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Abstract— This paper presents a prescribed performance-based
tracking control strategy for the atmospheric reentry flight of
space vehicles subject to rapid maneuvers during flight mission.
Although earlier works presented control algorithms with a focus
on the transient performance, it is still an open problem how
to ensure the stability of the system during maneuvering flight
missions. A time-triggered non-monotonic performance funnel is
proposed with the aim of constraints violation avoidance in the
case of sudden changes of the reference trajectory. Compared with
traditional prescribed performance control methods, the proposed
funnel boundary is adaptive with respect to the reference path and
is capable of achieving stability under disturbances. A recursive
control structure with low complexity is introduced which does
not require any knowledge of specific system parameters. By a
stability analysis we show that the tracking error evolves within
the prescribed error margin under a condition which represents a
trade-off between the reference signal and the performance funnel.
The effectiveness and robustness of the proposed control scheme is
verified by simulations.
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I. INTRODUCTION

For the cost efficiency of space missions it is impera-
tive that spacecrafts are able to return to earth through
its atmosphere, following a prescribed trajectory. Such
atmospheric reentry problems are a main focus of the
aerospace industry and have received a large amount of
attention during the last decade. Trajectory tracking strate-
gies for reentry vehicles (RVs) have long been considered
as a hot research area, owing to their unique attributes,
which include high flight velocities, rapid response times,
and expansive operational capabilities [1]-[4]. Maneuver-
ing flight, as one branch of such atmospheric reentry
problems, has stimulated extensive research in the areas
of evasion, pursuit and obstacle avoidance for missions
achievement [5]-[8]. Commonly, the main objective of
maneuvering flight control is stability and robustness of
the system and to provide the stabilization capabilities in
RV tracking either on-line or for off-line planned refer-
ence trajectories. Some widespread control approaches,
including PID [9], sliding mode control [10], backstep-
ping control [11], adaptive control [12], [13], optimization
algorithms [14], [15] and intelligent algorithms [16], [17],
are the popular choice owing to their simplicity and
effectiveness in RV tracking problems. The aforemen-
tioned conventional control methods for trajectory track-
ing primarily center on ensuring system stability, often
overlooking the crucial influence of transient performance
on the final outcomes. Those results demonstrated that
the tracking objective can be successfully accomplished,
whereas, it remains an open issue how to guarantee its
high speed convergence, minimum accuracy and small
overshoot. Consequently, there is a compelling need to
delve into the research of transient issues within the
domain of trajectory tracking for RVs, in order to ensure
a successful mission.

Control algorithms for constraining the transient per-
formance are flourishing during the past few decades, and
two different approaches have been developed. Prescribed
performance control (PPC) has been proposed in [18]-[20]
and is regarded as a representative nowadays. It relies on
an error transformation, which is designed to transform
the original output error restrictions into an equivalent
interval one. Since its universal control structure, PPC
has been thoroughly investigated in combination with un-
constrained control methods like backstepping and sliding
mode control. Funnel control (FC) is the second control
mechanism for guaranteeing a prescribed performance of
the tracking error [21]-[25] by introducing a time-varying
high-gain feedback in the control law. If the error tends
towards the funnel boundary, the gain increases so that
the error is kept inside the performance funnel. Notice
that almost all funnel boundaries selected in works on
funnel control are monotonically decreasing functions,
although the theory guarantees the stability of the closed-

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020 1



loop system for a vast variety of non-monotonic funnel
boundaries. It turns out that for flight maneuvering, non-
monotonic funnel boundaries are more suitable. However,
sudden flight maneuvers may lead to a drastic increase of
the control effort or even drive the tracking error across
the funnel boundary, resulting in closed-loop system in-
stability. Although both PPC and FC have already been
investigated for the control algorithm design for RVs with
a focus on the transient performance [26]-[28], how to
ensure the stability of the system during maneuvering
flight is still an open question.

Considering the various demands of trajectory track-
ing for RVs during different phases, a control law which
adapts itself to the prescribed boundary function is re-
quired to guarantee the transient behavior in flight ma-
neuvering. Therefore, a time triggered non-monotonic
funnel boundary is proposed in this paper. Using a
priori information of the reference trajectory, we design
a boundary function which is widened during critical
phases, e.g. in the case of sudden course corrections. In
this way, peaks in the control input signal are avoided.
Additionally, disturbances (such as noises, uncertainties
or unmodeled dynamics) are taken into account, as they
might have a detrimental effect on the system’s perfor-
mance. A significant challenge in stability analysis is
imposed by the dynamics of the RV, where the flight
lateral position (which is the system output) is influenced
by the deflection angle only in a saturated way (via a
sin function). Therefore, arbitrary instantaneous changes
of the lateral position are not possible. Any prescribed
trajectory can only be tracked up to a certain accuracy,
i.e., there is a trade-off between the derivative of the
reference and the funnel boundary function. To the best of
our knowledge, this is the first work where such a trade-
off is found for RV tracking problems with guaranteed
prescribed performance.

