk, x̂k, uk,FMPC).

Step three. Now we turn towards the part where the funnel controller (14) is involved. On each interval [tk, tk+1]
the system’s dynamics are given by

ẏk(t) = F (d(t),T(yk)(t), uk(t)), yk|[−σ,tk] = yk−1|[−σ,tk], (18)

where y−1|[−σ,0] := y0, and in particular yk(tk) = yk−1(tk), i.e., although the model’s state is updated at t = tk,
the system is not re-initialized at the time instances tk. The funnel control signal is, for k ∈ N0 and t ∈ [tk, tk+1],
given by

uk,FC(t) = β(∥yk(t)− yk,M(t)∥/φk(t))(N ◦ α)(∥(yk(t)− yk,M(t))/φk(t)∥2)(yk(t)− yk,M(t))/φk(t),

where yk,M(t) = h(x(t; tk, κξ(x
pre
k , yk(tk)), uk,FMPC)) for t ∈ [tk, tk+1] and the funnel function for the funnel

control law is piecewise defined by

φk : [tk, tk+1] → R, t 7→ ψ(t)− ∥yk,M(t)− yref(t)∥, k ∈ N0.

Invoking Proposition 6.1, we have yk,M(t) ∈ Dt for all t ∈ [tk, tk + T ], by which φk satisfy 0 < φk(t) ≤ ψ(t)
for all t ∈ [tk, tk+1] and all k ∈ N0. Every φk can smoothly be extended to the left and right such that the
extension φ̃k satisfies φ̃k ∈ G for all k ∈ N0. We show that the control law

uk(t) = uk,FMPC(t) + uk,FC(t) (19)

applied to the system (18) for k ∈ N0, leads to a closed-loop system which has a global solution with the
properties as in Proposition 3.7. Special attention is required since yk,M(tk) ̸= yk−1,M(tk) and hence also
φk(tk) ̸= φk−1(tk) is possible. We observe that for x0 ∈ X0 we have

∥y0,M(0)− y0(0)∥ = ∥h(x0)− y0(0)∥ < ψ(0)− ∥h(x0)− yref(0)∥ = φ0(0)

and y0(0) ∈ D0. Then Proposition 6.1 yields ∥u0,FMPC∥∞ ≤ M . Thus, the feasibility result Proposition 3.7
for the funnel controller is applicable and yields the existence of a solution y0 : [0, t1] → Rm of the closed-
loop problem (18), (19) for k = 0, with ∥y0,M(t) − y0(t)∥ < φ0(t) for all t ∈ [t0, t1]. Then, choosing x̂1 =
κξ(x

pre
1 , y0(t1)) ∈ Ωξ(x

pre
1 , y0(t1)), at t = t1 we have either x̂1 = xpre1 , which gives y1,M(t1) = y0,M(t1) and thus

∥y1,M(t1)− y1(t1)∥ = ∥y0,M(t1)− y0(t1)∥ < φ0(t1) = ψ(t1)− ∥y0,M(t1)− yref(t1)∥ = φ1(t1),
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or y1,M(t1) = h(x̂1) = y0(t1) = y1(t1) and the estimation above is valid as well, thus y1(t1) ∈ Dt1 . Proposition 6.1
yields ∥y1,M(t) − yref(t)∥ < ψ(t) for t ∈ [t1, t2] with ∥u1,FMPC∥∞ ≤ M , by which the conditions to reapply
Proposition 3.7 are satisfied at t = t1, by which a solution y1 : [t1, t2] → Rm of the closed-loop problem (18), (19)
exists for k = 1, with ∥y1,M(t) − y1(t)∥ < φ1(t) for all t ∈ [t1, t2]. Repeating this line of arguments we
successively obtain, for each k ∈ N0, a solution yk : [tk, tk+1] → Rm of the closed-loop problem (18), (19) with
∥yk,M(t)− yk(t)∥ < φk(t) for all t ∈ [tk, tk+1].
Step four. By defining y : [−σ,∞) → Rm via y|[−σ,0] = y0, y|[tk,tk+1] = yk for k ∈ N0 we obtain a global
solution of (1), (15) which satisfies ∥yM(t) − y(t)∥ < ψ(t) − ∥yM(t) − yref(t)∥ = φ(t) for all t ≥ 0, where
yM(t) := yk,M(t) and φ(t) := φk(t) for t ∈ [tk, tk+1), k ∈ N0. It remains to show that the overall control
u(t) := uk(t), t ∈ [tk, tk+1), k ∈ N0, is bounded, which we prove by showing that there exists ε ∈ (0, 1)
such that ∥y(t) − yM(t)∥ ≤ εφ(t) for all t ≥ 0. For the sake of better legibility, we introduce the variable
w(t) := (y(t)−yM(t))/φ(t). Choose compact sets Kp ⊂ Rp and Kq ⊂ Rq such that d(t) ∈ Kp and T(y)(t) ∈ Kq

for t ≥ 0. Further, for Km := { D ∈ Rm | ∥D∥ ≤M }, ν ∈ (0, 1) and V := { v ∈ Rm | ν ≤ ∥v∥ ≤ 1 } we recall
the continuous function from Definition 2.1 (iii)

χ(s) = min { ⟨v, F (δ, ζ,∆− sv)⟩ | δ ∈ Kp, ζ ∈ Kq,∆ ∈ Km, v ∈ V } .