Focusing on the issues mentioned above, the main
contributions of this paper are summarized as follows.

• We design a robust funnel control law with
time triggered non-monotonic funnel boundary
for flight maneuvering with guaranteed transient
performance under disturbances. Compared to [26],
the proposed recursive funnel control structure is
of low complexity and avoids the requirement of a
priori knowledge of the system parameters.

• For maneuvering trajectory tracking, we derive a
condition representing a trade-off between the ref-
erence trajectory and the funnel boundaries, under
which the RV is amenable to the proposed funnel
control law.

The remainder of this paper is organized as follows.
The dynamic model of the RV in yaw channel is presented
in Section II, together with the proposed funnel boundary
and the control objective. In Section III we state the
funnel-based control law design and provide the stability

Fig. 1. Engagement geometry and parameter definitions.

analysis. Simulation results are given in Section IV and
Section V finally concludes this article.

II. PROBLEM FORMULATION

A. RV Dynamics

Considering horizontal lateral maneuvers with con-
stant velocity, the engagement geometry and parameter
definitions of a RV are shown in Fig. 1, where the xz-
plane is the projection of the ground coordinate system to
the horizontal plane, and xb is the vector from the centroid
of the RV to its head. The simplified model of the RV in
yaw channel is established in [29], [30] as

żh (t) = −V sin (ψV (t)) + ∆0(t) (1)

ψ̇V (t) = − 1

mV
Z (t) + ∆1(t) (2)

ψ̇ (t) = ωy (t) + ∆2(t) (3)

ω̇y (t) =
My (t)

Jy
+ ∆3(t) (4)

β (t) = ψ (t)− ψV (t) (5)

where zh(t) is the flight altitude, m is the mass, V
is the flight speed, ψV , ψ, β represent the deflection
angle, yaw angle and sideslip angle, ωy is the yaw
rate, Jy denotes the yaw rotational inertia and ∆i (i =
0, 1, 2, 3) are bounded disturbances. The functions Z
and My are the aerodynamic force and moment in yaw
channel, expressed by Z(t) = q̄S(cαzα+ cβzβ(t) + c0z),
My(t) = q̄Sl(cαMα+ cβMβ(t) + c

δy
Mδy(t) + c0M ), where α

is the angle of attack, δy represents the rudder angle, q̄
is the dynamic pressure, S and l are the reference area
and aerodynamic chord of the RV, and ciz and cjM (i =
α, β, 0, j = α, β, δy, 0) are the aerodynamic coefficients
for force and moment, respectively. The rudder angle δy
can be manipulated and serves as the control input.

Note that in this paper, we focus on lateral maneu-
vering and do not intervene in the transverse move-
ment of the aircraft along the x-axis. In this frame-
work, although the dynamics of the position component
xh of the RV (also depicted in Fig. 1) are given by
ẋh (t) = V cos (ψV (t)), xh does not influence the other
state variables in (1)–(5), hence those dynamics can be
ignored. Then we introduce the variables y0(t) = zh(t),
y1(t) = ψV (t), y2(t) = β(t) = ψ(t) − ψV (t), y3(t) =
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Fig. 2. Tracking error evolution in the funnel Γϕi (i = 0, 1, 2, 3).

ωy(t) and the control input u(t) = δy(t) to rewrite the
dynamic model (1)–(5) in the form

ẏ0 (t) = −V sin (y1 (t)) + ∆0(t) (6)
ẏ1 (t) = −c1 − c2y2 (t) + ∆1(t) (7)
ẏ2 (t) = y3 (t) + c1 + c2y2 (t) + ∆2(t)−∆1(t) (8)
ẏ3 (t) = c3 + c4y2 (t) + c5u (t) + ∆3(t) (9)

with the constants c1 = 1
mV q̄S

(
cαzα+ c0z

)
, c2 =

1
mV q̄Sc

β
z , c3 = 1

Jy
q̄Sl

(
cαMα+ c0M

)
, c4 = 1

Jy
q̄ScβM ,

c5 = 1
Jy
q̄Sc

δy
M .

It can be seen from the dynamics (1) that the flight
altitude zh is influenced only by the deflection angle ψV
and that this influence is saturated by the sin function.
Therefore, it is clear that it is impossible to achieve
tracking of arbitrary reference signals with arbitrary pre-
scribed performance. There must be a trade-off between
the reference signal (żhref

) and the funnel boundary. This
trade-off is formulated as condition (15) in Theorem 1.

B. Funnel Boundary

We define functions ϕi(t) (i = 0, 1, 2, 3) as the
reciprocal of the funnel boundary ρ̄i (t), which describe
the performance funnel Γϕi

(cf. [21]) as

Γϕi : = {(t, ei) ∈ R≥0 ×R | ϕi (t) |ei(t)| < 1}. (10)

The functions ϕi(t) are continuously differentiable,
bounded with bounded derivatives, and satisfy ϕi(t) > 0
for all t ≥ 0 and lim inft→∞ ϕi(t) > 0. Fig. 2 displays
the reciprocal ρ̄i(t) = 1/ϕi(t).

In order to avoid peaks in the control input signal due
to a strongly varying reference trajectory, we employ a

non-monotonic funnel boundary defined as

1/ϕi (t) = ρ̄i (t) =

ρ̄i,0 (t) 0 ≤ t < t1
ai,0(t− t1)

3
+ bi,0(t− t1)

2

+ci,0 (t− t1) + di,0
t1 ≤ t < t̄1

ρ̄i,1 (t) t̄1 ≤ t < t2
...

...
ai,j−1(t− tj)3

+ bi,j−1(t− tj)2

+ci,j−1 (t− tj) + di,j−1
tj ≤ t < t̄j

ρ̄i,j (t) t̄j ≤ t < tj+1

...
...

ai,p−1(t− tp)3
+ bi,p−1(t− tp)2

+ci,p−1 (t− tp) + di,p−1
tp ≤ t < t̄p

ρ̄i,p (t) t̄p ≤ t
(11)

where tj and t̄j (j = 1, ..., p) are the triggered time and
initial time points of every phase after maneuvering, t̄j −
tj is the time range for maneuvering and p represents
the number of triggered times. The polynomials in each
interval of the form [tj , t̄j ] are chosen based on the current
maneuver encoded in the reference trajectory, and they
ensure a widening of the funnel boundary. The functions
ρ̄i,j (t) (i = 0, 1, 2, 3, j = 1, 2, ..., p) are of the form

ρ̄i,j (t) =
(
ρ0
i,j − ρ∞i,j

)
e−li,jt + ρ∞i,j (12)

with initial funnel width ρ0
i,j > 0, required mini-

mum exponential convergence rate li,j > 0 and the
maximum steady state error ρ∞i,j > 0, respectively.
In order to guarantee that ρ̄i is continuously differen-
tiable, the parameters ai,j , bi,j , ci,j , di,j are chosen such
that lim

t→t−j
ρ̄i (t) = lim

t→t+j
ρ̄i (t), lim

t→t̄−j
ρ̄i (t) = lim

t→t̄+j
ρ̄i (t),

lim
t→t−j

˙̄ρi (t) = lim
t→t+j

˙̄ρi (t), lim
t→t̄−j

˙̄ρi (t) = lim
t→t̄+j

˙̄ρi (t) for

j = 1, . . . , p.
The proposed funnel boundary is displayed in Fig. 2

and we stress that it is different from the monotonically
decreasing boundary functions of the form (12) widely
used in [20], [22], [25]. Instead, it is a time triggered
mechanism with trigger time points tj , chosen in accor-
dance with the reference trajectory, so that the proposed
funnel (11) adapts itself and is suitable for the time-
varying maneuvering command of RVs. For t > tp the
proposed funnel boundary converges to a neighbourhood
of the origin, satisfying lim

t→∞
ρ̄i (t) = ρ∞i,p > 0.

C. Control Objective

The control objective is to design an output derivative
feedback such that for any sufficiently smooth reference
trajectory zhref

, any initial values and under the influence
of disturbances, the tracking error zh − zhref

evolves
within a prescribed performance funnel Γϕ0

as in (10) and
hence exhibits the desired transient and steady behavior.
Furthermore, all signals u, zh, ψV , ψ, β and ωy in the
closed-loop system should remain bounded.
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Fig. 3. Funnel control structure for RV tracking issue.

III. FUNNEL CONTROLLER DESIGN

A. Funnel-based control law design

Before we define the control law we introduce the
following assumptions.

ASSUMPTION 1. The reference trajectory zhref
is known,

it is four times continuously differentiable and its first four
derivatives are bounded.

ASSUMPTION 2. The disturbances ∆i are measurable
and essentially bounded with ‖∆i‖∞ ≤ Di for known
constants Di ≥ 0 (i = 0, 1, 2, 3).

Assumptions 1 and 2 are reasonable and frequently
used in the literature. The disturbances ∆i (i = 0, 1, 2, 3)
involved in (1)-(5) account for uncertainties in the aero-
dynamic coefficients, noises and external disturbances,
which are usually bounded throughout the flight process.