F has the perturbation high-gain property and hence the function χ is unbounded from above for a suitable
ν ∈ (0, 1). We note that ∥w(0)∥ < 1 as shown in Step three, and with λ := ∥ψ̇∥∞ + ∥ẏref∥∞ and λ̄ ≥ ∥ẏM∥∞
from Proposition 6.1, we choose ε ∈ (0, 1) large enough such that ε > max{ν, ∥w(0)∥} and χ(β(ε)(N ◦α)(ε2)) ≥
4λ̄+2λ, which is possible because of the properties of β,N, α and χ̃. We show that ∥w(t)∥ ≤ ε for all t ≥ 0. Unlike
the standard funnel control framework, the funnel function φ may have discontinuities at the time instances tk
when the model is re-initialized with x̂k ∈ Ωξ(x

pre
k , y(tk)) such that h(x̂k) = y(tk). This fact requires particular

attention when proving ∥w(t)∥ ≤ ε for all t ≥ 0. We observe that φ is continuous on [tk, tk+1] for all k ∈ N0

and satisfies, by Proposition 6.1,

|φ̇(t)| ≤ |ψ̇(t)|+ ∥ẏM∥+ ∥ẏref(t)∥ ≤ λ+ λ̄

for almost all t ≥ 0, independent of k. Now fix an arbitrary k ∈ N0 and consider two cases.
Case 1 : If x̂k ∈ Ωξ(x

pre
k , yk−1(tk)) is such that h(x̂k) = yk−1(tk), then yM(tk) = y(tk) and hence ∥w(tk)∥ =

0 < ε. Seeking a contradiction, we suppose that there exists t∗ ∈ (tk, tk+1] such that ∥w(t∗)∥ > ε, and invoking
continuity of w on [tk, tk+1] we set t∗ := sup { t ∈ [tk, t

∗) | ∥w(t)∥ = ε } < t∗. Then we have ∥w(t)∥ ≥ ε ≥ ν
(and hence w(t) ∈ V ) for all t ∈ [t∗, t

∗] and, since ∥w(t∗)∥ = ε, χ(β(∥w(t∗)∥)(N ◦ α)(∥w(t∗)∥2)) ≥ 4λ̄ + 2λ.
Therefore, there exists t∗∗ ∈ (t∗, t

∗] such that

∀ t ∈ [t∗, t
∗∗] : χ(β(∥w(t)∥)(N ◦ α)(∥w(t)∥2)) ≥ 2λ̄+ λ.

Then we calculate that, for almost all t ∈ [t∗, t
∗∗],

d
dt

1
2
∥w(t)∥2 = ⟨w(t), ẇ(t)⟩ =

〈
w(t),

−φ̇(t)(y(t)− yM(t)) + φ(t)(ẏ(t)− ẏM(t))

φ(t)2

〉
= − φ̇(t)

φ(t)
⟨w(t), w(t)⟩ − 1

φ(t)
⟨w(t), ẏM(t)⟩+ 1

φ(t)
⟨w(t), F (d(t),T(y)(t), u(t))⟩

<
1

φ(t)

(
|φ̇(t)|+ ∥ẏM(t)∥+ ⟨w(t), F (d(t),T(y)(t), u(t))⟩

)
≤ 1

φ(t)
(λ+ 2λ̄) +

1

φ(t)
⟨w(t), F

(
d(t),T(y)(t), uk,FMPC(t) + uk,FC(t)

)
⟩

≤ 1

φ(t)
(λ+ 2λ̄)− 1

φ(t)
min

{
⟨v, F (δ, ζ,∆−β(∥w(t)∥)(N ◦α)(∥w(t)∥2)v)⟩

∣∣ δ∈Kp, ζ∈Kq,∆∈Km, v∈V
}

≤ 1

φ(t)

(
λ+ 2λ̄− χ(β(∥w(t)∥)(N ◦ α)(∥w(t)∥2))

)
≤ 0,

where we used u,FC(t) = β(∥w(t)∥)(N ◦ α)(∥w(t)∥2)w(t) in the penultimate inequality. Upon integration, and
invoking the definition of t∗ < t∗∗, this gives ε < ∥w(t∗∗)∥ ≤ ∥w(t∗)∥ = ε, a contradiction. Therefore, ∥w(t)∥ ≤ ε
for all t ∈ [tk, tk+1].
Case 2 : If x̂k = xprek , then φk−1(tk) = φk(tk) and thus the funnel function φ is continuous and weakly
differentiable on the interval [tk−1, tk+1]. In this case, it follows that ∥w(t)∥ ≤ ε for all t ∈ [tk−1, tk+1] with the
same arguments as in Case 1.
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Overall, we have shown that ∥w(t)∥ ≤ ε for all t ∈ [tk, tk+1] and all k ∈ N0, independent of the initialization
strategy. Therefore, ∥u∥∞ ≤M + β+|(N ◦ α)(ε2)| and this proves assertion (i).
Step five. Finally, a simple calculation yields that for t ≥ 0 we have

∥y(t)− yref(t)∥ = ∥y(t)− yM(t) + yM(t)− yref(t)∥ ≤ ∥y(t)− yM(t)∥+ ∥yM(t)− yref(t)∥
< φ(t) + ∥yM(t)− yref(t)∥ = ψ(t)− ∥yM(t)− yref(t)∥+ ∥yM(t)− yref(t)∥ = ψ(t),

which is assertion (ii). This completes the proof.
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