We define the tracking error as

e0(t) = y0(t)− zhref
(t) = zh(t)− zhref

(t)

and introduce the following recursive structure

ei (t) = yi (t)− z(i)
href

(t) + ki−1 (t)$i−1 (t) , i = 1, 2, 3
(13)

where ki (t) = 1
1−$2

i (t)
and $i (t) = ϕi (t) ei (t) for ϕi as

in (11).
Then the funnel-based control law is given by

u (t) = −k3 (t) e3 (t) = − e3 (t)

1− ϕ2
3 (t) e2

3 (t)
(14)

and the block diagram of the proposed control scheme is
shown in Fig. 3. In the sequel we investigate existence of
solutions of the initial value problem resulting from the
application of the funnel controller (14) to the RV with
dynamics (1)-(5). By a solution of (1)-(5), (14) we mean
a function (zh, ψV , ψ, ωy) : [0, tf ) → R4, tf ∈ (0,∞],
which is locally absolutely continuous and satisfies the
initial conditions as well as the differential equations (1)-
(5) for almost all t ∈ [0, tf ). A solution is called maximal,
if it has no right extension that is also a solution.

B. Stability Analysis

In this part, we present the stability analysis of the
proposed control law.

THEOREM 1. Consider a RV with dynamics (1)-(5), satis-
fying Assumptions 1-2, under the funnel control law (14).
Choose funnel boundaries ϕi (i = 0, 1, 2, 3) as in (11)
such that the initial values satisfy

ϕi(0)|ei(0)| < 1 (i = 0, 1, 2, 3).

Additionally, assume that the functions ϕ0, ϕ1 and zhref

satisfy the following condition:

∃µ ∈ (0, 1) ∀ t ≥ 0 :

|ϕ̇0(t)|
V ϕ2

0(t)
+

1

ϕ1(t)
+
D0

V
+

(1 + V )

V
|żhref

(t)| ≤ µ.
(15)

Then the funnel controller (14) applied to (1)-(5) yields an
initial-value problem which has a solution, every solution
can be maximally extended and every maximal solution
(zh, ψV , ψ, ωy) : [0, tf ) → R4, tf ∈ (0,∞] has the
following properties:

• global existence: tf =∞;
• all errors evolve uniformly in the respective pre-

scribed performance funnels, that is for all i =
0, 1, 2, 3 there exists εi ∈ (0, 1) such that for all t ≥ 0
we have |$i (t) | ≤ εi.

• all signals zh, ψV , ψ, ωy, δy and ki (i = 0, 1, 2, 3)
in the closed-loop system are bounded.

Proof:
Before the analysis, we record that it follows from (6)-
(9) that the derivatives of ei(t) (i = 0, 1, 2, 3) can be
expressed as

ė0 (t) = −V sin (y1 (t))− żhref
(t) + ∆0(t) (16)

ė1 (t) = e2 (t)− k1 (t)$1 (t) +
d

dt
(k0 (t)$0 (t))

− (1 + c2)y2 (t)− c1 + ∆1(t) (17)

ė2 (t) = e3 (t)− k2 (t)$2 (t) +
d

dt
(k1 (t)$1 (t))

+ c1 + c2y2 (t) + ∆2(t)−∆1(t) (18)

ė3 (t) = c5u (t)− z(4)
href

(t) +
d

dt
(k2 (t)$2 (t))

+ c3 + c4y2 (t) + ∆3(t) (19)

In the following, we will first show that a local solution
exists on [0, tf ) and the tracking error evolves uniformly
within the prescribed performance funnel, and we show
tf =∞ in the last step.

Step 1: To show existence of a solution of the closed-
loop system, consider the functions

ẽ0 : D0 → R, (t, y0) 7→ y0 − zhref
(t) (20)

with the set D0 := R≥0 ×R and

ẽi : Di → R, (t, y0, . . . , yi) 7→ yi − z(i)
href

(t)

+
ϕi−1(t)ẽi−1(t, y0, . . . , yi−1)

1− ϕ2
i−1(t)ẽ2

i−1(t, y0, . . . , yi−1)

(21)
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with the sets
Di := {(t, y0, . . . , yi) ∈ Di−1 ×R |

ϕi−1(t)|ẽi−1 (t, y0, . . . , yi) | < 1}, (i = 1, 2, 3) ,

D4 := {(t, y0, . . . , y3) ∈ D3 |
ϕ3(t)|ẽ3 (t, y0, . . . , y3) | < 1}.

(22)

Introducing Y (t) = (y0(t), . . . , y3(t))> and the function

F : D4 → R4, (t, y0, . . . , y3)

7→


−V sin(y1) + ∆0(t)
−c1 − c2y2 + ∆1(t)

y3 + c1 + c2y2 + ∆2(t)−∆1(t)

c3 + c4y2 + ∆3(t)− c5 ϕ3(t)ẽ3(t,y0,...,y3)
1−ϕ2

3(t)ẽ23(t,y0,...,y3)


(23)

the closed-loop system takes the form

Ẏ (t) = F (t, Y (t)), Y (0) = (y0
0 , . . . , y

0
3)>. (24)

Since (0, Y (0)) ∈ D4 and F is measurable in t, contin-
uous in (y0, . . . , y3) and locally essentially bounded, an
application of Theorem B.1 from [31] yields the existence
of a solution and every solution can be extended to a
maximal solution Y : [0, tf ) → R4 with tf ∈ (0,∞].
Furthermore, the graph of Y is not a compact subset
of D4.

Step 2: We show that k0 is bounded on [0, tf ).
According to the definition of $0(t) and (16) we have

$̇0 (t) =
ϕ̇0 (t)

ϕ0 (t)
$0 (t)− ϕ0 (t)V sin (y1 (t))

+ ϕ0 (t)
(
∆0(t)− żhref

(t)
)
.

(25)

By the mean value theorem, for each t ∈ [0, tf ), there
exists ξ (t) between −k0 (t)$0 (t) and −k0 (t)$0 (t) +
e1 (t) + żhref

(t) such that

sin (y1 (t)) = sin
(
−k0 (t)$0 (t) + e1 (t) + żhref

(t)
)

= sin (−k0 (t)$0 (t))

+
(
e1 (t) + żhref

(t)
)

cos (ξ (t)) .
(26)

Now define U0(t) = 1
2$

2
0 (t), then from (15), (25) and

(26), and invoking |$0 (t)| < 1 and |e1(t)| < 1/ϕ1(t), we
find that

U̇0(t) = $0 (t) $̇0 (t)

=
ϕ̇0(t)

ϕ0(t)
$2

0(t) + ϕ0 (t)$0 (t) (−V sin(−k0(t)$0 (t))

− V (e1(t) + żhref
(t)) cos(ξ(t)) + ∆0(t)− żhref

(t))

≤ −V ϕ0(t) sin (−k0(t)$0 (t))$0 (t) +
|ϕ̇0(t)|
ϕ0(t)

+ V ϕ0(t)

(
1

ϕ1(t)
+
D0

V
+

(1 + V )

V
|żhref

(t)|
)

≤ V ϕ0(t) (−N(−$0 (t)) + µ)
(27)

where N : (−1, 1) → (−1, 1), s 7→ sin
(

s
1−s2

)
s. The

function N is symmetric and satisfies N(−s) = N(s).
Choose ε0 ∈ (0, 1) such that |$0(0)| < ε0 and

N(ε0) < −µ. In the following, we show that |$0(t)| ≤ ε0

for all t ∈ [0, tf ). Assume there exists some t ∈ [0, tf )
with |$0(t)| > ε0 and define

t̄0 := inf {t ∈ [0, tf ) | |$0(t)| > ε0 } > 0.

Since N is continuous there exists η > 0 such that N(s) ≤
−µ for all s ∈ R with |s − ε0| ≤ η. By symmetry of N
we also have N(s) ≤ −µ for all s ∈ R with |s+ ε0| ≤ η.
Since $0 is continuous with |$0(t̄0)| = ε0, there exists
t̄1 ∈ (t̄0, tf ) such that |$0(t)| > ε0 and |$0(t̄0)−$0(t)| <
η for all t ∈ (t̄0, t̄1].

Let σ = sgn$0(t̄0), then $0(t̄0) = σ|$0(t̄0)| = σε0

and hence |$0(t)−$0(t̄0)| = |$0(t)−σε0| ≤ η for all t ∈
[t̄0, t̄1]. It follows that N($0(t)) ≤ −µ for all t ∈ [t̄0, t̄1],
and hence U̇0(t) ≤ V ϕ0(t)

(
N($0(t)) + µ

)
≤ 0, which

upon integration gives ε2
0 = $0(t̄0)2 ≥ $0(t̄1)2 > ε2

0, a
contradiction. Hence, |$0(t)| ≤ ε0 for all t ∈ [0, tf ) and
thus k0 is bounded on [0, tf ).

Step 3: We show that k1 is bounded on [0, tf ). A
standard procedure in funnel control is used by seeking
a contradiction. For some ε1 ∈ (0, 1), which we will
determine later, suppose that there exists t∗1 ∈ [0, tf ) such
that $1 (t∗1) > ε1 and define

t∗0 := max{t ∈ [0, t∗1) | $1 (t) = ε1}.

Then we find that

∀ t ∈ [t∗0, t
∗
1] : $1 (t) ≥ ε1 (28)

and hence

∀ t ∈ [t∗0, t
∗
1] : k1 (t) =

1

1−$2
1 (t)

≥ 1

1− ε2
1

. (29)

Define U1(t) = 1
2$

2
1 (t), then according to (17) we have

U̇1(t) = $1 (t) $̇1 (t)

= $1 (t) (ϕ̇1 (t) e1 (t) + ϕ1 (t) ė1 (t))

=
ϕ̇1(t)

ϕ1(t)
$2

1(t)− ϕ1(t)k1(t)$2
1(t)− c1ϕ1(t)$1(t)

+ ϕ1(t)$1(t) (−c2y2(t) + ∆1(t) + e2(t)− y2(t))

+ϕ1(t)$1(t)
(
1 + 2$2

0(t)k0 (t)
)
k0(t)$̇0(t).

(30)
From Step 2 we have that k0 is bounded on t ∈ [0, tf ).
Furthermore, $̇0 is bounded by (25), |e2(t)| < 1/ϕ2(t)
and y2,∆1, ϕ1, ϕ̇1 are clearly bounded as well, hence
there exists an upper bound C1 > 0 such that for all
t ∈ [0, tf ) we have

|ϕ̇1(t)|
ϕ2

1(t)
+ c1 + (1 + c2)|y2(t)|+ |∆1(t)|+ |e2(t)|

+
(
1 + 2$2

0(t)k0 (t)
)
k0(t)$̇0(t) ≤ C1.

(31)

Invoking |$1 (t)| < 1 we thus obtain

U̇1(t) ≤ ϕ1(t)|$1(t)| (−k1(t)|$1(t)|+ C1)≤ 0 (32)

when we choose ε1 ∈ (0, 1) large enough so that ε1
1−ε21

≥
C1. Upon integration over [t∗0, t

∗
1] we find that

ε2
1 = ω1(t∗0)2 ≥ ω1(t∗1)2 > ε2

1, (33)

a contradiction. Hence |$1(t)| ≤ ε1 for all t ∈ [0, tf ),
and thus k1 is bounded on [0, tf ).
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Step 4: We prove that k2 is bounded on [0, tf ). With
U2(t) = 1

2$
2
2 (t) it follows from (18) that

U̇2(t) = $2 (t) $̇2 (t)

= $2 (t) (ϕ̇2 (t) e2 (t) + ϕ2 (t) ė2 (t))

=
ϕ̇2(t)

ϕ2(t)
$2

2(t)− ϕ2(t)k2(t)$2
2(t)

+ ϕ2(t)$2(t) (c1 + c2y2(t) + ∆2(t)−∆1(t) + e3(t))

+ϕ2(t)$2(t)
(
1 + 2$2

1(t)k1 (t)
)
k1(t)$̇1(t).

(34)
By Step 3 it follows that k1 is bounded on t ∈
[0, tf ). Furthermore, |e3(t)| < 1/ϕ3(t) and $1, $̇1,
y2,∆1,∆2, ϕ2, ϕ̇2 are bounded on [0, tf ), hence there
exists a constant C2 > 0 satisfying

|ϕ̇2(t)|
ϕ2

2(t)
+ c1 + c2|y2(t)|+ |∆2(t)|+ |∆1(t)|+ |e3(t)|

+
(
1 + 2$2

1(t)k1 (t)
)
k1(t)|$̇1(t)| ≤ C2.

(35)
Invoking |$2 (t)| < 1 we thus obtain

U̇2(t) ≤ ϕ2(t)|$2(t)| (−k2(t)|$2(t)|+ C2) (36)

and with a similar argument as in Step 3 it can be shown
that k2 is bounded on [0, tf ).

Step 5: We show that k3 is bounded on [0, tf ). To this
end, we substitute (14) into (19), yielding

ė3 (t) = −c5k3(t)
$3(t)

ϕ3 (t)
− z(4)

href
(t) +

d

dt
(k2 (t)$2 (t))

+ c3 + c4y2 (t) + ∆3(t)
(37)

Define U3(t) = 1
2$

2
3 (t) and calculate

U̇3(t) = $3 (t) $̇3 (t)

= $3 (t) (ϕ̇3 (t) e3 (t) + ϕ3 (t) ė3 (t))

= −c5k3(t)$2
3(t) +

ϕ̇3(t)

ϕ3(t)
$2

3(t)

+$3 (t)ϕ3 (t)
(
−z(4)

href
(t) + c3 + c4y2 (t) + ∆3(t)

)
+$3 (t)ϕ3 (t)

(
1 + 2$2

2(t)k2 (t)
)
k2(t)$̇2(t).

(38)
From Step 4 we find that k2 is bounded on [0, tf ).
Because of |e3(t)| < 1/ϕ3(t) and boundedness of $2,
$̇2, y2,∆3, ϕ3, ϕ̇3, z

(4)
href

on [0, tf ) it follows that there
exists C3 > 0 such that

ϕ3(t)
( |ϕ̇3(t)|
ϕ2

3(t)
+
∣∣∣z(4)
href

(t)
∣∣∣+ c3 + c4|y2 (t) |

+|∆3|+
(
1 + 2$2

2(t)k2 (t)
)
k2(t)|$̇2(t)|

)
≤ C3.

(39)

Invoking |$3 (t)| < 1 we thus obtain

U̇3(t) ≤ |$3(t)| (−c5k3(t)|$3(t)|+ C3) (40)

and with a similar argument as in Step 3 it can be shown
that k3 is bounded on [0, tf ).

Step 6: We show that tf = ∞. Assuming tf < ∞ it
follows from Steps 2–5 that the closure of the graph of
(y0, . . . , y3) is a compact subset of D4, which contradicts
the findings of Step 1. Therefore, tf =∞.

Note that the determination of the funnel boundary
ρ̄0(t) is pre-established based on the positional accuracy
criteria for the considered maneuvering flight mission. In
contrast, ρ̄i(t) (i = 1, 2, 3) represent adjustable parame-
ters utilized to achieve the overall control objective by
expanding or narrowing the permissible range of ei(t)
(i = 1, 2, 3). The control algorithm exhibits divergence
when ei(t) = ρ̄i(t), which leads to $i(t) = 1, and
consequently, ki(t) = 1

1−$i
2(t) tends towards infinity.

Particularly during the maneuvering phases, such as
BC,DE,FG (as depicted in Fig. 4), errors close to
their respective funnel boundary become more likely. This
phenomenon primarily arises due to the rapid changes of
the reference trajectory during maneuvers, which reduces
the gap between the error and its corresponding funnel
boundary. This exacerbates the likelihood of the gain
parameter ki(t) approaching infinity, ultimately leading
to instability of the closed-loop system.

Further note that the work [26] also employs funnel
control techniques to solve the tracking problem with
prescribed transient behavior for RVs. However, the con-
troller there requires additional design parameters which
need to be sufficiently large, but it is not known a priori
how large they must be chosen. In the present paper, we
avoid this problem by introducing a novel error variable
form as in (13). This seems advantageous for practical
engineering.

IV. SIMULATION

In this section, we illustrate the performance of the
funnel controller (14) by considering the lateral action
of a RV with constant speed V = 5 Mach at a height
of 20 km. The initial states of the RV and the values of
the geometric system parameters are shown in Table I. In
practical engineering applications, input constraints are
always present. Therefore, although such constraints are
not considered in the theoretical treatment in Theorem 1,
we incorporated them in the simulation such that the
actual control input is sat(u(t)), where sat(v) = v for
|v| ≤ 40 and sat(v) = sgn(v)40 for |v| > 40. The
simulation was performed in MATLAB (solver: ODE45,
default tolerances).

As for the maneuvering reference trajectory, an
extensively used Dubins trajectory is selected as the
planning path, shown in Fig. 4, where θj (j =
BC,DE,FG) and Rj are the turning radius and
central angles, respectively. The coordinates of the
starting point, turning points and end point are
A (0, 450m), B (12km, 50m), C (15km, 0), D (24km, 0),
E (27km, 50m), F (30km, 150m), G (35km, 260m) and
H (48.53km,−200m). The time consumed per period is
calculated by ti = l̄i

V (i = AB,CD,EF,GH) through

straight regions and tj =
_
l j

V =
θjRj

V (j = BC,DE,FG)
in turning areas. Since the proposed performance funnel is
time-triggered based on the planning path, the triggered
times are set in accordance with the time points of the
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Fig. 4. Planning trajectory for RV

reference trajectory, resulting in p = 3. Thus the parame-
ters of the funnel boundary function of the form (11) are
chosen as in Table II.

In order to comprehensively verify the effectiveness of
our proposed algorithm, we study three cases in the simu-
lations, that is, the Nominal Case (without disturbances),
Case 1 (with disturbances ∆i(t) (i = 0, 1, 2, 3) and aero-
dynamic parameters biased +10%) and Case 2 (with dis-
turbances ∆i(t) (i = 0, 1, 2, 3) and aerodynamic param-
eters biased -10%), where the involved aerodynamic pa-
rameters are cαz , c

β
z , c

0
z, c

α
M , c

β
M , c

δy
M , c

0
M . As disturbances

we choose ∆0(t) = 5
57.3 sin

(
π
4 t
)
, ∆1(t) = 0.2

57.3 sin
(
π
4 t
)
,

∆2(t) = 2
57.3 sin

(
π
4 t
)
, ∆3(t) = 10

57.3 sin
(
π
4 t
)
.

The results are depicted in Figs. 5–11. The tracking
error e0 and the auxiliary errors e1, e2, e3 are shown
in Figs. 5–8. It is found that e3 is more sensitive to
maneuvering than e0, where a slight jump appears near
each trigger time. In all three cases, every error ei
(i = 0, 1, 2, 3) is kept within its respective funnel through
the whole process. The control input, represented by
the rudder angle, is shown in Fig. 9. It is evident that
the control input exhibits a peak at both the starting
and the turning point, leading to control saturation due
to the constraints imposed on the input. In accordance
with Theorem 1, this phenomenon exemplifies the means
by which the proposed control algorithm endeavors to
mitigate the chances of errors transgressing the funnel
boundaries to the greatest extent possible. Though input
saturation is not covered by Theorem 1, it is unmistakable
that the controller demonstrates exceptional performance
under these input constraints. Nonetheless, it remains cru-
cial to recognize that achieving the optimal performance
of the control algorithm necessitates to comprise input
constraints. Future research should aim to establish the
theoretical guarantees for such a performance.

Fig. 10 shows the deflection angle, sideslip angle, yaw
angle and yaw rate to illustrate that all variables in the
closed-loop system are bounded in all three cases. The
tracking maneuver reference trajectory is shown in Fig. 11
together with the output signals generated under control.
Although the performance of the vehicle in the continuous
large maneuver segment is not as good as that in the
single maneuver segment, we observe a decent tracking
performance overall. Furthermore, the presented simula-
tions demonstrate the inherent robustness properties of the
control algorithm.
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Fig. 5. Response of tracking error e0(t).
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Fig. 6. Response of error e1(t).

However, we like to note that in this example the theo-
retical condition (15) from Theorem 1 is not satisfied, yet
the controller still works. This shows that the assumptions
of Theorem 1 are quite conservative and further research
is necessary to relax them. A thorough inspection of the
proof of Theorem 1 reveals that the conservativeness of
condition (15) is due to the utilization of the mean value
theorem and avoiding it could lead to a weaker condition.

V. CONCLUSION

In this paper, we have devised a funnel-based tracking
control algorithm to ensure the prescribed performance
of tracking errors in reentry vehicles operating in the
presence of disturbances during maneuvering flight mis-
sions. Our simulation results conclusively demonstrate
that the proposed control method effectively stabilizes
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Fig. 7. Response of error e2(t).
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TABLE I
Geometric parameters and initial state of RV

Variables Value Variables Value
m (kg) 1200 zh(0) (m) 400
S (m2) 1.3 ψV (0) (rad) 2/57.3
l (m) 1.7 ψ(0) (rad) 4/57.3
Jy (kg ·m2) 8110 ωy(0) (rad/s) 0.035
α (rad) 5/57.3 β(0) 2/57.3
cαz 0 cβz 0.1852
c0z -0.018714 cαM -0.1
cβM 2.1335 c

δy
M

5.1588
c0M 0.18979 q̄ 3711.93329

TABLE II
Parameters of the proposed funnel boundary

Variables Value

ρ̄0(t)(m)

ρ̄00,1 = 200, ρ̄00,2 = 100, ρ̄00,3 = 300,
ρ̄00,4 = 100, ρ̄∞0,1 = 2, ρ̄∞0,2 = 2, ρ̄∞0,3 =

2, ρ̄∞0,4 = 10, l0,1 = 0.25, l0,2 = 0.25,
l0,3 = 0.5, l0,4 = 0.1

ρ̄1(t)(rad) ρ̄1 (t) = 1.8ρ̄0 (t)

ρ̄2(t)(rad) ρ̄2 (t) = 3ρ̄0 (t)

ρ̄3(t)(rad/s) ρ̄3 (t) = 6ρ̄0 (t)

all variables within the closed-loop system and consis-
tently maintains the predetermined performance criteria
throughout the entire trajectory, even during rapid trajec-
tory maneuvers. This successfully validates the applicabil-
ity and effectiveness of the proposed time-triggered, non-
monotonic funnel boundary under maneuvering mission
conditions. Future research will focus on the relaxation of
the conditions of Theorem 1 as well as their extension to
the presence of input constraints. To this end, the recent
results in [32] might be a starting point.
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